1
|
James SA, Joshua IA. Charting Peptide Shared Sequences Between 'Diabetes-Viruses' and Human Pancreatic Proteins, Their Structural and Autoimmune Implications. Bioinform Biol Insights 2024; 18:11779322241289936. [PMID: 39502449 PMCID: PMC11536397 DOI: 10.1177/11779322241289936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 08/21/2024] [Indexed: 11/08/2024] Open
Abstract
Diabetes mellitus (DM) is a metabolic syndrome characterized by hyperglycaemia, polydipsia, polyuria, and weight loss, among others. The pathophysiology for the disorders is complex and results in pancreatic abnormal function. Viruses have also been implicated in the metabolic syndrome. This study charted peptides to investigate and predict the autoimmune potential of shared sequences between 8 viral species proteins (which we termed 'diabetes-viruses') and the human pancreatic proteins. The structure and immunological relevance of shared sequences between viruses reported in DM onset and human pancreatic proteins were analysed. At nonapeptide mapping between human pancreatic protein and 'diabetic-viruses', reveal 1064 shared sequences distributed among 454 humans and 4288 viral protein sequences. The viral results showed herpesviruses, enterovirus (EV), human endogenous retrovirus, influenza A viruses, rotavirus, and rubivirus sequences are hosted by the human pancreatic protein. The most common shared nonapeptide was AAAAAAAAA, present in 30 human nonredundant sequences. Among the viral species, the shared sequence NSLEVLFQG occurred in 18 nonredundant EVs protein, while occurring merely in 1 human protein, whereas LGLDIEIAT occurred in 8 influenza A viruses overlapping to 1 human protein and KDELSEARE occurred in 2 rotaviruses. The prediction of the location of the shared sequences in the protein structures, showed most of the shared sequences are exposed and located either on the surface or cleft relative to the entire protein structure. Besides, the peptides in the viral protein shareome were predicted computationally for binding to MHC molecules. Here analyses showed that the entire 1064 shared sequences predicted 203 to be either HLA-A or B supertype-restricted epitopes. Fifty-one of the putative epitopes matched reported HLA ligands/T-cell epitopes majorly coming from EV B supertype representative allele restrictions. These data, shared sequences, and epitope charts provide important insight into the role of viruses on the onset of DM and its implications.
Collapse
Affiliation(s)
- Stephen A James
- Department of Biochemistry, Kaduna State University, Kaduna, Nigeria
- School of Data Sciences, Centre of Bioinformatics, Perdana University, Kuala Lumpur, Malaysia
| | - Istifanus A Joshua
- Department of Community Medicine, College of Medicine, Kaduna State University, Kaduna, Nigeria
- Department of Community Medicine, College of Health Sciences, Federal University Wukari, Wukari, Nigeria
| |
Collapse
|
2
|
Krohmaly KI, Freishtat RJ, Hahn AL. Bioinformatic and experimental methods to identify and validate bacterial RNA-human RNA interactions. J Investig Med 2023; 71:23-31. [PMID: 36162901 DOI: 10.1136/jim-2022-002509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2022] [Indexed: 01/21/2023]
Abstract
Ample evidence supports the importance of the microbiota on human health and disease. Recent studies suggest that extracellular vesicles are an important means of bacterial-host communication, in part via the transport of small RNAs (sRNAs). Bacterial sRNAs have been shown to co-precipitate with human and mouse RNA-induced silencing complex, hinting that some may regulate gene expression as eukaryotic microRNAs do. Bioinformatic tools, including those that can incorporate an sRNA's secondary structure, can be used to predict interactions between bacterial sRNAs and human messenger RNAs (mRNAs). Validation of these potential interactions using reproducible experimental methods is essential to move the field forward. This review will cover the evidence of interspecies communication via sRNAs, bioinformatic tools currently available to identify potential bacterial sRNA-host (specifically, human) mRNA interactions, and experimental methods to identify and validate those interactions.
Collapse
Affiliation(s)
- Kylie I Krohmaly
- Center for Genetic Medicine Research, Children's National Research Institute, Washington, District of Columbia, USA.,Institute for Biomedical Sciences, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Robert J Freishtat
- Center for Genetic Medicine Research, Children's National Research Institute, Washington, District of Columbia, USA.,Division of Emergency Medicine, Children's National Hospital, Washington, District of Columbia, USA.,Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Andrea L Hahn
- Center for Genetic Medicine Research, Children's National Research Institute, Washington, District of Columbia, USA.,Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA.,Division of Infectious Diseases, Children's National Hospital, Washington, District of Columbia, USA
| |
Collapse
|
3
|
Xavier JB, Monk JM, Poudel S, Norsigian CJ, Sastry AV, Liao C, Bento J, Suchard MA, Arrieta-Ortiz ML, Peterson EJ, Baliga NS, Stoeger T, Ruffin F, Richardson RA, Gao CA, Horvath TD, Haag AM, Wu Q, Savidge T, Yeaman MR. Mathematical models to study the biology of pathogens and the infectious diseases they cause. iScience 2022; 25:104079. [PMID: 35359802 PMCID: PMC8961237 DOI: 10.1016/j.isci.2022.104079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mathematical models have many applications in infectious diseases: epidemiologists use them to forecast outbreaks and design containment strategies; systems biologists use them to study complex processes sustaining pathogens, from the metabolic networks empowering microbial cells to ecological networks in the microbiome that protects its host. Here, we (1) review important models relevant to infectious diseases, (2) draw parallels among models ranging widely in scale. We end by discussing a minimal set of information for a model to promote its use by others and to enable predictions that help us better fight pathogens and the diseases they cause.
