1
|
Polidori N, Babin P, Daniel B, Gruber K. Structure, Oligomerization, and Thermal Stability of a Recently Discovered Old Yellow Enzyme. Proteins 2025. [PMID: 39840754 DOI: 10.1002/prot.26800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/03/2025] [Accepted: 01/09/2025] [Indexed: 01/23/2025]
Abstract
The Old Yellow Enzyme from Ferrovum sp. JA12 (FOYE) displays an unusual thermal stability for an enzyme isolated from a mesophilic organism. We determined the crystal structure of this enzyme and performed bioinformatic characterization to get insights into its thermal stability. The enzyme displays a tetrameric quaternary structure; however, unlike the other tetrameric homologs, it clusters in a separate phylogenetic group and possesses unique interactions that stabilize this oligomeric state. The thermal stability of this enzyme is mainly due to an unusually high number of intramolecular hydrogen bonds. Finally, this study provides a general analysis of the forces driving the oligomerization in Old Yellow Enzymes.
Collapse
Affiliation(s)
- Nakia Polidori
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Torino, Italy
| | - Peter Babin
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Bastian Daniel
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Karl Gruber
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| |
Collapse
|
2
|
Li N, Wang Y, Meng Y, Lv Y, Zhang S, Wei S, Ma P, Hu Y, Lin H. Structural and functional characterization of a new thermophilic-like OYE from Aspergillus flavus. Appl Microbiol Biotechnol 2024; 108:134. [PMID: 38229304 DOI: 10.1007/s00253-023-12963-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 01/18/2024]
Abstract
Old yellow enzymes (OYEs) have been proven as powerful biocatalysts for the asymmetric reduction of activated alkenes. Fungi appear to be valuable sources of OYEs, but most of the fungal OYEs are unexplored. To expand the OYEs toolbox, a new thermophilic-like OYE (AfOYE1) was identified from Aspergillus flavus strain NRRL3357. The thermal stability analysis showed that the T1/2 of AfOYE1 was 60 °C, and it had the optimal temperature at 45 °C. Moreover, AfOYE1 exhibited high reduction activity in a wide pH range (pH 5.5-8.0). AfOYE1 could accept cyclic enones, acrylamide, nitroalkenes, and α, β-unsaturated aldehydes as substrates and had excellent enantioselectivity toward prochiral alkenes (> 99% ee). Interestingly, an unexpected (S)-stereoselectivity bioreduction toward 2-methylcyclohexenone was observed. The further crystal structure of AfOYE1 revealed that the "cap" region from Ala132 to Thr182, the loop of Ser316 to Gly325, α short helix of Arg371 to Gln375, and the C-terminal "finger" structure endow the catalytic cavity of AfOYE1 quite deep and narrow, and flavin mononucleotide (FMN) heavily buried at the bottom of the active site tunnel. Furthermore, the catalytic mechanism of AfOYE1 was also investigated, and the results confirmed that the residues His211, His214, and Tyr216 compose its catalytic triad. This newly identified thermophilic-like OYE would thus be valuable for asymmetric alkene hydrogenation in industrial processes. KEY POINTS: A new thermophilic-like OYE AfOYE1 was identified from Aspergillus flavus, and the T1/2 of AfOYE1 was 60 °C AfOYE1 catalyzed the reduction of 2-methylcyclohexenone with (S)-stereoselectivity The crystal structure of AfOYE1 was revealedv.
Collapse
Affiliation(s)
- Na Li
- College of Biological Engineering, Henan Unsssiversity of Technology, 100 Lianhua Street, Zhengzhou, 450001, Henan, China
| | - Yuan Wang
- College of Biological Engineering, Henan Unsssiversity of Technology, 100 Lianhua Street, Zhengzhou, 450001, Henan, China
| | - Yinyin Meng
- Henan International Joint Laboratory of Biocatalysis and Bio-Based Products, College of Life Sciences, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, China
| | - Yangyong Lv
- College of Biological Engineering, Henan Unsssiversity of Technology, 100 Lianhua Street, Zhengzhou, 450001, Henan, China
| | - Shuaibing Zhang
- College of Biological Engineering, Henan Unsssiversity of Technology, 100 Lianhua Street, Zhengzhou, 450001, Henan, China
| | - Shan Wei
- College of Biological Engineering, Henan Unsssiversity of Technology, 100 Lianhua Street, Zhengzhou, 450001, Henan, China
| | | | - Yuansen Hu
- College of Biological Engineering, Henan Unsssiversity of Technology, 100 Lianhua Street, Zhengzhou, 450001, Henan, China.
| | - Hui Lin
- Henan International Joint Laboratory of Biocatalysis and Bio-Based Products, College of Life Sciences, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, China.
| |
Collapse
|
3
|
Sorgenfrei FA, Sloan JJ, Weissensteiner F, Zechner M, Mehner NA, Ellinghaus TL, Schachtschabel D, Seemayer S, Kroutil W. Solvent concentration at 50% protein unfolding may reform enzyme stability ranking and process window identification. Nat Commun 2024; 15:5420. [PMID: 38926341 PMCID: PMC11208486 DOI: 10.1038/s41467-024-49774-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 06/19/2024] [Indexed: 06/28/2024] Open
Abstract
As water miscible organic co-solvents are often required for enzyme reactions to improve e.g., the solubility of the substrate in the aqueous medium, an enzyme is required which displays high stability in the presence of this co-solvent. Consequently, it is of utmost importance to identify the most suitable enzyme or the appropriate reaction conditions. Until now, the melting temperature is used in general as a measure for stability of enzymes. The experiments here show, that the melting temperature does not correlate to the activity observed in the presence of the solvent. As an alternative parameter, the concentration of the co-solvent at the point of 50% protein unfolding at a specific temperature T in shortc U 50 T is introduced. Analyzing a set of ene reductases,c U 50 T is shown to indicate the concentration of the co-solvent where also the activity of the enzyme drops fastest. Comparing possible rankings of enzymes according to melting temperature andc U 50 T reveals a clearly diverging outcome also depending on the specific solvent used. Additionally, plots ofc U 50 versus temperature enable a fast identification of possible reaction windows to deduce tolerated solvent concentrations and temperature.
