1
|
Harrison TL, Parshuram ZA, Frederickson ME, Stinchcombe JR. Is there a latitudinal diversity gradient for symbiotic microbes? A case study with sensitive partridge peas. Mol Ecol 2024; 33:e17191. [PMID: 37941312 DOI: 10.1111/mec.17191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/16/2023] [Indexed: 11/10/2023]
Abstract
Mutualism is thought to be more prevalent in the tropics than temperate zones and may therefore play an important role in generating and maintaining high species richness found at lower latitudes. However, results on the impact of mutualism on latitudinal diversity gradients are mixed, and few empirical studies sample both temperate and tropical regions. We investigated whether a latitudinal diversity gradient exists in the symbiotic microbial community associated with the legume Chamaecrista nictitans. We sampled bacteria DNA from nodules and the surrounding soil of plant roots across a latitudinal gradient (38.64-8.68 °N). Using 16S rRNA sequence data, we identified many non-rhizobial species within C. nictitans nodules that cannot form nodules or fix nitrogen. Species richness increased towards lower latitudes in the non-rhizobial portion of the nodule community but not in the rhizobial community. The microbe community in the soil did not effectively predict the non-rhizobia community inside nodules, indicating that host selection is important for structuring non-rhizobia communities in nodules. We next factorially manipulated the presence of three non-rhizobia strains in greenhouse experiments and found that co-inoculations of non-rhizobia strains with rhizobia had a marginal effect on nodule number and no effect on plant growth. Our results suggest that these non-rhizobia bacteria are likely commensals-species that benefit from associating with a host but are neutral for host fitness. Overall, our study suggests that temperate C. nictitans plants are more selective in their associations with the non-rhizobia community, potentially due to differences in soil nitrogen across latitude.
Collapse
Affiliation(s)
- Tia L Harrison
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Zoe A Parshuram
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Megan E Frederickson
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - John R Stinchcombe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Srikamwang C, onsa NE, Sunanta P, Sangta J, Chanway CP, Thanakkasaranee S, Sommano SR. Role of Microbial Volatile Organic Compounds in Promoting Plant Growth and Disease Resistance in Horticultural Production. PLANT SIGNALING & BEHAVIOR 2023; 18:2227440. [PMID: 37366146 PMCID: PMC10730190 DOI: 10.1080/15592324.2023.2227440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023]
Abstract
Microbial volatile organic compounds (MVOCs) are a diverse group of volatile organic compounds that microorganisms may produce and release into the environment. These compounds have both positive and negative effects on plants, as they have been shown to be effective at mitigating stresses and functioning as immune stimulants. Furthermore, MVOCs modulate plant growth and systemic plant resistance, while also serving as attractants or repellents for insects and other stressors that pose threats to plants. Considering the economic value of strawberries as one of the most popular and consumed fruits worldwide, harnessing the benefits of MVOCs becomes particularly significant. MVOCs offer cost-effective and efficient solutions for disease control and pest management in horticultural production, as they can be utilized at low concentrations. This paper provides a comprehensive review of the current knowledge on microorganisms that contribute to the production of beneficial volatile organic compounds for enhancing disease resistance in fruit products, with a specific emphasis on broad horticultural production. The review also identifies research gaps and highlights the functions of MVOCs in horticulture, along with the different types of MVOCs that impact plant disease resistance in strawberry production. By offering a novel perspective on the application and utilization of volatile organic compounds in sustainable horticulture, this review presents an innovative approach to maximizing the efficiency of horticultural production through the use of natural products.
Collapse
Affiliation(s)
- Chonlada Srikamwang
- Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Interdisciplinary Program in Biotechnology, Graduate School, Chiang Mai University, Chiang Mai, Thailand
| | - Nuttacha Eva onsa
- Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Department of Plant and Soil Science, Chiang Mai University, Chiang Mai, Thailand
| | - Piyachat Sunanta
- Department of Plant and Soil Science, Chiang Mai University, Chiang Mai, Thailand
- Postharvest Technology Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Jiraporn Sangta
- Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Interdisciplinary Program in Biotechnology, Graduate School, Chiang Mai University, Chiang Mai, Thailand
| | - Christopher P. Chanway
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, Canada
| | - Sarinthip Thanakkasaranee
- Division of Packaging Technology, School of Agro-Industry, Faculty of Agro Industry, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai, Thailand
| | - Sarana Rose Sommano
- Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Department of Plant and Soil Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
3
|
Jesus JG, Máguas C, Dias R, Nunes M, Pascoal P, Pereira M, Trindade H. What If Root Nodules Are a Guesthouse for a Microbiome? The Case Study of Acacia longifolia. BIOLOGY 2023; 12:1168. [PMID: 37759568 PMCID: PMC10525506 DOI: 10.3390/biology12091168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023]
Abstract
Acacia longifolia is one of the most aggressive invaders worldwide whose invasion is potentiated after a fire, a common perturbation in Mediterranean climates. As a legume, this species establishes symbioses with nitrogen-fixing bacteria inside root nodules; however, the overall microbial diversity is still unclear. In this study, we addressed root nodules' structure and biodiversity through histology and Next-Generation Sequencing, targeting 16S and 25S-28S rDNA genes for bacteria and fungi, respectively. We wanted to evaluate the effect of fire in root nodules from 1-year-old saplings, by comparing unburnt and burnt sites. We found that although having the same general structure, after a fire event, nodules had a higher number of infected cells and greater starch accumulation. Starch accumulated in uninfected cells can be a possible carbon source for the microbiota. Regarding diversity, Bradyrhizobium was dominant in both sites (ca. 77%), suggesting it is the preferential partner, followed by Tardiphaga (ca. 9%), a non-rhizobial Alphaproteobacteria, and Synechococcus, a cyanobacteria (ca. 5%). However, at the burnt site, additional N-fixing bacteria were included in the top 10 genera, highlighting the importance of this process. Major differences were found in the mycobiome, which was diverse in both sites and included genera mostly described as plant endophytes. Coniochaeta was dominant in nodules from the burnt site (69%), suggesting its role as a facilitator of symbiotic associations. We highlight the presence of a large bacterial and fungal community in nodules, suggesting nodulation is not restricted to nitrogen fixation. Thus, this microbiome can be involved in facilitating A. longifolia invasive success.