Collapse
Affiliation(s)
- Joao B. Xavier
- Program for Computational and Systems Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | - Saugat Poudel
- Department of Bioengineering, UC San Diego, San Diego, CA, USA
| | | | - Anand V. Sastry
- Department of Bioengineering, UC San Diego, San Diego, CA, USA
| | - Chen Liao
- Program for Computational and Systems Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Jose Bento
- Computer Science Department, Boston College, Chestnut Hill, MA, USA
| | - Marc A. Suchard
- Department of Computational Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
| | | | | | | | - Thomas Stoeger
- Department of Chemical and Biological Engineering; Northwestern University, Evanston, IL 60208, USA
- Successful Clinical Response in Pneumonia Therapy (SCRIPT) Systems Biology Center, Northwestern University, Chicago, IL, USA
| | - Felicia Ruffin
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Reese A.K. Richardson
- Department of Chemical and Biological Engineering; Northwestern University, Evanston, IL 60208, USA
- Successful Clinical Response in Pneumonia Therapy (SCRIPT) Systems Biology Center, Northwestern University, Chicago, IL, USA
| | - Catherine A. Gao
- Successful Clinical Response in Pneumonia Therapy (SCRIPT) Systems Biology Center, Northwestern University, Chicago, IL, USA
- Division of Pulmonary and Critical Care, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Thomas D. Horvath
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pathology, Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Anthony M. Haag
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pathology, Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Qinglong Wu
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pathology, Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Tor Savidge
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pathology, Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Michael R. Yeaman
- David Geffen School of Medicine at UCLA & Lundquist Institute for Infection & Immunity at Harbor UCLA Medical Center, Los Angeles, CA, USA
| |
Collapse
|
4
|
Enders L, Begcy K. Unconventional routes to developing insect-resistant crops. MOLECULAR PLANT 2021; 14:1439-1453. [PMID: 34217871 DOI: 10.1016/j.molp.2021.06.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/26/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Concerns over widespread use of insecticides and heightened insect pest virulence under climate change continue to fuel the need for environmentally safe and sustainable control strategies. However, to develop such strategies, a better understanding of the molecular basis of plant-pest interactions is still needed. Despite decades of research investigating plant-insect interactions, few examples exist where underlying molecular mechanisms are well characterized, and even rarer are cases where this knowledge has been successfully applied to manage harmful agricultural pests. Consequently, the field appears to be static, urgently needing shifts in approaches to identify novel mechanisms by which insects colonize plants and plants avoid insect pressure. In this perspective, we outline necessary steps for advancing holistic methodologies that capture complex plant-insect molecular interactions. We highlight novel and underexploited approaches in plant-insect interaction research as essential routes to translate knowledge of underlying molecular mechanisms into durable pest control strategies, including embracing microbial partnerships, identifying what makes a plant an unsuitable host, capitalizing on tolerance of insect damage, and learning from cases where crop domestication and agronomic practices enhance pest virulence.
Collapse
Affiliation(s)
- Laramy Enders
- Purdue University, Department of Entomology, West Lafayette, IN 47907, USA.
| | - Kevin Begcy
- University of Florida, Environmental Horticulture Department, Gainesville, FL 32611, USA.
| |
Collapse
|
5
|
Huang L, Zuo Y, Qin Y, Zhao L, Lin M, Yan Q. The Zinc Nutritional Immunity of Epinephelus coioides Contributes to the Importance of znuC During Pseudomonas plecoglossicida Infection. Front Immunol 2021; 12:678699. [PMID: 34017347 PMCID: PMC8129501 DOI: 10.3389/fimmu.2021.678699] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/19/2021] [Indexed: 12/25/2022] Open
Abstract
Previously, the dual RNA-seq was carried out in a Pseudomonas plecoglossicida- Epinephelus coioides infection model to investigate the dynamics of pathogen-host interplay in vivo. ZnuC, a member of ZnuCBA Zn importer, was found transcriptionally up-regulated during infection. Thus, this study aimed to assess its role during the trade-off for Zn between host and P. plecoglossicida. ICP-MS analysis and fluorescent staining showed that Zn was withheld from serum and accumulated in the spleen, with increased Zn uptake in the Golgi apparatus of macrophages after infection. Additionally, growth assay, macrophage infection and animal infection after gene knockout / silencing revealed that znuC was necessary for growth in Zn-limiting conditions, colonization, intracellular viability, immune escape and virulence of P. plecoglossicida. Further analysis with dual RNA-seq revealed associations of host's Zn nutritional immunity genes with bacterial Zn assimilation genes. IL6 and ZIP4 played key roles in this network, and markedly affected znuB expression, intracellular viability and immune escape, as revealed by gene silencing. Moreover, EMSA and GFP reporter gene analysis showed that Fur sensed changes in Fe concentration to regulate znuCBA in P. plecoglossicida. Jointly, these findings suggest a trade-off for Zn between host and P. plecoglossicida, while ZnuC is important for P. plecoglossicida Zn acquisition.
