1
|
Prekrasna-Kviatkovska Y, Parnikoza I, Yerkhova A, Stelmakh O, Pavlovska M, Dzyndra M, Yarovyi O, Dykyi E. From acidophilic to ornithogenic: microbial community dynamics in moss banks altered by gentoo penguins. Front Microbiol 2024; 15:1362975. [PMID: 38525081 PMCID: PMC10959021 DOI: 10.3389/fmicb.2024.1362975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/21/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction The study explores the indirect impact of climate change driven by gentoo's penguin colonization pressure on the microbial communities of moss banks formed by Tall moss turf subformation in central maritime Antarctica. Methods Microbial communities and chemical composition of the differently affected moss banks (Unaffected, Impacted and Desolated) located on Galindez Island and Сape Tuxen on the mainland of Kyiv Peninsula were analyzed. Results The native microbiota of the moss banks' peat was analyzed for the first time, revealing a predominant presence of Acidobacteria (32.2 ± 14.4%), followed by Actinobacteria (15.1 ± 4.0%) and Alphaproteobacteria (9.7 ± 4.1%). Penguin colonization and subsequent desolation of moss banks resulted in an increase in peat pH (from 4.7 ± 0.05 to 7.2 ± 0.6) and elevated concentrations of soluble nitrogen (from 1.8 ± 0.4 to 46.9 ± 2.1 DIN, mg/kg) and soluble phosphorus compounds (from 3.6 ± 2.6 to 20.0 ± 1.8 DIP, mg/kg). The contrasting composition of peat and penguin feces led to the elimination of the initial peat microbiota, with an increase in Betaproteobacteria (from 1.3 ± 0.8% to 30.5 ± 23%) and Bacteroidota (from 5.5 ± 3.7% to 19.0 ± 3.7%) proportional to the intensity of penguins' impact, accompanied by a decrease in community diversity. Microbial taxa associated with birds' guts, such as Gottschalkia and Tissierella, emerged in Impacted and Desolated moss banks, along with bacteria likely benefiting from eutrophication. The changes in the functional capacity of the penguin-affected peat microbial communities were also detected. The nitrogen-cycling genes that regulate the conversion of urea into ammonia, nitrite oxide, and nitrate oxide (ureC, amoA, nirS, nosZ, nxrB) had elevated copy numbers in the affected peat. Desolated peat samples exhibit the highest nitrogen-cycle gene numbers, significantly differing from Unaffected peat (p < 0.05). Discussion The expansion of gentoo penguins induced by climate change led to the replacement of acidophilic microbiomes associated with moss banks, shaping a new microbial community influenced by penguin guano's chemical and microbial composition.
Collapse
Affiliation(s)
| | - Ivan Parnikoza
- Biology and Ecology Department, State Institution National Antarctic Scientific Center, Kyiv, Ukraine
- Department of Cell Population Genetics, Institute of Molecular Biology and Genetics, Kyiv, Ukraine
- Faculty of Natural Science, National University of “Kyiv-Mohyla Academy”, Kyiv, Ukraine
| | - Anna Yerkhova
- Biomedical Institute, Open International University of Human Development Ukraine, Kyiv, Ukraine
| | - Olesia Stelmakh
- Faculty of Molecular Biology and Biotechnology, Kyiv Academic University, Kyiv, Ukraine
| | - Mariia Pavlovska
- Biology and Ecology Department, State Institution National Antarctic Scientific Center, Kyiv, Ukraine
- Faculty of Plant Protection, Biotechnology and Ecology, National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
| | - Marta Dzyndra
- Biology and Ecology Department, State Institution National Antarctic Scientific Center, Kyiv, Ukraine
| | - Oleksandr Yarovyi
- Biology and Ecology Department, State Institution National Antarctic Scientific Center, Kyiv, Ukraine
| | - Evgen Dykyi
- Biology and Ecology Department, State Institution National Antarctic Scientific Center, Kyiv, Ukraine
| |
Collapse
|
2
|
Pushkareva E, Elster J, Kudoh S, Imura S, Becker B. Microbial community composition of terrestrial habitats in East Antarctica with a focus on microphototrophs. Front Microbiol 2024; 14:1323148. [PMID: 38249463 PMCID: PMC10797080 DOI: 10.3389/fmicb.2023.1323148] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
The Antarctic terrestrial environment harbors a diverse community of microorganisms, which have adapted to the extreme conditions. The aim of this study was to describe the composition of microbial communities in a diverse range of terrestrial environments (various biocrusts and soils, sands from ephemeral wetlands, biofilms, endolithic and hypolithic communities) in East Antarctica using both molecular and morphological approaches. Amplicon sequencing of the 16S rRNA gene revealed the dominance of Chloroflexi, Cyanobacteria and Firmicutes, while sequencing of the 18S rRNA gene showed the prevalence of Alveolata, Chloroplastida, Metazoa, and Rhizaria. This study also provided a comprehensive assessment of the microphototrophic community revealing a diversity of cyanobacteria and eukaryotic microalgae in various Antarctic terrestrial samples. Filamentous cyanobacteria belonging to the orders Oscillatoriales and Pseudanabaenales dominated prokaryotic community, while members of Trebouxiophyceae were the most abundant representatives of eukaryotes. In addition, the co-occurrence analysis showed a prevalence of positive correlations with bacterial taxa frequently co-occurring together.
Collapse
Affiliation(s)
- Ekaterina Pushkareva
- Department of Biology, Botanical Institute, University of Cologne, Cologne, Germany
| | - Josef Elster
- Institute of Botany, Academy of Sciences of the Czech Republic, Třeboň, Czechia
- Centre for Polar Ecology, University of South Bohemia, České Budějovice, Czechia
| | - Sakae Kudoh
- Department of Polar Science, The Graduate University for Advanced Studies, SOKENDAI, Tachikawa, Japan
- National Institute of Polar Research, Research Organization of Information and Systems, Tachikawa, Japan
| | - Satoshi Imura
- Department of Polar Science, The Graduate University for Advanced Studies, SOKENDAI, Tachikawa, Japan
- National Institute of Polar Research, Research Organization of Information and Systems, Tachikawa, Japan
| | - Burkhard Becker
- Department of Biology, Botanical Institute, University of Cologne, Cologne, Germany
| |
Collapse
|
3
|
Purcell AM, Dijkstra P, Hungate BA, McMillen K, Schwartz E, van Gestel N. Rapid growth rate responses of terrestrial bacteria to field warming on the Antarctic Peninsula. THE ISME JOURNAL 2023; 17:2290-2302. [PMID: 37872274 PMCID: PMC10689830 DOI: 10.1038/s41396-023-01536-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023]
Abstract
Ice-free terrestrial environments of the western Antarctic Peninsula are expanding and subject to colonization by new microorganisms and plants, which control biogeochemical cycling. Measuring growth rates of microbial populations and ecosystem carbon flux is critical for understanding how terrestrial ecosystems in Antarctica will respond to future warming. We implemented a field warming experiment in early (bare soil; +2 °C) and late (peat moss-dominated; +1.2 °C) successional glacier forefield sites on the western Antarctica Peninsula. We used quantitative stable isotope probing with H218O using intact cores in situ to determine growth rate responses of bacterial taxa to short-term (1 month) warming. Warming increased the growth rates of bacterial communities at both sites, even doubling the number of taxa exhibiting significant growth at the early site. Growth responses varied among taxa. Despite that warming induced a similar response for bacterial relative growth rates overall, the warming effect on ecosystem carbon fluxes was stronger at the early successional site-likely driven by increased activity of autotrophs which switched the ecosystem from a carbon source to a carbon sink. At the late-successional site, warming caused a significant increase in growth rate of many Alphaproteobacteria, but a weaker and opposite gross ecosystem productivity response that decreased the carbon sink-indicating that the carbon flux rates were driven more strongly by the plant communities. Such changes to bacterial growth and ecosystem carbon cycling suggest that the terrestrial Antarctic Peninsula can respond fast to increases in temperature, which can have repercussions for long-term elemental cycling and carbon storage.
Collapse
Affiliation(s)
- Alicia M Purcell
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA.
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA.
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA.
| | - Paul Dijkstra
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Bruce A Hungate
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Kelly McMillen
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Egbert Schwartz
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Natasja van Gestel
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
- TTU Climate Center, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
4
|
Gu H, Yan J, Liu Y, Yu X, Feng Y, Yang X, Lam SS, Naushad M, Li C, Sonne C. Autochthonous bioaugmentation accelerates phenanthrene degradation in acclimated soil. ENVIRONMENTAL RESEARCH 2023; 224:115543. [PMID: 36822540 DOI: 10.1016/j.envres.2023.115543] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Bioaugmentation helps to obtain a microbiome capable of remediating polycyclic aromatic hydrocarbons (PAHs). In this study, acclimation of microorganisms to soil supplemented with phenanthrene (PHE) led to enrichment with PAH-degraders, including those in Actinobacteriota and in the genera Streptomyces, Rhodococcus, Nocardioides, Sphingomonas, and Mycobacterium. Aqueous (28 °C, pH 6.5) and soil cultures inoculated with PHE-acclimated soil showed a high PHE (ca. 50 mg L-1) degradation efficiency. The PHE degradation kinetics in aqueous and soil incubations fitted to the Gompertz equation and the first-order kinetic equation, respectively. Indigenous microorganisms adapted to PHE in their environment, and this increased their capacity to degrade PHE. The effect of co-contaminants and pathway intermediates on PHE degradation showed that the degradation of PHE improved in the presence of diesel while being hindered by lubricant oil, catechol, salicylic and phthalic acid. Our findings provide theoretical and practical support for bioremediationof PAHs in the environment.
Collapse
Affiliation(s)
- Haiping Gu
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Jie Yan
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Yuhao Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
| | - Xuewei Yu
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Yan Feng
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Xuanyi Yang
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Center for Transdisciplinary Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Mu Naushad
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Cheng Li
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China.
| | - Christian Sonne
- Department of Ecoscience, Aarhus University, Frederiksborgvej 399, Roskilde DK-4000, Denmark.
| |
Collapse
|
5
|
Carbon Emission and Biodiversity of Arctic Soil Microbial Communities of the Novaya Zemlya and Franz Josef Land Archipelagos. Microorganisms 2023; 11:microorganisms11020482. [PMID: 36838447 PMCID: PMC9962458 DOI: 10.3390/microorganisms11020482] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Cryogenic soils are the most important terrestrial carbon reservoir on the planet. However, the relationship between soil microbial diversity and CO2 emission by cryogenic soils is poorly studied. This is especially important in the context of rising temperatures in the high Arctic which can lead to the activation of microbial processes in soils and an increase in carbon input from cryogenic soils into the atmosphere. Here, using high-throughput sequencing of 16S rRNA gene amplicons, we analyzed microbial community composition and diversity metrics in relation to soil carbon dioxide emission, water-extractable organic carbon and microbial biomass carbon in the soils of the Barents Sea archipelagos, Novaya Zemlya and Franz Josef Land. It was found that the highest diversity and CO2 emission were observed on the Hooker and Heiss Islands of the Franz Josef Land archipelago, while the diversity and CO2 emission levels were lower on Novaya Zemlya. Soil moisture and temperature were the main parameters influencing the composition of soil microbial communities on both archipelagos. The data obtained show that CO2 emission levels and community diversity on the studied islands are influenced mostly by a number of local factors, such as soil moisture, microclimatic conditions, different patterns of vegetation and fecal input from animals such as reindeer.
Collapse
|
6
|
Li X, Romanyà J, Li N, Xiang Y, Yang J, Han X. Biochar fertilization effects on soil bacterial community and soil phosphorus forms depends on the application rate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157022. [PMID: 35772528 DOI: 10.1016/j.scitotenv.2022.157022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/29/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Biochar plays a key role in soil phosphorus (P) forms and distribution by affecting soil biochemical characteristics with relevant effects on the microbial community. In this study, we aimed to study the role of biochar in the variation of microbial community and P forms, and the relationships between soil properties, microbial community, and P forms. Here, we conducted a five-year field experiment NPK minerally fertilized with different application rates of biochar; control (B0, 0 kg ha-1 yr-1), low rate (B1500, 1500 kg ha-1 yr-1), medium rate (B3000, 3000 kg ha-1 yr-1), high rate (B6000, 6000 kg ha-1 yr-1). Our study showed that the highest increases in bacterial diversity and abundances coincided with increases in P forms typically retained in bacterial cells (β-glucosidase, adenosine monophosphate-AMP, choline phosphate, and glucose-6 phosphate) and occurred at medium application rates. At low application rates, N2-fixing and P solubilizing and mineralizing bacteria (Sphingomonas, Haliangium, and Bradyrhizobium) increased. P forms retained in bacterial cells decreased at the highest application rates while the most stable forms such as DNA and inositol hexaphosphate (IHP), steadily increased. Stereoisomers of IHP derived from soil microbes (scyllo-IHP and D-chiro-IHP) accounted for the total IHP increases at high application rates. pH and available P and K and total P were highest at high biochar application rates whereas the proportion of organic P was reduced. The most relevant genus in such soils was Gemmatimonas, a polyphosphate accumulating and pyrogenic material degrading bacterium. Therefore, it appears that applying biochar at higher rates reduced the abundance of plant growth promoting bacteria while enhancing the abundance of P accumulating and pyrogenic degrading types.