Collapse
Affiliation(s)
- Frieda A Sorgenfrei
- Austrian Centre of Industrial Biotechnology c/o University of Graz, Heinrichstrasse 28, 8010, Graz, Austria
| | - Jeremy J Sloan
- BASF SE, Carl-Bosch-Strasse 38, 67056, Ludwigshafen, Germany
| | - Florian Weissensteiner
- Austrian Centre of Industrial Biotechnology c/o University of Graz, Heinrichstrasse 28, 8010, Graz, Austria
- Department of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010, Graz, Austria
| | - Marco Zechner
- Austrian Centre of Industrial Biotechnology c/o University of Graz, Heinrichstrasse 28, 8010, Graz, Austria
| | - Niklas A Mehner
- BASF SE, Carl-Bosch-Strasse 38, 67056, Ludwigshafen, Germany
| | | | | | - Stefan Seemayer
- BASF SE, Carl-Bosch-Strasse 38, 67056, Ludwigshafen, Germany.
| | - Wolfgang Kroutil
- Austrian Centre of Industrial Biotechnology c/o University of Graz, Heinrichstrasse 28, 8010, Graz, Austria.
- Department of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010, Graz, Austria.
- BioTechMed Graz, 8010, Graz, Austria.
- Field of Excellence BioHealth, University of Graz, 8010, Graz, Austria.
| |
Collapse
|
4
|
Wu S, Ma X, Yan H. Identification and characterization of an ene-reductase from Corynebacterium casei. Int J Biol Macromol 2024; 264:130427. [PMID: 38428763 DOI: 10.1016/j.ijbiomac.2024.130427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/12/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
The asymmetric reduction of α, β-unsaturated compounds conjugated with electron-withdrawing group by ene-reductases (ERs) is a valuable method for the synthesis of enantiopure chiral compounds. This study introduced an ER from Corynebacterium casei (CcER) which was heterologously expressed in Escherichia coli BL21(DE3), and the purified recombinant CcER was characterized for its biocatalytic properties. CcER exhibited the highest specific activity at 40 °C and pH 6.5, and showcased appreciable stability below 40 °C over a pH range of 6.0-7.0. The enzyme displayed high resistance to methanol. CcER accepted NADH or NADPH as a cofactor and exhibited a broad substrate spectrum towards α, β-unsaturated compounds. It achieved complete conversion of 2-cyclohexen-1-one and good performance for stereoselective reduction of (R)-carvone (conversion 98 %, diastereoselectivity 96 %). This study highlights the robustness and potential of CcER.
Collapse
Affiliation(s)
- Shijin Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Xiaojing Ma
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Hongde Yan
- College of Pharmaceutical Engineering and Biotechnology, Zhejiang Pharmaceutical University, Ningbo, China.
| |
Collapse
|
5
|
Libardi SH, Ahmad A, Ferreira FB, Oliveira RJ, Caruso ÍP, Melo FA, de Albuquerque S, Cardoso DR, Burtoloso ACB, Borges JC. Interaction between diterpene icetexanes and old yellow enzymes of Leishmania braziliensis and Trypanosoma cruzi. Int J Biol Macromol 2024; 259:129192. [PMID: 38216013 DOI: 10.1016/j.ijbiomac.2023.129192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 12/21/2023] [Accepted: 12/31/2023] [Indexed: 01/14/2024]
Abstract
Old Yellow Enzymes (OYEs) are flavin-dependent redox enzymes that promote the asymmetric reduction of activated alkenes. Due to the high importance of flavoenzymes in the metabolism of organisms, the interaction between OYEs from the parasites Trypanosoma cruzi and Leishmania braziliensis and three diterpene icetexanes (brussonol and two analogs), were evaluated in the present study, and differences in the binding mechanism and inhibition capacity of these molecules were examined. Although the aforementioned compounds showed poor and negligible activities against T. cruzi and L. braziliensis cells, respectively, the experiments with the purified enzymes indicated that the interaction occurs by divergent mechanisms. Overall, the ligands' inhibitory effect depends on their accessibility to the N5 position of the flavin's isoalloxazine ring. The results also indicated that the OYEs found in both parasites share structural similarities and showed affinities for the diterpene icetexanes in the same range. Nevertheless, the interaction between OYEs and ligands is directed by enthalpy and/or entropy in distinct ways. In conclusion, the binding site of both OYEs exhibits remarkable plasticity, and a large range of different molecules, including that can be substrates and inhibitors, can bind this site. This plasticity should be considered in drug design using OYE as a target.