Collapse
Affiliation(s)
- Joana G. Jesus
- Centre for Ecology, Evolution and Environmental Change (cE3c), Faculty of Sciences, University of Lisbon (FCUL), Global Change and Sustainability Institute (CHANGE), 1749-016 Lisboa, Portugal; (J.G.J.); (C.M.); (R.D.)
| | - Cristina Máguas
- Centre for Ecology, Evolution and Environmental Change (cE3c), Faculty of Sciences, University of Lisbon (FCUL), Global Change and Sustainability Institute (CHANGE), 1749-016 Lisboa, Portugal; (J.G.J.); (C.M.); (R.D.)
| | - Ricardo Dias
- Centre for Ecology, Evolution and Environmental Change (cE3c), Faculty of Sciences, University of Lisbon (FCUL), Global Change and Sustainability Institute (CHANGE), 1749-016 Lisboa, Portugal; (J.G.J.); (C.M.); (R.D.)
- Biosystems and Integrative Sciences Institute (BioISI), 1749-016 Lisboa, Portugal
| | - Mónica Nunes
- Centro de Testes de Ciências, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal; (M.N.); (P.P.); (M.P.)
| | - Pedro Pascoal
- Centro de Testes de Ciências, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal; (M.N.); (P.P.); (M.P.)
| | - Marcelo Pereira
- Centro de Testes de Ciências, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal; (M.N.); (P.P.); (M.P.)
| | - Helena Trindade
- Centre for Ecology, Evolution and Environmental Change (cE3c), Faculty of Sciences, University of Lisbon (FCUL), Global Change and Sustainability Institute (CHANGE), 1749-016 Lisboa, Portugal; (J.G.J.); (C.M.); (R.D.)
| |
Collapse
|
4
|
da Silva TR, Rodrigues RT, Jovino RS, Carvalho JRDS, Leite J, Hoffman A, Fischer D, Ribeiro PRDA, Rouws LFM, Radl V, Fernandes-Júnior PI. Not just passengers, but co-pilots! Non-rhizobial nodule-associated bacteria promote cowpea growth and symbiosis with (brady)rhizobia. J Appl Microbiol 2023; 134:lxac013. [PMID: 36626727 DOI: 10.1093/jambio/lxac013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/15/2022] [Accepted: 10/07/2022] [Indexed: 01/12/2023]
Abstract
AIMS To isolate and characterize non-rhizobial nodule-associated bacteria (NAB) from cowpea root-nodules regarding their performance of plant-growth-promoting mechanisms and their ability to enhance cowpea growth and symbiosis when co-inoculated with bradyrhizobia. METHODS AND RESULTS Sixteen NAB were isolated, identified, and in vitro evaluated for plant growth promotion traits. The ability to promote cowpea growth was analyzed when co-inoculated with Bradyrhizobium pachyrhizi BR 3262 in sterile and non-sterile substrates. The 16S rRNA gene sequences analysis revealed that NAB belonged to the genera Chryseobacterium (4), Bacillus (3), Microbacterium (3), Agrobacterium (1), Escherichia (1), Delftia (1), Pelomonas (1), Sphingomonas (1), and Staphylococcus (1). All strains produced different amounts of auxin siderophores and formed biofilms. Twelve out of the 16 strains carried the nifH, a gene associated with nitrogen fixation. Co-inoculation of NAB (ESA 424 and ESA 29) with Bradyrhizobium pachyrhizi BR 3262 significantly promoted cowpea growth, especially after simultaneous inoculation with the three strains. CONCLUSIONS NAB are efficient cowpea growth promoters and can improve the efficiency of the symbiosis between cowpea and the N2-fixing microsymbiont B. pachyrhizi BR 3262, mainly under a specific triple microbial association.
Collapse
Affiliation(s)
- Thaíse Rosa da Silva
- Colegiado de Farmácia, Universidade Federal do Vale do São Francisco (Univasf), Petrolina, PE 56304-205, Brazil
| | - Ruth Terezinha Rodrigues
- Colegiado de Farmácia, Universidade Federal do Vale do São Francisco (Univasf), Petrolina, PE 56304-205, Brazil
| | | | | | - Jakson Leite
- Instituto Federal de Educação, Ciência e Tecnologia do Pará (IFPA), Campus Itaituba, Itaituba, PA 68183-300, Brazil
| | - Andreas Hoffman
- Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Munich 85764, Germany
| | - Doreen Fischer
- Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Munich 85764, Germany
| | - Paula Rose de Almeida Ribeiro
- Fundação de Amparo à Pesquisa do Estado de Pernambuco (Facepe), Recife, PE 50720-001, Brazil
- Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brasília, DF 71605-001, Brazil
- Embrapa Semiárido, Petrolina, PE 56302-970, Brazil
| | | | - Viviane Radl
- Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Munich 85764, Germany
| | | |
Collapse
|
5
|
Nakei MD, Venkataramana PB, Ndakidemi PA. Soybean-Nodulating Rhizobia: Ecology, Characterization, Diversity, and Growth Promoting Functions. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.824444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The worldwide increase in population continues to threaten the sustainability of agricultural systems since agricultural output must be optimized to meet the global rise in food demand. Sub-Saharan Africa (SSA) is among the regions with a fast-growing population but decreasing crop productivity. Pests and diseases, as well as inadequate nitrogen (N) levels in soils, are some of the biggest restrictions to agricultural production in SSA. N is one of the most important plant-limiting elements in agricultural soils, and its deficit is usually remedied by using nitrogenous fertilizers. However, indiscriminate use of these artificial N fertilizers has been linked to environmental pollution calling for alternative N fertilization mechanisms. Soybean (Glycine max) is one of the most important legumes in the world. Several species of rhizobia from the four genera, Bardyrhizobium, Rhizobium, Mesorhizobium, and Ensifer (formerly Sinorhizobium), are observed to effectively fix N with soybean as well as perform various plant-growth promoting (PGP) functions. The efficiency of the symbiosis differs with the type of rhizobia species, soybean cultivar, and biotic factors. Therefore, a complete understanding of the ecology of indigenous soybean-nodulating rhizobia concerning their genetic diversity and the environmental factors associated with their localization and dominance in the soil is important. This review aimed to understand the potential of indigenous soybean-nodulating rhizobia through a synthesis of the literature regarding their characterization using different approaches, genetic diversity, symbiotic effectiveness, as well as their functions in biological N fixation (BNF) and biocontrol of soybean soil-borne pathogens.
