1
|
Abdelaziz AM, A. Abdel-Maksoud M, Fatima S, Almutairi S, Kiani BH, Hashem AH. Anabasis setifera leaf extract from arid habitat: A treasure trove of bioactive phytochemicals with potent antimicrobial, anticancer, and antioxidant properties. PLoS One 2024; 19:e0310298. [PMID: 39453934 PMCID: PMC11508485 DOI: 10.1371/journal.pone.0310298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/25/2024] [Indexed: 10/27/2024] Open
Abstract
The main objective of this study was to evaluate the biological activities of Anabasis setifera extract, including its antimicrobial, anticancer, and antioxidant properties. In the current study, Anabasis setifera leaves extract was evaluated for antimicrobial, anticancer, antioxidant activities and phytochemical analyses. Ethyl acetate extract of Anabasis setifera (EA-AS) exhibited promising antimicrobial activity toward Escherichia coli, Staphylococcus aureus, Salmonella typhimurium, Bacillus subtilis, Candida albicans, Aspergillus brasiliensis, Aspergillus fumigatus with MICs 62.5, 125, 62.5, 31.25, 62.5, 125 and 125 μg/mL respectively. Moreover, EA-AS showed anticancer activity at safe concentrations, where IC50 were 36.4 and 44 μg/mL toward Hep-G2 and MCF-7 cancerous cell lines. EA-AS was found to contain 55 significant compounds identified through gas chromatography mass spectrophotometry (GCMS). The most abundant compounds were 1,4-dimethoxy-6,7,8,9-tetrahydro-5-benzocycloheptenone (26.04%), hexa-2,4-diyn-1-ylbenzene (8.40%), dihydrobenzo[b]fluoranthene (6.10%), ethanone, 1-[2,3-dihydro-2-(1-methylethenyl)-5-benzofuranyl (6.10%), and valerenol (4.08%). GC mass analysis confirmed the antioxidant properties of AS by detecting several compounds with antioxidant activity, including hexa-2,4-diyn-1-ylbenzene, nerolidol, spathulenol, -naphthalenem ethanol, decahydro-4-trimethyl-8-methylene, hexadecenoic acid, tremetone, desmethoxyencecalin, heptadecyn-1-ol, thunbergol, hexadecanol, dotriacontane, taylorione, ligulatin, retinoic acid, and falcarinol. The analysis of EA-AS reveals that it is a rich source of valuable phytochemicals: total Phenolic Content: a promising 4,264 μg/mL /, suggesting substantial biological and pharmacological potential. Total tannin content: 391.17 μg/mL, indicating potential applications in industries like nutraceuticals, pharmaceuticals, and cosmetics. Total flavonoid content exceptionally high at 5,163 μg/mL, while the total alkaloid content measured 1,036.26 μg/mL. Additionally, EA-AS demonstrated antioxidant activity with an EC50 of 30.6 μg/mL. In conclusion, the comprehensive analysis of the EA-AS reveals its immense potential as a rich source of valuable phytochemicals with diverse bioactivities, warranting further in-depth studies to unlock its full pharmaceutical and commercial prospects. Our results suggest substantial biological and pharmacological prospects for EA-AS as a promising antimicrobial, anticancer, and potent antioxidant.