Collapse
Affiliation(s)
- Silvia H Libardi
- Instituto de Química de São Carlos, Universidade de São Paulo - USP, 13560-970 São Carlos, SP, Brazil
| | - Anees Ahmad
- Instituto de Química de São Carlos, Universidade de São Paulo - USP, 13560-970 São Carlos, SP, Brazil
| | | | - Ronaldo J Oliveira
- Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, 38064-200 Uberaba, MG, Brazil
| | - Ícaro P Caruso
- Instituto de Biociências, Letras e Ciências Exatas (IBILCE) - UNESP, 15054-000 São José do Rio Preto, SP, Brazil; Instituto de Bioquímica Médica Leopoldo de Meis and Centro Nacional para Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Fernando A Melo
- Instituto de Biociências, Letras e Ciências Exatas (IBILCE) - UNESP, 15054-000 São José do Rio Preto, SP, Brazil
| | - Sergio de Albuquerque
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo - USP, Ribeirão Preto, SP CEP 14040-903, Brazil
| | - Daniel R Cardoso
- Instituto de Química de São Carlos, Universidade de São Paulo - USP, 13560-970 São Carlos, SP, Brazil
| | - Antonio C B Burtoloso
- Instituto de Química de São Carlos, Universidade de São Paulo - USP, 13560-970 São Carlos, SP, Brazil
| | - Júlio C Borges
- Instituto de Química de São Carlos, Universidade de São Paulo - USP, 13560-970 São Carlos, SP, Brazil.
| |
Collapse
|
6
|
Sequence-guided stereo-enhancing and -inverting of (R)-styrene monooxygenases for highly enantioselective epoxidation. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Robescu MS, Cendron L, Bacchin A, Wagner K, Reiter T, Janicki I, Merusic K, Illek M, Aleotti M, Bergantino E, Hall M. Asymmetric Proton Transfer Catalysis by Stereocomplementary Old Yellow Enzymes for C═C Bond Isomerization Reaction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Marina S. Robescu
- Department of Biology, University of Padova, Padova, Province of Padova 35131, Italy
| | - Laura Cendron
- Department of Biology, University of Padova, Padova, Province of Padova 35131, Italy
| | - Arianna Bacchin
- Institute of Chemistry, University of Graz, Graz, Styria 8010, Austria
| | - Karla Wagner
- Institute of Chemistry, University of Graz, Graz, Styria 8010, Austria
| | - Tamara Reiter
- Institute of Chemistry, University of Graz, Graz, Styria 8010, Austria
| | - Ignacy Janicki
- Department of Heteroorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Lodz, Lodz Province 90-001, Poland
| | - Kemal Merusic
- Institute of Chemistry, University of Graz, Graz, Styria 8010, Austria
| | - Maximilian Illek
- Institute of Chemistry, University of Graz, Graz, Styria 8010, Austria
| | - Matteo Aleotti
- Institute of Chemistry, University of Graz, Graz, Styria 8010, Austria
| | - Elisabetta Bergantino
- Department of Biology, University of Padova, Padova, Province of Padova 35131, Italy
| | - Mélanie Hall
- Institute of Chemistry, University of Graz, Graz, Styria 8010, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Styria 8010, Austria
| |
Collapse
|
8
|
Robescu MS, Loprete G, Gasparotto M, Vascon F, Filippini F, Cendron L, Bergantino E. The Family Keeps on Growing: Four Novel Fungal OYEs Characterized. Int J Mol Sci 2022; 23:3050. [PMID: 35328465 PMCID: PMC8954901 DOI: 10.3390/ijms23063050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 11/16/2022] Open
Abstract
Aiming at expanding the portfolio of Old Yellow Enzymes (OYEs), which have been systematically studied to be employed in the chemical and pharmaceutical industries as useful biocatalysts, we decided to explore the immense reservoir of filamentous fungi. We drew from the genome of the two Ascomycetes Aspergillus niger and Botryotinia fuckeliana four new members of the OYE superfamily belonging to the classical and thermophilic-like subfamilies. The two BfOYEs show wider substrate spectra than the AnOYE homologues, which appear as more specialized biocatalysts. According to their mesophilic origins, the new enzymes neither show high thermostability nor extreme pH optimums. The crystal structures of BfOYE4 and AnOYE8 have been determined, revealing the conserved features of the thermophilic-like subclass as well as unique properties, such as a peculiar N-terminal loop involved in dimer surface interactions. For the classical representatives BfOYE1 and AnOYE2, model structures were built and analyzed, showing surprisingly wide open access to the active site cavities due to a shorter β6-loop and a disordered capping subdomain.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Elisabetta Bergantino
- Synthetic Biology and Biotechnology Unit, Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy; (M.S.R.); (G.L.); (M.G.); (F.V.); (F.F.); (L.C.)