Collapse
|
6
|
Bag S, Mondal A, Majumder A, Mondal SK, Banik A. Flavonoid mediated selective cross-talk between plants and beneficial soil microbiome. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2022; 21:1739-1760. [PMID: 35221830 PMCID: PMC8860142 DOI: 10.1007/s11101-022-09806-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 01/17/2022] [Indexed: 05/14/2023]
Abstract
UNLABELLED Plants generate a wide variety of organic components during their different growth phases. The majority of those compounds have been classified as primary and secondary metabolites. Secondary metabolites are essential in plants' adaptation to new changing environments and in managing several biotic and abiotic stress. It also invests some of its photosynthesized carbon as secondary metabolites to establish a mutual relationship with soil microorganisms in that specific niche. As soil harbors both pathogenic and beneficial microorganisms, it is essential to identify some specific metabolites that can discriminate beneficial and pathogenic ones. Thus, a detailed understanding of metabolite's architectures that interact with beneficial microorganisms could open a new horizon of ecology and agricultural research. Flavonoids are used as classic examples of secondary metabolites in this study to demonstrate recent developments in understanding and realizing how these valuable metabolites can be controlled at different levels. Most of the research was focused on plant flavonoids, which shield the host plant against competitors or predators, as well as having other ecological implications. Thus, in the present review, our goal is to cover a wide range of functional and signalling activities of secondary metabolites especially, flavonoids mediated selective cross-talk between plant and its beneficial soil microbiome. Here, we have summarized recent advances in understanding the interactions between plant species and their rhizosphere microbiomes through root exudates (flavonoids), with a focus on how these exudates facilitate rhizospheric associations. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11101-022-09806-3.
Collapse
Affiliation(s)
- Sagar Bag
- Laboratory of Microbial Interaction, School of Biotechnology, Presidency University, Canal Bank Road, DG Block (Newtown), Action Area 1D, Newtown, Kolkata, West Bengal 700156 India
| | - Anupam Mondal
- Laboratory of Microbial Interaction, School of Biotechnology, Presidency University, Canal Bank Road, DG Block (Newtown), Action Area 1D, Newtown, Kolkata, West Bengal 700156 India
| | - Anusha Majumder
- Laboratory of Microbial Interaction, School of Biotechnology, Presidency University, Canal Bank Road, DG Block (Newtown), Action Area 1D, Newtown, Kolkata, West Bengal 700156 India
| | - Sunil Kanti Mondal
- Department of Biotechnology, The University of Burdwan, Burdwan, West Bengal India
| | - Avishek Banik
- Laboratory of Microbial Interaction, School of Biotechnology, Presidency University, Canal Bank Road, DG Block (Newtown), Action Area 1D, Newtown, Kolkata, West Bengal 700156 India
| |
Collapse
|
7
|
Ng MS, Ku YS, Yung WS, Cheng SS, Man CK, Yang L, Song S, Chung G, Lam HM. MATE-Type Proteins Are Responsible for Isoflavone Transportation and Accumulation in Soybean Seeds. Int J Mol Sci 2021; 22:12017. [PMID: 34769445 PMCID: PMC8585119 DOI: 10.3390/ijms222112017] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
Soybeans are nutritionally important as human food and animal feed. Apart from the macronutrients such as proteins and oils, soybeans are also high in health-beneficial secondary metabolites and are uniquely enriched in isoflavones among food crops. Isoflavone biosynthesis has been relatively well characterized, but the mechanism of their transportation in soybean cells is largely unknown. Using the yeast model, we showed that GmMATE1 and GmMATE2 promoted the accumulation of isoflavones, mainly in the aglycone forms. Using the tobacco BrightYellow-2 (BY-2) cell model, GmMATE1 and GmMATE2 were found to be localized in the vacuolar membrane. Such subcellular localization supports the notion that GmMATE1 and GmMATE2 function by compartmentalizing isoflavones in the vacuole. Expression analyses showed that GmMATE1 was mainly expressed in the developing soybean pod. Soybean mutants defective in GmMATE1 had significantly reduced total seed isoflavone contents, whereas the overexpression of GmMATE1 in transgenic soybean promoted the accumulation of seed isoflavones. Our results showed that GmMATE1, and possibly also GmMATE2, are bona fide isoflavone transporters that promote the accumulation of isoflavones in soybean seeds.
Collapse
Affiliation(s)
- Ming-Sin Ng
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (M.-S.N.); (W.-S.Y.); (S.-S.C.); (C.-K.M.); (L.Y.)
| | - Yee-Shan Ku
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (M.-S.N.); (W.-S.Y.); (S.-S.C.); (C.-K.M.); (L.Y.)
| | - Wai-Shing Yung
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (M.-S.N.); (W.-S.Y.); (S.-S.C.); (C.-K.M.); (L.Y.)
| | - Sau-Shan Cheng
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (M.-S.N.); (W.-S.Y.); (S.-S.C.); (C.-K.M.); (L.Y.)
| | - Chun-Kuen Man
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (M.-S.N.); (W.-S.Y.); (S.-S.C.); (C.-K.M.); (L.Y.)
| | - Liu Yang
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (M.-S.N.); (W.-S.Y.); (S.-S.C.); (C.-K.M.); (L.Y.)
| | - Shikui Song
- Institute of Advanced Agricultural Sciences, Peking University, Beijing 100871, China;
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Yeosu 59626, Korea;
| | - Hon-Ming Lam
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (M.-S.N.); (W.-S.Y.); (S.-S.C.); (C.-K.M.); (L.Y.)