Collapse
Affiliation(s)
- Xue Li
- Monitoring & Experimental Station of Corn Nutrition and Fertilization in Northeast Region, Ministry of Agriculture, College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China; Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Av. Joan XXIII 27-31, Barcelona, Spain; INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, Barcelona, Catalonia, Spain
| | - Joan Romanyà
- Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Av. Joan XXIII 27-31, Barcelona, Spain; INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, Barcelona, Catalonia, Spain
| | - Na Li
- Monitoring & Experimental Station of Corn Nutrition and Fertilization in Northeast Region, Ministry of Agriculture, College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China.
| | - Yansen Xiang
- Monitoring & Experimental Station of Corn Nutrition and Fertilization in Northeast Region, Ministry of Agriculture, College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China
| | - Jinfeng Yang
- Monitoring & Experimental Station of Corn Nutrition and Fertilization in Northeast Region, Ministry of Agriculture, College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaori Han
- Monitoring & Experimental Station of Corn Nutrition and Fertilization in Northeast Region, Ministry of Agriculture, College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China; Biochar Engineering Technology Research Center of Liaoning Province, Shenyang 110866, China.
| |
Collapse
|
7
|
Huang Y, Xiao Z, Cao Y, Gao F, Fu Y, Zou M, Luo X, Jiang Y, Xue Y. Rapid microbiological diagnosis based on 16S rRNA gene sequencing: A comparison of bacterial composition in diabetic foot infections and contralateral intact skin. Front Microbiol 2022; 13:1021955. [PMID: 36274710 PMCID: PMC9582933 DOI: 10.3389/fmicb.2022.1021955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/16/2022] [Indexed: 11/18/2022] Open
Abstract
Diabetic foot infections (DFIs) represent a frequent complication of diabetes and a major cause of amputations. This study aimed to evaluate the utility of 16S rRNA gene sequencing for the rapid microbiological diagnosis of DFIs and to consistently characterize the microbiome of chronic diabetic foot ulcers (DFUs) and intact skin. Wound samples were collected by ulcer swabbing and tissue biopsy, and paired swabs of intact skin were collected from 10 patients with DFIs (five were moderately infected, and the other five were severely infected). Samples were analyzed by conventional culture and using Personal Genome Machine (PGM) 16S rRNA sequencing technology. The results showed that PGM technology detected significantly more bacterial genera (66.1 vs. 1.5 per wound sample, p < 0.001); more obligate anaerobes (52.5 vs. 0%, p < 0.001) and more polymicrobial infections (100.0 vs. 55.0%, p < 0.01) than conventional cultures. There was no statistically significant difference in bacterial richness, diversity or composition between the wound swabs and tissues (p > 0.05). The bacterial community on intact skin was significantly more diverse than that in DFUs (Chao1 value, p < 0.05; Shannon index value, p < 0.001). Gram-positive bacteria (67.6%) and aerobes (59.2%) were predominant in contralateral intact skin, while Gram-negative bacteria (63.3%) and obligate anaerobes (50.6%) were the most ubiquitous in DFUs. The most differentially abundant taxon in skin was Bacillales, while Bacteroidia was the bacterial taxon most representative of DFUs. Moreover, Fusobacterium (ρ = 0.80, p < 0.01) and Proteus (ρ = 0.78, p < 0.01) were significantly correlated with the duration of DFIs. In conclusion, PGM 16S rRNA sequencing technology could be a potentially useful technique for the rapid microbiological diagnosis of DFIs. Wound swabbing may be sufficient for sampling bacterial pathogens in DFIs compared with biopsy which is an invasive technique. The empirical use of broad-spectrum antibiotics covering Gram-negative obligate anaerobes should be considered for the treatment of moderate or severe DFIs.
Collapse
Affiliation(s)
- Ying Huang
- Department of Clinical Nutrition, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhizhou Xiao
- Department of Clinical Nutrition, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ying Cao
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fang Gao
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Fang Gao,
| | - Yingyu Fu
- Department of Clinical Nutrition, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Yingyu Fu,
| | - Mengchen Zou
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiangrong Luo
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ya Jiang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yaoming Xue
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Ye H, Wen Y, Chen Z, Zhang T, Li S, Guan M, Zhang Y, Su S. Relationship of Soil Microbiota to Seed Kernel Metabolism in Camellia oleifera Under Mulched. FRONTIERS IN PLANT SCIENCE 2022; 13:920604. [PMID: 35795350 PMCID: PMC9251579 DOI: 10.3389/fpls.2022.920604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
An experiment was conducted from 2016 to 2017 to assess the effect of kernel metabolism in development stages after organic mulching compared to control. Organic mulching significantly increased crop yields (higher 128% in 2016, higher 60% in 2017), oil content (the highest oil content was 27.6% higher than that of the control), and improved soil properties (SOC, SAN, AP, and AK). In this study, soil pH, SOC, AN, AP, and AK in 0-30 cm soil depth were measured. Results showed that the effect of mulching on soil pH was not significant at the harvesting stage. The greatest metabolic differences occurred during the period of high oil conversion (S2-S4), primarily involving 11 relevant metabolic pathways. This further verified that Camellia oleifera oil yield was improved after mulching. A total of 1,106 OTUs were detected by using 16S rRNA, and Venn diagram showed that there were 106 unique OTUs in control and 103 OTUs in the treatment, respectively. Correlation analysis showed that soil pH and soil temperature were two indicators with the most correlations with soil microbiota. The yield was significantly positively correlated with soil microbial Proteobacteria, Bacteroidetes, and soil nutrition indexes. Organic mulching improved the physicochemical properties of soils, caused differences in the relative abundance of dominant bacteria in soil bacteria, and improved the soil microbiological environment to promote plant growth, indicating that organic mulching is an effective measure to alleviate seasonal drought.
Collapse
Affiliation(s)
- Honglian Ye
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing, China
- Department of Plant Science, University of California, Davis, Davis, CA, United States
| | - Yue Wen
- Research Center for Xinjiang Characteristic Fruit Tree, College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, China
| | - Zhigang Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Taikui Zhang
- Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Shengxing Li
- Camphor Engineering Technology Research Center for State Forestry Administration, Jiangxi Academy of Forestry, Nanchang, China
| | - Menglong Guan
- West China Hospital of Sichuan University, Chengdu, China
| | - Yunqi Zhang
- Beijing Academy of Forestry and Pomology Sciences, Beijing, China
| | - Shuchai Su
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing, China
| |
Collapse
|
9
|
Responses of Cyanobacterial Crusts and Microbial Communities to Extreme Environments of the Stratosphere. Microorganisms 2022; 10:microorganisms10061252. [PMID: 35744770 PMCID: PMC9230428 DOI: 10.3390/microorganisms10061252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/12/2022] [Accepted: 06/17/2022] [Indexed: 12/10/2022] Open
Abstract
How microbial communities respond to extreme conditions in the stratosphere remains unclear. To test this effect, cyanobacterial crusts collected from Tengger Desert were mounted to high balloons and briefly exposed (140 min) to high UV irradiation and low temperature in the stratosphere at an altitude of 32 km. Freezing and thawing treatments were simulated in the laboratory in terms of the temperature fluctuations during flight. Microbial community composition was characterized by sequencing at the level of DNA and RNA. After exposure to the stratosphere, the RNA relative abundances of Kallotenue and Longimicrobium increased by about 2-fold, while those of several dominant cyanobacteria genera changed slightly. The RNA relative abundances of various taxa declined after freezing, but increased after thawing, whereas cyanobacteria exhibited an opposite change trend. The DNA and RNA relative abundances of Nitrososphaeraceae were increased by 1.4~2.3-fold after exposure to the stratosphere or freezing. Exposure to stratospheric environmental conditions had little impact on the total antioxidant capacity, photosynthetic pigment content, and photosynthetic rate, but significantly increased the content of exopolysaccharides by 16%. The three treatments (stratospheric exposure, freezing, and thawing) increased significantly the activities of N-acetyl-β-D-glucosidase (26~30%) and β-glucosidase (14~126%). Our results indicated cyanobacterial crust communities can tolerate exposure to the stratosphere. In the defense process, extracellular organic carbon degradation and transformation play an important role. This study makes the first attempt to explore the response of microbial communities of cyanobacterial crusts to a Mars-like stratospheric extreme environment, which provides a new perspective for studying the space biology of earth communities.
Collapse
|
10
|
Doytchinov VV, Dimov SG. Microbial Community Composition of the Antarctic Ecosystems: Review of the Bacteria, Fungi, and Archaea Identified through an NGS-Based Metagenomics Approach. LIFE (BASEL, SWITZERLAND) 2022; 12:life12060916. [PMID: 35743947 PMCID: PMC9228076 DOI: 10.3390/life12060916] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/09/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022]
Abstract
Antarctica represents a unique environment, both due to the extreme meteorological and geological conditions that govern it and the relative isolation from human influences that have kept its environment largely undisturbed. However, recent trends in climate change dictate an unavoidable change in the global biodiversity as a whole, and pristine environments, such as Antarctica, allow us to study and monitor more closely the effects of the human impact. Additionally, due to its inaccessibility, Antarctica contains a plethora of yet uncultured and unidentified microorganisms with great potential for useful biological activities and production of metabolites, such as novel antibiotics, proteins, pigments, etc. In recent years, amplicon-based next-generation sequencing (NGS) has allowed for a fast and thorough examination of microbial communities to accelerate the efforts of unknown species identification. For these reasons, in this review, we present an overview of the archaea, bacteria, and fungi present on the Antarctic continent and the surrounding area (maritime Antarctica, sub-Antarctica, Southern Sea, etc.) that have recently been identified using amplicon-based NGS methods.
Collapse
|
11
|
Prekrasna I, Pavlovska M, Miryuta N, Dzhulai A, Dykyi E, Convey P, Kozeretska I, Bedernichek T, Parnikoza I. Antarctic Hairgrass Rhizosphere Microbiomes: Microscale Effects Shape Diversity, Structure, and Function. Microbes Environ 2022; 37. [PMID: 35705309 PMCID: PMC9530728 DOI: 10.1264/jsme2.me21069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The rhizosphere microbiome of the native Antarctic hairgrass Deschampsia antarctica from the central maritime Antarctic was investigated using 16S RNA metagenomics and compared to those of the second native Antarctic plant Colobanthus quitensis and closely related temperate D. cespitosa. The rhizosphere microbial communities of D. antarctica and D. cespitosa had high taxon richness, while that of C. quitensis had markedly lower diversity. The majority of bacteria in the rhizosphere communities of the hairgrass were affiliated to Proteobacteria, Bacteroidetes, and Actinobacteria. The rhizosphere of C. quitensis was dominated by Actinobacteria. All microbial communities included high proportions of unique amplicon sequence variants (ASVs) and there was high heterogeneity between samples at the ASV level. The soil parameters examined did not explain this heterogeneity. Bacteria belonging to Actinobacteria, Bacteroidetes, and Proteobacteria were sensitive to fluctuations in the soil surface temperature. The values of the United Soil Surface Temperature Influence Index (UTII, Iti) showed that variations in most microbial communities from Galindez Island were associated with microscale variations in temperature. Metabolic predictions in silico using PICRUSt 2.0, based on the taxonomically affiliated part of the microbiomes, showed similarities with the rhizosphere community of D. antarctica in terms of the predicted functional repertoire. The results obtained indicate that these communities are involved in the primary processes of soil development (particularly the degradation of lignin and lignin-derived compounds) in the central maritime Antarctic and may be beneficial for the growth of Antarctic vascular plants. However, due to the limitations associated with interpreting PICRUSt 2.0 outputs, these predictions need to be verified experimentally.
