1
|
Yandrapally S, Agarwal A, Chatterjee A, Sarkar S, Mohareer K, Banerjee S. Mycobacterium tuberculosis EspR modulates Th1-Th2 shift by transcriptionally regulating IL-4, steering increased mycobacterial persistence and HIV propagation during co-infection. Front Immunol 2023; 14:1276817. [PMID: 37928551 PMCID: PMC10621737 DOI: 10.3389/fimmu.2023.1276817] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) and HIV are known to mutually support each other during co-infection by multiple mechanisms. This synergistic influence could be either by direct interactions or indirectly through secreted host or pathogen factors that work in trans. Mtb secretes several virulence factors to modulate the host cellular environment for its persistence and escaping cell-intrinsic immune responses. We hypothesized that secreted Mtb transcription factors that target the host nucleus can directly interact with host DNA element(s) or HIV LTR during co-infection, thereby modulating immune gene expression, or driving HIV transcription, helping the synergistic existence of Mtb and HIV. Here, we show that the Mtb-secreted protein, EspR, a transcription regulator, increased mycobacterial persistence and HIV propagation during co-infection. Mechanistically, EspR localizes to the nucleus of the host cells during infection, binds to its putative cognate motif on the promoter region of the host IL-4 gene, activating IL-4 gene expression, causing high IL-4 titers that induce a Th2-type microenvironment, shifting the macrophage polarization to an M2 state as evident from CD206 dominant population over CD64. This compromised the clearance of the intracellular mycobacteria and enhanced HIV propagation. It was interesting to note that EspR did not bind to HIV LTR, although its transient expression increased viral propagation. This is the first report of an Mtb transcription factor directly regulating a host cytokine gene. This augments our understanding of the evolution of Mtb immune evasion strategies and unveils how Mtb aggravates comorbidities, such as HIV co-infection, by modulating the immune microenvironment.
Collapse
|
2
|
Jaiswal S, Kumar S, Velarde de la Cruz E. Exploring the role of the protein tyrosine kinase a (PtkA) in mycobacterial intracellular survival. Tuberculosis (Edinb) 2023; 142:102398. [PMID: 37657276 DOI: 10.1016/j.tube.2023.102398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023]
Abstract
Mycobacterium tuberculosis (Mtb) continues to define new paradigms of host-pathogen interaction. There are several host proteins known which are regulated by Mtb infection. The proteins which regulate host biological processes like apoptosis, cell processes, stress proteins, metabolic enzymes, etc. are targeted by the pathogens. Mtb proteins interact directly or indirectly with host proteins and play an important role in their persistence and intracellular growth. Mtb is an intracellular pathogen. It remains dormant for years within the host without activating its immune system. Mtb Protein tyrosine kinase (PtkA) regulates host anti-apoptotic protein, metabolic enzymes, and several other proteins that are involved in stress regulation, cell proliferation, protein folding, DNA repair, etc. PtkA regulates other mycobacterial proteins and plays an important role in its growth and survival. Here we summarized the current knowledge of PtkA and reviewed its role in mycobacterial intracellular survival as it regulates several other mycobacterial proteins and host proteins. PtkA regulates PtpA secretion which is essential for mycobacterial virulence and could be used as an attractive drug target.
Collapse
Affiliation(s)
- Swati Jaiswal
- University of Massachusetts Chan Medical School, Worcester, United States.
| | | | | |
Collapse
|
3
|
Nadolinskaia NI, Kotliarova MS, Goncharenko AV. Fighting Tuberculosis: In Search of a BCG Replacement. Microorganisms 2022; 11:microorganisms11010051. [PMID: 36677343 PMCID: PMC9863999 DOI: 10.3390/microorganisms11010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Tuberculosis is one of the most threatening infectious diseases and represents an important and significant reason for mortality in high-burden regions. The only licensed vaccine, BCG, is hardly capable of establishing long-term tuberculosis protection and is highly variable in its effectiveness. Even after 100 years of BCG use and research, we still cannot unequivocally answer the question of which immune correlates of protection are crucial to prevent Mycobacterium tuberculosis (Mtb) infection or the progression of the disease. The development of a new vaccine against tuberculosis arises a nontrivial scientific challenge caused by several specific features of the intracellular lifestyle of Mtb and the ability of the pathogen to manipulate host immunity. The purpose of this review is to discuss promising strategies and the possibilities of creating a new vaccine that could replace BCG and provide greater protection. The considered approaches include supplementing mycobacterial strains with immunodominant antigens and genetic engineering aimed at altering the interaction between the bacterium and the host cell, such as the exit from the phagosome. Improved new vaccine strains based on BCG and Mtb undergoing clinical evaluation are also overviewed.