Collapse
Affiliation(s)
- Amer M. Abdelaziz
- Faculty of Science, Botany and Microbiology Department, Al-Azhar University, Cairo, Egypt
| | - Mostafa A. Abdel-Maksoud
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sabiha Fatima
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Saeedah Almutairi
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Bushra Hafeez Kiani
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachuesetts, United States of America
| | - Amr H. Hashem
- Faculty of Science, Botany and Microbiology Department, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
2
|
Yang Y, Zhang Y, Zhang J, Wang A, Liu B, Zhao M, Wyckhuys KAG, Lu Y. Plant volatiles mediate Aphis gossypii settling but not predator foraging in intercropped cotton. PEST MANAGEMENT SCIENCE 2023; 79:4481-4489. [PMID: 37410545 DOI: 10.1002/ps.7650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND The cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae) is an important pest of cotton and horticultural crops globally. In China, smallholder farmers regularly intercrop cotton with garlic or onion. Aside from higher farm-level revenue, cotton intercrops are typified by lower Aphis gossypii abundance than monocrops. So far, the mechanistic basis of this lowered pest pressure has not been empirically assessed. RESULTS Field trials showed that Aphis gossypii abundance is lower and (relative) abundance of aphid predators higher in early-season cotton intercrops than in monocrops. Cage trials and Y-tube olfactometer tests further indicated that garlic and onion volatiles repel Aphis gossypii alates. Electrophysiological bioassays and gas chromatography-mass spectrometry (GC-MS) identified two physiologically active volatiles, that is, diallyl disulfide and propyl disulfide from garlic and onion respectively. Next, behavioral tests confirmed that both sulfur compounds exert a repellent effect on alate Aphis gossypii. CONCLUSION Garlic and onion volatiles interfere with Aphis gossypii settling, but do not affect its main (ladybird) predators. Meanwhile, early-season cotton/onion intercrops bear higher numbers of Aphis gossypii predators and fewer aphids. By thus unveiling the ecological underpinnings of aphid biological control in diversified cropping systems, our work advances non-chemical management of a globally-important crop pest. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuanxue Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Ying Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianhua Zhang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Aiyu Wang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Bing Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ming Zhao
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Kris A G Wyckhuys
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanhui Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| |
Collapse
|
3
|
Picciotti U, Araujo Dalbon V, Ciancio A, Colagiero M, Cozzi G, De Bellis L, Finetti-Sialer MM, Greco D, Ippolito A, Lahbib N, Logrieco AF, López-Llorca LV, Lopez-Moya F, Luvisi A, Mincuzzi A, Molina-Acevedo JP, Pazzani C, Scortichini M, Scrascia M, Valenzano D, Garganese F, Porcelli F. "Ectomosphere": Insects and Microorganism Interactions. Microorganisms 2023; 11:440. [PMID: 36838405 PMCID: PMC9967823 DOI: 10.3390/microorganisms11020440] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
This study focuses on interacting with insects and their ectosymbiont (lato sensu) microorganisms for environmentally safe plant production and protection. Some cases help compare ectosymbiont microorganisms that are insect-borne, -driven, or -spread relevant to endosymbionts' behaviour. Ectosymbiotic bacteria can interact with insects by allowing them to improve the value of their pabula. In addition, some bacteria are essential for creating ecological niches that can host the development of pests. Insect-borne plant pathogens include bacteria, viruses, and fungi. These pathogens interact with their vectors to enhance reciprocal fitness. Knowing vector-phoront interaction could considerably increase chances for outbreak management, notably when sustained by quarantine vector ectosymbiont pathogens, such as the actual Xylella fastidiosa Mediterranean invasion episode. Insect pathogenic viruses have a close evolutionary relationship with their hosts, also being highly specific and obligate parasites. Sixteen virus families have been reported to infect insects and may be involved in the biological control of specific pests, including some economic weevils. Insects and fungi are among the most widespread organisms in nature and interact with each other, establishing symbiotic relationships ranging from mutualism to antagonism. The associations can influence the extent to which interacting organisms can exert their effects on plants and the proper management practices. Sustainable pest management also relies on entomopathogenic fungi; research on these species starts from their isolation from insect carcasses, followed by identification using conventional light or electron microscopy techniques. Thanks to the development of omics sciences, it is possible to identify entomopathogenic fungi with evolutionary histories that are less-shared with the target insect and can be proposed as pest antagonists. Many interesting omics can help detect the presence of entomopathogens in different natural matrices, such as soil or plants. The same techniques will help localize ectosymbionts, localization of recesses, or specialized morphological adaptation, greatly supporting the robust interpretation of the symbiont role. The manipulation and modulation of ectosymbionts could be a more promising way to counteract pests and borne pathogens, mitigating the impact of formulates and reducing food insecurity due to the lesser impact of direct damage and diseases. The promise has a preventive intent for more manageable and broader implications for pests, comparing what we can obtain using simpler, less-specific techniques and a less comprehensive approach to Integrated Pest Management (IPM).