Collapse
Affiliation(s)
| | - Mariia Pavlovska
- State Institution National Antarctic Scientific Center.,National University of Life and Environmental Sciences of Ukraine
| | | | - Artem Dzhulai
- State Institution National Antarctic Scientific Center
| | - Evgen Dykyi
- State Institution National Antarctic Scientific Center
| | - Peter Convey
- British Antarctic Survey, NERC.,Department of Zoology, University of Johannesburg
| | | | | | - Ivan Parnikoza
- State Institution National Antarctic Scientific Center.,Institute of Molecular Biology and Genetics.,National University of "Kyiv-Mohyla Academy"
| |
Collapse
|
12
|
Highly specialized bacterial communities within three distinct rhizocompartments of Antarctic hairgrass (Deschampsia antarctica Desv.). Polar Biol 2022. [DOI: 10.1007/s00300-022-03027-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Bacterial Communities of Forest Soils along Different Elevations: Diversity, Structure, and Functional Composition with Potential Impacts on CO 2 Emission. Microorganisms 2022; 10:microorganisms10040766. [PMID: 35456816 PMCID: PMC9032212 DOI: 10.3390/microorganisms10040766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
Abstract
Soil bacteria are important components of forest ecosystems, there compostion structure and functions are sensitive to environmental conditions along elevation gradients. Using 16S rRNA gene amplicon sequencing followed by FAPROTAX function prediction, we examined the diversity, composition, and functional potentials of soil bacterial communities at three sites at elevations of 1400 m, 1600 m, and 2200 m in a temperate forest. We showed that microbial taxonomic composition did not change with elevation (p = 0.311), though soil bacterial α-diversities did. Proteobacteria, Acidobacteria, Actinobacteria, and Verrucomicrobia were abundant phyla in almost all soil samples, while Nitrospirae, closely associated with soil nitrogen cycling, was the fourth most abundant phylum in soils at 2200 m. Chemoheterotrophy and aerobic chemoheterotrophy were the two most abundant functions performed in soils at 1400 m and 1600 m, while nitrification (25.59% on average) and aerobic nitrite oxidation (19.38% on average) were higher in soils at 2200 m. Soil CO2 effluxes decreased (p < 0.050) with increasing elevation, while they were positively correlated (r = 0.55, p = 0.035) with the abundances of bacterial functional groups associated with carbon degradation. Moreover, bacterial functional composition, rather than taxonomic composition, was significantly associated with soil CO2 effluxes, suggesting a decoupling of taxonomy and function, with the latter being a better predictor of ecosystem functions. Annual temperature, annual precipitation, and pH shaped (p < 0.050) both bacterial taxonomic and functional communities. By establishing linkages between bacterial taxonomic communities, abundances of bacterial functional groups, and soil CO2 fluxes, we provide novel insights into how soil bacterial communities could serve as potential proxies of ecosystem functions.
Collapse
|
14
|
Pérez CA, Kim M, Aravena JC, Silva W. Diazotrophic activity and denitrification in two long-term chronosequences of maritime Antarctica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:152234. [PMID: 34896140 DOI: 10.1016/j.scitotenv.2021.152234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/12/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
The main goals of this study were to identify whether key processes involved in microbial soil nitrogen transformations, such as diazotrophic activity and denitrification, the chemical properties of limiting elements in the soil, and microbial community structure, differ in the different successional stages of two long term chronosequences in maritime Antarctica. Moreover, we expect the rates of diazotrophic activity and denitrification to be stimulated by increases in air temperature and moisture. To answer these questions, we selected three stages in the succession (early, mid and late) in each of two well established chronosequences: three raised beaches in Ardley Island; and the Barton Peninsula, which includes two cosmogenically dated sites and the forefield of the Fourcade glacier. In the Ardley chronosequence, higher diazotrophic activity was found in the older successional stages, concomitant with an increase in the abundance of Cyanobacteria. In the Barton chronosequence, Cyanobacteria were only present and abundant (Microcoleus) in the early successional stage, coinciding with the highest diazotrophic activity. Denitrification in the Barton chronosequence tended to be highest at the mid successional sites, associated with the highest abundance of Rhodanobacter. In the Ardley chronosequence, the lowest abundance of Rhodanobacter was linked to lower denitrification rates in the mid successional stage. In the Ardley chronosequence, significant positive effects of passive warming and water addition on diazotrophic activity were detected in the first and the second years of the study respectively. In the Barton chronosequence on the other hand, there was no response to either passive warming or water addition, probably a manifestation of the higher nutrient limitation in this site. Denitrification showed no response to either warming or water addition. Thus, the response of microbial nitrogen transformations to global change is highly dependent on the environmental setting, such as soil origin, age and climate regime.
Collapse
Affiliation(s)
- Cecilia A Pérez
- Institute of Ecology and Biodiversity (IEB), Las Palmeras, 3425 Santiago, Chile.
| | - Mincheol Kim
- Korea Polar Research Institute (KOPRI), Incheon 21990, Republic of Korea
| | - Juan Carlos Aravena
- Centro de Investigación Gaia Antártica (CIGA), Universidad de Magallanes, Punta Arenas, Chile
| | - Wladimir Silva
- Institute of Ecology and Biodiversity (IEB), Las Palmeras, 3425 Santiago, Chile
| |
Collapse
|
15
|
Comparison of Gut Microbiota between Gentoo and Adélie Penguins Breeding Sympatrically on Antarctic Ardley Island as Revealed by Fecal DNA Sequencing. DIVERSITY 2021. [DOI: 10.3390/d13100500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There are two pygoscelid penguins, the Gentoo (Pygoscelis papua Forster, 1781) and Adélie (P. adeliae Hombron and Jacquinot, 1841) penguins, breeding sympatrically on Ardley Island, Fildes Peninsula region, South Shetlands, Antarctica. Whether the two closely related penguin species with similar dietary habits possess compositional similarity in gut microbiota remains unknown. DNA barcoding of feces is an emerging approach for gut microbiota analysis of protected animals. In the present study, the 16S rRNA gene from penguin feces was sequenced using the Illumina MiSeq platform to investigate the gut microbiota of the two pygoscelid penguin species. The fecal community of Gentoo penguins has higher diversity indices and OTU (operational taxonomic unit) richness compared to Adélie penguins. Besides unclassified bacteria, sequences fell into 22 major lineages of the domain Bacteria: Acidobacteria, Actinobacteria, Armatimonadetes, Bacteroidetes, Chlamydiae, Chloroflexi, Cloacimonetes, Cyanobacteria, Deinococcus-Thermus, Fibrobacteres, Firmicutes, Fusobacteria, Gemmatimonadetes, Ignavibacteriae, Planctomycetes, Proteobacteria, Tenericutes, Verrucomicrobia, and candidate divisions BRC1, SR1, WPS-2, and Saccharibacteria. Among these, Firmicutes (37.7%), Proteobacteria (23.1%, mainly Gamma- and Betaproteobacteria), Fusobacteria (14.3%), Bacteroidetes (7.9%), and Actinobacteria (6.6%) were dominant in the fecal microbiota of the two penguin species. At the same time, significantly higher abundances of Actinobacteria and Cyanobacteria were detected in Gentoo penguins than in Adélie penguins (p < 0.05). Overall, there was a clear difference in the composition of gut microbiota between the Adélie and Gentoo penguins. The results suggested that both the phylogeny of penguin species and the diet could be responsible for the differences in the gut microbiota of the two pygoscelid penguins breeding in the same area.
Collapse
|
16
|
Miguel MA, Kim SH, Lee SS, Cho YI. Impact of Soil Microbes and Oxygen Availability on Bacterial Community Structure of Decomposing Poultry Carcasses. Animals (Basel) 2021; 11:2937. [PMID: 34679958 PMCID: PMC8532636 DOI: 10.3390/ani11102937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/07/2021] [Indexed: 11/16/2022] Open
Abstract
The impact of soil with an intact microbial community and oxygen availability on moisture content, soil pH, and bacterial communities during decomposition of poultry carcasses was investigated. Poultry carcasses were decomposed in soil with or without a microbial community, under aerobic or anaerobic conditions. The samples collected in each microcosm burial set-up were analyzed by targeted 16S rRNA amplicon sequencing and Amplicon sequence variants (ASV) method. Our results showed that moisture was high in the burial set-ups under anaerobic conditions and pH was high in the burial set-ups under aerobic conditions. Meanwhile, the Chao1 and Shannon index significantly differed between the different burial set-ups and across different time points. In addition, bacterial taxa composition during the early period of decomposition differed from that of the late period. A total of 23 phyla, 901 genera, and 1992 species were identified. Firmicutes was the most dominant phyla in all burial set-ups throughout the decomposition. At day 60, Pseudogracilibacillus was dominant in the burial set-ups under aerobic conditions, while Lentibacillus dominated in the burial set-ups under anaerobic conditions. This study demonstrated that the soil microbial community and availability of oxygen significantly affected the changes in moisture content, pH, and bacterial composition during the decomposition process.
Collapse
Affiliation(s)
| | | | | | - Yong-Il Cho
- Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea; (M.A.M.); (S.-H.K.); (S.-S.L.)
| |
Collapse
|
17
|
Ramírez-Fernández L, Orellana LH, Johnston ER, Konstantinidis KT, Orlando J. Diversity of microbial communities and genes involved in nitrous oxide emissions in Antarctic soils impacted by marine animals as revealed by metagenomics and 100 metagenome-assembled genomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147693. [PMID: 34029816 DOI: 10.1016/j.scitotenv.2021.147693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/02/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
Antarctic soils generally have low temperatures and limited availability of liquid water and nutrients. However, animals can increase the nutrient availability of ice-free areas by transferring nutrients from marine to terrestrial ecosystems, mainly through their excreta. In this study, we employed shotgun metagenomics and population genome binning techniques to study the diversity of microbial communities in Antarctic soils impacted by marine pinnipeds and birds relative to soils with no evident animal presence. We obtained ~285,000 16S rRNA gene-carrying metagenomic reads representing ~60 phyla and 100 metagenome-assembled genomes (MAGs) representing eight phyla. Only nine of these 100 MAGs represented previously described species, revealing that these soils harbor extensive novel diversity. Proteobacteria, Actinobacteria, and Bacteroidetes were the most abundant phyla in all samples, with Rhodanobacter being one of the most abundant genera in the bird-impacted soils. Further, the relative abundance of genes related to denitrification was at least double in soils impacted by birds than soils without animal influence. These results advance our understanding of the microbial populations and their genes involved in nitrous oxide emissions in ice-free coastal Antarctic soils impacted by marine animals and reveal novel microbial diversity associated with these ecosystems.
Collapse
Affiliation(s)
- Lia Ramírez-Fernández
- Laboratorio de Ecología Microbiana, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Luis H Orellana
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Eric R Johnston
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Konstantinos T Konstantinidis
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Julieta Orlando
- Laboratorio de Ecología Microbiana, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
18
|
Cappello S, Caruso G, Bergami E, Macrì A, Venuti V, Majolino D, Corsi I. New insights into the structure and function of the prokaryotic communities colonizing plastic debris collected in King George Island (Antarctica): Preliminary observations from two plastic fragments. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125586. [PMID: 34030422 DOI: 10.1016/j.jhazmat.2021.125586] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
In Antarctic regions, the composition and metabolic activity of microbial assemblages associated with plastic debris ("plastisphere") are almost unknown. A macroplastic item from land (MaL, 30 cm) and a mesoplastic from the sea (MeS, 4 mm) were collected in Maxwell Bay (King George Island, South Shetland) and analyzed by Fourier transform infrared spectroscopy in attenuated total reflectance geometry (FTIR-ATR), which confirmed a polystyrene foam and a composite high-density polyethylene composition for MaL and MeS, respectively. The structure and function of the two plastic-associated prokaryotic communities were studied by complementary 16S ribosomal RNA gene clone libraries, total bacterioplankton and culturable heterotrophic bacterial counts, enzymatic activities of the whole community and enzymatic profiles of bacterial isolates. Results showed that Gamma- and Betaproteobacteria (31% and 28%, respectively) dominated in MeS, while Beta- and Alphaproteobacteria (21% and 13%, respectively) in MaL. Sequences related to oil degrading bacteria (Alcanivorax,Marinobacter) confirmed the known anthropogenic pressure in King George Island. This investigation on plastic-associated prokaryotic structure and function represents the first attempt to characterize the ecological role of plastisphere in this Antarctic region and provides the necessary background for future research on the significance of polymer type, surface characteristics and environmental conditions in shaping the plastisphere.
Collapse
Affiliation(s)
- Simone Cappello
- Institute for Biological Resources and Marine Biotechnologies (IRBIM), National Research Council (CNR), Spianata San Raineri 86, Messina 98122, Italy
| | - Gabriella Caruso
- Institute of Polar Sciences (ISP), National Research Council (CNR), Spianata San Raineri 86, Messina 98122, Italy.
| | - Elisa Bergami
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, Siena 53100, Italy
| | - Angela Macrì
- Institute for Biological Resources and Marine Biotechnologies (IRBIM), National Research Council (CNR), Spianata San Raineri 86, Messina 98122, Italy; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, Messina 98166, Italy
| | - Valentina Venuti
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, Messina 98166, Italy
| | - Domenico Majolino
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, Messina 98166, Italy
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, Siena 53100, Italy
| |
Collapse
|
19
|
Merino C, Kuzyakov Y, Godoy K, Jofré I, Nájera F, Matus F. Iron-reducing bacteria decompose lignin by electron transfer from soil organic matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143194. [PMID: 33183799 DOI: 10.1016/j.scitotenv.2020.143194] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/11/2020] [Accepted: 10/17/2020] [Indexed: 06/11/2023]
Abstract
Iron-reducing bacteria (IRB) are crucial for electron transfer in anaerobic soil microsites. The utilization of the energy gathered by this mechanism by decomposers of organic matter is a challenging and fascinating issue. We hypothesized that bacteria reducing Fe(III) (oxyhydr)oxides to soluble Fe(II) obtain electrons from reduced soil organic matter (SOMr) involving lignin oxidation. Iron-reducing bacteria were isolated from topsoils of various climates (humid temperate, cold temperate, subpolar), vegetation types (mostly grasslands and forests), and derived from various parent materials treatments assigned as Granitic, Volcanic-allophanic, Fluvio-glacial, Basaltic-Antarctic and Metamorphic. After the screening of IRB by phospholipid fatty acid (PLFA) analysis and PCR identification (full-length 16S rDNA), the IRB were inoculated to 20 samples (five soils and 4 replicates) and a broad range of parallel processes were traced. Geobacter metallireducens and Geobacter lovleyi were the main Geobacteraceae-strains present in all soils and strongly increased the activity of ligninolytic enzymes: lignin peroxidase and manganese peroxidase. Carbon dioxide (CO2) released from IRB-inoculated soils was 140% higher than that produced by Fenton reactions (induced by H2O2 and Fe(II) addition) but 40% lower than in non-sterile soils. CO2 release was closely correlated with the produced Fe (II) and H2O2 consumption. The highest CO2 was released from Basaltic-Antarctic soils with the highest Fe content and was closely correlated with lignin depolymerization (detection by fluorescence images). All IRB oxidized the lignin contained in the SOM within a wide pH range and in soils from all parent materials. We present a conceptual model showing electron shuttling from SOM containing lignin (as a C and energy source) to IRB to produce energy and promote Fe(III) (oxyhydr)oxides reduction was proposed and discussed.
