1
|
Huang D, Chen L, Wang Y, Wang Z, Wang J, Wang X. Characterization of a secondary hydroxy-acyltransferase for lipid A in Vibrio parahaemolyticus. Microbiol Res 2024; 283:127712. [PMID: 38593580 DOI: 10.1016/j.micres.2024.127712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/22/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
Lipid A plays a crucial role in Vibrio parahaemolyticus. Previously we have reported the diversity of secondary acylation of lipid A in V. parahaemolyticus and four V. parahaemolyticus genes VP_RS08405, VP_RS01045, VP_RS12170, and VP_RS00880 exhibiting homology to the secondary acyltransferases in Escherichia coli. In this study, the gene VP_RS12170 was identified as a specific lipid A secondary hydroxy-acyltransferase responsible for transferring a 3-hydroxymyristate to the 2'-position of lipid A. Four E. coli mutant strains WHL00, WHM00, WH300, and WH001 were constructed, and they would synthesize lipid A with different structures due to the absence of genes encoding lipid A secondary acyltransferases or Kdo transferase. Then V. parahaemolyticus VP_RS12170 was overexpressed in W3110, WHL00, WHM00, WH300, and WH001, and lipid A was isolated from these strains and analyzed by using thin-layer chromatography and high-performance liquid chromatography-tandem mass spectrometry. The detailed structural changes of lipid A in these mutant strains with and without VP_RS12170 overexpression were compared and conclude that VP_RS12170 can specifically transfer a 3-hydroxymyristate to the 2'-position of lipid A. This study also demonstrated that the function of VP_RS12170 is Kdo-dependent and its favorite substrate is Kdo-lipid IVA. These findings give us better understanding the biosynthetic pathway and the structural diversity of V. parahaemolyticus lipid A.
Collapse
Affiliation(s)
- Danyang Huang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Lingyan Chen
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yang Wang
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhe Wang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianli Wang
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaoyuan Wang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Orata FD, Hussain NAS, Liang KYH, Hu D, Boucher YF. Genomes of Vibrio metoecus co-isolated with Vibrio cholerae extend our understanding of differences between these closely related species. Gut Pathog 2022; 14:42. [PMID: 36404338 PMCID: PMC9677704 DOI: 10.1186/s13099-022-00516-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/04/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Vibrio cholerae, the causative agent of cholera, is a well-studied species, whereas Vibrio metoecus is a recently described close relative that is also associated with human infections. The availability of V. metoecus genomes provides further insight into its genetic differences from V. cholerae. Additionally, both species have been co-isolated from a cholera-free brackish coastal pond and have been suggested to interact with each other by horizontal gene transfer (HGT). RESULTS The genomes of 17 strains from each species were sequenced. All strains share a large core genome (2675 gene families) and very few genes are unique to each species (< 3% of the pan-genome of both species). This led to the identification of potential molecular markers-for nitrite reduction, as well as peptidase and rhodanese activities-to further distinguish V. metoecus from V. cholerae. Interspecies HGT events were inferred in 21% of the core genes and 45% of the accessory genes. A directional bias in gene transfer events was found in the core genome, where V. metoecus was a recipient of three times (75%) more genes from V. cholerae than it was a donor (25%). CONCLUSION V. metoecus was misclassified as an atypical variant of V. cholerae due to their resemblance in a majority of biochemical characteristics. More distinguishing phenotypic assays can be developed based on the discovery of potential gene markers to avoid any future misclassifications. Furthermore, differences in relative abundance or seasonality were observed between the species and could contribute to the bias in directionality of HGT.
Collapse
Affiliation(s)
- Fabini D. Orata
- grid.17089.370000 0001 2190 316XDepartment of Biological Sciences, University of Alberta, Edmonton, Alberta Canada ,grid.17089.370000 0001 2190 316XDepartment of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta Canada
| | - Nora A. S. Hussain
- grid.17089.370000 0001 2190 316XDepartment of Biological Sciences, University of Alberta, Edmonton, Alberta Canada
| | - Kevin Y. H. Liang
- grid.17089.370000 0001 2190 316XDepartment of Biological Sciences, University of Alberta, Edmonton, Alberta Canada ,grid.14709.3b0000 0004 1936 8649Department of Quantitative Life Sciences, McGill University, Montréal, Québec Canada ,grid.14709.3b0000 0004 1936 8649Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec Canada
| | - Dalong Hu
- grid.4280.e0000 0001 2180 6431Saw Swee Hock School of Public Health, National University of Singapore and National University Hospital System, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore
| | - Yann F. Boucher
- grid.17089.370000 0001 2190 316XDepartment of Biological Sciences, University of Alberta, Edmonton, Alberta Canada ,grid.4280.e0000 0001 2180 6431Saw Swee Hock School of Public Health, National University of Singapore and National University Hospital System, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore and National University Hospital System, Singapore, Singapore
| |
Collapse
|
3
|
Janecko N, Bloomfield SJ, Palau R, Mather AE. Whole genome sequencing reveals great diversity of Vibrio spp in prawns at retail. Microb Genom 2021; 7. [PMID: 34586050 PMCID: PMC8715430 DOI: 10.1099/mgen.0.000647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Consumption of prawns as a protein source has been on the rise worldwide with seafood identified as the predominant attributable source of human vibriosis. However, surveillance of non-cholera Vibrio is limited both in public health and in food. Using a population- and market share-weighted study design, 211 prawn samples were collected and cultured for Vibrio spp. Contamination was detected in 46 % of samples, and multiple diverse Vibrio isolates were obtained from 34 % of positive samples. Whole genome sequencing (WGS) and phylogenetic analysis illustrated a comprehensive view of Vibrio species diversity in prawns available at retail, with no known pathogenicity markers identified in Vibrio parahaemolyticus and V. cholerae. Antimicrobial resistance genes were found in 77 % of isolates, and 12 % carried genes conferring resistance to three or more drug classes. Resistance genes were found predominantly in V. parahaemolyticus, though multiple resistance genes were also identified in V. cholerae and V. vulnificus. This study highlights the large diversity in Vibrio derived from prawns at retail, even within a single sample. Although there was little evidence in this study that prawns are a major source of vibriosis in the UK, surveillance of non-cholera Vibrio is very limited. This study illustrates the value of expanding WGS surveillance efforts of non-cholera Vibrios in the food chain to identify critical control points for food safety through the production system and to determine the full extent of the public health impact.