Collapse
Affiliation(s)
- Lixing Huang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
- Fisheries College, Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Jimei University, Xiamen, China
| | - Yanfei Zuo
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Yingxue Qin
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Lingmin Zhao
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Mao Lin
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Qingpi Yan
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| |
Collapse
|
6
|
Know your enemy - transcriptome of myxozoan Tetracapsuloides bryosalmonae reveals potential drug targets against proliferative kidney disease in salmonids. Parasitology 2021; 148:726-739. [PMID: 33478602 PMCID: PMC8056827 DOI: 10.1017/s003118202100010x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The myxozoan Tetracapsuloides bryosalmonae is a widely spread endoparasite that causes proliferative kidney disease (PKD) in salmonid fish. We developed an in silico pipeline to separate transcripts of T. bryosalmonae from the kidney tissue of its natural vertebrate host, brown trout (Salmo trutta). After stringent filtering, we constructed a partial transcriptome assembly T. bryosalmonae, comprising 3427 transcripts. Based on homology-restricted searches of the assembled parasite transcriptome and Atlantic salmon (Salmo salar) proteome, we identified four protein targets (Endoglycoceramidase, Legumain-like protease, Carbonic anhydrase 2, Pancreatic lipase-related protein 2) for the development of anti-parasitic drugs against T. bryosalmonae. Earlier work of these proteins on parasitic protists and helminths suggests that the identified anti-parasitic drug targets represent promising chemotherapeutic candidates also against T. bryosalmonae, and strengthen the view that the known inhibitors can be effective in evolutionarily distant organisms. In addition, we identified differentially expressed T. bryosalmonae genes between moderately and severely infected fish, indicating an increased abundance of T. bryosalmonae sporogonic stages in fish with low parasite load. In conclusion, this study paves the way for future genomic research in T. bryosalmonae and represents an important step towards the development of effective drugs against PKD.
Collapse
|
7
|
Noreikiene K, Ozerov M, Ahmad F, Kõiv T, Kahar S, Gross R, Sepp M, Pellizzone A, Vesterinen EJ, Kisand V, Vasemägi A. Humic-acid-driven escape from eye parasites revealed by RNA-seq and target-specific metabarcoding. Parasit Vectors 2020; 13:433. [PMID: 32859251 PMCID: PMC7456052 DOI: 10.1186/s13071-020-04306-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/16/2020] [Indexed: 01/09/2023] Open
Abstract
Background Next generation sequencing (NGS) technologies are extensively used to dissect the molecular mechanisms of host-parasite interactions in human pathogens. However, ecological studies have yet to fully exploit the power of NGS as a rich source for formulating and testing new hypotheses. Methods We studied Eurasian perch (Perca fluviatilis) and its eye parasite (Trematoda, Diplostomidae) communities in 14 lakes that differed in humic content in order to explore host-parasite-environment interactions. We hypothesised that high humic content along with low pH would decrease the abundance of the intermediate hosts (gastropods), thus limiting the occurrence of diplostomid parasites in humic lakes. This hypothesis was initially invoked by whole eye RNA-seq data analysis and subsequently tested using PCR-based detection and a novel targeted metabarcoding approach. Results Whole eye transcriptome results revealed overexpression of immune-related genes and the presence of eye parasite sequences in RNA-seq data obtained from perch living in clear-water lakes. Both PCR-based and targeted-metabarcoding approach showed that perch from humic lakes were completely free from diplostomid parasites, while the prevalence of eye flukes in clear-water lakes that contain low amounts of humic substances was close to 100%, with the majority of NGS reads assigned to Tylodelphys clavata. Conclusions High intraspecific diversity of T. clavata indicates that massively parallel sequencing of naturally pooled samples represents an efficient and powerful strategy for shedding light on cryptic diversity of eye parasites. Our results demonstrate that perch populations in clear-water lakes experience contrasting eye parasite pressure compared to those from humic lakes, which is reflected by prevalent differences in the expression of immune-related genes in the eye. This study highlights the utility of NGS to discover novel host-parasite-environment interactions and provide unprecedented power to characterize the molecular diversity of cryptic parasites.![]()
Collapse
Affiliation(s)
- Kristina Noreikiene
- Chair of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 46, 51006, Tartu, Estonia.