Collapse
Affiliation(s)
- Carolina Merino
- Center of Plant, Soil Interaction and Natural Resources Biotechnology Scientific and Technological Bioresource Nucleus (BIOREN), Temuco, Chile; Laboratory of Conservation and Dynamics of Volcanic Soils, Department of Chemical Sciences and Natural Resources, Universidad de La Frontera, Temuco, Chile; Network for Extreme Environmental Research, Universidad de la Frontera, Temuco, Chile
| | - Yakov Kuzyakov
- Network for Extreme Environmental Research, Universidad de la Frontera, Temuco, Chile; Soil Science of Temperate Ecosystems, Büsgen Institute, Georg-August-Universität Göttingen, Germany; Institute of Environmental Sciences, Kazan Federal University, Kazan, Russia; RUDN, Moscow, Russia
| | - Karina Godoy
- Center of Plant, Soil Interaction and Natural Resources Biotechnology Scientific and Technological Bioresource Nucleus (BIOREN), Temuco, Chile
| | - Ignacio Jofré
- Laboratory of Conservation and Dynamics of Volcanic Soils, Department of Chemical Sciences and Natural Resources, Universidad de La Frontera, Temuco, Chile
| | - Francisco Nájera
- PhD Program in Science of Natural Resource Sciences, Universidad de La Frontera, Chile
| | - Francisco Matus
- Laboratory of Conservation and Dynamics of Volcanic Soils, Department of Chemical Sciences and Natural Resources, Universidad de La Frontera, Temuco, Chile; Network for Extreme Environmental Research, Universidad de la Frontera, Temuco, Chile.
| |
Collapse
|
20
|
Chua CY, Wong CMVL. Effects of simulated warming on bacterial diversity and abundance in tropical soils from East Malaysia using open top chambers. Can J Microbiol 2020; 67:64-74. [PMID: 33084348 DOI: 10.1139/cjm-2019-0461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of global warming are increasingly evident, where global surface temperatures and atmospheric concentration of carbon dioxide have increased in past decades. Given the role of terrestrial bacteria in various ecological functions, it is important to understand how terrestrial bacteria would respond towards higher environmental temperatures. This study aims to determine soil bacterial diversity in the tropics and their response towards in situ warming using an open-top chamber (OTC). OTCs were set up in areas exposed to sunlight throughout the year in the tropical region in Malaysia. Soil samples were collected every 3 months to monitor changes in bacterial diversity using V3-V4 16S rDNA amplicon sequencing inside the OTCs (treatment plots) and outside the OTCs (control plots). After 12 months of simulated warming, an average increase of 0.81 to 1.15 °C was recorded in treatment plots. Significant changes in the relative abundance of bacterial phyla such as Bacteroidetes and Chloroflexi were reported. Increases in the relative abundance of Actinobacteria were also observed in treatment plots after 12 months. Substantial changes were observed at the genus level, where most bacterial genera decreased in relative abundance after 12 months. This study demonstrated that warming can alter soil bacteria in tropical soils from Kota Kinabalu.
Collapse
Affiliation(s)
- Chuen Yang Chua
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia.,Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Clemente Michael Vui Ling Wong
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia.,Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
21
|
Cong B, Yin X, Deng A, Shen J, Tian Y, Wang S, Yang H. Diversity of Cultivable Microbes From Soil of the Fildes Peninsula, Antarctica, and Their Potential Application. Front Microbiol 2020; 11:570836. [PMID: 33013802 PMCID: PMC7495136 DOI: 10.3389/fmicb.2020.570836] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/17/2020] [Indexed: 12/02/2022] Open
Abstract
To explore the diversity and application potential of Antarctic microorganisms, 1208 strains bacteria and fungi were isolated from 5 samples collected from the Fildes Peninsula during China’s 27th and 31st Antarctic expeditions. By using 16S and ITS sequence similarity alignment, 83 strains bacteria belonging to 20 genera and 30 strains fungi belonging to 7 genera were identified. Among them, 1 strains bacteria and 6 strains fungi showed low sequence similarity to the database, suggesting that they might be novel species. Physiological-biochemical characteristics showed that the identified bacteria could utilize many kinds of carbohydrates and that the identified fungi could produce several kinds of extracellular enzymes. The fungal strain MS-19, identified as Aspergillus sydowii, possesses the potential to produce antifungal activity agents based on an activity-guided approach. Further isolation yielded four polyketones: versicone A (1), versicone B (2), 4-methyl-5,6-dihydro-2H-pyran-2-one (3), and (R)-(+)-sydowic acid (4). It should be noted that 1 displayed strong activity against Candida albicans, with an MIC value of 3.91 μg/mL.
Collapse
Affiliation(s)
- Bailin Cong
- The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Xiaofei Yin
- The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Aifang Deng
- The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Jihong Shen
- The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Yongqi Tian
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Huanghao Yang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| |
Collapse
|
22
|
Microbial Communities in Permafrost Soils of Larsemann Hills, Eastern Antarctica: Environmental Controls and Effect of Human Impact. Microorganisms 2020; 8:microorganisms8081202. [PMID: 32784619 PMCID: PMC7464515 DOI: 10.3390/microorganisms8081202] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 11/16/2022] Open
Abstract
Although ice-free areas cover only about 0.1% of Antarctica and are characterized by harsh environmental conditions, these regions provide quite diverse conditions for the soil-forming process, having various physical and geochemical properties, and also assuring different conditions for living organisms. This study is aimed to determine existing soil microbial communities, their relationship with soil parameters and the influence of anthropogenic activity in Larsemann Hills, Eastern Antarctica. The soil microbiome was investigated at different locations using 16S rRNA gene pyrosequencing. The taxonomic analysis of the soil microbiomes revealed 12 predominant bacterial and archaeal phyla—Proteobacteria, Actinobacteria, Acidobacteria, Chloroflexi, Gemmatimonadetes, Verrucomicrobia, Planctomycetes, Bacteroidetes, Armatimonadetes, Firmicutes, Cyanobacteria, Thaumarchaeota. Some specific phyla have been also found in sub-surface horizons of soils investigated, thus providing additional evidence of the crucial role of gravel pavement in saving the favorable conditions for both soil and microbiome development. Moreover, our study also revealed that some bacterial species might be introduced into Antarctic soils by human activities. We also assessed the effect of different soil parameters on microbial community in the harsh environmental conditions of Eastern Antarctica. pH, carbon and nitrogen, as well as fine earth content, were revealed as the most accurate predictors of soil bacterial community composition.
Collapse
|
23
|
Wang P, D'Imperio L, Biersma EM, Ranniku R, Xu W, Tian Q, Ambus P, Elberling B. Combined effects of glacial retreat and penguin activity on soil greenhouse gas fluxes on South Georgia, sub-Antarctica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 718:135255. [PMID: 31859058 DOI: 10.1016/j.scitotenv.2019.135255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/12/2019] [Accepted: 10/27/2019] [Indexed: 06/10/2023]
Abstract
The effects of soil succession after glacial retreat and fertilisation by marine animals are known to have major impacts on soil greenhouse gas (GHG) fluxes in polar terrestrial ecosystems. While in many polar coastal areas retreating glaciers open up new ground for marine animals to colonise, little is known about the combination of both factors on the local GHG budget. We studied the magnitude of GHG fluxes (CO2, CH4 and N2O) on the combined effect of glacial retreat and penguin-induced fertilisation along a transect protruding into the world's largest King Penguin (Aptenodytes patagonicus) colony at Saint Andrews Bay on sub-Antarctic South Georgia. GHG production and consumption rates were assessed based on laboratory incubations of intact soil cores and nutrients and water additional experimental incubations. The oldest soils along the transect show significant higher contents of soil carbon, nutrients and moisture and were strongly influenced by penguin activity. We found a net CH4 consumption along the entire transect with a marked decrease within the penguin colony. CO2 production strongly increased along the transect, while N2O production rates were low near the glacier front and increased markedly within the penguin colony. Controlled applications of guano resulted in a significant increase in CO2 and N2O production, and decrease in CH4 consumption, except for sites already strongly influenced by penguin activity. The results show that soil microbial activity promptly catalyses a turnover of soil C and atmospheric methane oxidation in de-glaciated forelands. The methane oxidizers, however, may increase relatively slowly in their capacity to oxidise atmospheric CH4. Results show also that the increase of nutrients by penguins reduces CH4 oxidation whereas N2O production is greatly increased. A future expansion of penguins into newly available ice-free polar coastal areas may therefore markedly increase the local GHG budget.
Collapse
Affiliation(s)
- Peiyan Wang
- International Institute for Earth System Sciences, Nanjing University, 210023 Nanjing, China; Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing University, 210023 Nanjing, China; Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen, Denmark
| | - Ludovica D'Imperio
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen, Denmark
| | - Elisabeth M Biersma
- British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, United Kingdom; Natural History Museum of Denmark, University of Copenhagen, Øster Farimagsgade 5, DK-1353 Copenhagen, Denmark
| | - Reti Ranniku
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen, Denmark
| | - Wenyi Xu
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen, Denmark
| | - Qingjiu Tian
- International Institute for Earth System Sciences, Nanjing University, 210023 Nanjing, China; Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing University, 210023 Nanjing, China
| | - Per Ambus
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen, Denmark
| | - Bo Elberling
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen, Denmark.
| |
Collapse
|
24
|
Barnard S, Van Goethem MW, de Scally SZ, Cowan DA, van Rensburg PJ, Claassens S, Makhalanyane TP. Increased temperatures alter viable microbial biomass, ammonia oxidizing bacteria and extracellular enzymatic activities in Antarctic soils. FEMS Microbiol Ecol 2020; 96:5818763. [DOI: 10.1093/femsec/fiaa065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 04/03/2020] [Indexed: 12/13/2022] Open
Abstract
ABSTRACT
The effects of temperature on microorganisms in high latitude regions, and their possible feedbacks in response to change, are unclear. Here, we assess microbial functionality and composition in response to a substantial temperature change. Total soil biomass, amoA gene sequencing, extracellular activity assays and soil physicochemistry were measured to assess a warming scenario. Soil warming to 15°C for 30 days triggered a significant decrease in microbial biomass compared to baseline soils (0°C; P < 0.05) after incubations had induced an initial increase. These changes coincided with increases in extracellular enzymatic activity for peptide hydrolysis and phenolic oxidation at higher temperatures, but not for the degradation of carbon substrates. Shifts in ammonia-oxidising bacteria (AOB) community composition related most significantly to changes in soil carbon content (P < 0.05), which gradually increased in microcosms exposed to a persistently elevated temperature relative to baseline incubations, while temperature did not influence AOBs. The concentration of soil ammonium (NH4+) decreased significantly at higher temperatures subsequent to an initial increase, possibly due to higher conversion rates of NH4+ to nitrate by nitrifying bacteria. We show that higher soil temperatures may reduce viable microbial biomass in cold environments but stimulate their activity over a short period.