Collapse
|
4
|
Variations of Serum Oxidative Stress Biomarkers under First-Line Antituberculosis Treatment: A Pilot Study. J Pers Med 2021; 11:jpm11020112. [PMID: 33572362 PMCID: PMC7916141 DOI: 10.3390/jpm11020112] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/27/2021] [Accepted: 02/05/2021] [Indexed: 02/06/2023] Open
Abstract
Tuberculosis (TB) is one of the highest infectious burdens worldwide, and pathogenesis is yet incompletely elucidated. Bacilli dissemination is due to poor antioxidant defense mechanisms and intensified oxidative stress. There are few recent studies that analyzed and compared free radicals or antioxidant status before and after anti-TB treatment. Hence, the present study underlines the need to identify oxidative stress as it could be a useful tool in TB monitorisation. Thirty newly diagnosed patients with pulmonary TB were included after signing an informed consent. Blood was collected before receiving first-line anti-tubercular therapy (T0) and after 60 days (T2). Spectrophotometric methods were used to quantify oxidative parameters (TBARS—thiobarbituric acid reactive species); enzymatic antioxidants such as SOD (superoxide dismutase), CAT (catalase), GPx (glutathione peroxidase), and TAC (total antioxidant capacity); and non-enzymatic antioxidants such as GSH (reduced glutathione). A moderate positive correlation was found between GSH and TAC (r = 0.63, p-value = 0.046) and GSH and SOD (r = 0.64, p-value = 0.041) at T2. Increased values of GSH, CAT, and SOD were noted at T2 in comparison with T0, while GPx, TAC, and TBARS decreased at T2. A better monitorisation in TB could be based on oxidative stress and antioxidant status. Nevertheless, restoring redox host balance could reduce TB progression.
Collapse
|
5
|
Rizvi A, Shankar A, Chatterjee A, More TH, Bose T, Dutta A, Balakrishnan K, Madugulla L, Rapole S, Mande SS, Banerjee S, Mande SC. Rewiring of Metabolic Network in Mycobacterium tuberculosis During Adaptation to Different Stresses. Front Microbiol 2019; 10:2417. [PMID: 31736886 PMCID: PMC6828651 DOI: 10.3389/fmicb.2019.02417] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/07/2019] [Indexed: 12/15/2022] Open
Abstract
Metabolic adaptation of Mycobacterium tuberculosis (M. tuberculosis) to microbicidal intracellular environment of host macrophages is fundamental to its pathogenicity. However, an in-depth understanding of metabolic adjustments through key reaction pathways and networks is limited. To understand how such changes occur, we measured the cellular metabolome of M. tuberculosis subjected to four microbicidal stresses using liquid chromatography-mass spectrometric multiple reactions monitoring (LC-MRM/MS). Overall, 87 metabolites were identified. The metabolites best describing the separation between stresses were identified through multivariate analysis. The coupling of the metabolite measurements with existing genome-scale metabolic model, and using constraint-based simulation led to several new concepts and unreported observations in M. tuberculosis; such as (i) the high levels of released ammonia as an adaptive response to acidic stress was due to increased flux through L-asparaginase rather than urease activity; (ii) nutrient starvation-induced anaplerotic pathway for generation of TCA intermediates from phosphoenolpyruvate using phosphoenolpyruvate kinase; (iii) quenching of protons through GABA shunt pathway or sugar alcohols as possible mechanisms of early adaptation to acidic and oxidative stresses; and (iv) usage of alternate cofactors by the same enzyme as a possible mechanism of rewiring metabolic pathways to overcome stresses. Besides providing new leads and important nodes that can be used for designing intervention strategies, the study advocates the strength of applying flux balance analyses coupled with metabolomics to get a global picture of complex metabolic adjustments.