| |
Collapse
|
9
|
Drenth J, Yang G, Paul CE, Fraaije MW. A Tailor-Made Deazaflavin-Mediated Recycling System for Artificial Nicotinamide Cofactor Biomimetics. ACS Catal 2021; 11:11561-11569. [PMID: 34557329 PMCID: PMC8453485 DOI: 10.1021/acscatal.1c03033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/22/2021] [Indexed: 12/13/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD) and its 2'-phosphorylated form NADP are crucial cofactors for a large array of biocatalytically important redox enzymes. Their high cost and relatively poor stability, however, make them less attractive electron mediators for industrial processes. Nicotinamide cofactor biomimetics (NCBs) are easily synthesized, are inexpensive, and are also generally more stable than their natural counterparts. A bottleneck for the application of these artificial hydride carriers is the lack of efficient cofactor recycling methods. Therefore, we engineered the thermostable F420:NADPH oxidoreductase from Thermobifida fusca (Tfu-FNO), by structure-inspired site-directed mutagenesis, to accommodate the unnatural N1 substituents of eight NCBs. The extraordinarily low redox potential of the natural cofactor F420H2 was then exploited to reduce these NCBs. Wild-type enzyme had detectable activity toward all selected NCBs, with K m values in the millimolar range and k cat values ranging from 0.09 to 1.4 min-1. Saturation mutagenesis at positions Gly-29 and Pro-89 resulted in mutants with up to 139 times higher catalytic efficiencies. Mutant G29W showed a k cat value of 4.2 s-1 toward 1-benzyl-3-acetylpyridine (BAP+), which is similar to the k cat value for the natural substrate NADP+. The best Tfu-FNO variants for a specific NCB were then used for the recycling of catalytic amounts of these nicotinamides in conversion experiments with the thermostable ene-reductase from Thermus scotoductus (TsOYE). We were able to fully convert 10 mM ketoisophorone with BAP+ within 16 h, using F420 or its artificial biomimetic FOP (FO-2'-phosphate) as an efficient electron mediator and glucose-6-phosphate as an electron donor. The generated toolbox of thermostable and NCB-dependent Tfu-FNO variants offers powerful cofactor regeneration biocatalysts for the reduction of several artificial nicotinamide biomimetics at both ambient and high temperatures. In fact, to our knowledge, this enzymatic method seems to be the best-performing NCB-recycling system for BNAH and BAPH thus far.
Collapse
Affiliation(s)
- Jeroen Drenth
- Molecular
Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Guang Yang
- Molecular
Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Caroline E. Paul
- Department
of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Marco W. Fraaije
- Molecular
Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| |
Collapse
|
10
|
A New Thermophilic Ene-Reductase from the Filamentous Anoxygenic Phototrophic Bacterium Chloroflexus aggregans. Microorganisms 2021; 9:microorganisms9050953. [PMID: 33925162 PMCID: PMC8146883 DOI: 10.3390/microorganisms9050953] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 11/25/2022] Open
Abstract
Aiming at expanding the biocatalytic toolbox of ene-reductase enzymes, we decided to explore photosynthetic extremophile microorganisms as unique reservoir of (new) biocatalytic activities. We selected a new thermophilic ene-reductase homologue in Chloroflexus aggregans, a peculiar filamentous bacterium. We report here on the functional and structural characterization of this new enzyme, which we called CaOYE. Produced in high yields in recombinant form, it proved to be a robust biocatalyst showing high thermostability, good solvent tolerance and a wide range of pH optimum. In a preliminary screening, CaOYE displayed a restricted substrate spectrum (with generally lower activities compared to other ene-reductases); however, given the amazing metabolic ductility and versatility of Chloroflexus aggregans, further investigations could pinpoint peculiar chemical activities. X-ray crystal structure has been determined, revealing conserved features of Class III (or thermophilic-like group) of the family of Old Yellow Enzymes: in the crystal packing, the enzyme was found to assemble as dimer even if it behaves as a monomer in solution. The description of CaOYE catalytic properties and crystal structure provides new details useful for enlarging knowledge, development and application of this class of enzymes.
Collapse
|
11
|
Böhmer S, Marx C, Gómez-Baraibar Á, Nowaczyk MM, Tischler D, Hemschemeier A, Happe T. Evolutionary diverse Chlamydomonas reinhardtii Old Yellow Enzymes reveal distinctive catalytic properties and potential for whole-cell biotransformations. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101970] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Tischler D, Gädke E, Eggerichs D, Gomez Baraibar A, Mügge C, Scholtissek A, Paul CE. Asymmetric Reduction of (R)-Carvone through a Thermostable and Organic-Solvent-Tolerant Ene-Reductase. Chembiochem 2020; 21:1217-1225. [PMID: 31692216 PMCID: PMC7216909 DOI: 10.1002/cbic.201900599] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/05/2019] [Indexed: 11/29/2022]
Abstract
Ene-reductases allow regio- and stereoselective reduction of activated C=C double bonds at the expense of nicotinamide adenine dinucleotide cofactors [NAD(P)H]. Biological NAD(P)H can be replaced by synthetic mimics to facilitate enzyme screening and process optimization. The ene-reductase FOYE-1, originating from an acidophilic iron oxidizer, has been described as a promising candidate and is now being explored for applied biocatalysis. Biological and synthetic nicotinamide cofactors were evaluated to fuel FOYE-1 to produce valuable compounds. A maximum activity of (319.7±3.2) U mg-1 with NADPH or of (206.7±3.4) U mg-1 with 1-benzyl-1,4-dihydronicotinamide (BNAH) for the reduction of N-methylmaleimide was observed at 30 °C. Notably, BNAH was found to be a promising reductant but exhibits poor solubility in water. Different organic solvents were therefore assayed: FOYE-1 showed excellent performance in most systems with up to 20 vol% solvent and at temperatures up to 40 °C. Purification and application strategies were evaluated on a small scale to optimize the process. Finally, a 200 mL biotransformation of 750 mg (R)-carvone afforded 495 mg of (2R,5R)-dihydrocarvone (>95 % ee), demonstrating the simplicity of handling and application of FOYE-1.