Collapse
Affiliation(s)
- Sebastian Barnard
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, Natural Sciences 2 Building, University of Pretoria, Pretoria, 0028, South Africa
| | - Marc W Van Goethem
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, Natural Sciences 2 Building, University of Pretoria, Pretoria, 0028, South Africa
| | - Storme Z de Scally
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, Natural Sciences 2 Building, University of Pretoria, Pretoria, 0028, South Africa
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, Natural Sciences 2 Building, University of Pretoria, Pretoria, 0028, South Africa
| | - Peet Jansen van Rensburg
- Focus Area Human Metabolomics, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Sarina Claassens
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Thulani P Makhalanyane
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, Natural Sciences 2 Building, University of Pretoria, Pretoria, 0028, South Africa
| |
Collapse
|
25
|
Rego A, Sousa AGG, Santos JP, Pascoal F, Canário J, Leão PN, Magalhães C. Diversity of Bacterial Biosynthetic Genes in Maritime Antarctica. Microorganisms 2020; 8:microorganisms8020279. [PMID: 32085500 PMCID: PMC7074882 DOI: 10.3390/microorganisms8020279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 02/06/2023] Open
Abstract
Bacterial natural products (NPs) are still a major source of new drug leads. Polyketides (PKs) and non-ribosomal peptides (NRP) are two pharmaceutically important families of NPs and recent studies have revealed Antarctica to harbor endemic polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) genes, likely to be involved in the production of novel metabolites. Despite this, the diversity of secondary metabolites genes in Antarctica is still poorly explored. In this study, a computational bioprospection approach was employed to study the diversity and identity of PKS and NRPS genes to one of the most biodiverse areas in maritime Antarctica—Maxwell Bay. Amplicon sequencing of soil samples targeting ketosynthase (KS) and adenylation (AD) domains of PKS and NRPS genes, respectively, revealed abundant and unexplored chemical diversity in this peninsula. About 20% of AD domain sequences were only distantly related to characterized biosynthetic genes. Several PKS and NRPS genes were found to be closely associated to recently described metabolites including those from uncultured and candidate phyla. The combination of new approaches in computational biology and new culture-dependent and -independent strategies is thus critical for the recovery of the potential novel chemistry encoded in Antarctica microorganisms.
Collapse
Affiliation(s)
- Adriana Rego
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal; (A.R.); (A.G.G.S.); (J.P.S.); (F.P.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - António G. G. Sousa
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal; (A.R.); (A.G.G.S.); (J.P.S.); (F.P.)
| | - João P. Santos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal; (A.R.); (A.G.G.S.); (J.P.S.); (F.P.)
- Institute F.-A. Forel, Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, 66, Boulevard Carl-Vogt, 1211 Genève 4, Switzerland
| | - Francisco Pascoal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal; (A.R.); (A.G.G.S.); (J.P.S.); (F.P.)
| | - João Canário
- Centro de Química Estrutural at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
| | - Pedro N. Leão
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal; (A.R.); (A.G.G.S.); (J.P.S.); (F.P.)
- Correspondence: (P.N.L); (C.M.)
| | - Catarina Magalhães
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal; (A.R.); (A.G.G.S.); (J.P.S.); (F.P.)
- Faculty of Sciences, University of Porto, 4150-179 Porto, Portugal
- School of Science, University of Waikato, Hamilton 3216, New Zealand
- Correspondence: (P.N.L); (C.M.)
| |
Collapse
|
26
|
Garrido-Benavent I, Pérez-Ortega S, Durán J, Ascaso C, Pointing SB, Rodríguez-Cielos R, Navarro F, de los Ríos A. Differential Colonization and Succession of Microbial Communities in Rock and Soil Substrates on a Maritime Antarctic Glacier Forefield. Front Microbiol 2020; 11:126. [PMID: 32117148 PMCID: PMC7018881 DOI: 10.3389/fmicb.2020.00126] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/20/2020] [Indexed: 12/20/2022] Open
Abstract
Glacier forefields provide a unique chronosequence to assess microbial or plant colonization and ecological succession on previously uncolonized substrates. Patterns of microbial succession in soils of alpine and subpolar glacier forefields are well documented but those affecting high polar systems, including moraine rocks, remain largely unexplored. In this study, we examine succession patterns in pioneering bacterial, fungal and algal communities developing on moraine rocks and soil at the Hurd Glacier forefield (Livingston Island, Antarctica). Over time, changes were produced in the microbial community structure of rocks and soils (ice-free for different lengths of time), which differed between both substrates across the entire chronosequence, especially for bacteria and fungi. In addition, fungal and bacterial communities showed more compositional consistency in soils than rocks, suggesting community assembly in each niche could be controlled by processes operating at different temporal and spatial scales. Microscopy revealed a patchy distribution of epilithic and endolithic lithobionts, and increasing endolithic colonization and microbial community complexity along the chronosequence. We conclude that, within relatively short time intervals, primary succession processes at polar latitudes involve significant and distinct changes in edaphic and lithic microbial communities associated with soil development and cryptogamic colonization.
Collapse
Affiliation(s)
- Isaac Garrido-Benavent
- Departamento de Biogeoquímica y Ecología Microbiana, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | | | - Jorge Durán
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Carmen Ascaso
- Departamento de Biogeoquímica y Ecología Microbiana, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Stephen B. Pointing
- Yale-NUS College, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Ricardo Rodríguez-Cielos
- ETSI de Telecomunicación, Departamento de Señales, Sistemas y Radiocomunicaciones, Universidad Politécnica de Madrid, Madrid, Spain
| | - Francisco Navarro
- ETSI de Telecomunicación, Departamento de Matemática Aplicada a las TIC, Universidad Politécnica de Madrid, Madrid, Spain
| | - Asunción de los Ríos
- Departamento de Biogeoquímica y Ecología Microbiana, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| |
Collapse
|
27
|
Ma B, LaPara TM, N Evans A, Hozalski RM. Effects of geographic location and water quality on bacterial communities in full-scale biofilters across North America. FEMS Microbiol Ecol 2020; 96:5698304. [PMID: 31913449 DOI: 10.1093/femsec/fiz210] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 01/07/2020] [Indexed: 11/14/2022] Open
Abstract
Spatial patterns of bacterial community composition often follow a distance-decay relationship in which community dissimilarity increases with geographic distance. Such a relationship has been commonly observed in natural environments, but less so in engineered environments. In this study, bacterial abundance and community composition in filter media samples (n = 57) from full-scale rapid biofilters at 14 water treatment facilities across North America were determined using quantitative polymerase chain reaction and Illumina HiSeq high-throughput sequencing targeting the 16S rRNA gene, respectively. Bacteria were abundant on the filter media (108.8±0.3 to 1010.7±0.2 16S rRNA gene copies/cm3 bed volume) and the bacterial communities were highly diverse (Shannon index: 5.3 ± 0.1 to 8.4 ± 0.0). Significant inter-filter variations in bacterial community composition were observed, with weighted UniFrac dissimilarity values following a weak but highly significant distance-decay relationship (z = 0.0057 ± 0.0006; P = 1.8 × 10-22). Approximately 50% of the variance in bacterial community composition was explained by the water quality parameters measured at the time of media sample collection (i.e. pH, temperature and dissolved organic carbon concentration). Overall, this study suggested that the microbiomes of biofilters are primarily shaped by geographic location and local water quality conditions but the influence of these factors on the microbiomes is tempered by filter design and operating conditions.
Collapse
Affiliation(s)
- Ben Ma
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury Dr. SE, Minneapolis, MN 55455, United States
| | - Timothy M LaPara
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury Dr. SE, Minneapolis, MN 55455, United States
- Biotechnology Institute, University of Minnesota, 1479 Gortner Ave, Saint Paul, MN 55108 , United States
| | - Ashley N Evans
- Arcadis U.S. Inc., 1717 W. 6th St. Suite 210, Austin, TX, 78703, United States
| | - Raymond M Hozalski
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury Dr. SE, Minneapolis, MN 55455, United States
- Biotechnology Institute, University of Minnesota, 1479 Gortner Ave, Saint Paul, MN 55108 , United States
| |
Collapse
|
28
|
Soil Microbiota of Dystric Cambisol in the High Tatra Mountains (Slovakia) after Windthrow. SUSTAINABILITY 2019. [DOI: 10.3390/su11236851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There has been much more damage to forests in the Slovak Republic in the second half of the 20th century than to other European countries. Forested mountain massifs have become a filter of industrial and transportation emissions from abroad, as well as from domestic origins. There are not only acidic deposits of sulphur and heavy metals present in forest soils, but other additional environmental problems, such as climate change, storms, fires, floods, droughts, are worsening the situation. Therefore, forest terrestrial ecosystems are becoming more vulnerable due to changes in natural and environmental conditions. In the High Tatra Mountains in Slovakia, which are protected as a national park, four internationally monitored localities were established after the windthrow disaster in 2004 and fire in 2005: REF, with intact forest; EXT, with extracted wood mass; NEX, with non-extracted wood mass; and FIR, the burnt locality. Soils from these localities were microbiologically analysed with special attention to fungi. Bacterial microbiota detected by high-throughput sequencing showed the prevalence of the genera Acidothermus, Mycobacterium, and Nocardia, and a very low presence of the genera Acidibacter, Burkholderia-Paraburkholderia, Optitus and the uncultured genus Desulfurellaceae H16 in the soil sample from the burnt locality when compared with the unburned sites. Additionally, soil mycocoenoses showed a low similarity between the locality with an intact forest ecosystem and the localities with extracted (REF–EXT) and non-extracted (REF–NEX) wood mass. There was no similarity with the burnt locality (FIR), where heat-resistant fungi dominated. It was shown that the windthrow disaster and subsequent extraction or non-extraction of wood mass did not affect the soil microbial communities or their development. On the other hand, the influence of fire was significant.
Collapse
|
29
|
Analysis of Soil Properties, Bacterial Community Composition, and Metabolic Diversity in Fluvisols of a Floodplain Area. SUSTAINABILITY 2019. [DOI: 10.3390/su11143929] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The quality of a soil environment affects the microbial community that inhabits it. We decided to examine whether soils formed from river sediments, located in an area of high biodiversity of organisms, are fertile and microbiologically diverse. Fluvisols are considered to be one of the most fertile soils. In this research, bacterial and metabolic diversity, as well as physico–chemical parameters, in three Fluvisols from the Vistula River Gorge of Lesser Poland was investigated. The analysis of physico–chemical and biological parameters demonstrated statistically significant differences between the three Fluvisols examined. While determining the metabolic potential of soil microbiomes with the use of the EcoPlate™ Biolog® technique, we also noted variation between the Fluvisols; however, they were arranged in a significantly different manner from other properties. The next generation sequencing method enabled us to determine the microorganisms common to three Fluvisols, and we identified bacteria specific to individual soils. These results corresponded with the data obtained through EcoPlate™, indicating that the structural diversity and metabolic potential of the microbiome does not always depend on soil quality parameters. Meanwhile, the increased structural diversity of the microbiome was found to improve the metabolic potential of soil microorganisms.
Collapse
|
30
|
Staebe K, Meiklejohn KI, Singh SM, Matcher GF. Biogeography of soil bacterial populations in the Jutulsessen and Ahlmannryggen of Western Dronning Maud Land, Antarctica. Polar Biol 2019. [DOI: 10.1007/s00300-019-02532-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
31
|
Wang N, Guo Y, Li G, Xia Y, Ma M, Zang J, Ma Y, Yin X, Han W, Lv J, Cao H. Geochemical-Compositional-Functional Changes in Arctic Soil Microbiomes Post Land Submergence Revealed by Metagenomics. Microbes Environ 2019; 34:180-190. [PMID: 31178526 PMCID: PMC6594734 DOI: 10.1264/jsme2.me18091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 02/23/2019] [Indexed: 11/27/2022] Open
Abstract
Lakes of meltwater in the Artic have become one of the transforming landscape changes under global warming. We herein compared microbial communities between sediments and bank soils at an arctic lake post land submergence using geochemistry, 16S rRNA amplicons, and metagenomes. The results obtained showed that each sample had approximately 2,609 OTUs on average and shared 1,716 OTUs based on the 16S rRNA gene V3-V4 region. Dominant phyla in sediments and soils included Proteobacteria, Acidobacteria, Actinobacteria, Gemmatimonadetes, and Nitrospirae; sediments contained a unique phylum, Euryarchaeota, with the phylum Thaumarchaeota being primarily present in bank soils. Among the top 35 genera across all sites, 17 were more abundant in sediments, while the remaining 18 were more abundant in bank soils; seven out of the top ten genera across all sites were only from sediments. A redundancy analysis separated sediment samples from soil samples based on the components of nitrite and ammonium. Metagenome results supported the role of nitrite because most of the genes for denitrification and methane metabolic genes were more abundant in sediments than in soils, while the abundance of phosphorus-utilizing genes was similar and, thus, was not a significant explanatory factor. We identified several modules from the global networks of OTUs that were closely related to some geochemical factors, such as pH and nitrite. Collectively, the present results showing consistent changes in geochemistry, microbiome compositions, and functional genes suggest an ecological mechanism across molecular and community levels that structures microbiomes post land submergence.