Collapse
Affiliation(s)
- Ugo Picciotti
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari Aldo Moro, 70126 Bari, Italy
- Department of Marine Science and Applied Biology, University of Alicante, 03690 Alicante, Spain
| | | | - Aurelio Ciancio
- Institute for Sustainable Plant Protection, National Research Council (CNR), Via G. Amendola 122/D, 70126 Bari, Italy
| | - Mariantonietta Colagiero
- Institute for Sustainable Plant Protection, National Research Council (CNR), Via G. Amendola 122/D, 70126 Bari, Italy
| | - Giuseppe Cozzi
- Institute of Food Production Sciences, National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy
| | - Luigi De Bellis
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | | | - Davide Greco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Antonio Ippolito
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Nada Lahbib
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari Aldo Moro, 70126 Bari, Italy
- Faculty of Sciences of Tunis, University of Tunis El-Manar, Tunis 1002, Tunisia
| | - Antonio Francesco Logrieco
- Institute of Food Production Sciences, National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy
| | | | - Federico Lopez-Moya
- Department of Marine Science and Applied Biology, University of Alicante, 03690 Alicante, Spain
| | - Andrea Luvisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Annamaria Mincuzzi
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Juan Pablo Molina-Acevedo
- Colombian Corporation for Agricultural Research Agrosavia C. I. Turipana-AGROSAVIA, Km. 13, Vía Montería-Cereté 230558, Colombia
| | - Carlo Pazzani
- Dipartimento di Bioscienze, Biotecnologie e Ambiente (DBBA), University of Bari Aldo Moro, 70126 Bari, Italy
| | - Marco Scortichini
- Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics (CREA), 00134 Roma, Italy
| | - Maria Scrascia
- Dipartimento di Bioscienze, Biotecnologie e Ambiente (DBBA), University of Bari Aldo Moro, 70126 Bari, Italy
| | - Domenico Valenzano
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Francesca Garganese
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Francesco Porcelli
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari Aldo Moro, 70126 Bari, Italy
| |
Collapse
|
4
|
Ganassi S, Domenico CD, Altomare C, Samuels GJ, Grazioso P, Cillo PD, Pietrantonio L, De Cristofaro A. Potential of fungi of the genus Trichoderma for biocontrol of Philaenus spumarius, the insect vector for the quarantine bacterium Xylella fastidosa. PEST MANAGEMENT SCIENCE 2023; 79:719-728. [PMID: 36256490 DOI: 10.1002/ps.7240] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The meadow spittlebug Philaenus spumarius L. is the vector for the bacterium Xylella fastidiosa subspecies pauca, involved in olive quick decline syndrome (OQDS) in Salento (Italy). Control of P. spumarius is key to limiting transmission of the bacterium, and an innovative approach can be based on effective natural compounds and biocontrol agents. Entomopathogenic fungi are an important source of bioactive natural molecules that play a role in the relationship between microorganisms and insects. RESULTS Pathogenicity bioassays, performed by dipping adults of P. spumarius in either fungal culture suspension (120 mg mL-1 ) or cell-free culture supernatant of Trichoderma chlorosporum GJS 91-150, showed, respectively, 97% and 87% death within 24 h. The effect was dose-dependent. In laboratory bioassays, the powdered fungal culture of T. chlorosporum GJS 91-150 did not exhibit pathogenic activity when injected into nymph spittle. CONCLUSIONS T. chlorosporum GJS 91-150 affected the survival of P. spumarius adults. The lethal effect was not associated with the development of mycelium on the cuticle, but seems due, at least partly, to fungal metabolites released in the culture medium. The fungus tested here has good potential for the development of effective low-environmental impact control strategies for P. spumarius and suppression of X. fastidiosa. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sonia Ganassi
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Carmela Di Domenico
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | | | - Gary J Samuels
- USDA-ARS Systematic Mycology and Microbiology Lab, Beltsville, MD, USA
| | - Pasqualina Grazioso
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | - Antonio De Cristofaro
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| |
Collapse
|
5
|
Ali MY, Naseem T, Holopainen JK, Liu T, Zhang J, Zhang F. Tritrophic Interactions among Arthropod Natural Enemies, Herbivores and Plants Considering Volatile Blends at Different Scale Levels. Cells 2023; 12:251. [PMID: 36672186 PMCID: PMC9856403 DOI: 10.3390/cells12020251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Herbivore-induced plant volatiles (HIPVs) are released by plants upon damaged or disturbance by phytophagous insects. Plants emit HIPV signals not merely in reaction to tissue damage, but also in response to herbivore salivary secretions, oviposition, and excrement. Although certain volatile chemicals are retained in plant tissues and released rapidly upon damaged, others are synthesized de novo in response to herbivore feeding and emitted not only from damaged tissue but also from nearby by undamaged leaves. HIPVs can be used by predators and parasitoids to locate herbivores at different spatial scales. The HIPV-emitting spatial pattern is dynamic and heterogeneous in nature and influenced by the concentration, chemical makeup, breakdown of the emitted mixes and environmental elements (e.g., turbulence, wind and vegetation) which affect the foraging of biocontrol agents. In addition, sensory capability to detect volatiles and the physical ability to move towards the source were also different between natural enemy individuals. The impacts of HIPVs on arthropod natural enemies have been partially studied at spatial scales, that is why the functions of HIPVs is still subject under much debate. In this review, we summarized the current knowledge and loopholes regarding the role of HIPVs in tritrophic interactions at multiple scale levels. Therefore, we contend that closing these loopholes will make it much easier to use HIPVs for sustainable pest management in agriculture.