| |
Collapse
|
8
|
Lahlali R, Ibrahim DS, Belabess Z, Kadir Roni MZ, Radouane N, Vicente CS, Menéndez E, Mokrini F, Barka EA, Galvão de Melo e Mota M, Peng G. High-throughput molecular technologies for unraveling the mystery of soil microbial community: challenges and future prospects. Heliyon 2021; 7:e08142. [PMID: 34693062 PMCID: PMC8515249 DOI: 10.1016/j.heliyon.2021.e08142] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 08/08/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
Soil microbial communities play a crucial role in soil fertility, sustainability, and plant health. However, intensive agriculture with increasing chemical inputs and changing environments have influenced native soil microbial communities. Approaches have been developed to study the structure, diversity, and activity of soil microbes to better understand the biology and plant-microbe interactions in soils. Unfortunately, a good understanding of soil microbial community remains a challenge due to the complexity of community composition, interactions of the soil environment, and limitations of technologies, especially related to the functionality of some taxa rarely detected using conventional techniques. Culture-based methods have been shown unable and sometimes are biased for assessing soil microbial communities. To gain further knowledge, culture-independent methods relying on direct analysis of nucleic acids, proteins, and lipids are worth exploring. In recent years, metagenomics, metaproteomics, metatranscriptomics, and proteogenomics have been increasingly used in studying microbial ecology. In this review, we examined the importance of microbial community to soil quality, the mystery of rhizosphere and plant-microbe interactions, and the biodiversity and multi-trophic interactions that influence the soil structure and functionality. The impact of the cropping system and climate change on the soil microbial community was also explored. Importantly, progresses in molecular biology, especially in the development of high-throughput biotechnological tools, were extensively assessed for potential uses to decipher the diversity and dynamics of soil microbial communities, with the highlighted advantages/limitations.
Collapse
Affiliation(s)
- Rachid Lahlali
- Plant Pathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknes, BP S/40, 50001, Meknes, Morocco
| | - Dina S.S. Ibrahim
- Department of Nematodes Diseases and Central Lab of Biotechnology, Plant Pathology Research Institute, Agricultural Research Center (ARC), 12619, Egypt
| | - Zineb Belabess
- Plant Protection Laboratory. Regional Center of Agricultural Research of Oujda, National Institute of Agricultural Research, Avenue Mohamed VI, BP428 60000 Oujda, Morocco
| | - Md Zohurul Kadir Roni
- Tropical Agriculture Research Front, Japan International Research Center for Agricultural Sciences (JIRCAS), 1091-1 Maezato-Kawarabaru, Ishigaki, Okinawa, 907-0002, Japan
| | - Nabil Radouane
- Plant Pathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknes, BP S/40, 50001, Meknes, Morocco
- Department of Biology, Laboratory of Functional Ecology and Environmental Engineering, FST-Fez, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Cláudia S.L. Vicente
- MED – Mediterranean Institute for Agriculture, Environment and Development, Institute for Advanced Studies and Research (IIFA), Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
- INIAV, I.P. - Instituto Nacional de Investigação Agrária e Veterinária, Quinta do Marquês, 2780-159 Oeiras, Portugal
| | - Esther Menéndez
- INIAV, I.P. - Instituto Nacional de Investigação Agrária e Veterinária, Quinta do Marquês, 2780-159 Oeiras, Portugal
- Department of Microbiology and Genetics / Spanish-Portuguese Institute for Agricultural Research (CIALE). University of Salamanca, 37007, Salamanca, Spain
| | - Fouad Mokrini
- Plant Protection Laboratory, INRA, Centre Régional de la Recherche Agronomique (CRRA), Rabat, Morocco
| | - Essaid Ait Barka
- Unité de Recherche Résistance Induite et Bio-protection des Plantes, EA 4707, USC, INRAe1488, Université de Reims Champagne-Ardenne, France
| | - Manuel Galvão de Melo e Mota
- NemaLab, MED – Mediterranean Institute for Agriculture, Environment and Development & Department of Biology, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Gary Peng
- Saskatoon Research Development Centre, Agriculture and Agri-Food, Saskatchewan, Canada
| |
Collapse
|
9
|
Naabe Yaro R, Rufai Mahama A, Kugbe JX, Berdjour A. Response of Peanut Varieties to Phosphorus and Rhizobium Inoculant Rates on Haplic Lixisols of Guinea Savanna Zone of Ghana. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.616033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Peanut forms a major component of the predominantly cereal-based farming systems in Northern Ghana. However, yields are low, prompting the need to evaluate the effects of phosphorus (PR) and rhizobium inoculant (IR) rates on growth, nodulation, and yield of peanut varieties. On-station and on-farm experiments were conducted to determine the interaction effects of three P rates (0, 30, and 60 kg P2O5/ha), three IR rates (0, 3, and 6 g/kg seed), and two peanut varieties [Chinese and Nkatie Savannah Agricultural Research Institute (SARI)] on growth, nodulation, and yield of peanut on Haplic Lixisols of Northern Ghana. Both experiments were conducted using a split-split plot design replicated three times for the on-station experiment and on six farmer's fields (on-farm experiment). In both experiments, combined application of 60 kg P2O5/ha and IR at 6 g/kg seed increased pod number in the Nkatie SARI and Chinese varieties compared to their control counterparts. PR × V interaction influenced growth, effective nodule number, and podding capacity with 60 kg P2O5/ha combined with Nkatie SARI to produce significantly higher values. The interaction of IR × V improved pod number, nodule number, and harvest index, such that inoculant at 6 g/kg seed combined with Nkatie SARI gave the best performance. PR × IR also had a significant interactive influence on peanut grain yield. Higher grain yields were recorded from 60 kg P2O5/ha in combination with 6 g/kg seed of rhizobium inoculant. Therefore, these results suggest that the use of P fertilizer at 60 kg/ha and rhizobium inoculant at 6 g/kg seed increase peanut productivity on Haplic Lixisols in Northern Ghana. However, it was prudent not to suggest any recommendations from the P rates in interaction with IR, since the result between the on-station and on-farm experiments appeared not consistent.