Collapse
Affiliation(s)
- Nicol Janecko
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| | | | - Raphaëlle Palau
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Alison E Mather
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK.,Faculty of Medicine and Health Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
4
|
Luo Y, Wang H, Liang J, Qian H, Ye J, Chen L, Yang X, Chen Z, Wang F, Octavia S, Payne M, Song X, Jiang J, Jin D, Lan R. Population Structure and Multidrug Resistance of Non-O1/Non-O139 Vibrio cholerae in Freshwater Rivers in Zhejiang, China. MICROBIAL ECOLOGY 2021; 82:319-333. [PMID: 33410933 DOI: 10.1007/s00248-020-01645-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
To understand the environmental reservoirs of Vibrio cholerae and their public health significance, we surveyed freshwater samples from rivers in two cities (Jiaxing [JX] and Jiande [JD]) in Zhejiang, China. A total of 26 sampling locations were selected, and river water was sampled 456 times from 2015 to 2016 yielding 200 V. cholerae isolates, all of which were non-O1/non-O139. The average isolation rate was 47.3% and 39.1% in JX and JD, respectively. Antibiotic resistance profiles of the V. cholerae isolates were examined with nonsusceptibility to cefazolin (68.70%, 79/115) being most common, followed by ampicillin (47.83%, 55/115) and imipenem (27.83%, 32/115). Forty-two isolates (36.52%, 42/115) were defined as multidrug resistant (MDR). The presence of virulence genes was also determined, and the majority of the isolates were positive for toxR (198/200, 99%) and hlyA (196/200, 98%) with few other virulence genes observed. The population structure of the V. cholerae non-O1/non-O139 sampled was examined using multilocus sequence typing (MLST) with 200 isolates assigned to 128 STs and 6 subpopulations. The non-O1/non-O139 V. cholerae population in JX was more varied than in JD. By clonal complexes (CCs), 31 CCs that contained isolates from this study were shared with other parts of China and/or other countries, suggesting widespread presence of some non-O1/non-O139 clones. Drug resistance profiles differed between subpopulations. The findings suggest that non-O1/non-O139 V. cholerae in the freshwater environment is a potential source of human infections. Routine surveillance of non-O1/non-O139 V. cholerae in freshwater rivers will be of importance to public health.
Collapse
Affiliation(s)
- Yun Luo
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310052, Zhejiang, China
| | - Henghui Wang
- Jiaxing Center for Disease Control and Prevention, Jiaxing, 314050, Zhejiang, China
| | - Jie Liang
- Jiande Center for Disease Control and Prevention, Hangzhou, 311600, Zhejiang, China
| | - Huiqin Qian
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310052, Zhejiang, China
| | - Julian Ye
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310052, Zhejiang, China
| | - Lixia Chen
- Jiaxing Center for Disease Control and Prevention, Jiaxing, 314050, Zhejiang, China
| | - Xianqing Yang
- Jiande Center for Disease Control and Prevention, Hangzhou, 311600, Zhejiang, China
| | - Zhongwen Chen
- Jiaxing Center for Disease Control and Prevention, Jiaxing, 314050, Zhejiang, China
| | - Fei Wang
- Jiande Center for Disease Control and Prevention, Hangzhou, 311600, Zhejiang, China
| | - Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Michael Payne
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Xiaojun Song
- Centre of Laboratory Medicine, Zhejiang Provincial People Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Jianmin Jiang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310052, Zhejiang, China
| | - Dazhi Jin
- Centre of Laboratory Medicine, Zhejiang Provincial People Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, 310058, Zhejiang, China
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
5
|
Sadsri V, Trakulsujaritchok T, Tangwattanachuleeporn M, Hoven VP, Na Nongkhai P. Simple Colorimetric Assay for Vibrio parahaemolyticus Detection Using Aptamer-Functionalized Nanoparticles. ACS OMEGA 2020; 5:21437-21442. [PMID: 32905329 PMCID: PMC7469129 DOI: 10.1021/acsomega.0c01795] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
Simple, rapid, and sensitive screening methods are the key to prevent and control the spread of foodborne diseases. In this study, a simple visual colorimetric assay using magnetic nanoparticles (MNPs) and gold nanoparticles (AuNPs) was developed for the detection of Vibrio parahaemolyticus. First, the aptamer responding to V. parahaemolyticus was conjugated onto the surface of MNPs and used as a specific magnetic separator. In addition, the aptamer was also immobilized on the surface of AuNPs and used as a colorimetric detector. In the presence of V. parahaemolyticus, a sandwich structure of MNP-aptamer-bacteria-aptamer-AuNPs is formed through specific recognition of the aptamer and V. parahaemolyticus. The magnetic separation technique was then applied to generate a detection signal. Owing to the optical properties of AuNPs, a visual signal could be observed, resulting in an instrument-free colorimetric detection. Under optimal conditions, this assay shows a linear response toward V. parahaemolyticus concentration through the range of 10-106 cfu/mL, with a limit of detection of 2.4 cfu/mL. This method was also successfully applied for V. parahaemolyticus detection in spiked raw shrimp samples.