Collapse
Affiliation(s)
- Dirk Tischler
- Faculty of Biology and BiotechnologyMicrobial BiotechnologyRuhr-Universität BochumUniversitätsstrasse 15044780BochumGermany
| | - Eric Gädke
- Faculty of Biology and BiotechnologyMicrobial BiotechnologyRuhr-Universität BochumUniversitätsstrasse 15044780BochumGermany
- Environmental MicrobiologyTU Bergakademie FreibergLeipziger Strasse 2909599FreibergGermany
| | - Daniel Eggerichs
- Faculty of Biology and BiotechnologyMicrobial BiotechnologyRuhr-Universität BochumUniversitätsstrasse 15044780BochumGermany
| | - Alvaro Gomez Baraibar
- Faculty of Biology and BiotechnologyMicrobial BiotechnologyRuhr-Universität BochumUniversitätsstrasse 15044780BochumGermany
| | - Carolin Mügge
- Faculty of Biology and BiotechnologyMicrobial BiotechnologyRuhr-Universität BochumUniversitätsstrasse 15044780BochumGermany
| | - Anika Scholtissek
- Environmental MicrobiologyTU Bergakademie FreibergLeipziger Strasse 2909599FreibergGermany
- Present address: BRAIN AGDarmstädter Strasse 3464673ZwingenbergGermany
| | - Caroline E. Paul
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629HZDelftThe Netherlands
| |
Collapse
|
13
|
Abstract
Thirteen Non-Conventional Yeasts (NCYs) have been investigated for their ability to reduce activated C=C bonds of chalcones to obtain the corresponding dihydrochalcones. A possible correlation between bioreducing capacity of the NCYs and the substrate structure was estimated. Generally, whole-cells of the NCYs were able to hydrogenate the C=C double bond occurring in (E)-1,3-diphenylprop-2-en-1-one, while worthy bioconversion yields were obtained when the substrate exhibited the presence of a deactivating electron-withdrawing Cl substituent on the B-ring. On the contrary, no conversion was generally found, with a few exceptions, in the presence of an activating electron-donating substituent OH. The bioreduction aptitude of the NCYs was apparently correlated to the logP value: Compounds characterized by a higher logP exhibited a superior aptitude to be reduced by the NCYs than compounds with a lower logP value.
Collapse
|
14
|
Abstract
Ene reductases enable the asymmetric hydrogenation of activated alkenes allowing the manufacture of valuable chiral products. The enzymes complement existing metal- and organocatalytic approaches for the stereoselective reduction of activated C=C double bonds, and efforts to expand the biocatalytic toolbox with additional ene reductases are of high academic and industrial interest. Here, we present the characterization of a novel ene reductase from Paenibacillus polymyxa, named Ppo-Er1, belonging to the recently identified subgroup III of the old yellow enzyme family. The determination of substrate scope, solvent stability, temperature, and pH range of Ppo-Er1 is one of the first examples of a detailed biophysical characterization of a subgroup III enzyme. Notably, Ppo-Er1 possesses a wide temperature optimum (Topt: 20–45 °C) and retains high conversion rates of at least 70% even at 10 °C reaction temperature making it an interesting biocatalyst for the conversion of temperature-labile substrates. When assaying a set of different organic solvents to determine Ppo-Er1′s solvent tolerance, the ene reductase exhibited good performance in up to 40% cyclohexane as well as 20 vol% DMSO and ethanol. In summary, Ppo-Er1 exhibited activity for thirteen out of the nineteen investigated compounds, for ten of which Michaelis–Menten kinetics could be determined. The enzyme exhibited the highest specificity constant for maleimide with a kcat/KM value of 287 mM−1 s−1. In addition, Ppo-Er1 proved to be highly enantioselective for selected substrates with measured enantiomeric excess values of 92% or higher for 2-methyl-2-cyclohexenone, citral, and carvone.
Collapse
|
15
|
Busch H, Hagedoorn PL, Hanefeld U. Rhodococcus as A Versatile Biocatalyst in Organic Synthesis. Int J Mol Sci 2019; 20:E4787. [PMID: 31561555 PMCID: PMC6801914 DOI: 10.3390/ijms20194787] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 12/11/2022] Open
Abstract
The application of purified enzymes as well as whole-cell biocatalysts in synthetic organic chemistry is becoming more and more popular, and both academia and industry are keen on finding and developing novel enzymes capable of performing otherwise impossible or challenging reactions. The diverse genus Rhodococcus offers a multitude of promising enzymes, which therefore makes it one of the key bacterial hosts in many areas of research. This review focused on the broad utilization potential of the genus Rhodococcus in organic chemistry, thereby particularly highlighting the specific enzyme classes exploited and the reactions they catalyze. Additionally, close attention was paid to the substrate scope that each enzyme class covers. Overall, a comprehensive overview of the applicability of the genus Rhodococcus is provided, which puts this versatile microorganism in the spotlight of further research.
Collapse
Affiliation(s)
- Hanna Busch
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Peter-Leon Hagedoorn
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Ulf Hanefeld
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| |
Collapse
|
16
|
Abstract
Recent studies of multiple enzyme families collectively referred to as ene-reductases (ERs) have highlighted potential industrial application of these biocatalysts in the production of fine and speciality chemicals. Processes have been developed whereby ERs contribute to synthetic routes as isolated enzymes, components of multi-enzyme cascades, and more recently in metabolic engineering and synthetic biology programmes using microbial cell factories to support chemicals production. The discovery of ERs from previously untapped sources and the expansion of directed evolution screening programmes, coupled to deeper mechanistic understanding of ER reactions, have driven their use in natural product and chemicals synthesis. Here we review developments, challenges and opportunities for the use of ERs in fine and speciality chemicals manufacture. The ER research field is rapidly expanding and the focus of this review is on developments that have emerged predominantly over the last 4 years.