| | - Mikhail Ozerov
- Department of Biology, University of Turku, 20014, Turku, Finland.,Department of Aquatic Resources, Institute of Freshwater Research, Swedish University of Agricultural Sciences, 17893, Drottningholm, Sweden.,Biodiversity Unit, University of Turku, 20014, Turku, Finland
| | - Freed Ahmad
- Department of Biology, University of Turku, 20014, Turku, Finland
| | - Toomas Kõiv
- Chair of Hydrobiology and Fishery, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5, 51006, Tartu, Estonia
| | - Siim Kahar
- Chair of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 46, 51006, Tartu, Estonia
| | - Riho Gross
- Chair of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 46, 51006, Tartu, Estonia
| | - Margot Sepp
- Chair of Hydrobiology and Fishery, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5, 51006, Tartu, Estonia
| | - Antonia Pellizzone
- Department of Biology, University of Turku, 20014, Turku, Finland.,Department of Life Sciences and Biotechnology, University of Ferrara, 44121, Ferrara, Italy
| | - Eero J Vesterinen
- Biodiversity Unit, University of Turku, 20014, Turku, Finland.,Department of Ecology, Swedish University of Agricultural Sciences, 75651, Uppsala, Sweden
| | - Veljo Kisand
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - Anti Vasemägi
- Chair of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 46, 51006, Tartu, Estonia. .,Department of Aquatic Resources, Institute of Freshwater Research, Swedish University of Agricultural Sciences, 17893, Drottningholm, Sweden.
| |
Collapse
|
8
|
Luo G, Sun Y, Huang L, Su Y, Zhao L, Qin Y, Xu X, Yan Q. Time-resolved dual RNA-seq of tissue uncovers Pseudomonas plecoglossicida key virulence genes in host-pathogen interaction with Epinephelus coioides. Environ Microbiol 2019; 22:677-693. [PMID: 31797531 DOI: 10.1111/1462-2920.14884] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 12/02/2019] [Indexed: 01/19/2023]
Abstract
Bacterial pathogen-host interactions are highly dynamic, regulated processes that have been primarily investigated using in vitro assays. The dynamics of bacterial pathogen-host interplay in vivo are poorly understood. Using time-resolved dual RNA-seq in a Pseudomonas plecoglossicida-Epinephelus coioides infection model, we observed that bacterial genes encoding classical virulence factors and host genes involved in immune regulation were dynamically expressed during infection. Using network inferencing, we were able to predict interspecies regulatory networks linking bacterial virulence genes to host immune genes. Together with gene co-expression network analysis of the pathogen, secY was predicted to be a key virulence gene for P. plecoglossicida pathogenicity in the host, fliN was predicted to be a less important virulence gene. The results of bioinformatics prediction were confirmed by animal infection experiments. Our work provides the first paradigm to study dynamic alterations of bacterial pathogen and host interactions based on the elucidation of time-resolved interactive transcriptomes in vivo, and may be developed into a novel and universal method for revealing the true complexity of the bacterial infection process.
Collapse
Affiliation(s)
- Gang Luo
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, PR China
| | - Yujia Sun
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, PR China
| | - Lixing Huang
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, PR China
| | - Yongquan Su
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian, 352000, PR China
| | - Lingmin Zhao
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, PR China
| | - Yingxue Qin
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, PR China
| | - Xiaojin Xu
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, PR China
| | - Qingpi Yan
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, PR China.,State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian, 352000, PR China
| |
Collapse
|
9
|
Huang L, Zhao L, Liu W, Xu X, Su Y, Qin Y, Yan Q. Dual RNA-Seq Unveils Pseudomonas plecoglossicida htpG Gene Functions During Host-Pathogen Interactions With Epinephelus coioides. Front Immunol 2019; 10:984. [PMID: 31130962 PMCID: PMC6509204 DOI: 10.3389/fimmu.2019.00984] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 04/16/2019] [Indexed: 12/23/2022] Open
Abstract
Pseudomonas plecoglossicida is a temperature-dependent opportunistic pathogen which is associated with a variety of diseases in fish. During the development of "white nodules" disease, the expression of htpG in P. plecoglossicida was found to be significantly up-regulated at its virulent temperature of 18°C. The infection of htpG-RNAi strain resulted in the onset time delay, reduction in mortality and infection symptoms in spleen of Epinephelus coioides, and affected the bacterial tissue colonization. In order to reveal the effect of htpG silencing of P. plecoglossicida on the virulence regulation in P. plecoglossicida and immune response in E. coioides, dual RNA-seq was performed and a pathogen-host integration network was constructed. Our results showed that infection induced the expression of host genes related to immune response, but attenuated the expression of bacterial virulence genes. Novel integration was found between host immune genes and bacterial virulence genes, while IL6, IL1R2, IL1B, and TLR5 played key roles in the network. Further analysis with GeneMANIA indicated that flgD and rplF might play key roles during the htpG-dependent virulence regulation, which was in accordance with the reduced biofilm production, motility and virulence in htpG-RNAi strain. Meanwhile, IL6 and IL1B were found to play key roles during the defense against P. plecoglossicida, while CELA2, TRY, CPA1, CPA2, and CPB1 were important targets for P. plecoglossicida attacking to the host.