Collapse
Affiliation(s)
- Varunee Sadsri
- Department
of Chemistry, Faculty of Science, Burapha
University, Muang, Chonburi 20131, Thailand
| | - Thanida Trakulsujaritchok
- Department
of Chemistry, Faculty of Science, Burapha
University, Muang, Chonburi 20131, Thailand
- Center
of Excellence for Innovation in Chemistry, Burapha University, Muang, Chonburi 20131, Thailand
| | - Marut Tangwattanachuleeporn
- Faculty
of Allied Health Sciences, Burapha University, Muang, Chonburi 20131, Thailand
- Sensor
Innovation Research Unit (SIRU), Burapha
University, Muang, Chonburi 20131, Thailand
| | - Voravee P. Hoven
- Department
of Chemistry, Faculty of Science, Chulalongkorn
University, Phayathai
Road, Pathumwan, Bangkok 10330, Thailand
- Center of
Excellence in Materials and Biointerfaces, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Piyaporn Na Nongkhai
- Department
of Chemistry, Faculty of Science, Burapha
University, Muang, Chonburi 20131, Thailand
- Center
of Excellence for Innovation in Chemistry, Burapha University, Muang, Chonburi 20131, Thailand
- Sensor
Innovation Research Unit (SIRU), Burapha
University, Muang, Chonburi 20131, Thailand
| |
Collapse
|
6
|
Osawa K, Shigemura K, Kitagawa K, Kuntaman K, Mertaniasih NM, Setyarini W, Arizandy D, Rahadjo D, Osawa R, Shirakawa T, Fujisawa M. Difference of Phenotype and Genotype Between Human and Environmental: Isolated Vibrio cholerae in Surabaya, Indonesia. Indian J Microbiol 2020; 60:230-238. [PMID: 32255856 DOI: 10.1007/s12088-020-00861-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/03/2020] [Indexed: 11/25/2022] Open
Abstract
Cholera due to Vibrio cholerae has been spreading worldwide, although the reports focusing on Indonesian V. cholerae are few. In this study, in order to investigate how V. cholerae transmitted to human from environment. We extended an epidemiological report that had investigated the genotype of V. cholerae isolated from human pediatric samples and environmental samples. We examined 44 strains of V. cholerae isolated from pediatric diarrhea patients and the environment such as shrimps or oysters collected in three adjacent towns in Surabaya, Indonesia. Susceptibilities were examined for 11 antibiotics. Serotype O1 or O139 genes and pathogenic genes including cholera toxin were detected. Multi-locus sequence typing (MLST) and enterobacterial repetitive intergenic consensus (ERIC)-PCR were also performed to determine genetic diversity of those isolates. Serotype O1 was seen in 17 strains (38.6%) with all pathogenic genes among 44 isolates. Other isolates were non-O1/non-O139 V. cholerae. Regarding antibiotic susceptibilities, those isolates from environmental samples showed resistance to ampicillin (11.4%), streptomycin (9.1%) and nalidixic acid (2.3%) but those isolates from pediatric stools showed no resistance to those 3 kinds of antibiotics. MLST revealed sequence type (ST) 69 in 17 strains (38.6%), ST198 in 3 strains (6.8%) and non-types in 24 strains (54.5%). All the ST69 strains were classified to O1 type with more than 95% similarity by ERIC-PCR, including all 6 (13.6%) isolates from environmental samples with resistance to streptomycin. In conclusion, V. cholerae O1 ST69 strains has been clonally spreading in Surabaya, exhibiting pathogenic factors and antibiotic resistance to streptomycin, especially in the isolates from environment.
Collapse
Affiliation(s)
- Kayo Osawa
- 1Department of Medical Technology, Kobe Tokiwa University, Kobe, Japan
| | - Katsumi Shigemura
- 2Department of International Health, Graduate School of Health Sciences, Kobe University, Kobe, Japan
- 3Department of Urology, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-Cho, Chuo-ku, Kobe, 650-0017 Japan
| | - Koichi Kitagawa
- 2Department of International Health, Graduate School of Health Sciences, Kobe University, Kobe, Japan
- 4Division of Translational Research for Biologics, Department of Internal Related, Graduate School of Medicine, Kobe University, Kobe, Japan
- 5Department of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - K Kuntaman
- 6Department of Microbiology, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Ni Made Mertaniasih
- 6Department of Microbiology, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Wahyu Setyarini
- 7Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Dita Arizandy
- 7Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Dadik Rahadjo
- 8Department of Veterinary Public Health, Faculty of Veterinary Medicine, Airlangga University, Surabaya, Indonesia
| | - Ro Osawa
- 9Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Toshiro Shirakawa
- 2Department of International Health, Graduate School of Health Sciences, Kobe University, Kobe, Japan
- 3Department of Urology, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-Cho, Chuo-ku, Kobe, 650-0017 Japan
- 4Division of Translational Research for Biologics, Department of Internal Related, Graduate School of Medicine, Kobe University, Kobe, Japan
- 5Department of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Masato Fujisawa
- 3Department of Urology, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-Cho, Chuo-ku, Kobe, 650-0017 Japan
| |
Collapse
|
7
|
Hackbusch S, Wichels A, Gimenez L, Döpke H, Gerdts G. Potentially human pathogenic Vibrio spp. in a coastal transect: Occurrence and multiple virulence factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:136113. [PMID: 31864001 DOI: 10.1016/j.scitotenv.2019.136113] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/19/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