Collapse
Affiliation(s)
- Helen S Toogood
- School of Chemistry, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Nigel S Scrutton
- School of Chemistry, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| |
Collapse
|
17
|
Toogood HS, Scrutton NS. Discovery, Characterisation, Engineering and Applications of Ene Reductases for Industrial Biocatalysis. ACS Catal 2019; 8:3532-3549. [PMID: 31157123 PMCID: PMC6542678 DOI: 10.1021/acscatal.8b00624] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent studies of multiple enzyme families collectively referred to as ene-reductases (ERs) have highlighted potential industrial application of these biocatalysts in the production of fine and speciality chemicals. Processes have been developed whereby ERs contribute to synthetic routes as isolated enzymes, components of multi-enzyme cascades, and more recently in metabolic engineering and synthetic biology programmes using microbial cell factories to support chemicals production. The discovery of ERs from previously untapped sources and the expansion of directed evolution screening programmes, coupled to deeper mechanistic understanding of ER reactions, have driven their use in natural product and chemicals synthesis. Here we review developments, challenges and opportunities for the use of ERs in fine and speciality chemicals manufacture. The ER research field is rapidly expanding and the focus of this review is on developments that have emerged predominantly over the last 4 years.
Collapse
Affiliation(s)
- Helen S. Toogood
- School of Chemistry, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Nigel S. Scrutton
- School of Chemistry, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| |
Collapse
|
18
|
Tischler D, van Berkel WJH, Fraaije MW. Editorial: Actinobacteria, a Source of Biocatalytic Tools. Front Microbiol 2019; 10:800. [PMID: 31040839 PMCID: PMC6477052 DOI: 10.3389/fmicb.2019.00800] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/28/2019] [Indexed: 11/28/2022] Open
Affiliation(s)
- Dirk Tischler
- Microbial Biotechnology, Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Willem J H van Berkel
- Laboratory of Biochemistry, Wageningen University & Research, Wageningen, Netherlands
| | - Marco W Fraaije
- Molecular Enzymology, University of Groningen, Groningen, Netherlands
| |
Collapse
|
19
|
Fujimori K, Fujii S, Lisdiana L, Wakai S, Yagi H, Sambongi Y. Differences in biochemical properties of two 5'-nucleotidases from deep- and shallow-sea Shewanella species under various harsh conditions. Biosci Biotechnol Biochem 2019; 83:1085-1093. [PMID: 30764715 DOI: 10.1080/09168451.2019.1578641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Deep-sea Shewanella violacea 5'-nucleotidase (SVNTase) activity exhibited higher NaCl tolerance than that of a shallow-sea Shewanella amazonensis homologue (SANTase), the sequence identity between them being 70.4%. Here, SVNTase exhibited higher activity than SANTase with various inorganic salts, similar to the difference in their NaCl tolerance. In contrast, SVNTase activity decreased with various organic solvents, while SANTase activity was retained with the same concentrations of the solvents. Therefore, SVNTase is more robust than SANTase with inorganic salts, but more vulnerable with organic solvents. As to protein stability, SANTase was more stable against organic solvents and heat than SVNTase, which correlated with the differences in their enzymatic activities. We also found that SANTase retained higher activity for three weeks than SVNTase did in the presence of glycerol. These findings will facilitate further application of these enzymes as appropriate biological catalysts under various harsh conditions. Abbreviations: NTase: 5'-nucleotidase; SANTase: Shewanella amazonensis 5'-nucleotidase; SVNTase: Shewanella violacea 5'-nucleotidase; CD: circular dichroism.
Collapse
Affiliation(s)
- Kiko Fujimori
- a Graduate School of Biosphere Science , Hiroshima University , Higashi-Hiroshima , Japan
| | - Sotaro Fujii
- a Graduate School of Biosphere Science , Hiroshima University , Higashi-Hiroshima , Japan
| | - Lisa Lisdiana
- a Graduate School of Biosphere Science , Hiroshima University , Higashi-Hiroshima , Japan.,b Department of Biology , Universitas Negeri Surabaya, Kampus Unesa Ketintang , Surabaya , Indonesia
| | - Satoshi Wakai
- c Graduate School of Science, Technology, and Innovation , Kobe University , Kobe , Japan
| | - Hisashi Yagi
- d Department of Chemistry and Biotechnology, Graduate School of Sustainability Science , Tottori University , Tottori , Japan.,e Center for Research on Green Sustainable Chemistry , Tottori University , Tottori , Japan
| | - Yoshihiro Sambongi
- a Graduate School of Biosphere Science , Hiroshima University , Higashi-Hiroshima , Japan
| |
Collapse
|
20
|
Scholtissek A, Gädke E, Paul CE, Westphal AH, van Berkel WJH, Tischler D. Catalytic Performance of a Class III Old Yellow Enzyme and Its Cysteine Variants. Front Microbiol 2018; 9:2410. [PMID: 30369915 PMCID: PMC6194350 DOI: 10.3389/fmicb.2018.02410] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/20/2018] [Indexed: 11/21/2022] Open
Abstract
Class III old yellow enzymes (OYEs) contain a conserved cysteine in their active sites. To address the role of this cysteine in OYE-mediated asymmetric synthesis, we have studied the biocatalytic properties of OYERo2a from Rhodococcus opacus 1CP (WT) as well as its engineered variants C25A, C25S and C25G. OYERo2a in its redox resting state (oxidized form) is irreversibly inactivated by N-methylmaleimide. As anticipated, inactivation does not occur with the Cys variants. Steady-state kinetics with this maleimide substrate revealed that C25S and C25G doubled the turnover frequency (k cat) while showing increased K M values compared to WT, and that C25A performed more similar to WT. Applying the substrate 2-cyclohexen-1-one, the Cys variants were less active and less efficient than WT. OYERo2a and its Cys variants showed different activities with NADPH, the natural reductant. The variants did bind NADPH less well but k cat was significantly increased. The most efficient variant was C25G. Replacement of NADPH with the cost-effective synthetic cofactor 1-benzyl-1,4-dihydronicotinamide (BNAH) drastically changed the catalytic behavior. Again C25G was most active and showed a similar efficiency as WT. Biocatalysis experiments showed that OYERo2a, C25S, and C25G converted N-phenyl-2-methylmaleimide equally well (81-84%) with an enantiomeric excess (ee) of more than 99% for the R-product. With cyclic ketones, the highest conversion (89%) and ee (>99%) was observed for the reaction of WT with R-carvone. A remarkable poor conversion of cyclic ketones occurred with C25G. In summary, we established that the generation of a cysteine-free enzyme and cofactor optimization allows the development of more robust class III OYEs.