Collapse
Affiliation(s)
- Arshad Rizvi
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Arvind Shankar
- Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services Ltd., Pune, India
| | | | | | - Tungadri Bose
- Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services Ltd., Pune, India
| | - Anirban Dutta
- Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services Ltd., Pune, India
| | - Kannan Balakrishnan
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Lavanya Madugulla
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | | | - Sharmila S Mande
- Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services Ltd., Pune, India
| | - Sharmistha Banerjee
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | | |
Collapse
|
6
|
Metabolomics Studies To Decipher Stress Responses in Mycobacterium smegmatis Point to a Putative Pathway of Methylated Amine Biosynthesis. J Bacteriol 2019; 201:JB.00707-18. [PMID: 31138627 DOI: 10.1128/jb.00707-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 05/15/2019] [Indexed: 01/11/2023] Open
Abstract
Mycobacterium smegmatis, the saprophytic soil mycobacterium, is routinely used as a surrogate system to study the human pathogen Mycobacterium tuberculosis It has also been reported as an opportunistic pathogen in immunocompromised hosts. In addition, it can exist in several ecological setups, thereby suggesting its capacity to adapt to a variety of environmental cues. In this study, we employed untargeted proton nuclear magnetic resonance (1H-NMR)-based metabolomics to identify metabolites and metabolic pathways critical for early adaptive responses to acidic stress, oxidative stress, and nutrient starvation in Mycobacterium smegmatis We identified 31, 20, and 46 metabolites that showed significant changes in levels in response to acidic, oxidative, and nutrient starvation stresses, respectively. Pathway analyses showed significant perturbations in purine-pyrimidine, amino-acid, nicotinate-nicotinamide, and energy metabolism pathways. Besides these, differential levels of intermediary metabolites involved in α-glucan biosynthesis pathway were observed. We also detected high levels of organic osmolytes, methylamine, and betaine during nutrient starvation and oxidative stress. Further, tracing the differential levels of these osmolytes through computational search tools, gene expression studies (using reverse transcription-PCR [RT-PCR]), and enzyme assays, we detected the presence of a putative pathway of biosynthesis of betaine, methylamine, and dimethylamine previously unreported in Mycobacterium smegmatis IMPORTANCE Alterations in metabolite levels provide fast and direct means to regulate enzymatic reactions and, therefore, metabolic pathways. This study documents, for the first time, the metabolic changes that occur in Mycobacterium smegmatis as a response to three stresses, namely, acidic stress, oxidative stress, and nutrient starvation. These stresses are also faced by intracellular mycobacteria during infection and therefore may be extended to frame therapeutic interventions for pathogenic mycobacteria. In addition to the purine-pyrimidine, amino acid, nicotinate-nicotinamide, and energy metabolism pathways that were found to be affected in response to different stresses, a novel putative methylamine biosynthesis pathway was identified to be present in Mycobacterium smegmatis.
Collapse
|
7
|
Sun S, Wang F, Yu M, Kang J. Clinical study of serum procalcitonin level in patients with myocardial infarction complicated by pulmonary infection. Exp Ther Med 2018; 16:5210-5214. [PMID: 30542476 PMCID: PMC6257702 DOI: 10.3892/etm.2018.6841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 09/27/2018] [Indexed: 01/21/2023] Open
Abstract
This study determined the serum procalcitonin (PCT) levels in patients with myocardial infarction complicated by pulmonary infection and explore its clinical significance and diagnostic value. A total of 473 patients who were admitted to the Third Affiliated Hospital of Qiqihar Medical University from January 2016 to June 2017 were enrolled as research subjects. Patients were divided into four groups based on their symptom status in myocardial infarction and pulmonary infection. There were 109 patients in normal control group who did not experience symptoms of either myocardial infarction or pulmonary infection. Blood samples were collected from each patient, and PCT levels were measured. The data were analyzed. The serum PCT levels prior to treatment were compared with each other. The PCT levels in the myocardial infarction and the pulmonary infection group were all higher than that in the normal control group (0.040±0.015) (p<0.05). On the contrary, the serum PCT level in the myocardial infarction complicated by pulmonary infection group was higher than that in the normal control group (p<0.001). The serum PCT level after treatment was compared with that before treatment within the same group. The serum PCT levels in the three disease groups were comparable after treatment. The differences in PCT levels before and after treatment were all statistically significant within all three groups (p<0.05). A patient's serum PCT level was correlated with myocardial infarction complicated by pulmonary infection, which suggested it can be used as an important diagnostic marker for this complication. This finding has important clinical value for predicting and evaluating the complicated condition of myocardial infarction and pulmonary infection by providing a more accurate, sensitive, and specific method for early diagnosis of the disease.