Collapse
Affiliation(s)
- Lixing Huang
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Jimei University, Ministry of Agriculture, Xiamen, China
| | - Lingmin Zhao
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Jimei University, Ministry of Agriculture, Xiamen, China
| | - Wenjia Liu
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Jimei University, Ministry of Agriculture, Xiamen, China
| | - Xiaojin Xu
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Jimei University, Ministry of Agriculture, Xiamen, China
| | - Yongquan Su
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, China
| | - Yingxue Qin
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Jimei University, Ministry of Agriculture, Xiamen, China
| | - Qingpi Yan
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Jimei University, Ministry of Agriculture, Xiamen, China
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, China
| |
Collapse
|
10
|
Coculturing Bacteria Leads to Reduced Phenotypic Heterogeneities. Appl Environ Microbiol 2019; 85:AEM.02814-18. [PMID: 30796063 DOI: 10.1128/aem.02814-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/11/2019] [Indexed: 01/12/2023] Open
Abstract
Isogenic bacterial populations are known to exhibit phenotypic heterogeneity at the single-cell level. Because of difficulties in assessing the phenotypic heterogeneity of a single taxon in a mixed community, the importance of this deeper level of organization remains relatively unknown for natural communities. In this study, we have used membrane-based microcosms that allow the probing of the phenotypic heterogeneity of a single taxon while interacting with a synthetic or natural community. Individual taxa were studied under axenic conditions, as members of a coculture with physical separation, and as a mixed culture. Phenotypic heterogeneity was assessed through both flow cytometry and Raman spectroscopy. Using this setup, we investigated the effect of microbial interactions on the individual phenotypic heterogeneities of two interacting drinking water isolates. Through flow cytometry we have demonstrated that interactions between these bacteria lead to a reduction of their individual phenotypic diversities and that this adjustment is conditional on the bacterial taxon. Single-cell Raman spectroscopy confirmed a taxon-dependent phenotypic shift due to the interaction. In conclusion, our data suggest that bacterial interactions may be a general driver of phenotypic heterogeneity in mixed microbial populations.IMPORTANCE Laboratory studies have shown the impact of phenotypic heterogeneity on the survival and functionality of isogenic populations. Because phenotypic heterogeneity plays an important role in pathogenicity and virulence, antibiotic resistance, biotechnological applications, and ecosystem properties, it is crucial to understand its influencing factors. An unanswered question is whether bacteria in mixed communities influence the phenotypic heterogeneity of their community partners. We found that coculturing bacteria leads to a reduction in their individual phenotypic heterogeneities, which led us to the hypothesis that the individual phenotypic diversity of a taxon is dependent on the community composition.
Collapse
|
11
|
Sun Y, Zhuang Z, Wang X, Huang H, Fu Q, Yan Q. Dual RNA-seq reveals the effect of the flgM gene of Pseudomonas plecoglossicida on the immune response of Epinephelus coioides. FISH & SHELLFISH IMMUNOLOGY 2019; 87:515-523. [PMID: 30708058 DOI: 10.1016/j.fsi.2019.01.041] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/15/2019] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
Pseudomonas plecoglossicida is an important and highly pathogenic bacterium for aquaculture and causes serious losses. The expression level of flgM was found to be significantly upregulated post-infection compared with in vitro results, which was confirmed by quantitative real-time PCR. RNAi significantly reduced the expression level of flgM mRNA of P. plecoglossicida. Compared with infection with the wild-type strain, infection with the flgM-RNAi strain resulted in a delay in death and a 75% reduction in the mortality of Epinephelus coioides, followed by alleviation of the symptoms in E. coioides spleen. Moreover, compared with infection with the wild-type strain, infection with the flgM-RNAi strain of P. plecoglossicida resulted in a significant change in the transcriptome of the spleens of infected E. coioides and P. plecoglossicida. KEGG analysis for E. coioides showed that genes of 17 immune pathways were most affected by flgM-RNAi of P. plecoglossicida. Among them, the expression of mhc2, zap70, rhoh, tlr2, ca79a, hcst and cd32 in E. coioides spleen was predicted to be negatively related to flgM in P. plecoglossicida but positively related to genes involved in communication, metabolism and motility.