Collapse
Affiliation(s)
- Anika Scholtissek
- Environmental Microbiology Group, Interdisciplinary Ecological Center, Institute of Biosciences, Technical University Bergakademie Freiberg, Freiberg, Germany
| | - Eric Gädke
- Environmental Microbiology Group, Interdisciplinary Ecological Center, Institute of Biosciences, Technical University Bergakademie Freiberg, Freiberg, Germany
- Microbial Biotechnology, Department of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Caroline E. Paul
- Laboratory of Organic Chemistry, Wageningen University and Research, Wageningen, Netherlands
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Adrie H. Westphal
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen, Netherlands
| | | | - Dirk Tischler
- Microbial Biotechnology, Department of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
21
|
Chen BS, Médici R, van der Helm MP, van Zwet Y, Gjonaj L, van der Geest R, Otten LG, Hanefeld U. Rhodococcus strains as source for ene-reductase activity. Appl Microbiol Biotechnol 2018; 102:5545-5556. [PMID: 29705954 PMCID: PMC5999131 DOI: 10.1007/s00253-018-8984-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/28/2018] [Accepted: 04/02/2018] [Indexed: 11/30/2022]
Abstract
Rhodococcus strains are ubiquitous in nature and known to metabolise a wide variety of compounds. At the same time, asymmetric reduction of C=C bonds is important in the production of high-valued chiral building blocks. In order to evaluate if Rhodococci can be used for this task, we have probed several Rhodococcus rhodochrous and R. erythropolis strains for ene-reductase activity. A series of substrates including activated ketones, an aldehyde, an imide and nitro-compound were screened using whole cells of seven Rhodococcus strains. This revealed that whole cells of all Rhodococcus strains showed apparent (S)-selectivity towards ketoisophorone, while most other organisms show (R)-selectivity for this compound. Three putative ene-reductases from R. rhodochrous ATCC 17895 were heterologously expressed in Escherichia coli. One protein was purified and its biocatalytic and biochemical properties were characterised, showing typical (enantioselective) properties for class 3 ene-reductases of the old yellow enzyme family.
Collapse
Affiliation(s)
- Bi-Shuang Chen
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.,School of Marine Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Rosario Médici
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Michelle P van der Helm
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Ymke van Zwet
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Lorina Gjonaj
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.,Department of Chemical Immunology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Roelien van der Geest
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Linda G Otten
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Ulf Hanefeld
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| |
Collapse
|
22
|
Opperman DJ. Structural investigation into the C-terminal extension of the ene-reductase from Ralstonia (Cupriavidus) metallidurans. Proteins 2017; 85:2252-2257. [PMID: 28833623 DOI: 10.1002/prot.25372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/16/2017] [Accepted: 08/18/2017] [Indexed: 01/25/2023]
Abstract
Ene-reductases (ERs), or Old Yellow Enzymes, catalyze the asymmetric reduction of various activated alkenes. This class of biocatalysts is considered an attractive alternative to current chemical technologies for hydrogenation due to their high selectivity and specificity. Here the X-ray crystal structure of RmER, a "thermophilic"-like ER from Ralstonia (Cupriavidus) metallidurans, is reported. Unlike other members of this class of ERs, RmER is monomeric in solution which we previously related to its atypical elongated C-terminus. A typical dimer interface was however observed in our crystal structure, with the conserved Arg-"finger" forming part of the adjacent monomer's active site and the elongated C-terminus extending into the active site through contacting the "capping" domain. This dimerization also resulted in the loss of one FMN cofactor from each dimer pair. This potential transient dimerization and dissociation of FMN could conceivably explain the rapid rates previously observed when an FMN light-driven cofactor regeneration system was used during catalysis with RmER.