An increase in human Vibrio spp. infections has been linked to climate change related events, in particular to seawater warming and heatwaves. However, there is a distinct lack of research of pathogenic Vibrio spp. occurrences in the temperate North Sea, one of the fastest warming seas globally. Particularly in the German Bight, Vibrio investigations are still scarce. This study focuses on the spatio-temporal quantification and pathogenic characterization of V. parahaemolyticus, V. vulnificus and V. cholerae over the course of 14 months. Species-specific MPN-PCR (Most probable number - polymerase chain reaction) conducted on selectively enriched surface water samples revealed seasonal patterns of all three species with increased abundances during summer months. The extended period of warm seawater coincided with prolonged Vibrio spp. occurrences in the German Bight. Temperature and nitrite were the factors explaining variations in Vibrio spp. abundances after generalized additive mixed models. The specific detection of pathogenic markers via PCR revealed trh-positive V. parahaemolyticus, pathogenic V. vulnificus (nanA, manIIA, PRXII) and V. cholerae serotype O139 presence. Additionally, spatio-temporally varying virulence profiles of V. cholerae with multiple accessory virulence-associated genes, such as the El Tor variant hemolysin (hlyAET), acyltransferase of the repeats-in-toxin cluster (rtxC), Vibrio 7th pandemic island II (VSP-II), Type III Secretion System (TTSS) and the Cholix Toxin (chxA) were detected. Overall, this study highlights that environmental human pathogenic Vibrio spp. comprise a reservoir of virulence-associated genes in the German Bight, especially in estuarine regions. Due to their known vast genetic plasticity, we point to the possible emergence of highly pathogenic V. cholerae strains. Particularly, the presence of V. cholerae serotype O139 is unusual and needs urgent continuous surveillance. Given the predictions of further warming and more frequent heatwave events, human pathogenic Vibrio spp. should be seriously considered as a developing risk to human health in the German Bight.
Collapse
Affiliation(s)
- Sidika Hackbusch
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Biologische Anstalt Helgoland, Kurpromenade 201, 27498 Helgoland, Germany.
| | - Antje Wichels
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Biologische Anstalt Helgoland, Kurpromenade 201, 27498 Helgoland, Germany
| | - Luis Gimenez
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Biologische Anstalt Helgoland, Kurpromenade 201, 27498 Helgoland, Germany; School of Ocean Sciences, Bangor University, LL50 5AB Menai Bridge, Anglesey, UK
| | - Hilke Döpke
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Biologische Anstalt Helgoland, Kurpromenade 201, 27498 Helgoland, Germany
| | - Gunnar Gerdts
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Biologische Anstalt Helgoland, Kurpromenade 201, 27498 Helgoland, Germany
| |
Collapse
|
8
|
Crisan CV, Chande AT, Williams K, Raghuram V, Rishishwar L, Steinbach G, Watve SS, Yunker P, Jordan IK, Hammer BK. Analysis of Vibrio cholerae genomes identifies new type VI secretion system gene clusters. Genome Biol 2019; 20:163. [PMID: 31405375 PMCID: PMC6691524 DOI: 10.1186/s13059-019-1765-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 07/18/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Like many bacteria, Vibrio cholerae deploys a harpoon-like type VI secretion system (T6SS) to compete against other microbes in environmental and host settings. The T6SS punctures adjacent cells and delivers toxic effector proteins that are harmless to bacteria carrying cognate immunity factors. Only four effector/immunity pairs encoded on one large and three auxiliary gene clusters have been characterized from largely clonal, patient-derived strains of V. cholerae. RESULTS We sequence two dozen V. cholerae strain genomes from diverse sources and develop a novel and adaptable bioinformatics tool based on hidden Markov models. We identify two new T6SS auxiliary gene clusters and describe Aux 5 here. Four Aux 5 loci are present in the host strain, each with an atypical effector/immunity gene organization. Structural prediction of the putative effector indicates it is a lipase, which we name TleV1 (type VI lipase effector Vibrio). Ectopic TleV1 expression induces toxicity in Escherichia coli, which is rescued by co-expression of the TliV1a immunity factor. A clinical V. cholerae reference strain expressing the Aux 5 cluster uses TleV1 to lyse its parental strain upon contact via its T6SS but is unable to kill parental cells expressing the TliV1a immunity factor. CONCLUSION We develop a novel bioinformatics method and identify new T6SS gene clusters in V. cholerae. We also show the TleV1 toxin is delivered in a T6SS manner by V. cholerae and can lyse other bacterial cells. Our web-based tool can be modified to identify additional novel T6SS genomic loci in diverse bacterial species.
Collapse
Affiliation(s)
- Cristian V Crisan
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA, 30332-0230, USA
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA, 30332-0230, USA
- School of Biological Sciences, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA, 30332-0230, USA
| | - Aroon T Chande
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA, 30332-0230, USA
- School of Biological Sciences, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA, 30332-0230, USA
- Applied Bioinformatics Laboratory, Atlanta, GA, USA
- PanAmerican Bioinformatics Institute, Cali, Valle del Cauca, Colombia
| | - Kenneth Williams
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA, 30332-0230, USA
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA, 30332-0230, USA
- School of Biological Sciences, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA, 30332-0230, USA
| | - Vishnu Raghuram
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA, 30332-0230, USA
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA, 30332-0230, USA
- School of Biological Sciences, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA, 30332-0230, USA
| | - Lavanya Rishishwar
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA, 30332-0230, USA
- School of Biological Sciences, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA, 30332-0230, USA
- Applied Bioinformatics Laboratory, Atlanta, GA, USA
- PanAmerican Bioinformatics Institute, Cali, Valle del Cauca, Colombia
| | - Gabi Steinbach
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA, 30332-0230, USA
- Applied Bioinformatics Laboratory, Atlanta, GA, USA
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Samit S Watve
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Peter Yunker
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA, 30332-0230, USA
- Applied Bioinformatics Laboratory, Atlanta, GA, USA
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - I King Jordan
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA, 30332-0230, USA
- School of Biological Sciences, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA, 30332-0230, USA
- Applied Bioinformatics Laboratory, Atlanta, GA, USA
- PanAmerican Bioinformatics Institute, Cali, Valle del Cauca, Colombia
| | - Brian K Hammer
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA, 30332-0230, USA.