Collapse
Affiliation(s)
- Muhammad Yasir Ali
- MARA-CABI Joint Laboratory for Bio-Safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Insect Ecology and Molecular Biology, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- CABI East & South-East Asia, Beijing 100081, China
| | - Tayyaba Naseem
- Department of Botany, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Jarmo K. Holopainen
- Department of Environmental Science, University of Eastern Finland, 77100 Kuopio, Finland
| | - Tongxian Liu
- Key Laboratory of Insect Ecology and Molecular Biology, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Jinping Zhang
- MARA-CABI Joint Laboratory for Bio-Safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- CABI East & South-East Asia, Beijing 100081, China
| | - Feng Zhang
- MARA-CABI Joint Laboratory for Bio-Safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- CABI East & South-East Asia, Beijing 100081, China
| |
Collapse
|
6
|
Ali MY, Naseem T, Zhang J, Pan M, Zhang F, Liu TX. Plant Volatiles and Herbivore Induced Plant Volatiles from Chili Pepper Act as Attractant of the Aphid Parasitoid Aphelinus varipes (Hymenoptera: Aphelinidae). PLANTS 2022; 11:plants11101350. [PMID: 35631774 PMCID: PMC9145887 DOI: 10.3390/plants11101350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/03/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022]
Abstract
Plants have evolved a number of different chemical defenses, covering nearly all classes of (secondary) metabolites, that represent a major barrier to herbivory: some are constitutive; others are induced after attacks from herbivores (HIPVs) and may elicit the attraction of predators and parasitoids. Here, we studied how the female solitary endoparasitoid Aphelinus varipes responds to plant and host aphid volatiles in a series of experiments on five commercially important vegetables that were either healthy or infested with the aphid Myzus persicae: chili pepper, eggplant, crown daisy, Chinese cabbage and cabbage. The results for the olfactory responses of A. varipes showed that the presence of M. persicae increased the attraction of the endoparasitoid to the infested plants. In a second experiment, volatiles from highly attractive and repellent plants were obtained via headspace collection to investigate volatiles from healthy and aphid-damaged plants. The results for the differences in volatile profiles in response to aphid infestation in chili pepper cultivar were dominated by the volatile blends, including α-pinene, decanal and phthalic acid, while in cabbage they were dominated by isophorone. Moreover, when HIPVs with different concentrations were compared, α-pinene at a dose rate of 100 ng/μL attracted more parasitoids, and the comparison was useful to understand the mechanisms of plant secondary volatiles during aphid infestation and to provide new resources to control this insect pest. Overall our study shows how HIPVs can bolster tritrophic interactions by enhancing the attractiveness of parasitoids.
Collapse
Affiliation(s)
- Muhammad Yasir Ali
- Key Laboratory of Insect Ecology and Molecular Biology, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; (M.Y.A.); (M.P.)
- MARA-CABI Joint Laboratory for Bio-Safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Tayyaba Naseem
- Department of Botany, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan;
| | - Jinping Zhang
- MARA-CABI Joint Laboratory for Bio-Safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Mingzhen Pan
- Key Laboratory of Insect Ecology and Molecular Biology, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; (M.Y.A.); (M.P.)
| | - Feng Zhang
- MARA-CABI Joint Laboratory for Bio-Safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
- Correspondence: (F.Z.); (T.-X.L.)
| | - Tong-Xian Liu
- Key Laboratory of Insect Ecology and Molecular Biology, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; (M.Y.A.); (M.P.)