Collapse
Affiliation(s)
- Diederik J Opperman
- Department of Biotechnology, University of the Free State, 205 Nelson Mandela Drive, Bloemfontein, 9300, South Africa
| |
Collapse
|
23
|
Old Yellow Enzyme-Catalysed Asymmetric Hydrogenation: Linking Family Roots with Improved Catalysis. Catalysts 2017. [DOI: 10.3390/catal7050130] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
24
|
Nett N, Duewel S, Richter AA, Hoebenreich S. Revealing Additional Stereocomplementary Pairs of Old Yellow Enzymes by Rational Transfer of Engineered Residues. Chembiochem 2017; 18:685-691. [PMID: 28107586 DOI: 10.1002/cbic.201600688] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Indexed: 01/01/2023]
Abstract
Every year numerous protein engineering and directed evolution studies are published, increasing the knowledge that could be used by protein engineers. Here we test a protein engineering strategy that allows quick access to improved biocatalysts with very little screening effort. Conceptually it is assumed that engineered residues previously identified by rational and random methods induce similar improvements when transferred to family members. In an application to ene-reductases from the Old Yellow Enzyme (OYE) family, the newly created variants were tested with three compounds, revealing more stereocomplementary OYE pairs with potent turnover frequencies (up to 660 h-1 ) and excellent stereoselectivities (up to >99 %). Although systematic prediction of absolute enantioselectivity of OYE variants remains a challenge, "scaffold sampling" was confirmed as a promising addition to protein engineers' collection of strategies.
Collapse
Affiliation(s)
- Nathalie Nett
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032, Marburg, Germany
| | - Sabine Duewel
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032, Marburg, Germany
| | - Alexandra Annelis Richter
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032, Marburg, Germany
| | - Sabrina Hoebenreich
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032, Marburg, Germany
| |
Collapse
|
25
|
Khairy H, Wübbeler JH, Steinbüchel A. The NADH:flavin oxidoreductase Nox from Rhodococcus erythropolis MI2 is the key enzyme of 4,4'-dithiodibutyric acid degradation. Lett Appl Microbiol 2016; 63:434-441. [PMID: 27564089 DOI: 10.1111/lam.12662] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/14/2016] [Accepted: 08/20/2016] [Indexed: 11/30/2022]
Abstract
The reduction of the disulphide bond is the initial catabolic step of the microbial degradation of the organic disulphide 4,4'-dithiodibutyric acid (DTDB). Previously, an NADH:flavin oxidoreductase from Rhodococcus erythropolis MI2 designated as NoxMI2 , which belongs to the old yellow enzyme (OYE) family, was identified. In the present study, it was proven that NoxMI2 has the ability to cleave the sulphur-sulphur bond in DTDB. In silico analysis revealed high sequence similarities to proteins of the flavin mononucleotide (FMN) reductase family identified in many strains of R. erythropolis. Therefore, nox was heterologously expressed in the pET23a(+) expression system using Escherichia coli strain BL21(DE3) pLysS, which effectively produces soluble active NoxMI2 . NoxMI2 showed a maximum specific activity (Vmax ) of 3·36 μmol min-1 mg-1 corresponding to a kcat of 2·5 s-1 and an apparent substrate Km of 0·6 mmol l-1 , when different DTDB concentrations were applied. No metal cofactors were required. Moreover, NoxMI2 had very low activity with other sulphur-containing compounds like 3,3'-dithiodipropionic acid (8·0%), 3,3'-thiodipropionic acid (7·6%) and 5,5'-dithiobis(2-nitrobenzoic acid) (8·0%). The UV/VIS spectrum of NoxMI2 revealed the presence of the cofactor FMN. Based on results obtained, NoxMI2 adds a new physiological substrate and mode of action to OYE members. SIGNIFICANCE AND IMPACT OF THE STUDY It was unequivocally demonstrated in this study that an NADH:flavin oxidoreductase from Rhodococcus erythropolis MI2 (NoxMI2 ) is able to cleave the xenobiotic disulphide 4,4'-dithiodibutyric acid (DTDB) into two molecules of 4-mercaptobutyric acid (4MB) with concomitant consumption of NADH. NoxMI2 showed a high substrate specificity as well as high heat stability. This study provides the first detailed characterization of the initial cleavage of DTDB, which is considered as a promising polythioester precursor.
Collapse
Affiliation(s)
- H Khairy
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany.,Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - J H Wübbeler
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - A Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany.,Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
26
|
A thermophilic-like ene-reductase originating from an acidophilic iron oxidizer. Appl Microbiol Biotechnol 2016; 101:609-619. [DOI: 10.1007/s00253-016-7782-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/21/2016] [Accepted: 08/03/2016] [Indexed: 01/25/2023]
|
27
|
Paul CE, Hollmann F. A survey of synthetic nicotinamide cofactors in enzymatic processes. Appl Microbiol Biotechnol 2016; 100:4773-8. [PMID: 27094184 PMCID: PMC4866995 DOI: 10.1007/s00253-016-7500-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 11/10/2022]
Abstract
Synthetic nicotinamide cofactors are analogues of the natural cofactors used by oxidoreductases as redox intermediates. Their ability to be fine-tuned makes these biomimetics an attractive alternative to the natural cofactors in terms of stability, reactivity, and cost. The following mini-review focuses on the current state of the art of those biomimetics in enzymatic processes.
Collapse
Affiliation(s)
- Caroline E Paul
- Department of Biotechnology, Delft University of Technology, Julianalaan 136, 2628BL, Delft, The Netherlands.
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Julianalaan 136, 2628BL, Delft, The Netherlands
| |
Collapse
|