Collapse
Affiliation(s)
- Shiming Sun
- Clinical Laboratory, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Fengli Wang
- Clinical Laboratory, Dalian Municipal Central Hospital, Dalian, Liaoning 116033, P.R. China
| | - Miao Yu
- Clinical Laboratory, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Jing Kang
- Clinical Laboratory, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| |
Collapse
|
8
|
Wang L, Sun X, Huang J, Zhan B, Zhu X. Heterologous Prime-Boost Vaccination Enhances TsPmy's Protective Immunity against Trichinella spiralis Infection in a Murine Model. Front Microbiol 2017; 8:1394. [PMID: 28785255 PMCID: PMC5519575 DOI: 10.3389/fmicb.2017.01394] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/10/2017] [Indexed: 11/25/2022] Open
Abstract
TsPmy is a paramyosin expressed by parasitic Trichinella spiralis and confers a protective immunity when its recombinant protein or DNA was used as an immunogen. To improve its immunogenicity and vaccine efficacy, we conducted a heterologous prime-boost strategy by orally delivering one dose of TsPmy DNA carried by attenuated Salmonella typhimurium (SL7207), followed by two doses of recombinant TsPmy intramuscularly. This strategy effectively induced intestinal mucosal sIgA response and an enhanced and balanced Th1/Th2 immune responses that improve protection against T. spiralis larval challenge, with 55.4% muscle larvae reduction and 41.8% adult worm reduction compared to PBS control. The muscle larvae reduction induced by heterologous prime-boost regimen was significant higher than that induced by the homologous DNA or protein prime-boost regimens, which could act as a practical prophylactic approach to prevent T. spiralis infection.
Collapse
Affiliation(s)
- Lei Wang
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical UniversityBeijing, China.,Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical UniversityBeijing, China
| | - Ximeng Sun
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical UniversityBeijing, China
| | - Jingjing Huang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical UniversityBeijing, China
| | - Bin Zhan
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, HoustonTX, United States
| | - Xinping Zhu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical UniversityBeijing, China.,Research Centre of Microbiome, Capital Medical UniversityBeijing, China
| |
Collapse
|
9
|
Vemula MH, Medisetti R, Ganji R, Jakkala K, Sankati S, Chatti K, Banerjee S. Mycobacterium tuberculosis Zinc Metalloprotease-1 Assists Mycobacterial Dissemination in Zebrafish. Front Microbiol 2016; 7:1347. [PMID: 27621726 PMCID: PMC5002425 DOI: 10.3389/fmicb.2016.01347] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 08/15/2016] [Indexed: 11/15/2022] Open
Abstract
Zinc metalloprotease-1 (Zmp1) from Mycobacterium tuberculosis (M.tb), the tuberculosis (TB) causing bacillus, is a virulence factor involved in inflammasome inactivation and phagosome maturation arrest. We earlier reported that Zmp1 was secreted under granuloma-like stress conditions, induced Th2 cytokine microenvironment and was highly immunogenic in TB patients as evident from high anti-Zmp1 antibody titers in their sera. In this study, we deciphered a new physiological role of Zmp1 in mycobacterial dissemination. Exogenous treatment of THP-1 cells with 500 nM and 1 μM of recombinant Zmp1 (rZmp1) resulted in necrotic cell death. Apart from inducing secretion of necrotic cytokines, TNFα, IL-6, and IL-1β, it also induced the release of chemotactic chemokines, MCP-1, MIP-1β, and IL-8, suggesting its likely function in cell migration and mycobacterial dissemination. This was confirmed by Gap closure and Boyden chamber assays, where Zmp1 treated CHO or THP-1 cells showed ∼2 fold increased cell migration compared to the untreated cells. Additionally, Zebrafish-M. marinum based host–pathogen model was used to study mycobacterial dissemination in vivo. Td-Tomato labeled M. marinum (TdM. marinum) when injected with rZmp1 showed increased dissemination to tail region from the site of injection as compared to the untreated control fish in a dose-dependent manner. Summing up these observations along with the earlier reports, we propose that Zmp1, a multi-faceted protein, when released by mycobacteria in granuloma, may lead to necrotic cell damage and release of chemotactic chemokines by surrounding infected macrophages, attracting new immune cells, which in turn may lead to fresh cellular infections, thus assisting mycobacterial dissemination.
Collapse
Affiliation(s)
- Mani H Vemula
- Department of Biochemistry, School of Life Sciences, University of Hyderabad Hyderabad, India
| | | | - Rakesh Ganji
- Department of Biochemistry, School of Life Sciences, University of Hyderabad Hyderabad, India
| | - Kiran Jakkala
- Department of Biochemistry, School of Life Sciences, University of Hyderabad Hyderabad, India
| | - Swetha Sankati
- Department of Biochemistry, School of Life Sciences, University of Hyderabad Hyderabad, India
| | - Kiranam Chatti
- Biology Department, Dr. Reddy's Institute of Life Sciences Hyderabad, India
| | - Sharmistha Banerjee
- Department of Biochemistry, School of Life Sciences, University of Hyderabad Hyderabad, India
| |
Collapse
|