- Correspondence: (F.Z.); (T.-X.L.)
| |
Collapse
|
7
|
Yaosanit W, Rukachaisirikul V, Phongpaichit S, Preedanon S, Sakayaroj J. Sesquiterpenes from the soil-derived fungus Trichoderma citrinoviride PSU-SPSF346. Beilstein J Org Chem 2022; 18:479-485. [PMID: 35558648 PMCID: PMC9062651 DOI: 10.3762/bjoc.18.50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 04/11/2022] [Indexed: 11/23/2022] Open
Abstract
Two new sesquiterpenes, trichocitrinovirenes A (1) and B (2), and five known compounds including four structurally related sesquiterpenes and one γ-lactone were isolated from the soil-derived fungus Trichoderma citrinoviride PSU-SPSF346. The structures were identified by analysis of their spectroscopic data. The relative configuration was assigned based on NOEDIFF data. The absolute configuration of compound 1 was established according to specific rotations and ECD data while that of compound 2 was proposed based on biosynthetic considerations. Compound 2 possesses a rare bicyclic sesquiterpene skeleton. The antimicrobial and cytotoxic activities of the isolated compounds were evaluated.
Collapse
Affiliation(s)
- Wiriya Yaosanit
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Vatcharin Rukachaisirikul
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Souwalak Phongpaichit
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Sita Preedanon
- National Biobank of Thailand (NBT), National Science and Technology for Development Agency (NSTDA), Thailand Science Park, Klong Luang, Pathumthani 12120, Thailand
| | - Jariya Sakayaroj
- School of Science, Walailak University, Thasala, Nakhonsithammarat 80160, Thailand
| |
Collapse
|
8
|
Contreras-Cornejo HA, Macías-Rodríguez L, Larsen J. The Role of Secondary Metabolites in Rhizosphere Competence of Trichoderma. Fungal Biol 2022. [DOI: 10.1007/978-3-030-91650-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
D’Onofrio C, Knoll W, Pelosi P. Aphid Odorant-Binding Protein 9 Is Narrowly Tuned to Linear Alcohols and Aldehydes of Sixteen Carbon Atoms. INSECTS 2021; 12:741. [PMID: 34442308 PMCID: PMC8396812 DOI: 10.3390/insects12080741] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/16/2021] [Indexed: 01/14/2023]
Abstract
Aphid odorant-binding protein 9 is almost exclusively expressed in antennae and is well conserved between different aphid species. In order to investigate its function, we have expressed this protein and measured ligand-binding affinities to a number of common natural compounds. The best ligands are long-chain aldehydes and alcohols, in particular Z9-hexadecenal and Z11-hexadecenal, as well as 1-hexadecanol and Z11-1-hexadecenol. A model of this protein indicated Lys37 as the residue that is likely to establish strong interactions with the ligands, probably a Schiff base with aldehydes and a hydrogen bond with alcohols. Indeed, when we replaced this lysine with a leucine, the mutated protein lost its affinity to both long aldehydes and alcohols, while the binding of other volatiles was unaffected. Long-chain linear alcohols are common products of molds and have been reported as aphid antifeedants. Corresponding aldehydes, instead, are major components of sex pheromones for several species of Lepidoptera. We speculate that aphids might use OBP9 to avoid mold-contaminated plants as well as competition with lepidopteran larvae.
Collapse
Affiliation(s)
- Chiara D’Onofrio
- Biosensor Technologies, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz Straße 24, 3430 Tulln, Austria; (C.D.); (W.K.)
| | - Wolfgang Knoll
- Biosensor Technologies, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz Straße 24, 3430 Tulln, Austria; (C.D.); (W.K.)
- Department of Physics and Chemistry of Materials, Faculty of Medicine/Dental Medicine, Danube Private University, 3500 Krems, Austria
| | - Paolo Pelosi
- Biosensor Technologies, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz Straße 24, 3430 Tulln, Austria; (C.D.); (W.K.)
| |
Collapse
|
10
|
Berestetskiy A, Hu Q. The Chemical Ecology Approach to Reveal Fungal Metabolites for Arthropod Pest Management. Microorganisms 2021; 9:1379. [PMID: 34202923 PMCID: PMC8307166 DOI: 10.3390/microorganisms9071379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
Biorational insecticides (for instance, avermectins, spinosins, azadirachtin, and afidopyropen) of natural origin are increasingly being used in agriculture. The review considers the chemical ecology approach for the search for new compounds with insecticidal properties (entomotoxic, antifeedant, and hormonal) produced by fungi of various ecological groups (entomopathogens, soil saprotrophs, endophytes, phytopathogens, and mushrooms). The literature survey revealed that insecticidal metabolites of entomopathogenic fungi have not been sufficiently studied, and most of the well-characterized compounds show moderate insecticidal activity. The greatest number of substances with insecticidal properties was found to be produced by soil fungi, mainly from the genera Aspergillus and Penicillium. Metabolites with insecticidal and antifeedant properties were also found in endophytic and phytopathogenic fungi. It was noted that insect pests of stored products are mostly low sensitive to mycotoxins. Mushrooms were found to be promising producers of antifeedant compounds as well as insecticidal proteins. The expansion of the number of substances with insecticidal properties detected in prospective fungal species is possible by mining fungal genomes for secondary metabolite gene clusters and secreted proteins with their subsequent activation by various methods. The efficacy of these studies can be increased with high-throughput techniques of extraction of fungal metabolites and their analysis by various methods of chromatography and mass spectrometry.