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA, 30332-0230, USA.
- School of Biological Sciences, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA, 30332-0230, USA.
| |
Collapse
|
9
|
|
10
|
Modeling the Potential of Submarine Groundwater Discharge to Facilitate Growth of Vibrio cholerae Bacteria. HYDROLOGY 2019. [DOI: 10.3390/hydrology6020039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Submarine groundwater discharge (SGD), the discharge of terrestrial groundwater to the ocean, can govern the coastal benthic environment. Bacteria such as Vibrio cholerae inhabit coastal waters and sediments, whose growth can be influenced by SGD. In particular, salinity changes introduced by SGD could have a positive effect on the abundance but also virulence of non-halophilic V. cholera bacteria dwelling in coastal waters and shallow marine sediments. Here we assess potential effects of SGD on the environmental properties that favor V. cholerae in a numerical modeling study representing multiple scenarios. Approaching natural systems, simulation results reveal a high sensitivity of non-halophilic Vibrio cholerae growth to SGD and its primary driving factors. This dependency leads to highest growth potential at high groundwater inflow and low hydraulic conductivity of the aquifer as well as for steep sea-side boundary slopes. Besides its minor impact on the extent of SGD in our model, dispersion is a crucial limiting factor for V. cholerae habitat. We conclude that there is a close connection between the driving factors of SGD and low salinity zones along a coastal slope, and recommend taking these into consideration for evaluating local V. cholerae outbreaks.
Collapse
|
11
|
Ardura A, Clusa L, Zaiko A, Garcia-Vazquez E, Miralles L. Stress related epigenetic changes may explain opportunistic success in biological invasions in Antipode mussels. Sci Rep 2018; 8:10793. [PMID: 30018391 PMCID: PMC6050280 DOI: 10.1038/s41598-018-29181-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/26/2018] [Indexed: 01/02/2023] Open
Abstract
Different environmental factors could induce epigenetic changes, which are likely involved in the biological invasion process. Some of these factors are driven by humans as, for example, the pollution and deliberate or accidental introductions and others are due to natural conditions such as salinity. In this study, we have analysed the relationship between different stress factors: time in the new location, pollution and salinity with the methylation changes that could be involved in the invasive species tolerance to new environments. For this purpose, we have analysed two different mussels' species, reciprocally introduced in antipode areas: the Mediterranean blue mussel Mytilus galloprovincialis and the New Zealand pygmy mussel Xenostrobus securis, widely recognized invaders outside their native distribution ranges. The demetylathion was higher in more stressed population, supporting the idea of epigenetic is involved in plasticity process. These results can open a new management protocols, using the epigenetic signals as potential pollution monitoring tool. We could use these epigenetic marks to recognise the invasive status in a population and determine potential biopollutants.
Collapse
Affiliation(s)
- Alba Ardura
- Department of Functional Biology, University of Oviedo, C/Julian Claveria s/n, 33006, Oviedo, Spain.
| | - Laura Clusa
- Department of Functional Biology, University of Oviedo, C/Julian Claveria s/n, 33006, Oviedo, Spain
| | - Anastasija Zaiko
- Coastal and Freshwater Group, Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand
- Marine Research Institute, Klaipeda University, H. Manto 84, Klaipeda, 92294, Lithuania
| | - Eva Garcia-Vazquez
- Department of Functional Biology, University of Oviedo, C/Julian Claveria s/n, 33006, Oviedo, Spain
| | - Laura Miralles
- Department of Functional Biology, University of Oviedo, C/Julian Claveria s/n, 33006, Oviedo, Spain
| |
Collapse
|
12
|
Molecular Typing ofVibrio parahaemolyticusStrains Isolated from Mollusks in the North Adriatic Sea. Foodborne Pathog Dis 2017; 14:454-464. [DOI: 10.1089/fpd.2016.2263] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
13
|
Han D, Yu F, Tang H, Ren C, Wu C, Zhang P, Han C. Spreading of Pandemic Vibrio parahaemolyticus O3:K6 and Its Serovariants: A Re-analysis of Strains Isolated from Multiple Studies. Front Cell Infect Microbiol 2017; 7:188. [PMID: 28573108 PMCID: PMC5435814 DOI: 10.3389/fcimb.2017.00188] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 05/02/2017] [Indexed: 01/21/2023] Open
Abstract
In China, V. parahaemolyticus has been a leading cause of foodborne outbreaks and bacterial infectious diarrhea since the 1990s, and most infections have been associated with the pandemic V. parahaemolyticus O3:K6 and its serovariants. However, a comprehensive overview of the sero-prevalence and genetic diversity of the pandemic V. parahaemolyticus clone in China is lacking. To compensate for this deficiency, pandemic isolates in both clinical and environmental Chinese samples collected from multiple studies were analyzed in this study. Surprisingly, as many as 27 clinical pandemic serovariants were identified and were widely distributed across nine coastal provinces and two inland provinces (Beijing and Sichuan). O3:K6, O4:K68, and O1:KUT represented the predominant clinical serovars. Only four environmental pandemic serovariants had previously been reported, and they were spread throughout Shanghai (O1:KUT, O3:K6), Jiangsu (O3:K6, O4:K48), Zhejiang (O3:K6), and Guangdong (O4:K9). Notably, 24 pandemic serovariants were detected within a short time frame (from 2006 to 2012). The pandemic isolates were divided into 15 sequence types (STs), 10 of which fell within clonal complex (CC) 3. Only three STs (ST3, ST192, and ST305) were identified in environmental isolates. Substantial serotypic diversity was mainly observed among isolates within pandemic ST3, which comprised 21 combinations of O/K antigens. The pandemic O3:K6 serotype showed a high level of sequence diversity, which was shared by eight different STs (ST3, ST227, ST431, ST435, ST487, ST489, ST526, and ST672). Antimicrobial susceptibility testing revealed that most isolates shared similar antibiotic susceptibility profiles. They were resistant to ampicillin but sensitive to most other drugs that were tested. In conclusion, the high levels of serotypic and genetic diversity of the pandemic clone suggest that the involved regions are becoming important reservoirs for the emergence of novel pandemic strains. We underscore the need for routine monitoring to prevent pandemic V. parahaemolyticus infection, which includes monitoring antimicrobial responses to avoid excessive misuse of antibiotics. Further investigations are also needed to delineate the specific mechanisms underlying the possible seroconversion of pandemic isolates.