Collapse
|
10
|
Goyal RK, Mattoo AK, Schmidt MA. Rhizobial-Host Interactions and Symbiotic Nitrogen Fixation in Legume Crops Toward Agriculture Sustainability. Front Microbiol 2021; 12:669404. [PMID: 34177848 PMCID: PMC8226219 DOI: 10.3389/fmicb.2021.669404] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/29/2021] [Indexed: 11/13/2022] Open
Abstract
Symbiotic nitrogen fixation (SNF) process makes legume crops self-sufficient in nitrogen (N) in sharp contrast to cereal crops that require an external input by N-fertilizers. Since the latter process in cereal crops results in a huge quantity of greenhouse gas emission, the legume production systems are considered efficient and important for sustainable agriculture and climate preservation. Despite benefits of SNF, and the fact that chemical N-fertilizers cause N-pollution of the ecosystems, the focus on improving SNF efficiency in legumes did not become a breeder’s priority. The size and stability of heritable effects under different environment conditions weigh significantly on any trait useful in breeding strategies. Here we review the challenges and progress made toward decoding the heritable components of SNF, which is considerably more complex than other crop allelic traits since the process involves genetic elements of both the host and the symbiotic rhizobial species. SNF-efficient rhizobial species designed based on the genetics of the host and its symbiotic partner face the test of a unique microbiome for its success and productivity. The progress made thus far in commercial legume crops with relevance to the dynamics of host–rhizobia interaction, environmental impact on rhizobial performance challenges, and what collectively determines the SNF efficiency under field conditions are also reviewed here.
Collapse
Affiliation(s)
- Ravinder K Goyal
- Agriculture and Agri-Food Canada, Lacombe Research and Development Centre, Lacombe, AB, Canada
| | - Autar K Mattoo
- Sustainable Agricultural Systems Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville Agricultural Research Center, Beltsville, MD, United States
| | - Maria Augusta Schmidt
- Agriculture and Agri-Food Canada, Lacombe Research and Development Centre, Lacombe, AB, Canada
| |
Collapse
|
11
|
Msimbira LA, Smith DL. The Roles of Plant Growth Promoting Microbes in Enhancing Plant Tolerance to Acidity and Alkalinity Stresses. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00106] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
12
|
de la Porte A, Schmidt R, Yergeau É, Constant P. A Gaseous Milieu: Extending the Boundaries of the Rhizosphere. Trends Microbiol 2020; 28:536-542. [PMID: 32544440 DOI: 10.1016/j.tim.2020.02.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/07/2019] [Accepted: 02/24/2020] [Indexed: 11/30/2022]
Abstract
Plant root activities shape microbial community functioning in the soil, making the rhizosphere the epicenter of soil biogeochemical processes. With this opinion article, we argue to rethink the rhizosphere boundaries: as gases can diffuse several centimeters away from the roots into the soil, the portion of soil influenced by root activities is larger than the strictly root-adhering soil. Indeed, gases are key drivers of biogeochemical processes due to their roles as energy sources or communication molecules, which has the potential to modify microbial community structure and functioning. In order to get a more holistic perspective on this key environment, we advocate for interdisciplinarity in rhizosphere research by combining knowledge of soluble compounds with gas dynamics.
Collapse
Affiliation(s)
- Anne de la Porte
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, Laval, H7V 1B7, Canada; Quebec Center for Biodiversity Sciences (QCBS), Montreal, H3A 1B1, Canada
| | - Ruth Schmidt
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, Laval, H7V 1B7, Canada; Quebec Center for Biodiversity Sciences (QCBS), Montreal, H3A 1B1, Canada.
| | - Étienne Yergeau
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, Laval, H7V 1B7, Canada; Quebec Center for Biodiversity Sciences (QCBS), Montreal, H3A 1B1, Canada
| | - Philippe Constant
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, Laval, H7V 1B7, Canada; Quebec Center for Biodiversity Sciences (QCBS), Montreal, H3A 1B1, Canada
| |
Collapse
|
13
|
Torkamaneh D, Chalifour FP, Beauchamp CJ, Agrama H, Boahen S, Maaroufi H, Rajcan I, Belzile F. Genome-wide association analyses reveal the genetic basis of biomass accumulation under symbiotic nitrogen fixation in African soybean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:665-676. [PMID: 31822937 DOI: 10.1007/s00122-019-03499-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 11/30/2019] [Indexed: 05/28/2023]
Abstract
KEY MESSAGE We explored the genetic basis of SNF-related traits through GWAS and identified 40 candidate genes. This study provides fundamental insights into SNF-related traits and will accelerate efforts for SNF breeding. Symbiotic nitrogen fixation (SNF) increases sustainability by supplying biological nitrogen for crops to enhance yields without damaging the ecosystem. A better understanding of this complex biological process is critical for addressing the triple challenges of food security, environmental degradation, and climate change. Soybean plants, the most important legume worldwide, can form a mutualistic interaction with specialized soil bacteria, bradyrhizobia, to fix atmospheric nitrogen. Here we report a comprehensive genome-wide association study of 11 SNF-related traits using 79K GBS-derived SNPs in 297 African soybeans. We identified 25 QTL regions encompassing 40 putative candidate genes for SNF-related traits including 20 genes with no prior known role in SNF. A line with a large deletion (164 kb), encompassing a QTL region containing a strong candidate gene (CASTOR), exhibited a marked decrease in SNF. This study performed on African soybean lines provides fundamental insights into SNF-related traits and yielded a rich catalog of candidate genes for SNF-related traits that might accelerate future efforts aimed at sustainable agriculture.
Collapse
Affiliation(s)
- Davoud Torkamaneh
- Département de Phytologie, Université Laval, Quebec City, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | | | | | - Hesham Agrama
- International Institute for Tropical Agriculture (IITA), Ibadan, Nigeria
- Sultan Qaboos University, Muscat, Oman
| | - Steve Boahen
- International Institute for Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Halim Maaroufi
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada
| | - Istvan Rajcan
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - François Belzile
- Département de Phytologie, Université Laval, Quebec City, QC, Canada.