Collapse
Affiliation(s)
| | - Qiongbo Hu
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China;
| |
Collapse
|
11
|
Macías-Rodríguez L, Contreras-Cornejo HA, Adame-Garnica SG, Del-Val E, Larsen J. The interactions of Trichoderma at multiple trophic levels: inter-kingdom communication. Microbiol Res 2020; 240:126552. [PMID: 32659716 DOI: 10.1016/j.micres.2020.126552] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/29/2020] [Accepted: 07/03/2020] [Indexed: 02/07/2023]
Abstract
Trichoderma spp. are universal saprotrophic fungi in terrestrial ecosystems, and as rhizosphere inhabitants, they mediate interactions with other soil microorganisms, plants, and arthropods at multiple trophic levels. In the rhizosphere, Trichoderma can reduce the abundance of phytopathogenic microorganisms, which involves the action of potent inhibitory molecules, such as gliovirin and siderophores, whereas endophytic associations between Trichoderma and the seeds and roots of host plants can result in enhanced plant growth and crop productivity, as well as the alleviation of abiotic stress. Such beneficial effects are mediated via the activation of endogenous mechanisms controlled by phytohormones such as auxins and abscisic acid, as well as by alterations in host plant metabolism. During either root colonization or in the absence of physical contact, Trichoderma can trigger early defense responses mediated by Ca2+ and reactive oxygen species, and subsequently stimulate plant immunity by enhancing resistance mechanisms regulated by the phytohormones salicylic acid, jasmonic acid, and ethylene. In addition, Trichoderma release volatile organic compounds and nitrogen or oxygen heterocyclic compounds that serve as signaling molecules, which have effects on plant growth, phytopathogen levels, herbivorous insects, and at the third trophic level, play roles in attracting the natural enemies (predators and parasitoids) of herbivores. In this paper, we review some of the most recent advances in our understanding of the environmental influences of Trichoderma spp., with particular emphasis on their multiple interactions at different trophic levels.
Collapse
Affiliation(s)
- Lourdes Macías-Rodríguez
- Instituto De Investigaciones Químico Biológicas, Universidad Michoacana De San Nicolás De Hidalgo, Gral. Francisco J. Mujica S/N, Ciudad Universitaria, C.P. 58030, Morelia, Michoacán, Mexico.
| | - Hexon Angel Contreras-Cornejo
- Instituto De Investigaciones Químico Biológicas, Universidad Michoacana De San Nicolás De Hidalgo, Gral. Francisco J. Mujica S/N, Ciudad Universitaria, C.P. 58030, Morelia, Michoacán, Mexico; Instituto De Investigaciones En Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma De México, Antigua Carretera a Pátzcuaro # 8701, Ex-Hacienda De San José De La Huerta, C.P. 58190, Morelia, Michoacán, MeXico.