Collapse
Affiliation(s)
- Nengfei Wang
- Key Lab of Marine Bioactive Substances, First Institute of Oceanography, State Oceanic AdministrationQingdao 266061China
| | - Yudong Guo
- Department of Bioengineering, College of Marine Sciences and Biological Engineering, Qingdao University of Science & TechnologyQingdao 266042China
| | - Gaoyang Li
- College of Computer Science and Technology, Jilin UniversityChangchun, Jilin 100012China
| | - Yan Xia
- Jilin University First HospitalChangchun, Jilin 100012China
| | - Mingyang Ma
- Key Lab of Marine Bioactive Substances, First Institute of Oceanography, State Oceanic AdministrationQingdao 266061China
| | - Jiaye Zang
- Key Lab of Marine Bioactive Substances, First Institute of Oceanography, State Oceanic AdministrationQingdao 266061China
| | - Yue Ma
- Department of Bioengineering, College of Marine Sciences and Biological Engineering, Qingdao University of Science & TechnologyQingdao 266042China
| | - Xiaofei Yin
- Key Lab of Marine Bioactive Substances, First Institute of Oceanography, State Oceanic AdministrationQingdao 266061China
| | - Wenbing Han
- College of Chemistry and Chemical Engineering, Qingdao UniversityQingdao 266071China
| | - Jinjiang Lv
- College of Chemistry and Chemical Engineering, Qingdao UniversityQingdao 266071China
| | - Huansheng Cao
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State UniversityTempe, AZ 85287USA
| |
Collapse
|
32
|
Picazo A, Rochera C, Villaescusa JA, Miralles-Lorenzo J, Velázquez D, Quesada A, Camacho A. Bacterioplankton Community Composition Along Environmental Gradients in Lakes From Byers Peninsula (Maritime Antarctica) as Determined by Next-Generation Sequencing. Front Microbiol 2019; 10:908. [PMID: 31114558 PMCID: PMC6503055 DOI: 10.3389/fmicb.2019.00908] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/10/2019] [Indexed: 11/13/2022] Open
Abstract
This study comprises the first attempt to describe the planktonic bacterial communities of lakes from Byers Peninsula, one of the most significant limnological districts in the Maritime Antarctica, leveraging next-generation sequencing (NGS) technologies. For the survey, we selected 7 lakes covering the environmental gradient from inland to coastal lakes, some of them sampled both in surface and deep waters. Analysis provided just over 85,000 high quality sequences that were clustered into 864 unique Zero-radius Operational Taxonomic Units (ZOTUs) (i.e., 100% sequence similarity). Yet, several taxonomic uncertainties remained in the analysis likely suggesting the occurrence of local bacterial adaptations. The survey showed the dominance of the phyla Proteobacteria and Bacteroidetes. Among the former, the Gammaproteobacteria class, more specifically the order Betaproteobacteriales, was the dominant group, which seems to be a common trend in nutrient-limited Antarctic lakes. Most of the families and genera ubiquitously detected belonging to this class are indeed typical from ultra-oligotrophic environments, and commonly described as diazotrophs. On the other hand, among the members of the phylum Bacteroidetes, genera such as Flavobacterium were abundant in some of the shallowest lakes, thus demonstrating that also benthic and sediment-associated bacteria contributed to water bacterial assemblages. Ordination analyses sorted bacterial assemblages mainly based on the environmental gradients of nutrient availability and conductivity i.e., salinity. However, transient bacterial associations, that included the groups Clostridiaceae and Chloroflexi, also occurred as being forced by other drivers such as the influence of the nearby fauna and by the airborne microorganisms. As we intended, our NGS-based approach has provided a much greater resolution compared to the previous studies conducted in the area and confirmed to a large extent the previously obtained patterns, thus reinforcing the view of Byers as a hotspot of microbial biodiversity within Antarctica. This high microbial diversity allows the use of these aquatic ecosystems and their bacterial assemblages as sentinels for the monitoring of adaptive responses to climate change in this rapidly warming area.
Collapse
Affiliation(s)
- Antonio Picazo
- Cavanilles Institute for Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| | - Carlos Rochera
- Cavanilles Institute for Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| | - Juan Antonio Villaescusa
- Cavanilles Institute for Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| | - Javier Miralles-Lorenzo
- Cavanilles Institute for Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| | - David Velázquez
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonio Quesada
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonio Camacho
- Cavanilles Institute for Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| |
Collapse
|
33
|
Sibanda T, Selvarajan R, Msagati T, Venkatachalam S, Meddows-Taylor S. Defunct gold mine tailings are natural reservoir for unique bacterial communities revealed by high-throughput sequencing analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:2199-2209. [PMID: 30292113 DOI: 10.1016/j.scitotenv.2018.09.380] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/28/2018] [Accepted: 09/28/2018] [Indexed: 06/08/2023]
Abstract
Mine tailing dumps are arguably one of the leading sources of environmental degradation with often both public health and ecologically consequences. The present study investigated the concentration of heavy metals in gold mine tailings, and used high throughput sequencing techniques to determine the microbial community diversity of these tailings using 16S rRNA gene based amplicon sequence analysis. The concentration of detected metals and metalloids followed the order Si > Al > Fe > K > Ca > Mg. The 16S rRNA gene based sequence analysis resulted in a total of 273,398 reads across the five samples, represented among 7 major phyla, 41 classes, 77 orders, 142 families and 247 major genera. Phylum Actinobacteria was the most dominant, followed by Proteobacteria, Firmicutes, Chloroflexi, Cyanobacteria, Bacteroidetes, Acidobacteria and Planctomycetes. Redundancy analysis (RDA) and pairwise correlation analysis positively correlated the distribution of Alphaproteobacteria and Gammaproteobacteria to Al and K; Actinobacteria to Cr and Chloroflexi to Si. Negative correlations were observed in the distribution of Bacteroidetes with respect to As concentrations, Actinobacteria to Al, and Alphaproteobacteria and Gammaproteobacteria to high As and Te content of the soils. Predictive functional analysis showed the presence of putative biosynthetic and degradative pathways across the five sample sites. The study concludes that mine tailing sites harbour diverse and unique microbial assemblages with potentially biotechnologically important genes for biosynthesis and biodegradation.
Collapse
Affiliation(s)
- Timothy Sibanda
- Nanotechnology and Water Sustainability Research Unit, College of Science, Engineering and Technology, University of South Africa-Science Campus, Florida 1710, South Africa.
| | - Ramganesh Selvarajan
- Department of Environmental Sciences, College of Agriculture and Environmental Sciences, University of South Africa-Science Campus, Florida 1710, South Africa
| | - Titus Msagati
- Nanotechnology and Water Sustainability Research Unit, College of Science, Engineering and Technology, University of South Africa-Science Campus, Florida 1710, South Africa
| | | | - Stephen Meddows-Taylor
- College of Agriculture and Environmental Sciences Laboratories, University of South Africa-Science Campus, Florida 1710, South Africa
| |
Collapse
|
34
|
Ramírez-Fernández L, Trefault N, Carú M, Orlando J. Seabird and pinniped shape soil bacterial communities of their settlements in Cape Shirreff, Antarctica. PLoS One 2019; 14:e0209887. [PMID: 30625192 PMCID: PMC6326729 DOI: 10.1371/journal.pone.0209887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 12/13/2018] [Indexed: 01/24/2023] Open
Abstract
Seabirds and pinnipeds play an important role in biogeochemical cycling by transferring nutrients from aquatic to terrestrial environments. Indeed, soils rich in animal depositions have generally high organic carbon, nitrogen and phosphorus contents. Several studies have assessed bacterial diversity in Antarctic soils influenced by marine animals; however most have been conducted in areas with significant human impact. Thus, we chose Cape Shirreff, Livingston Island, an Antarctic Specially Protected Area designated mainly to protect the diversity of marine vertebrate fauna, and selected sampling sites with different types of animals coexisting in a relatively small space, and where human presence and impact are negligible. Using 16S rRNA gene analyses through massive sequencing, we assessed the influence of animal concentrations, via their modification of edaphic characteristics, on soil bacterial diversity and composition. The nutrient composition of soils impacted by Antarctic fur seals and kelp gulls was more similar to that of control soils (i.e. soils without visible presence of plants or animals), which may be due to the more active behaviour of these marine animals compared to other species. Conversely, the soils from concentrations of southern elephant seals and penguins showed greater differences in soil nutrients compared to the control. In agreement with this, the bacterial communities of the soils associated with these animals were most different from those of the control soils, with the soils of penguin colonies also possessing the lowest bacterial diversity. However, all the soils influenced by the presence of marine animals were dominated by bacteria belonging to Gammaproteobacteria, particularly those of the genus Rhodanobacter. Therefore, we conclude that the modification of soil nutrient composition by marine vertebrates promotes specific groups of bacteria, which could play an important role in the recycling of nutrients in terrestrial Antarctic ecosystems.
Collapse
Affiliation(s)
- Lía Ramírez-Fernández
- Laboratory of Microbial Ecology, Department of Ecological Sciences, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Nicole Trefault
- Centre for Genomics, Ecology and Environment (GEMA), Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Margarita Carú
- Laboratory of Microbial Ecology, Department of Ecological Sciences, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Julieta Orlando
- Laboratory of Microbial Ecology, Department of Ecological Sciences, Faculty of Sciences, Universidad de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
35
|
Zhang Y, Lu L, Chang X, Jiang F, Gao X, Yao Y, Li C, Cao S, Zhou Q, Peng F. Small-Scale Soil Microbial Community Heterogeneity Linked to Landform Historical Events on King George Island, Maritime Antarctica. Front Microbiol 2018; 9:3065. [PMID: 30619151 PMCID: PMC6296293 DOI: 10.3389/fmicb.2018.03065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/28/2018] [Indexed: 11/13/2022] Open
Abstract
Although research on microbial biogeography has made great progress in the past decade, distributions of terrestrial microbial communities in extreme environments such as Antarctica are not well understood. In addition, knowledge of whether and how historical contingencies affect microbial distributions at small spatial scales is lacking. Here, we analyzed soil-borne microbial (bacterial, archaeal, and fungal) communities in 12 quadrat plots around the Fildes Region of King George Island, maritime Antarctica, and the communities were divided into two groups according to the soil elemental compositions and environmental attributes of Holocene raised beach and Tertiary volcanic stratigraphy. Prokaryotic communities of the two groups were well separated; the prokaryotic data were primarily correlated with soil elemental compositions and were secondly correlated with environmental attributes (e.g., soil pH, total organic carbon, NO3 -, and vegetation coverage; Pearson test, r = 0.59 vs. 0.52, both P < 0.01). The relatively high abundance of P, S, Cl, and Br in Group 1 (Holocene raised beach site) was likely due to landform uplift. Lithophile-elements (Si, Al, Ca, Sr, Ti, V, and Fe) correlated with prokaryotic communities in Group 2 may have originated from weathering of Tertiary volcanic rock. No significant correlations were found between the fungal community distribution and both the soil elemental composition and environmental attributes in this study; however, Monte Carlo tests revealed that elements Sr and Ti, soil pH, sampling altitude, and moss and lichen species numbers had significant impacts on fungal communities. The elements and nutrients accumulated during the formation of different landforms influenced the development of soils, plant growth, and microbial communities, and this resulted in small-scale spatially heterogeneous biological distributions. These findings provide new evidence that geological evolutionary processes in the Fildes Region were crucial to its microbial community development, and the results highlight that microbial distribution patterns are the legacies of historical events at this small spatial scale. Based on this study, the ice-free regions in maritime Antarctica represent suitable research sites for studying the influence of geomorphological features on microbial distributions, and we envision the possibility of a site-specific landform assignment through the analysis of the soil prokaryotic community structure.
Collapse
Affiliation(s)
- Yumin Zhang
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan, China
| | - Lu Lu
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan, China
| | - Xulu Chang
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan, China
| | - Fan Jiang
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiangdong Gao
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Yifeng Yao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Chengsen Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Shunan Cao
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, China
| | - Qiming Zhou
- ChosenMed Technology (Beijing) Company Limited, Jinghai Industrial Park, Economic and Technological Development Area, Beijing, China
| | - Fang Peng
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
36
|
Guo Y, Wang N, Li G, Rosas G, Zang J, Ma Y, Liu J, Han W, Cao H. Direct and Indirect Effects of Penguin Feces on Microbiomes in Antarctic Ornithogenic Soils. Front Microbiol 2018; 9:552. [PMID: 29666609 PMCID: PMC5891643 DOI: 10.3389/fmicb.2018.00552] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/12/2018] [Indexed: 11/15/2022] Open
Abstract
Expansion of penguin activity in maritime Antarctica, under ice thaw, increases the chances of penguin feces affecting soil microbiomes. The detail of such effects begins to be revealed. By comparing soil geochemistry and microbiome composition inside (one site) and outside (three sites) of the rookery, we found significant effects of penguin feces on both. First, penguin feces change soil geochemistry, causing increased moisture content (MC) of ornithogenic soils and nutrients C, N, P, and Si in the rookery compared to non-rookery sites, but not pH. Second, penguin feces directly affect microbiome composition in the rookery, not those outside. Specifically, we found 4,364 operational taxonomical units (OTUs) in 404 genera in six main phyla: Proteobacteria, Actinobacteria, Gemmatimonadetes, Acidobacteria, Chloroflexi, and Bacteroidetes. Although the diversity is similar among the four sites, the composition is different. For example, penguin rookery has a lower abundance of Acidobacteria, Chloroflexi, and Nitrospirae but a higher abundance of Bacteroidetes, Firmicutes, and Thermomicrobia. Strikingly, the family Clostridiaceae of Firmicutes of penguin-feces origin is most abundant in the rookery than non-rookery sites with two most abundant genera, Tissierella and Proteiniclasticum. Redundancy analysis showed all measured geochemical factors are significant in structuring microbiomes, with MC showing the highest correlation. We further extracted 21 subnetworks of microbes which contain 4,318 of the 4,364 OTUs using network analysis and are closely correlated with all geochemical factors except pH. Our finding f penguin feces, directly and indirectly, affects soil microbiome suggests an important role of penguins in soil geochemistry and microbiome structure of maritime Antarctica.