Collapse
Affiliation(s)
- Dongsheng Han
- Clinical Medical Examination Center, Northern Jiangsu People's HospitalYangzhou, China
| | - Fei Yu
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Department of Clinical Laboratory, First Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhou, China
| | - Hui Tang
- Department of Pathology and Pathophysiology, Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and TechnologyWuhan, China
| | - Chuanli Ren
- Clinical Medical Examination Center, Northern Jiangsu People's HospitalYangzhou, China
| | - Caiyun Wu
- Clinical Medical Examination Center, Northern Jiangsu People's HospitalYangzhou, China
| | - Pan Zhang
- Clinical Medical Examination Center, Northern Jiangsu People's HospitalYangzhou, China
| | - Chongxu Han
- Clinical Medical Examination Center, Northern Jiangsu People's HospitalYangzhou, China
| |
Collapse
|
14
|
Sequential displacement of Type VI Secretion System effector genes leads to evolution of diverse immunity gene arrays in Vibrio cholerae. Sci Rep 2017; 7:45133. [PMID: 28327641 PMCID: PMC5361080 DOI: 10.1038/srep45133] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/17/2017] [Indexed: 11/09/2022] Open
Abstract
Type VI secretion systems (T6SS) enable bacteria to engage neighboring cells in contact-dependent competition. In Vibrio cholerae, three chromosomal clusters each encode a pair of effector and immunity genes downstream of those encoding the T6SS structural machinery for effector delivery. Different combinations of effector-immunity proteins lead to competition between strains of V. cholerae, which are thought to be protected only from the toxicity of their own effectors. Screening of all publically available V. cholerae genomes showed that numerous strains possess long arrays of orphan immunity genes encoded in the 3' region of their T6SS clusters. Phylogenetic analysis reveals that these genes are highly similar to those found in the effector-immunity pairs of other strains, indicating acquisition by horizontal gene transfer. Extensive genomic comparisons also suggest that successive addition of effector-immunity gene pairs replaces ancestral effectors, yet retains the cognate immunity genes. The retention of old immunity genes perhaps provides protection against nearby kin bacteria in which the old effector was not replaced. This mechanism, combined with frequent homologous recombination, is likely responsible for the high diversity of T6SS effector-immunity gene profiles observed for V. cholerae and closely related species.
Collapse
|
15
|
Epigenetic signatures of invasive status in populations of marine invertebrates. Sci Rep 2017; 7:42193. [PMID: 28205577 PMCID: PMC5311950 DOI: 10.1038/srep42193] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/06/2017] [Indexed: 12/27/2022] Open
Abstract
Epigenetics, as a DNA signature that affects gene expression and enables rapid reaction of an organism to environmental changes, is likely involved in the process of biological invasions. DNA methylation is an epigenetic mechanism common to plants and animals for regulating gene expression. In this study we show, for the first time in any marine species, significant reduction of global methylation levels during the expansive phase of a pygmy mussel (Xenostrobus securis) recent invasion in Europe (two-year old), while in older introductions such epigenetic signature of invasion was progressively reduced. Decreased methylation was interpreted as a rapid way of increasing phenotypic plasticity that would help invasive populations to thrive. This epigenetic signature of early invasion was stronger than the expected environmental signature of environmental stress in younger populations sampled from ports, otherwise detected in a much older population (>90 year old) of the also invasive tubeworm Ficopomatus enigmaticus established in similar locations. Higher epigenetic than genetic diversity found in X. securis was confirmed from F. enigmaticus samples. As reported for introduced plants and vertebrates, epigenetic variation could compensate for relatively lower genetic variation caused by founder effects. These phenomena were compared with epigenetic mechanisms involved in metastasis, as parallel processes of community (biological invasion) and organism (cancer) invasions.