| | - Sandra Goretti Adame-Garnica
- Instituto De Investigaciones Químico Biológicas, Universidad Michoacana De San Nicolás De Hidalgo, Gral. Francisco J. Mujica S/N, Ciudad Universitaria, C.P. 58030, Morelia, Michoacán, Mexico
| | - Ek Del-Val
- Instituto De Investigaciones En Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma De México, Antigua Carretera a Pátzcuaro # 8701, Ex-Hacienda De San José De La Huerta, C.P. 58190, Morelia, Michoacán, MeXico
| | - John Larsen
- Instituto De Investigaciones En Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma De México, Antigua Carretera a Pátzcuaro # 8701, Ex-Hacienda De San José De La Huerta, C.P. 58190, Morelia, Michoacán, MeXico
| |
Collapse
|
12
|
Chemical Composition of an Aphid Antifeedant Extract from an Endophytic Fungus, Trichoderma sp. EFI671. Microorganisms 2020; 8:microorganisms8030420. [PMID: 32192023 PMCID: PMC7143094 DOI: 10.3390/microorganisms8030420] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/27/2020] [Accepted: 03/13/2020] [Indexed: 12/20/2022] Open
Abstract
Botanical and fungal biopesticides, including endophytes, are in high demand given the current restrictive legislations on the use of chemical pesticides. As part of an ongoing search for new biopesticides, a series of fungal endophytes have been isolated from selected medicinal plants including Lauraceae species. In the current study, an extract from the endophytic fungus Trichoderma sp. EFI 671, isolated from the stem parts of the medicinal plant Laurus sp., was screened for bioactivity against plant pathogens (Fusarium graminearum, Rhizoctonia solani, Sclerotinia sclerotiorum and Botrytis cinerea), insect pests (Spodoptera littoralis, Myzus persicae, Rhopalosiphum padi) and plant parasites (Meloidogyne javanica), with positive results against M. persicae. The chemical study of the neutral fraction of the active hexane extract resulted in the isolation of a triglyceride mixture (m1), eburicol (2), β-sitostenone (3), ergosterol (4) and ergosterol peroxide (5). The free fatty acids present in the acid fraction of the extract and in m1 (oleic, linoleic, palmitic and stearic) showed strong dose-dependent antifeedant effects against M. persicae. Liquid (potato dextrose broth, PDB and Sabouraud Broth, SDB) and solid (corn, sorghum, pearl millet and rice) growth media were tested in order to optimize the yield and bioactivity of the fungal extracts. Pearl millet and corn gave the highest extract yields. All the extracts from these solid media had strong effects against M. persicae, with sorghum being the most active. Corn media increased the methyl linoleate content of the extract, pearl millet media increased the oleic acid and sorghum media increased the oleic and linoleic acids compared to rice. The antifeedant effects of these extracts correlated with their content in methyl linoleate and linoleic acid. The phytotoxic effects of these extracts against ryegrass, Lolium perenne, and lettuce, Lactuca sativa, varied with culture media, with sorghum being non- toxic.
Collapse
|
13
|
Bleve G, Gallo A, Altomare C, Vurro M, Maiorano G, Cardinali A, D'Antuono I, Marchi G, Mita G. In vitro activity of antimicrobial compounds against Xylella fastidiosa, the causal agent of the olive quick decline syndrome in Apulia (Italy). FEMS Microbiol Lett 2019; 365:4780293. [PMID: 29390137 DOI: 10.1093/femsle/fnx281] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/25/2017] [Indexed: 12/30/2022] Open
Abstract
Olive quick decline syndrome (OQDS) causes severe damages to the olive trees in Salento (Apulia, Italy) and poses a severe threat for the agriculture of Mediterranean countries. DNA-based typing methods have pointed out that OQDS is caused by a single outbreak strain of Xylella fastidiosa subsp. pauca referred to as CoDiRO or ST53. Since no effective control measures are currently available, the objective of this study was to evaluate in vitro antimicrobial activities of different classes of compounds against Salento-1 isolated by an OQDS affected plant and classified as ST53. A bioassay based on agar disk diffusion method revealed that 17 out of the 32 tested antibiotics did not affect bacterial growth at a dose of 5 μg disk-1. When we assayed micro-, ultra- and nano-filtered fractions of olive mill wastewaters, we found that the micro-filtered fraction resulted to be the most effective against the bacterium. Moreover, some phenolics (4-methylcathecol, cathecol, veratric acid, caffeic acid, oleuropein) were active in their pure form. Noteworthy, also some fungal extracts and fungal toxins showed inhibitory effects on bacterial growth. Some of these compounds can be further explored as potential candidate in future applications for curative/preventive treating OQDS-affected or at-risk olive plants.