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
14
|
Seifikalhor M, Aliniaeifard S, Hassani B, Niknam V, Lastochkina O. Diverse role of γ-aminobutyric acid in dynamic plant cell responses. PLANT CELL REPORTS 2019; 38:847-867. [PMID: 30739138 DOI: 10.1007/s00299-019-02396-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/02/2019] [Indexed: 05/05/2023]
Abstract
Gamma-aminobutyric acid (GABA), a four-carbon non-protein amino acid, is found in most prokaryotic and eukaryotic organisms. Although, ample research into GABA has occurred in mammals as it is a major inhibitory neurotransmitter; in plants, a role for GABA has often been suggested as a metabolite that changes under stress rather than as a signal, as no receptor or motif for GABA binding was identified until recently and many aspects of its biological function (ranging from perception to function) remain to be answered. In this review, flexible properties of GABA in regulation of plant responses to various environmental biotic and abiotic stresses and its integration in plant growth and development either as a metabolite or a signaling molecule are discussed. We have elaborated on the role of GABA in stress adaptation (i.e., salinity, hypoxia/anoxia, drought, temperature, heavy metals, plant-insect interplay and ROS-related responses) and its contribution in non-stress-related biological pathways (i.e., involvement in plant-microbe interaction, contribution to the carbon and nitrogen metabolism and governing of signal transduction pathways). This review aims to represent the multifunctional contribution of GABA in various biological and physiological mechanisms under stress conditions; the objective is to review the current state of knowledge about GABA role beyond stress-related responses. Our effort is to place findings about GABA in an organized and broader context to highlight its shared metabolic and biologic functions in plants under variable conditions. This will provide potential modes of GABA crosstalk in dynamic plant cell responses.
Collapse
Affiliation(s)
- Maryam Seifikalhor
- Department of Plant Biology, Center of Excellence in Phylogeny of Living Organisms in Iran, School of Biology, College of Science, University of Tehran, Tehran, 14155, Iran
| | - Sasan Aliniaeifard
- Department of Horticulture, College of Aburaihan, University of Tehran, Tehran, Iran.
| | - Batool Hassani
- Department of Plant Sciences, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Vahid Niknam
- Department of Plant Biology, Center of Excellence in Phylogeny of Living Organisms in Iran, School of Biology, College of Science, University of Tehran, Tehran, 14155, Iran
| | - Oksana Lastochkina
- Bashkir Research Institute of Agriculture, Russian Academy of Sciences, Ufa, Russia
- Institute of Biochemistry and Genetics, Russian Academy of Sciences, Ufa, Russia
| |
Collapse
|
15
|
Ferguson BJ, Mens C, Hastwell AH, Zhang M, Su H, Jones CH, Chu X, Gresshoff PM. Legume nodulation: The host controls the party. PLANT, CELL & ENVIRONMENT 2019; 42:41-51. [PMID: 29808564 DOI: 10.1111/pce.13348] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/16/2018] [Accepted: 05/16/2018] [Indexed: 05/21/2023]
Abstract
Global demand to increase food production and simultaneously reduce synthetic nitrogen fertilizer inputs in agriculture are underpinning the need to intensify the use of legume crops. The symbiotic relationship that legume plants establish with nitrogen-fixing rhizobia bacteria is central to their advantage. This plant-microbe interaction results in newly developed root organs, called nodules, where the rhizobia convert atmospheric nitrogen gas into forms of nitrogen the plant can use. However, the process of developing and maintaining nodules is resource intensive; hence, the plant tightly controls the number of nodules forming. A variety of molecular mechanisms are used to regulate nodule numbers under both favourable and stressful growing conditions, enabling the plant to conserve resources and optimize development in response to a range of circumstances. Using genetic and genomic approaches, many components acting in the regulation of nodulation have now been identified. Discovering and functionally characterizing these components can provide genetic targets and polymorphic markers that aid in the selection of superior legume cultivars and rhizobia strains that benefit agricultural sustainability and food security. This review addresses recent findings in nodulation control, presents detailed models of the molecular mechanisms driving these processes, and identifies gaps in these processes that are not yet fully explained.
Collapse
Affiliation(s)
- Brett J Ferguson
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Australia
| | - Céline Mens
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Australia
| | - April H Hastwell
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Australia
| | - Mengbai Zhang
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Australia
| | - Huanan Su
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Australia
- National Navel Orange Engineering Research Center, College of Life and Environmental Science, Gannan Normal University, Ganzhou, China
| | - Candice H Jones
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Australia
| | - Xitong Chu
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Australia
| | - Peter M Gresshoff
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
16
|
Kallala N, M'sehli W, Jelali K, Kais Z, Mhadhbi H. Inoculation with Efficient Nitrogen Fixing and Indoleacetic Acid Producing Bacterial Microsymbiont Enhance Tolerance of the Model Legume Medicago truncatula to Iron Deficiency. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9134716. [PMID: 30406145 PMCID: PMC6201330 DOI: 10.1155/2018/9134716] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 09/25/2018] [Indexed: 12/23/2022]
Abstract
The aim of this study was to assess the effect of symbiotic bacteria inoculation on the response of Medicago truncatula genotypes to iron deficiency. The present work was conducted on three Medicago truncatula genotypes: A17, TN8.20, and TN1.11. Three treatments were performed: control (C), direct Fe deficiency (DD), and induced Fe deficiency by bicarbonate (ID). Plants were nitrogen-fertilized (T) or inoculated with two bacterial strains: Sinorhizobium meliloti TII7 and Sinorhizobium medicae SII4. Biometric, physiological, and biochemical parameters were analyzed. Iron deficiency had a significant lowering effect on plant biomass and chlorophyll content in all Medicago truncatula genotypes. TN1.11 showed the highest lipid peroxidation and leakage of electrolyte under iron deficiency conditions, which suggest that TN1.11 was more affected than A17 and TN8.20 by Fe starvation. Iron deficiency affected symbiotic performance indices of all Medicago truncatula genotypes inoculated with both Sinorhizobium strains, mainly nodules number and biomass as well as nitrogen-fixing capacity. Nevertheless, inoculation with Sinorhizobium strains mitigates the negative effect of Fe deficiency on plant growth and oxidative stress compared to nitrogen-fertilized plants. The highest auxin producing strain, TII7, preserves relatively high growth and root biomass and length when inoculated to TN8.20 and A17. On the other hand, both TII7 and SII4 strains improve the performance of sensitive genotype TN1.11 through reduction of the negative effect of iron deficiency on chlorophyll and plant Fe content. The bacterial inoculation improved Fe-deficient plant response to oxidative stress via the induction of the activities of antioxidant enzymes.