Collapse
|
16
|
Pretzer C, Druzhinina IS, Amaro C, Benediktsdóttir E, Hedenström I, Hervio-Heath D, Huhulescu S, Schets FM, Farnleitner AH, Kirschner AKT. High genetic diversity of Vibrio cholerae in the European lake Neusiedler See is associated with intensive recombination in the reed habitat and the long-distance transfer of strains. Environ Microbiol 2017; 19:328-344. [PMID: 27871138 PMCID: PMC5718291 DOI: 10.1111/1462-2920.13612] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 10/27/2016] [Accepted: 11/10/2016] [Indexed: 11/29/2022]
Abstract
Coastal marine Vibrio cholerae populations usually exhibit high genetic diversity. To assess the genetic diversity of abundant V. cholerae non-O1/non-O139 populations in the Central European lake Neusiedler See, we performed a phylogenetic analysis based on recA, toxR, gyrB and pyrH loci sequenced for 472 strains. The strains were isolated from three ecologically different habitats in a lake that is a hot-spot of migrating birds and an important bathing water. We also analyzed 76 environmental and human V. cholerae non-O1/non-O139 isolates from Austria and other European countries and added sequences of seven genome-sequenced strains. Phylogenetic analysis showed that the lake supports a unique endemic diversity of V. cholerae that is particularly rich in the reed stand. Phylogenetic trees revealed that many V. cholerae isolates from European countries were genetically related to the strains present in the lake belonging to statistically supported monophyletic clades. We hypothesize that the observed phenomena can be explained by the high degree of genetic recombination that is particularly intensive in the reed stand, acting along with the long distance transfer of strains most probably via birds and/or humans. Thus, the Neusiedler See may serve as a bioreactor for the appearance of new strains with new (pathogenic) properties.
Collapse
Affiliation(s)
- Carina Pretzer
- Medical University Vienna, Institute for Hygiene and Applied Immunology, Vienna, Austria.,Vienna University of Technology, Institute of Chemical Engineering, Vienna, Austria
| | - Irina S Druzhinina
- Vienna University of Technology, Institute of Chemical Engineering, Vienna, Austria
| | - Carmen Amaro
- ERI BioTecMed University of Valencia, Valencia, Spain
| | - Eva Benediktsdóttir
- Faculty of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
| | | | | | | | - Franciska M Schets
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Andreas H Farnleitner
- Vienna University of Technology, Institute of Chemical Engineering, Vienna, Austria.,Interuniversity Cooperation Centre for Water & Health, (www.waterandhealth.at), Vienna, Austria
| | - Alexander K T Kirschner
- Medical University Vienna, Institute for Hygiene and Applied Immunology, Vienna, Austria.,Interuniversity Cooperation Centre for Water & Health, (www.waterandhealth.at), Vienna, Austria
| |
Collapse
|
17
|
Abstract
Vibrio cholerae has caused seven cholera pandemics since 1817, imposing terror on much of the world, but bacterial strains are currently only available for the sixth and seventh pandemics. The El Tor biotype seventh pandemic began in 1961 in Indonesia, but did not originate directly from the classical biotype sixth-pandemic strain. Previous studies focused mainly on the spread of the seventh pandemic after 1970. Here, we analyze in unprecedented detail the origin, evolution, and transition to pandemicity of the seventh-pandemic strain. We used high-resolution comparative genomic analysis of strains collected from 1930 to 1964, covering the evolution from the first available El Tor biotype strain to the start of the seventh pandemic. We define six stages leading to the pandemic strain and reveal all key events. The seventh pandemic originated from a nonpathogenic strain in the Middle East, first observed in 1897. It subsequently underwent explosive diversification, including the spawning of the pandemic lineage. This rapid diversification suggests that, when first observed, the strain had only recently arrived in the Middle East, possibly from the Asian homeland of cholera. The lineage migrated to Makassar, Indonesia, where it gained the important virulence-associated elements Vibrio seventh pandemic island I (VSP-I), VSP-II, and El Tor type cholera toxin prophage by 1954, and it then became pandemic in 1961 after only 12 additional mutations. Our data indicate that specific niches in the Middle East and Makassar were important in generating the pandemic strain by providing gene sources and the driving forces for genetic events.
Collapse
|
18
|
A Small Number of Phylogenetically Distinct Clonal Complexes Dominate a Coastal Vibrio cholerae Population. Appl Environ Microbiol 2016; 82:5576-86. [PMID: 27371587 DOI: 10.1128/aem.01177-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/29/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Vibrio cholerae is a ubiquitous aquatic microbe in temperate and tropical coastal areas. It is a diverse species, with many isolates that are harmless to humans, while others are highly pathogenic. Most notable among them are strains belonging to the pandemic O1/O139 serogroup lineage, which contains the causative agents of cholera. The environmental selective regimes that led to this diversity are key to understanding how pathogens evolve in environmental reservoirs. A local population of V. cholerae and its close relative Vibrio metoecus from a coastal pond and lagoon system was extensively sampled during two consecutive months across four size fractions (480 isolates). In stark contrast to previous studies, the observed population was highly clonal, with 60% of V. cholerae isolates falling into one of five clonal complexes, which varied in abundance in the short temporal scale sampled. V. cholerae clonal complexes had significantly different distributions across size fractions and the two environments sampled, the pond and the lagoon. Sequencing the genomes of 20 isolates representing these five V. cholerae clonal complexes revealed different evolutionary trajectories, with considerable variations in gene content with potential ecological significance. Showing genotypic differentiation and differential spatial distribution, the dominant clonal complexes are likely ecologically divergent. Temporal variation in the relative abundance of these complexes suggests that transient blooms of specific clones could dominate local diversity. IMPORTANCE Vibrio cholerae is commonly found in coastal areas worldwide, with only a single group of this bacterium capable of causing severe cholera outbreaks. However, the potential to evolve the ability to cause disease exists in many strains of this species in its aquatic reservoir. Understanding how pathogenic bacteria evolve requires the study of their natural environments. By extensive sampling in a geographically restricted location in the United States, we found that most cells of a V. cholerae population belong to only a small number of strains. Analysis of their genome composition and spatial distribution indicates differential environmental adaptations between these strains. Other strains exist in smaller numbers, and the population was found to be temporally varied. This suggests frequent bloom and collapse cycles on a time scale of weeks. These population dynamics make it possible that more virulent strains could stochastically rise to large numbers, allowing for infection to occur.