Collapse
Affiliation(s)
- Yujia Sun
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian 361024, China; Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian 361021, China
| | - Zhixia Zhuang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian 361024, China
| | - Xiaoru Wang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian 361024, China
| | - Huabin Huang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian 361024, China
| | - Qi Fu
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian 361024, China
| | - Qingpi Yan
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian 361021, China.
| |
Collapse
|
12
|
Zhang B, Zhuang Z, Wang X, Huang H, Fu Q, Yan Q. Dual RNA-Seq reveals the role of a transcriptional regulator gene in pathogen-host interactions between Pseudomonas plecoglossicida and Epinephelus coioides. FISH & SHELLFISH IMMUNOLOGY 2019; 87:778-787. [PMID: 30776540 DOI: 10.1016/j.fsi.2019.02.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/26/2019] [Accepted: 02/15/2019] [Indexed: 06/09/2023]
Abstract
Pseudomonas plecoglossicida is a highly pathogenic bacterium for maricultured fish and causes serious losses. A transcriptional regulator gene RK21_RS10315 was found up-regulated during the whole infection process, which was confirmed by qRT-PCR. Five shRNA were designed to silence RK21_RS10315 gene, and the gene expression was reduced up to 96.1%. Compared with the counterpart infected with wild type strain, the infection of RK21_RS10315-RNAi strain resulted in the death time delay, and 90% reduction in mortality of Epinephelus coioides, as well as the alleviation in the symptoms of E. coioides spleen. Moreover, compared with the fish infected with wild type strain, the infection of RK21_RS10315-RNAi strain of P. plecoglossicida resulted in a significant change both in transcriptome of spleen of infected E. coioides and P. plecoglossicida. The KEGG analysis showed that genes of 16 immune pathways in E. coioides were affected by the silence of RK21_RS10315 of P. plecoglossicida. Among them, intestinal immune network for IgA production pathway and leukocyte transendothelial migration pathway were more prominent than other pathways. 19 euk-DEMs in these immune pathways had varying degrees of correlation with 19 pro-DEMs, and the expression of ipxA, grpE, yhbJ, truD and suhB from 19 pro-DEMs were predicted more related to RK21_RS10315 in P. plecoglossicida.
Collapse
Affiliation(s)
- Beibei Zhang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian, 361024, China; Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China
| | - Zhixia Zhuang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian, 361024, China
| | - Xiaoru Wang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian, 361024, China
| | - Huabin Huang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian, 361024, China
| | - Qi Fu
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian, 361024, China
| | - Qingpi Yan
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China.
| |
Collapse
|
13
|
Rosani U, Young T, Bai CM, Alfaro AC, Venier P. Dual Analysis of Virus-Host Interactions: The Case of Ostreid herpesvirus 1 and the Cupped Oyster Crassostrea gigas. Evol Bioinform Online 2019; 15:1176934319831305. [PMID: 30828244 PMCID: PMC6388457 DOI: 10.1177/1176934319831305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/14/2019] [Indexed: 12/20/2022] Open
Abstract
Dual analyses of the interactions between Ostreid herpesvirus 1 (OsHV-1) and the bivalve Crassostrea gigas during infection can unveil events critical to the onset and progression of this viral disease and can provide novel strategies for mitigating and preventing oyster mortality. Among the currently used “omics” technologies, dual transcriptomics (dual RNA-seq) coupled with the analysis of viral DNA in the host tissues has greatly advanced the knowledge of genes and pathways mostly contributing to host defense responses, expression profiles of annotated and unknown OsHV-1 open reading frames (ORFs), and viral genome variability. In addition to dual RNA-seq, proteomics and metabolomics analyses have the potential to add complementary information, needed to understand how a malacoherpesvirus can redirect and exploit the vital processes of its host. This review explores our current knowledge of “omics” technologies in the study of host-pathogen interactions and highlights relevant applications of these fields of expertise to the complex case of C gigas infections by OsHV-1, which currently threaten the mollusk production sector worldwide.
Collapse
Affiliation(s)
- Umberto Rosani
- Department of Biology, University of Padova, Padova, Italy
| | - Tim Young
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Chang-Ming Bai
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Andrea C Alfaro
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Paola Venier
- Department of Biology, University of Padova, Padova, Italy
| |
Collapse
|
14
|
|
15
|
Feis ME, John U, Lokmer A, Luttikhuizen PC, Wegner KM. Dual transcriptomics reveals co-evolutionary mechanisms of intestinal parasite infections in blue mussels Mytilus edulis. Mol Ecol 2018; 27:1505-1519. [DOI: 10.1111/mec.14541] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 01/30/2018] [Accepted: 02/06/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Marieke E. Feis
- Department Coastal Ecology; Wadden Sea Station Sylt; Alfred Wegener Institute; Helmholtz Centre for Polar and Marine Research; List/Sylt Germany
| | - Uwe John
- Department Ecological Chemistry; Alfred Wegener Institute; Helmholtz Centre for Polar and Marine Research; Bremerhaven Germany
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB); Oldenburg Germany
| | - Ana Lokmer
- Department Coastal Ecology; Wadden Sea Station Sylt; Alfred Wegener Institute; Helmholtz Centre for Polar and Marine Research; List/Sylt Germany
| | - Pieternella C. Luttikhuizen
- NIOZ Royal Netherlands Institute for Sea Research; Department of Coastal Systems, and Utrecht University; Den Burg The Netherlands
| | - K. Mathias Wegner