Collapse
Affiliation(s)
- Nadia Kallala
- Laboratory of Legumes, Center of Biotechnology of Borj-Cedria (CBBC), Hammam-Lif, Tunisia
- Faculty of Science, University of Tunis El Manar, 2092 Tunis, Tunisia
| | - Wissal M'sehli
- Laboratory of Legumes, Center of Biotechnology of Borj-Cedria (CBBC), Hammam-Lif, Tunisia
| | - Karima Jelali
- Laboratory of Legumes, Center of Biotechnology of Borj-Cedria (CBBC), Hammam-Lif, Tunisia
- Faculty of Science, University of Tunis El Manar, 2092 Tunis, Tunisia
| | - Zribi Kais
- Laboratory of Legumes, Center of Biotechnology of Borj-Cedria (CBBC), Hammam-Lif, Tunisia
| | - Haythem Mhadhbi
- Laboratory of Legumes, Center of Biotechnology of Borj-Cedria (CBBC), Hammam-Lif, Tunisia
| |
Collapse
|
17
|
Rodrigues DR, Silva AFD, Cavalcanti MIP, Escobar IEC, Fraiz ACR, Ribeiro PRDA, Ferreira Neto RA, Freitas ADSD, Fernandes-Júnior PI. Phenotypic, genetic and symbiotic characterization of Erythrina velutina rhizobia from Caatinga dry forest. Braz J Microbiol 2018; 49:503-512. [PMID: 29426665 PMCID: PMC6112057 DOI: 10.1016/j.bjm.2017.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/14/2017] [Accepted: 09/05/2017] [Indexed: 11/24/2022] Open
Abstract
Erythrina velutina ("mulungu") is a legume tree from Caatinga that associates with rhizobia but the diversity and symbiotic ability of "mulungu" rhizobia are poorly understood. The aim of this study was to characterize "mulungu" rhizobia from Caatinga. Bacteria were obteined from Serra Talhada and Caruaru in Caatinga under natural regeneration. The bacteria were evaluated to the amplification of nifH and nodC and to metabolic characteristics. Ten selected bacteria identified by 16S rRNA sequences. They were tested in vitro to NaCl and temperature tolerance, auxin production and calcium phosphate solubilization. The symbiotic ability were assessed in an greenhouse experiment. A total of 32 bacteria were obtained and 17 amplified both symbiotic genes. The bacteria showed a high variable metabolic profile. Bradyrhizobium (6), Rhizobium (3) and Paraburkholderia (1) were identified, differing from their geographic origin. The isolates grew up to 45°C to 0.51molL-1 of NaCl. Bacteria which produced more auxin in the medium with l-tryptophan and two Rhizobium and one Bradyrhizobium were phosphate solubilizers. All bacteria nodulated and ESA 90 (Rhizobium sp.) plus ESA 96 (Paraburkholderia sp.) were more efficient symbiotically. Diverse and efficient rhizobia inhabit the soils of Caatinga dry forests, with the bacterial differentiation by the sampling sites.
Collapse
Affiliation(s)
| | | | | | - Indra Elena Costa Escobar
- Universidade Federal do Vale do São Francisco, Petrolina, PE, Brazil; Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | | | | | | | | |
Collapse
|
18
|
Schulz-Bohm K, Martín-Sánchez L, Garbeva P. Microbial Volatiles: Small Molecules with an Important Role in Intra- and Inter-Kingdom Interactions. Front Microbiol 2017; 8:2484. [PMID: 29312193 PMCID: PMC5733050 DOI: 10.3389/fmicb.2017.02484] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/29/2017] [Indexed: 01/17/2023] Open
Abstract
During the last decades, research on the function of volatile organic compounds focused primarily on the interactions between plants and insects. However, microorganisms can also release a plethora of volatiles and it appears that microbial volatile organic compounds (mVOCs) can play an important role in intra- and inter-kingdom interactions. So far, most studies are focused on aboveground volatile-mediated interactions and much less information is available about the function of volatiles belowground. This minireview summarizes the current knowledge on the biological functions of mVOCs with the focus on mVOCs-mediated interactions belowground. We pinpointed mVOCs involved in microbe-microbe and microbe–plant interactions, and highlighted the ecological importance of microbial terpenes as a largely underexplored group of mVOCs. We indicated challenges in studying belowground mVOCs-mediated interactions and opportunities for further studies and practical applications.
Collapse
Affiliation(s)
- Kristin Schulz-Bohm
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - Lara Martín-Sánchez
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - Paolina Garbeva
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| |
Collapse
|
19
|
Le Roux JJ, Hui C, Keet JH, Ellis AG. Co-introduction vs ecological fitting as pathways to the establishment of effective mutualisms during biological invasions. THE NEW PHYTOLOGIST 2017; 215:1354-1360. [PMID: 28771816 DOI: 10.1111/nph.14593] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/24/2017] [Indexed: 06/07/2023]
Abstract
Contents 1354 I. 1354 II. 1355 III. 1357 IV. 1357 V. 1359 1359 References 1359 SUMMARY: Interactions between non-native plants and their mutualists are often disrupted upon introduction to new environments. Using legume-rhizobium mutualistic interactions as an example, we discuss two pathways that can influence symbiotic associations in such situations: co-introduction of coevolved rhizobia; and utilization of, and adaptation to, resident rhizobia, hereafter referred to as 'ecological fitting'. Co-introduction and ecological fitting have distinct implications for successful legume invasions and their impacts. Under ecological fitting, initial impacts may be less severe and will accrue over longer periods as novel symbiotic associations and/or adaptations may require fine-tuning over time. Co-introduction will have more profound impacts that will accrue more rapidly as a result of positive feedbacks between densities of non-native rhizobia and their coevolved host plants, in turn enhancing competition between native and non-native rhizobia. Co-introduction can further impact invasion outcomes by the exchange of genetic material between native and non-native rhizobia, potentially resulting in decreased fitness of native legumes. A better understanding of the roles of these two pathways in the invasion dynamics of non-native legumes is much needed, and we highlight some of the exciting research avenues it presents.