Collapse
|
19
|
Liu B, Liu H, Pan Y, Xie J, Zhao Y. Comparison of the Effects of Environmental Parameters on the Growth Variability of Vibrio parahaemolyticus Coupled with Strain Sources and Genotypes Analyses. Front Microbiol 2016; 7:994. [PMID: 27446034 PMCID: PMC4917555 DOI: 10.3389/fmicb.2016.00994] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/09/2016] [Indexed: 02/05/2023] Open
Abstract
Microbial growth variability plays an important role on food safety risk assessment. In this study, the growth kinetic characteristics corresponding to maximum specific growth rate (μmax) of 50 V. parahaemolyticus isolates from different sources and genotypes were evaluated at different temperatures (10, 20, 30, and 37°C) and salinity (0.5, 3, 5, 7, and 9%) using the automated turbidimetric system Bioscreen C. The results demonstrated that strain growth variability increased as the growth conditions became more stressful both in terms of temperature and salinity. The coefficient of variation (CV) of μmax for temperature was larger than that for salinity, indicating that the impact of temperature on strain growth variability was greater than that of salinity. The strains isolated from freshwater aquatic products had more conspicuous growth variations than those from seawater. Moreover, the strains with tlh (+) /tdh (+) /trh (-) exhibited higher growth variability than tlh (+) /tdh (-) /trh (-) or tlh (+) /tdh (-) /trh (+), revealing that gene heterogeneity might have possible relations with the growth variability. This research illustrates that the growth environments, strain sources as well as genotypes have impacts on strain growth variability of V. parahaemolyticus, which can be helpful for incorporating strain variability in predictive microbiology and microbial risk assessment.
Collapse
Affiliation(s)
- Bingxuan Liu
- College of Food Science and Technology, Shanghai Ocean UniversityShanghai, China
| | - Haiquan Liu
- College of Food Science and Technology, Shanghai Ocean UniversityShanghai, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of AgricultureShanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing and PreservationShanghai, China
| | - Yingjie Pan
- College of Food Science and Technology, Shanghai Ocean UniversityShanghai, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of AgricultureShanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing and PreservationShanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean UniversityShanghai, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of AgricultureShanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing and PreservationShanghai, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean UniversityShanghai, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of AgricultureShanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing and PreservationShanghai, China
| |
Collapse
|
20
|
Han C, Tang H, Ren C, Zhu X, Han D. Sero-Prevalence and Genetic Diversity of Pandemic V. parahaemolyticus Strains Occurring at a Global Scale. Front Microbiol 2016; 7:567. [PMID: 27148244 PMCID: PMC4840284 DOI: 10.3389/fmicb.2016.00567] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 04/05/2016] [Indexed: 01/22/2023] Open
Abstract
Pandemic Vibrio parahaemolyticus is an emerging public health concern as it has caused numerous gastroenteritis outbreaks worldwide. Currently, the absence of a global overview of the phenotypic and molecular characteristics of pandemic strains restricts our overall understanding of these strains, especially for environmental strains. To generate a global picture of the sero-prevalence and genetic diversity of pandemic V. parahaemolyticus, pandemic isolates from worldwide collections were selected and analyzed in this study. After a thorough analysis, we found that the pandemic isolates represented 49 serotypes, which are widely distributed in 22 countries across four continents (Asia, Europe, America and Africa). All of these serotypes were detected in clinical isolates but only nine in environmental isolates. O3:K6 was the most widely disseminated serotype, followed by O3:KUT, while the others were largely restricted to certain countries. The countries with the most abundant pandemic serotypes were China (26 serotypes), India (24 serotypes), Thailand (15 serotypes) and Vietnam (10 serotypes). Based on MLST analysis, 14 sequence types (STs) were identified among the pandemic strains, nine of which fell within clonal complex (CC) 3. ST3 and ST305 were the only two STs that have been reported in environmental pandemic strains. Pandemic ST3 has caused a wide range of infections in as many as 16 countries. Substantial serotypic diversity was mainly observed among isolates within pandemic ST3, including as many as 12 combinations of O/K serotypes. At the allele level, the dtdS and pntA, two loci that perfectly conserved in CC3, displayed a degree of polymorphism in some pandemic strains. In conclusion, we provide a comprehensive understanding of sero-prevalence and genetic differentiation of clinical and environmental pandemic isolates collected from around the world. Although, further studies are needed to delineate the specific mechanisms by which the pandemic strains evolve and spread, the findings in this study are helpful when seeking countermeasures to reduce the spread of V. parahaemolyticus in endemic areas.
Collapse
Affiliation(s)
- Chongxu Han
- Clinical Medical Examination Center, Northern Jiangsu People's Hospital Yangzhou, China
| | - Hui Tang
- Experimental Research Center, Northern Jiangsu People's Hospital Yangzhou, China
| | - Chuanli Ren
- Clinical Medical Examination Center, Northern Jiangsu People's Hospital Yangzhou, China
| | - Xiaoping Zhu
- Clinical Medical Examination Center, Northern Jiangsu People's Hospital Yangzhou, China
| | - Dongsheng Han
- Clinical Medical Examination Center, Northern Jiangsu People's Hospital Yangzhou, China
| |
Collapse
|