Collapse
Affiliation(s)
- Gianluca Bleve
- Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari, 73100 Lecce, Italy
| | - Antonia Gallo
- Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari, 73100 Lecce, Italy
| | - Claudio Altomare
- Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari, 70126 Bari, Italy
| | - Maurizio Vurro
- Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari, 70126 Bari, Italy
| | - Gabriele Maiorano
- Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari, 73100 Lecce, Italy
| | - Angela Cardinali
- Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari, 70126 Bari, Italy
| | - Isabella D'Antuono
- Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari, 70126 Bari, Italy
| | - Guido Marchi
- Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente, Sezione di Patologia Vegetale ed Entomologia, Università degli Studi, Piazzale delle Cascine 28, 50144 Firenze, Italy
| | - Giovanni Mita
- Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari, 73100 Lecce, Italy
| |
Collapse
|
14
|
Fanelli F, Liuzzi VC, Logrieco AF, Altomare C. Genomic characterization of Trichoderma atrobrunneum (T. harzianum species complex) ITEM 908: insight into the genetic endowment of a multi-target biocontrol strain. BMC Genomics 2018; 19:662. [PMID: 30200883 PMCID: PMC6131884 DOI: 10.1186/s12864-018-5049-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/31/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND So far, biocontrol agent selection has been performed mainly by time consuming in vitro confrontation tests followed by extensive trials in greenhouse and field. An alternative approach is offered by application of high-throughput techniques, which allow extensive screening and comparison among strains for desired genetic traits. In the genus Trichoderma, the past assignments of particular features or strains to one species need to be reconsidered according to the recent taxonomic revisions. Here we present the genome of a biocontrol strain formerly known as Trichoderma harzianum ITEM 908, which exhibits both growth promoting capabilities and antagonism against different fungal pathogens, including Fusarium graminearum, Rhizoctonia solani, and the root-knot nematode Meloidogyne incognita. By genomic analysis of ITEM 908 we investigated the occurrence and the relevance of genes associated to biocontrol and stress tolerance, providing a basis for future investigation aiming to unravel the complex relationships between genomic endowment and exhibited activities of this strain. RESULTS The MLST analysis of ITS-TEF1 concatenated datasets reclassified ITEM 908 as T. atrobrunneum, a species recently described within the T. harzianum species complex and phylogenetically close to T. afroharzianum and T. guizhouense. Genomic analysis revealed the presence of a broad range of genes encoding for carbohydrate active enzymes (CAZYmes), proteins involved in secondary metabolites production, peptaboils, epidithiodioxopiperazines and siderophores potentially involved in parasitism, saprophytic degradation as well as in biocontrol and antagonistic activities. This abundance is comparable to other Trichoderma spp. in the T. harzianum species complex, but broader than in other biocontrol species and in the species T. reesei, known for its industrial application in cellulase production. Comparative analysis also demonstrated similar genomic organization of major secondary metabolites clusters, as in other Trichoderma species. CONCLUSIONS Reported data provide a contribution to a deeper understanding of the mode of action and identification of activity-specific genetic markers useful for selection and improvement of biocontrol strains. This work will also enlarge the availability of genomic data to perform comparative studies with the aim to correlate phenotypic differences with genetic diversity of Trichoderma species.
Collapse
Affiliation(s)
- Francesca Fanelli
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
| | - Vania Cosma Liuzzi
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
| | | | - Claudio Altomare
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
| |
Collapse
|
15
|
Aznar-Fernández T, Cimmino A, Masi M, Rubiales D, Evidente A. Antifeedant activity of long-chain alcohols, and fungal and plant metabolites against pea aphid ( Acyrthosiphon pisum) as potential biocontrol strategy. Nat Prod Res 2018; 33:2471-2479. [PMID: 29595339 DOI: 10.1080/14786419.2018.1452013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Aphids are noxious insect pests of major crops including cereals and legumes. Particularly, pea aphid (Acyrthosiphon pisum) causes significant yield and quality loses in pea. Crop protection is largely based on noxious chemical pesticides which have prompted a renewed interest in the discovery of natural products as alternatives to synthetic insecticides. In this study different classes of natural compounds were tested in dual choice bioassays to evaluate their feeding deterrence and mortality effect on pea aphid. High feeding deterrence was produced by some of the compounds, particularly1-hexadecanol, gliotoxin, cyclopaldic acid and seiridin. On the contrary, aphid mortality was low although significant for 1-heptadecanol, cytochalasin A, 1-nonadecanol and gliotoxin. Phytotoxicity assessment showed low or imperceptible plant damaged for cytochalasin A, seiridin and 1-nonadecanol. The results obtained showed the potential of seiridin to be used as an alternative to synthetic insecticides.
Collapse
Affiliation(s)
| | - Alessio Cimmino
- b Dipartimento di Scienze Chimiche , Università di Napoli Federico II, Complesso Universitario Monte S. Angelo , Napoli , Italy
| | - Marco Masi
- b Dipartimento di Scienze Chimiche , Università di Napoli Federico II, Complesso Universitario Monte S. Angelo , Napoli , Italy
| | - Diego Rubiales
- a Institute for Sustainable Agriculture , CSIC , Cordoba , Spain
| | - Antonio Evidente
- b Dipartimento di Scienze Chimiche , Università di Napoli Federico II, Complesso Universitario Monte S. Angelo , Napoli , Italy
| |
Collapse
|