Collapse
Affiliation(s)
- Johannes J Le Roux
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Matieland, 7602, South Africa
- Department of Botany and Zoology, Stellenbosch University, Matieland, 7602, South Africa
| | - Cang Hui
- Centre for Invasion Biology, Department of Mathematical Sciences, Stellenbosch University, Matieland, 7602, South Africa
- Mathematical and Physical Biosciences, African Institute for Mathematical Sciences, Cape Town, 7945, South Africa
| | - Jan-Hendrik Keet
- Department of Botany and Zoology, Stellenbosch University, Matieland, 7602, South Africa
| | - Allan G Ellis
- Department of Botany and Zoology, Stellenbosch University, Matieland, 7602, South Africa
| |
Collapse
|
20
|
Westhoek A, Field E, Rehling F, Mulley G, Webb I, Poole PS, Turnbull LA. Policing the legume-Rhizobium symbiosis: a critical test of partner choice. Sci Rep 2017; 7:1419. [PMID: 28469244 PMCID: PMC5431162 DOI: 10.1038/s41598-017-01634-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/03/2017] [Indexed: 11/29/2022] Open
Abstract
In legume-Rhizobium symbioses, specialised soil bacteria fix atmospheric nitrogen in return for carbon. However, ineffective strains can arise, making discrimination essential. Discrimination can occur via partner choice, where legumes prevent ineffective strains from entering, or via sanctioning, where plants provide fewer resources. Several studies have inferred that legumes exercise partner choice, but the rhizobia compared were not otherwise isogenic. To test when and how plants discriminate ineffective strains we developed sets of fixing and non-fixing strains that differed only in the expression of nifH - essential for nitrogen fixation - and could be visualised using marker genes. We show that the plant is unable to select against the non-fixing strain at the point of entry, but that non-fixing nodules are sanctioned. We also used the technique to characterise mixed nodules (containing both a fixing and a non-fixing strain), whose frequency could be predicted using a simple diffusion model. We discuss that sanctioning is likely to evolve in preference to partner choice in any symbiosis where partner quality cannot be adequately assessed until goods or services are actively exchanged.
Collapse
Affiliation(s)
- Annet Westhoek
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
- Systems Biology Doctoral Training Centre, University of Oxford, Oxford, OX1 3RQ, UK
| | - Elsa Field
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Finn Rehling
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
- Department of Ecology, Philipps-University Marburg, Marburg, D-35043, Germany
| | - Geraldine Mulley
- School of Biological Sciences, University of Reading, Reading, RG6 6AJ, UK
| | - Isabel Webb
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Philip S Poole
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK.
| | - Lindsay A Turnbull
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK.
| |
Collapse
|
21
|
Timm CM, Pelletier DA, Jawdy SS, Gunter LE, Henning JA, Engle N, Aufrecht J, Gee E, Nookaew I, Yang Z, Lu TY, Tschaplinski TJ, Doktycz MJ, Tuskan GA, Weston DJ. Two Poplar-Associated Bacterial Isolates Induce Additive Favorable Responses in a Constructed Plant-Microbiome System. FRONTIERS IN PLANT SCIENCE 2016; 7:497. [PMID: 27200001 PMCID: PMC4845692 DOI: 10.3389/fpls.2016.00497] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/29/2016] [Indexed: 05/18/2023]
Abstract
The biological function of the plant-microbiome system is the result of contributions from the host plant and microbiome members. The Populus root microbiome is a diverse community that has high abundance of β- and γ-Proteobacteria, both classes which include multiple plant-growth promoting representatives. To understand the contribution of individual microbiome members in a community, we studied the function of a simplified community consisting of Pseudomonas and Burkholderia bacterial strains isolated from Populus hosts and inoculated on axenic Populus cutting in controlled laboratory conditions. Both strains increased lateral root formation and root hair production in Arabidopsis plate assays and are predicted to encode for different functions related to growth and plant growth promotion in Populus hosts. Inoculation individually, with either bacterial isolate, increased root growth relative to uninoculated controls, and while root area was increased in mixed inoculation, the interaction term was insignificant indicating additive effects of root phenotype. Complementary data including photosynthetic efficiency, whole-transcriptome gene expression and GC-MS metabolite expression data in individual and mixed inoculated treatments indicate that the effects of these bacterial strains are unique and additive. These results suggest that the function of a microbiome community may be predicted from the additive functions of the individual members.
Collapse
Affiliation(s)
- Collin M. Timm
- Biosciences Division, Oak Ridge National LaboratoryOak Ridge, TN, USA
- *Correspondence: Collin M. Timm
| | - Dale A. Pelletier
- Biosciences Division, Oak Ridge National LaboratoryOak Ridge, TN, USA
| | - Sara S. Jawdy
- Biosciences Division, Oak Ridge National LaboratoryOak Ridge, TN, USA
| | - Lee E. Gunter
- Biosciences Division, Oak Ridge National LaboratoryOak Ridge, TN, USA
| | - Jeremiah A. Henning
- Department of Ecology and Evolutionary Biology, University of TennesseeKnoxville, TN, USA
| | - Nancy Engle
- Biosciences Division, Oak Ridge National LaboratoryOak Ridge, TN, USA
| | - Jayde Aufrecht
- Biosciences Division, Oak Ridge National LaboratoryOak Ridge, TN, USA
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of TennesseeKnoxville, TN, USA
| | - Emily Gee
- Biosciences Division, Oak Ridge National LaboratoryOak Ridge, TN, USA
| | - Intawat Nookaew
- Biosciences Division, Oak Ridge National LaboratoryOak Ridge, TN, USA
| | - Zamin Yang
- Biosciences Division, Oak Ridge National LaboratoryOak Ridge, TN, USA
| | - Tse-Yuan Lu
- Biosciences Division, Oak Ridge National LaboratoryOak Ridge, TN, USA
| | | | | | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National LaboratoryOak Ridge, TN, USA
| | - David J. Weston
- Biosciences Division, Oak Ridge National LaboratoryOak Ridge, TN, USA
| |
Collapse
|