- Department Coastal Ecology; Wadden Sea Station Sylt; Alfred Wegener Institute; Helmholtz Centre for Polar and Marine Research; List/Sylt Germany
| |
Collapse
|
16
|
Koch C, Müller S. Personalized microbiome dynamics – Cytometric fingerprints for routine diagnostics. Mol Aspects Med 2018; 59:123-134. [DOI: 10.1016/j.mam.2017.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/26/2017] [Accepted: 06/28/2017] [Indexed: 02/06/2023]
|
17
|
Wolf T, Kämmer P, Brunke S, Linde J. Two's company: studying interspecies relationships with dual RNA-seq. Curr Opin Microbiol 2017; 42:7-12. [PMID: 28957710 DOI: 10.1016/j.mib.2017.09.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/24/2017] [Accepted: 09/01/2017] [Indexed: 01/03/2023]
Abstract
Organisms do not exist isolated from each other, but constantly interact. Cells can sense the presence of interaction partners by a range of receptors and, via complex regulatory networks, specifically react by changing the expression of many of their genes. Technological advances in next-generation sequencing over the recent years now allow us to apply RNA sequencing to two species at the same time (dual RNA-seq), and thus to directly study the gene expression of two interacting species without the need to physically separate cells or RNA. In this review, we give an overview over the latest studies in interspecies interactions made possible by dual RNA-seq, ranging from pathogenic to symbiotic relationships. We summarize state-of-the-art experimental techniques, bioinformatic data analysis and data interpretation, while also highlighting potential problems and pitfalls starting from the selection of meaningful time points and number of reads to matters of rRNA depletion. A short outlook on new trends in the field of dual RNA-seq concludes this review, looking at sequencing of non-coding RNAs during host-pathogen interactions and the prediction of molecular interspecies interactions networks.
Collapse
Affiliation(s)
- Thomas Wolf
- Research Group Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
| | - Philipp Kämmer
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
| | - Jörg Linde
- Research Group PiDOMICS, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany.
| |
Collapse
|
18
|
Reeder SM, Palmer JM, Prokkola JM, Lilley TM, Reeder DM, Field KA. Pseudogymnoascus destructans transcriptome changes during white-nose syndrome infections. Virulence 2017; 8:1695-1707. [PMID: 28614673 PMCID: PMC5810475 DOI: 10.1080/21505594.2017.1342910] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
White nose syndrome (WNS) is caused by the psychrophilic fungus Pseudogymnoascus destructans that can grow in the environment saprotrophically or parasitically by infecting hibernating bats. Infections are pathological in many species of North American bats, disrupting hibernation and causing mortality. To determine what fungal pathways are involved in infection of living tissue, we examined fungal gene expression using RNA-Seq. We compared P. destructans gene expression when grown in culture to that during infection of a North American bat species, Myotis lucifugus, that shows high WNS mortality. Cultured P. destructans was grown at 10 to 14 C and P. destructans growing in vivo was presumably exposed to temperatures ranging from 4 to 8 C during torpor and up to 37 C during periodic arousals. We found that when P. destructans is causing WNS, the most significant differentially expressed genes were involved in heat shock responses, cell wall remodeling, and micronutrient acquisition. These results indicate that this fungal pathogen responds to host-pathogen interactions by regulating gene expression in ways that may contribute to evasion of host responses. Alterations in fungal cell wall structures could allow P. destructans to avoid detection by host pattern recognition receptors and antibody responses. This study has also identified several fungal pathways upregulated during WNS infection that may be candidates for mitigating infection pathology. By identifying host-specific pathogen responses, these observations have important implications for host-pathogen evolutionary relationships in WNS and other fungal diseases.
Collapse
Affiliation(s)
- Sophia M Reeder
- a Department of Biology , Bucknell University , Lewisburg , PA , USA
| | - Jonathan M Palmer
- b Center for Forest Mycology Research , Northern Research Station, US Forest Service , Madison , WI , USA
| | - Jenni M Prokkola
- a Department of Biology , Bucknell University , Lewisburg , PA , USA
| | - Thomas M Lilley
- a Department of Biology , Bucknell University , Lewisburg , PA , USA
| | - DeeAnn M Reeder
- a Department of Biology , Bucknell University , Lewisburg , PA , USA
| | - Kenneth A Field
- a Department of Biology , Bucknell University , Lewisburg , PA , USA
| |
Collapse
|
19
|
Abstract
The transcriptome is a powerful proxy for the physiological state of a cell, healthy or diseased. As a result, transcriptome analysis has become a key tool in understanding the molecular changes that accompany bacterial infections of eukaryotic cells. Until recently, such transcriptomic studies have been technically limited to analyzing mRNA expression changes in either the bacterial pathogen or the infected eukaryotic host cell. However, the increasing sensitivity of high-throughput RNA sequencing now enables "dual RNA-seq" studies, simultaneously capturing all classes of coding and noncoding transcripts in both the pathogen and the host. In the five years since the concept of dual RNA-seq was introduced, the technique has been applied to a range of infection models. This has not only led to a better understanding of the physiological changes in pathogen and host during the course of an infection but has also revealed hidden molecular phenotypes of virulence-associated small noncoding RNAs that were not visible in standard infection assays. Here, we use the knowledge gained from these recent studies to suggest experimental and computational guidelines for the design of future dual RNA-seq studies. We conclude this review by discussing prospective applications of the technique.