Collapse
Affiliation(s)
- Yudong Guo
- Department of Bioengineering, College of Marine Sciences and Biological Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Nengfei Wang
- Key Lab of Marine Bioactive Substances, First Institute of Oceanography, State Oceanic Administration, Qingdao, China
| | - Gaoyang Li
- College of Computer Science and Technology, Jilin University, Changchun, China
| | - Gabriela Rosas
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Jiaye Zang
- Key Lab of Marine Bioactive Substances, First Institute of Oceanography, State Oceanic Administration, Qingdao, China
| | - Yue Ma
- Department of Bioengineering, College of Marine Sciences and Biological Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Jie Liu
- Department of Bioengineering, College of Marine Sciences and Biological Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Wenbing Han
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, China
| | - Huansheng Cao
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
37
|
Rippin M, Borchhardt N, Williams L, Colesie C, Jung P, Büdel B, Karsten U, Becker B. Genus richness of microalgae and Cyanobacteria in biological soil crusts from Svalbard and Livingston Island: morphological versus molecular approaches. Polar Biol 2018. [DOI: 10.1007/s00300-018-2252-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Rivas-Marín E, Devos DP. The Paradigms They Are a-Changin': past, present and future of PVC bacteria research. Antonie van Leeuwenhoek 2017; 111:785-799. [PMID: 29058138 PMCID: PMC5945725 DOI: 10.1007/s10482-017-0962-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/10/2017] [Indexed: 11/22/2022]
Abstract
These are exciting times for PVC researchers! The PVC superphylum is composed of the bacterial phyla Planctomycetes, Verrucomicrobia, Chlamydiae (those three founders giving it its name), Lentisphaerae and Kirimatiellaeota as well as some uncultured candidate phyla, such as the Candidatus Omnitrophica (previously known as OP3). Despite early debates, most of the disagreements that surround this group of bacteria have been recently resolved. In this article, we review the history of the study of PVC bacteria, with a particular focus on the misinterpretations that emerged early in the field and their resolution. We begin with a historical perspective that describes the relevant facts of PVC research from the early times when they were not yet termed PVC. Those were controversial times and we refer to them as the “discovery age” of the field. We continue by describing new discoveries due to novel techniques and data that combined with the reinterpretations of old ones have contributed to solve most of the discordances and we refer to these times as the “illumination age” of PVC research. We follow by arguing that we are just entering the “golden age” of PVC research and that the future of this growing community is looking bright. We finish by suggesting a few of the directions that PVC researches might take in the future.
Collapse
Affiliation(s)
- Elena Rivas-Marín
- Centro Andaluz de Biología del Desarrollo (CABD)-CSIC, University Pablo de Olavide, Carretera Utrera, km 1, 41013, Seville, Spain
| | - Damien P Devos
- Centro Andaluz de Biología del Desarrollo (CABD)-CSIC, University Pablo de Olavide, Carretera Utrera, km 1, 41013, Seville, Spain.
| |
Collapse
|
39
|
Lee MR, Canales-Aguirre CB, Nuñez D, Pérez K, Hernández CE, Brante A. The identification of sympatric cryptic free-living nematode species in the Antarctic intertidal. PLoS One 2017; 12:e0186140. [PMID: 28982192 PMCID: PMC5629031 DOI: 10.1371/journal.pone.0186140] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 09/26/2017] [Indexed: 11/25/2022] Open
Abstract
The diversity of free-living nematodes in the beaches of two Antarctic islands, King George and Deception islands was investigated. We used morphological and molecular (LSU, and two fragments of SSU sequences) approaches to evaluate 236 nematodes. Specimens were assigned to at least genera using morphology and were assessed for the presence of cryptic speciation. The following genera were identified: Halomonhystera, Litoditis, Enoploides, Chromadorita, Theristus, Oncholaimus, Viscosia, Gammanema, Bathylaimus, Choanolaimus, and Paracanthonchus; along with specimens from the families Anticomidae and Linhomoeidae. Cryptic speciation was identified within the genera Halomonhystera and Litoditis. All of the cryptic species identified live sympatrically. The two cryptic species of Halomonhystera exhibited no significant morphological differences. However, Litoditis species 2 was significantly larger than Litoditis species 1. The utility of molecular data in confirming the identifications of some of the morphologically more challenging families of nematodes was demonstrated. In terms of which molecular sequences to use for the identification of free-living nematodes, the SSU sequences were more variable than the LSU sequences, and thus provided more resolution in the identification of cryptic speciation. Finally, despite the considerable amount of time and effort required to put together genetic and morphological data, the resulting advance in our understanding of diversity and ecology of free-living marine nematodes, makes that effort worthwhile.
Collapse
Affiliation(s)
- Matthew R. Lee
- Centro i~mar, Universidad de Los Lagos, Puerto Montt, Chile
| | | | - Daniela Nuñez
- Centro i~mar, Universidad de Los Lagos, Puerto Montt, Chile
| | - Karla Pérez
- Departamento de Ecología, Universidad Católica de la Santísima de Concepción, Concepción, Chile
| | - Crisitan E. Hernández
- Laboratorio de Ecología Evolutiva and Filoinformática, Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Antonio Brante
- Departamento de Ecología, Universidad Católica de la Santísima de Concepción, Concepción, Chile
- Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima de Concepción, Concepción, Chile
| |
Collapse
|
40
|
Higuera-Llantén S, Vásquez-Ponce F, Núñez-Gallegos M, Pavlov MS, Marshall S, Olivares-Pacheco J. Phenotypic and genotypic characterization of a novel multi-antibiotic-resistant, alginate hyperproducing strain of Pseudomonas mandelii isolated in Antarctica. Polar Biol 2017. [DOI: 10.1007/s00300-017-2206-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
41
|
Fan T, Sun Y, Peng J, Wu Q, Ma Y, Zhou X. Combination of amplified rDNA restriction analysis and high-throughput sequencing revealed the negative effect of colistin sulfate on the diversity of soil microorganisms. Microbiol Res 2017; 206:9-15. [PMID: 29146264 DOI: 10.1016/j.micres.2017.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 08/14/2017] [Accepted: 09/08/2017] [Indexed: 12/30/2022]
Abstract
Colistin sulfate is widely used in both human and veterinary medicine. However, its effect on the microbial ecologyis unknown. In this study, we determined the effect of colistin sulfate on the diversity of soil microorganisms by amplified rDNA restriction analysis (ARDRA) and high-throughput sequencing.ARDRAshowed that the diversity of DNA from soil microorganisms was reduced after soil was treated with colistin sulfate, with the most dramatic reductionobserved after 35days of treatment. High-throughput sequencing showed that the Chao1 and abundance-based coverage estimators (ACE) were reduced in the soils treated with colistin sulfate for 35 dayscompared to those treated with colistin sulfate for 7days. Furthermore, Chao1 and ACE tended to be lower when higher concentration of colistin sulfate was used, suggesting that the microbial abundance is reduced by colistin sulfate in a dose-dependent manner. Shannon index showed that the diversity of soil microorganism was reduced upon treatment with colistin sulfate compared to the untreated control group. Following 7days of treatment, Bacillus, Clostridiumand Sphingomonas were sensitive to all the concentration of colistin sulfate used in this study. Following 35days of treatment, the abundance of Choroplast, Haliangium, Pseudomonas, Lactococcus, and Clostridium was significantly decreased. Our results demonstrated that colistin sulfate especially at high concentration (≥5mg/kg) could alter the population structure of microorganisms and consequently the microbial community function in soil.
Collapse
Affiliation(s)
- Tingli Fan
- Department of Veterinary Medicine of Agricultural College, Guangdong Ocean University, Zhanjiang, 524088, China; Department of Animal Husbandry and Veterinary Medicine, Cangzhou Technical College, Cangzhou, 061001, China
| | - Yongxue Sun
- Guangdong Key Laboratory for Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Jinju Peng
- Department of Veterinary Medicine of Agricultural College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Qun Wu
- Department of Veterinary Medicine of Agricultural College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yi Ma
- Department of Veterinary Medicine of Agricultural College, Guangdong Ocean University, Zhanjiang, 524088, China.
| | - Xiaohui Zhou
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, 06269, USA; Joint International Research Laboratory of Agriculture and Agri-Product Safety/Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
42
|
Links between bacteria derived from penguin guts and deposited guano and the surrounding soil microbiota. Polar Biol 2017. [DOI: 10.1007/s00300-017-2189-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
43
|
González-Rocha G, Muñoz-Cartes G, Canales-Aguirre CB, Lima CA, Domínguez-Yévenes M, Bello-Toledo H, Hernández CE. Diversity structure of culturable bacteria isolated from the Fildes Peninsula (King George Island, Antarctica): A phylogenetic analysis perspective. PLoS One 2017. [PMID: 28632790 PMCID: PMC5478107 DOI: 10.1371/journal.pone.0179390] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It has been proposed that Antarctic environments select microorganisms with unique biochemical adaptations, based on the tenet 'Everything is everywhere, but, the environment selects' by Baas-Becking. However, this is a hypothesis that has not been extensively evaluated. This study evaluated the fundamental prediction contained in this hypothesis-in the sense that species are structured in the landscape according to their local habitats-, using as study model the phylogenetic diversity of the culturable bacteria of Fildes Peninsula (King George Island, Antarctica). Eighty bacterial strains isolated from 10 different locations in the area, were recovered. Based on phylogenetic analysis of 16S rRNA gene sequences, the isolates were grouped into twenty-six phylotypes distributed in three main clades, of which only six are exclusive to Antarctica. Results showed that phylotypes do not group significantly by habitat type; however, local habitat types had phylogenetic signal, which support the phylogenetic niche conservatism hypothesis and not a selective role of the environment like the Baas-Becking hypothesis suggests. We propose that, more than habitat selection resulting in new local adaptations and diversity, local historical colonization and species sorting (i.e. differences in speciation and extinction rates that arise by interaction of species level traits with the environment) play a fundamental role on the culturable bacterial diversity in Antarctica.
Collapse
Affiliation(s)
- Gerardo González-Rocha
- Laboratorio de Investigación en Agentes Antibacterianos. Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Gabriel Muñoz-Cartes
- Laboratorio de Investigación en Agentes Antibacterianos. Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Cristian B. Canales-Aguirre
- Laboratorio de Ecología Evolutiva y Filoinformática. Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
- Centro i~mar, Universidad de Los Lagos, Camino a Chinquihue 6 km, Puerto Montt, Chile
| | - Celia A. Lima
- Laboratorio de Investigación en Agentes Antibacterianos. Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Mariana Domínguez-Yévenes
- Laboratorio de Investigación en Agentes Antibacterianos. Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Helia Bello-Toledo
- Laboratorio de Investigación en Agentes Antibacterianos. Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Cristián E. Hernández
- Laboratorio de Ecología Evolutiva y Filoinformática. Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
- * E-mail:
| |
Collapse
|
44
|
Pudasaini S, Wilson J, Ji M, van Dorst J, Snape I, Palmer AS, Burns BP, Ferrari BC. Microbial Diversity of Browning Peninsula, Eastern Antarctica Revealed Using Molecular and Cultivation Methods. Front Microbiol 2017; 8:591. [PMID: 28439263 PMCID: PMC5383709 DOI: 10.3389/fmicb.2017.00591] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 03/22/2017] [Indexed: 01/07/2023] Open
Abstract
Browning Peninsula is an ice-free polar desert situated in the Windmill Islands, Eastern Antarctica. The entire site is described as a barren landscape, comprised of frost boils with soils dominated by microbial life. In this study, we explored the microbial diversity and edaphic drivers of community structure across this site using traditional cultivation methods, a novel approach the soil substrate membrane system (SSMS), and culture-independent 454-tag pyrosequencing. The measured soil environmental and microphysical factors of chlorine, phosphate, aspect and elevation were found to be significant drivers of the bacterial community, while none of the soil parameters analyzed were significantly correlated to the fungal community. Overall, Browning Peninsula soil harbored a distinctive microbial community in comparison to other Antarctic soils comprised of a unique bacterial diversity and extremely limited fungal diversity. Tag pyrosequencing data revealed the bacterial community to be dominated by Actinobacteria (36%), followed by Chloroflexi (18%), Cyanobacteria (14%), and Proteobacteria (10%). For fungi, Ascomycota (97%) dominated the soil microbiome, followed by Basidiomycota. As expected the diversity recovered from culture-based techniques was lower than that detected using tag sequencing. However, in the SSMS enrichments, that mimic the natural conditions for cultivating oligophilic “k-selected” bacteria, a larger proportion of rare bacterial taxa (15%), such as Blastococcus, Devosia, Herbaspirillum, Propionibacterium and Methylocella and fungal (11%) taxa, such as Nigrospora, Exophiala, Hortaea, and Penidiella were recovered at the genus level. At phylum level, a comparison of OTU's showed that the SSMS shared 21% of Acidobacteria, 11% of Actinobacteria and 10% of Proteobacteria OTU's with soil. For fungi, the shared OTUs was 4% (Basidiomycota) and <0.5% (Ascomycota). This was the first known attempt to culture microfungi using the SSMS which resulted in an increase in diversity from 14 to 57 microfungi OTUs compared to standard cultivation. Furthermore, the SSMS offers the opportunity to retrieve a greater diversity of bacterial and fungal taxa for future exploitation.