Collapse
Affiliation(s)
- Alexander J. Westermann
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Lars Barquist
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Jörg Vogel
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Würzburg, Germany
- * E-mail:
| |
Collapse
|
20
|
Hebecker B, Vlaic S, Conrad T, Bauer M, Brunke S, Kapitan M, Linde J, Hube B, Jacobsen ID. Dual-species transcriptional profiling during systemic candidiasis reveals organ-specific host-pathogen interactions. Sci Rep 2016; 6:36055. [PMID: 27808111 PMCID: PMC5093689 DOI: 10.1038/srep36055] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/11/2016] [Indexed: 11/15/2022] Open
Abstract
Candida albicans is a common cause of life-threatening fungal bloodstream infections. In the murine model of systemic candidiasis, the kidney is the primary target organ while the fungal load declines over time in liver and spleen. To better understand these organ-specific differences in host-pathogen interaction, we performed gene expression profiling of murine kidney, liver and spleen and determined the fungal transcriptome in liver and kidney. We observed a delayed transcriptional immune response accompanied by late induction of fungal stress response genes in the kidneys. In contrast, early upregulation of the proinflammatory response in the liver was associated with a fungal transcriptome resembling response to phagocytosis, suggesting that phagocytes contribute significantly to fungal control in the liver. Notably, C. albicans hypha-associated genes were upregulated in the absence of visible filamentation in the liver, indicating an uncoupling of gene expression and morphology and a morphology-independent effect by hypha-associated genes in this organ. Consistently, integration of host and pathogen transcriptional data in an inter-species gene regulatory network indicated connections of C. albicans cell wall remodelling and metabolism to the organ-specific immune responses.
Collapse
Affiliation(s)
- Betty Hebecker
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology (Hans Knöll Institute), Jena, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Sebastian Vlaic
- Department of General, Visceral and Vascular Surgery, Experimental Transplantation Surgery, Jena University Hospital, Jena, Germany.,Research Group Systems Biology/Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology (Hans Knöll Institute), Jena, Germany.,Department of Bioinformatics, Friedrich-Schiller-University Jena, Germany
| | - Theresia Conrad
- Research Group Systems Biology/Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology (Hans Knöll Institute), Jena, Germany
| | - Michael Bauer
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany.,Department of Anaesthesiology and Intensive Care Therapy, Jena University Hospital, Jena, Germany
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology (Hans Knöll Institute), Jena, Germany
| | - Mario Kapitan
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology (Hans Knöll Institute), Jena, Germany
| | - Jörg Linde
- Research Group Systems Biology/Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology (Hans Knöll Institute), Jena, Germany
| | - Bernhard Hube
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany.,Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology (Hans Knöll Institute), Jena, Germany.,Friedrich-Schiller-University, Jena, Germany
| | - Ilse D Jacobsen
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology (Hans Knöll Institute), Jena, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany.,Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
21
|
Girard IJ, Mcloughlin AG, de Kievit TR, Fernando DWG, Belmonte MF. Integrating Large-Scale Data and RNA Technology to Protect Crops from Fungal Pathogens. FRONTIERS IN PLANT SCIENCE 2016; 7:631. [PMID: 27303409 PMCID: PMC4885860 DOI: 10.3389/fpls.2016.00631] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 04/25/2016] [Indexed: 05/13/2023]
Abstract
With a rapidly growing human population it is expected that plant science researchers and the agricultural community will need to increase food productivity using less arable land. This challenge is complicated by fungal pathogens and diseases, many of which can severely impact crop yield. Current measures to control fungal pathogens are either ineffective or have adverse effects on the agricultural enterprise. Thus, developing new strategies through research innovation to protect plants from pathogenic fungi is necessary to overcome these hurdles. RNA sequencing technologies are increasing our understanding of the underlying genes and gene regulatory networks mediating disease outcomes. The application of invigorating next generation sequencing strategies to study plant-pathogen interactions has and will provide unprecedented insight into the complex patterns of gene activity responsible for crop protection. However, questions remain about how biological processes in both the pathogen and the host are specified in space directly at the site of infection and over the infection period. The integration of cutting edge molecular and computational tools will provide plant scientists with the arsenal required to identify genes and molecules that play a role in plant protection. Large scale RNA sequence data can then be used to protect plants by targeting genes essential for pathogen viability in the production of stably transformed lines expressing RNA interference molecules, or through foliar applications of double stranded RNA.
Collapse
Affiliation(s)
- Ian J. Girard
- Department of Biological Sciences, University of ManitobaWinnipeg, MB, Canada
| | | | | | | | - Mark F. Belmonte
- Department of Biological Sciences, University of ManitobaWinnipeg, MB, Canada
- *Correspondence: Mark F. Belmonte,
| |
Collapse
|