Collapse
Affiliation(s)
- Sarita Pudasaini
- School of Biotechnology and Biomolecular Sciences, University of New South WalesKensington, NSW, Australia
| | - John Wilson
- School of Biotechnology and Biomolecular Sciences, University of New South WalesKensington, NSW, Australia
| | - Mukan Ji
- School of Biotechnology and Biomolecular Sciences, University of New South WalesKensington, NSW, Australia
| | - Josie van Dorst
- School of Biotechnology and Biomolecular Sciences, University of New South WalesKensington, NSW, Australia
| | - Ian Snape
- Australian Antarctic Division, Department of Sustainability, Environment, Water, Population and CommunitiesKingston, TAS, Australia
| | - Anne S Palmer
- Australian Antarctic Division, Department of Sustainability, Environment, Water, Population and CommunitiesKingston, TAS, Australia
| | - Brendan P Burns
- School of Biotechnology and Biomolecular Sciences, University of New South WalesKensington, NSW, Australia
| | - Belinda C Ferrari
- School of Biotechnology and Biomolecular Sciences, University of New South WalesKensington, NSW, Australia
| |
Collapse
|
45
|
Özçelik Ü, Çevik H, Bircan HY, Yarbuğ Karakayalı F, Işıklar İ, Haberal M. Evaluation of Transplanted Kidneys and Comparison with Healthy Volunteers and Kidney Donors with Diffusion-Weighted Magnetic Resonance Imaging: Initial Experience. EXP CLIN TRANSPLANT 2017. [PMID: 28332960 DOI: 10.6002/ect.2016.0341] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES The aim of this study was to evaluate the feasibility of diffusion-weighted magnetic resonance, by comparing imaging in renal allograft recipients for functional assessment of kidney transplants versus imaging of these features in healthy volunteers and kidney donors with native kidneys. MATERIALS AND METHODS Seventy renal transplant recipients (group A) with stable graft function at postoperative month 1, 40 healthy volunteers (group B), and 40 kidney donors (group C) underwent diffusion-weighted magnetic resonance imaging. An echo-planar diffusion-weighted imaging sequence was performed in coronal orientation by using 6 b values (0, 200, 400, 600, 800, 1000 s/mm²). The apparent diffusion coefficients were determined for the upper and lower poles of the kidney cortex and medulla. Relations between apparent diffusion coefficients and allograft function, determined by the estimated glomerular filtration rate (comparing rates > 60 mL/min/1.73 m² [group A1] versus < 60 mL/min/1.73 m² [group A2]), were investigated in renal transplant recipients, and apparent diffusion coefficients in groups A, B, and C were compared. RESULTS Apparent diffusion coefficients were statistically higher in group A1 than in group A2 (P < .05) and statistically higher in group A than in groups B and C (P < .001). There were no significant differences between groups B and C (P > .05). CONCLUSIONS We observed that apparent diffusion coefficients of transplanted kidneys at postoperative month 1 were higher than values in native kidneys of healthy volunteers and kidney donors. In addition, apparent diffusion coefficients of transplanted kidneys with estimated glomerular filtration rates > 60 mL/min/1.73 m² were higher than transplanted kidneys with rates < 60 mL/min/1.73 m².
Collapse
Affiliation(s)
- Ümit Özçelik
- Department of General Surgery, Baskent University School of Medicine, Ankara, Turkey
| | | | | | | | | | | |
Collapse
|
46
|
Hayatsu M, Tago K, Uchiyama I, Toyoda A, Wang Y, Shimomura Y, Okubo T, Kurisu F, Hirono Y, Nonaka K, Akiyama H, Itoh T, Takami H. An acid-tolerant ammonia-oxidizing γ-proteobacterium from soil. ISME JOURNAL 2017; 11:1130-1141. [PMID: 28072419 DOI: 10.1038/ismej.2016.191] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 11/16/2016] [Accepted: 11/19/2016] [Indexed: 12/22/2022]
Abstract
Nitrification, the microbial oxidation of ammonia to nitrate via nitrite, occurs in a wide range of acidic soils. However, the ammonia-oxidizing bacteria (AOB) that have been isolated from soil to date are acid-sensitive. Here we report the isolation and characterization of an acid-adapted AOB from an acidic agricultural soil. The isolated AOB, strain TAO100, is classified within the Gammaproteobacteria based on phylogenetic characteristics. TAO100 can grow in the pH range of 5-7.5 and survive in highly acidic conditions until pH 2 by forming cell aggregates. Whereas all known gammaproteobacterial AOB (γ-AOB) species, which have been isolated from marine and saline aquatic environments, are halophiles, TAO100 is not phenotypically halophilic. Thus, TAO100 represents the first soil-originated and non-halophilic γ-AOB. The TAO100 genome is considerably smaller than those of other γ-AOB and lacks several genes associated with salt tolerance which are unnecessary for survival in soil. The ammonia monooxygenase subunit A gene of TAO100 and its transcript are higher in abundance than those of ammonia-oxidizing archaea and betaproteobacterial AOB in the strongly acidic soil. These results indicate that TAO100 plays an important role in the nitrification of acidic soils. Based on these results, we propose TAO100 as a novel species of a new genus, Candidatus Nitrosoglobus terrae.
Collapse
Affiliation(s)
- Masahito Hayatsu
- Institute of Agro-Environmental Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Kanako Tago
- Institute of Agro-Environmental Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Ikuo Uchiyama
- National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Atsushi Toyoda
- Center for Information Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Yong Wang
- Institute of Agro-Environmental Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Yumi Shimomura
- Institute of Agro-Environmental Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Takashi Okubo
- Institute of Agro-Environmental Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Futoshi Kurisu
- Research Center for Water Environment Technology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Yuhei Hirono
- Institute of Fruit Tree and Tea Science, NARO, Shimada, Shizuoka, Japan
| | - Kunihiko Nonaka
- Institute of Fruit Tree and Tea Science, NARO, Shimada, Shizuoka, Japan
| | - Hiroko Akiyama
- Institute of Agro-Environmental Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Takehiko Itoh
- Graduate School of Bioscience and Biotechnology,Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Hideto Takami
- Yokohama Institute, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama, Kanagawa, Japan
| |
Collapse
|
47
|
Jacques MA, Arlat M, Boulanger A, Boureau T, Carrère S, Cesbron S, Chen NWG, Cociancich S, Darrasse A, Denancé N, Fischer-Le Saux M, Gagnevin L, Koebnik R, Lauber E, Noël LD, Pieretti I, Portier P, Pruvost O, Rieux A, Robène I, Royer M, Szurek B, Verdier V, Vernière C. Using Ecology, Physiology, and Genomics to Understand Host Specificity in Xanthomonas. ANNUAL REVIEW OF PHYTOPATHOLOGY 2016; 54:163-87. [PMID: 27296145 DOI: 10.1146/annurev-phyto-080615-100147] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
How pathogens coevolve with and adapt to their hosts are critical to understanding how host jumps and/or acquisition of novel traits can lead to new disease emergences. The Xanthomonas genus includes Gram-negative plant-pathogenic bacteria that collectively infect a broad range of crops and wild plant species. However, individual Xanthomonas strains usually cause disease on only a few plant species and are highly adapted to their hosts, making them pertinent models to study host specificity. This review summarizes our current understanding of the molecular basis of host specificity in the Xanthomonas genus, with a particular focus on the ecology, physiology, and pathogenicity of the bacterium. Despite our limited understanding of the basis of host specificity, type III effectors, microbe-associated molecular patterns, lipopolysaccharides, transcriptional regulators, and chemotactic sensors emerge as key determinants for shaping host specificity.
Collapse
Affiliation(s)
- Marie-Agnès Jacques
- INRA, UMR 1345 Institut de Recherche en Horticulture et Semences (IRHS), F-49071 Beaucouzé, France; , , , , ,
| | - Matthieu Arlat
- INRA, UMR 441 Laboratoire des Interactions Plantes Micro-organismes (LIPM), F-31326 Castanet-Tolosan, France; , , , ,
- CNRS, UMR 2594 Laboratoire des Interactions Plantes Micro-organismes (LIPM), F-31326 Castanet-Tolosan, France
- Université de Toulouse, Université Paul Sabatier, F-31062 Toulouse, France
| | - Alice Boulanger
- INRA, UMR 441 Laboratoire des Interactions Plantes Micro-organismes (LIPM), F-31326 Castanet-Tolosan, France; , , , ,
- CNRS, UMR 2594 Laboratoire des Interactions Plantes Micro-organismes (LIPM), F-31326 Castanet-Tolosan, France
- Université de Toulouse, Université Paul Sabatier, F-31062 Toulouse, France
| | - Tristan Boureau
- Université Angers, UMR 1345 Institut de Recherche en Horticulture et Semences (IRHS), F-49071 Beaucouzé, France;
| | - Sébastien Carrère
- INRA, UMR 441 Laboratoire des Interactions Plantes Micro-organismes (LIPM), F-31326 Castanet-Tolosan, France; , , , ,
| | - Sophie Cesbron
- INRA, UMR 1345 Institut de Recherche en Horticulture et Semences (IRHS), F-49071 Beaucouzé, France; , , , , ,
| | - Nicolas W G Chen
- Agrocampus Ouest, UMR 1345 Institut de Recherche en Horticulture et Semences (IRHS), F-49071 Beaucouzé, France;
| | - Stéphane Cociancich
- CIRAD, UMR Biologie et Génétique des Interactions Plante-Parasite (BGPI), F-34398 Montpellier, France; , , ,
| | - Armelle Darrasse
- INRA, UMR 1345 Institut de Recherche en Horticulture et Semences (IRHS), F-49071 Beaucouzé, France; , , , , ,
| | - Nicolas Denancé
- INRA, UMR 1345 Institut de Recherche en Horticulture et Semences (IRHS), F-49071 Beaucouzé, France; , , , , ,
| | - Marion Fischer-Le Saux
- INRA, UMR 1345 Institut de Recherche en Horticulture et Semences (IRHS), F-49071 Beaucouzé, France; , , , , ,
| | - Lionel Gagnevin
- IRD, CIRAD, University of Montpellier, Interactions Plantes Micro-organismes Environnement (IPME), F-34394 Montpellier, France; , , ,
| | - Ralf Koebnik
- IRD, CIRAD, University of Montpellier, Interactions Plantes Micro-organismes Environnement (IPME), F-34394 Montpellier, France; , , ,
| | - Emmanuelle Lauber
- INRA, UMR 441 Laboratoire des Interactions Plantes Micro-organismes (LIPM), F-31326 Castanet-Tolosan, France; , , , ,
- CNRS, UMR 2594 Laboratoire des Interactions Plantes Micro-organismes (LIPM), F-31326 Castanet-Tolosan, France
| | - Laurent D Noël
- INRA, UMR 441 Laboratoire des Interactions Plantes Micro-organismes (LIPM), F-31326 Castanet-Tolosan, France; , , , ,
- CNRS, UMR 2594 Laboratoire des Interactions Plantes Micro-organismes (LIPM), F-31326 Castanet-Tolosan, France
| | - Isabelle Pieretti
- CIRAD, UMR Biologie et Génétique des Interactions Plante-Parasite (BGPI), F-34398 Montpellier, France; , , ,
| | - Perrine Portier
- INRA, UMR 1345 Institut de Recherche en Horticulture et Semences (IRHS), F-49071 Beaucouzé, France; , , , , ,
| | - Olivier Pruvost
- CIRAD, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical (PVBMT), F-97410 Saint-Pierre, La Réunion, France; , ,
| | - Adrien Rieux
- CIRAD, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical (PVBMT), F-97410 Saint-Pierre, La Réunion, France; , ,
| | - Isabelle Robène
- CIRAD, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical (PVBMT), F-97410 Saint-Pierre, La Réunion, France; , ,
| | - Monique Royer
- CIRAD, UMR Biologie et Génétique des Interactions Plante-Parasite (BGPI), F-34398 Montpellier, France; , , ,
| | - Boris Szurek
- IRD, CIRAD, University of Montpellier, Interactions Plantes Micro-organismes Environnement (IPME), F-34394 Montpellier, France; , , ,
| | - Valérie Verdier
- IRD, CIRAD, University of Montpellier, Interactions Plantes Micro-organismes Environnement (IPME), F-34394 Montpellier, France; , , ,
| | - Christian Vernière
- CIRAD, UMR Biologie et Génétique des Interactions Plante-Parasite (BGPI), F-34398 Montpellier, France; , , ,
| |
Collapse
|