1
|
Najjari A, Jabberi M, Chérif SF, Cherif A, Ouzari HI, Linares-Pastén JA, Sghaier H. Genome and pan-genome analysis of a new exopolysaccharide-producing bacterium Pyschrobacillus sp. isolated from iron ores deposit and insights into iron uptake. Front Microbiol 2024; 15:1440081. [PMID: 39238887 PMCID: PMC11376405 DOI: 10.3389/fmicb.2024.1440081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/15/2024] [Indexed: 09/07/2024] Open
Abstract
Bacterial exopolysaccharides (EPS) have emerged as one of the key players in the field of heavy metal-contaminated environmental bioremediation. This study aimed to characterize and evaluate the metal biosorption potential of EPS produced by a novel Psychrobacillus strain, NEAU-3TGS, isolated from an iron ore deposit at Tamra iron mine, northern Tunisia. Genomic and pan-genomic analysis of NEAU-3TGS bacterium with nine validated published Psychrobacillus species was also performed. The results showed that the NEAU-3TGS genome (4.48 Mb) had a mean GC content of 36%, 4,243 coding sequences and 14 RNA genes. Phylogenomic analysis and calculation of nucleotide identity (ANI) values (less than 95% for new species with all strains) confirmed that NEAU-3TGS represents a potential new species. Pangenomic analysis revealed that Psychrobacillus genomic diversity represents an "open" pangenome model with 33,091 homologous genes, including 65 core, 3,738 shell, and 29,288 cloud genes. Structural EPS characterization by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy showed uronic acid and α-1,4-glycosidic bonds as dominant components of the EPS. X-ray diffraction (XRD) analysis revealed the presence of chitin, chitosan, and calcite CaCO3 and confirmed the amorphous nature of the EPS. Heavy metal bioabsorption assessment showed that iron and lead were more adsorbed than copper and cadmium. Notably, the optimum activity was observed at 37°C, pH=7 and after 3 h contact of EPS with each metal. Genomic insights on iron acquisition and metabolism in Psychrobacillus sp. NEAU-3TGS suggested that no genes involved in siderophore biosynthesis were found, and only the gene cluster FeuABCD and trilactone hydrolase genes involved in the uptake of siderophores, iron transporter and exporter are present. Molecular modelling and docking of FeuA (protein peptidoglycan siderophore-binding protein) and siderophores ferrienterobactine [Fe+3 (ENT)]-3 and ferribacillibactine [Fe+3 (BB)]-3 ligand revealed that [Fe+3 (ENT)]-3 binds to Phe122, Lys127, Ile100, Gln314, Arg215, Arg217, and Gln252. Almost the same for [Fe+3 (ENT)]-3 in addition to Cys222 and Tyr229, but not Ile100.To the best of our knowledge, this is the first report on the characterization of EPS and the adsorption of heavy metals by Psychrobacillus species. The heavy metal removal capabilities may be advantageous for using these organisms in metal remediation.
Collapse
Affiliation(s)
- Afef Najjari
- Laboratoire de Microbiologie et Biomolécules Actives (LR03ES03), Faculté des Sciences de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Marwa Jabberi
- Laboratory "Energy and Matter for Development of Nuclear Sciences" (LR16CNSTN02), National Center for Nuclear Sciences and Technology (CNSTN), Sidi Thabet Technopark, Ariana, Tunisia
- ISBST, LR11-ES31 BVBGR, University of Manouba, Biotechpole Sidi Thabet, Ariana, Tunisia
- Biochemistry and Molecular Biology Lab of Faculty of Sciences of Bizerte, Risks Related to Environmental Stress, Struggle and Prevention (UR17ES20), University of Carthage, Bizerte, Tunisia
| | - Saïda Fatma Chérif
- Laboratoire de Matériaux, Cristallochimie et Thermodynamique Appliquée, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisia
- Institut Préparatoire aux Etudes d'Ingénieurs-El Manar, Université de Tunis El Manar, El Manar II, Tunis, Tunisia
| | - Ameur Cherif
- ISBST, LR11-ES31 BVBGR, University of Manouba, Biotechpole Sidi Thabet, Ariana, Tunisia
| | - Hadda Imene Ouzari
- Laboratoire de Microbiologie et Biomolécules Actives (LR03ES03), Faculté des Sciences de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Javier A Linares-Pastén
- Department of Biotechnology, Faculty of Engineering, Lunds Tekniska Högskola (LTH), Lund University, Lund, Sweden
| | - Haitham Sghaier
- Laboratory "Energy and Matter for Development of Nuclear Sciences" (LR16CNSTN02), National Center for Nuclear Sciences and Technology (CNSTN), Sidi Thabet Technopark, Ariana, Tunisia
- ISBST, LR11-ES31 BVBGR, University of Manouba, Biotechpole Sidi Thabet, Ariana, Tunisia
| |
Collapse
|
2
|
Xie Z, Xing L, Zhao M, Zhao L, Liu J, Li Y, Gan J, Chen S, Li H. Versatile, vigilance, and gut microbiome support the priority of high-ranking hens. Front Vet Sci 2023; 10:1324937. [PMID: 38179328 PMCID: PMC10764595 DOI: 10.3389/fvets.2023.1324937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024] Open
Abstract
Dominance hierarchy exists in social animals and shows profound impacts on animals' survival, physical and mental health, and reproductive success. Aggressive interaction, as the main indicator used to calculate social hierarchy, however, is not found in some female animals. In this study, we aimed to figure out the establishment of social hierarchy in hens that almost perform aggressive behaviors and investigated the interactions of social hierarchy with production performance and gut microbiome. Forty 49-day-old Qingyuan hens were randomly divided into four groups. The social hierarchy of hens was calculated by the relative position around the feeder. The rank 1 (R1), R2, R3, R4, R5, R6, R7, R8, R9, and R10 birds were determined in ascending order. Then, R1 and R2 birds (four duplicates, n = 8) were named as the high-ranking hens (HR) group, while R9 and R10 individuals were named as the low-ranking hens (LR) group (four duplicates, n = 8). The heart index (p = 0.01), number of visits per day, daily feed intake, and occupation time per day were higher in the HR group than LR group, but the LR group had a higher feed intake per visit than the HR group. The alpha diversity was significantly lower in the HR group than the LR group (p = 0.05). The relative abundance of phylum Firmicutes was higher while that of phylum Deferribacterota was lower in the HR group than LR group (p < 0.05). At the genus level, the relative abundance of Succinatimonas, Eubacterium hallii group, and Anaerostipes were higher in HR group than in LR group. The relative abundance of Bacteroides, Mucispirillum, Subdoligranulum, and Barnesiellaceae unclassified was higher in the LR group than HR group (p < 0.05). In conclusion, the rank of hens could be calculated by the relative position around the feeder when they compete for food. The dominant hens have a versatile. Moreover, they are more vigilant and have priority when foraging. Low-ranking hens adopt strategies to get enough food to sustain themselves. Hens of high-rank possess beneficial bacteria that use favorable substances to maintain the balance of the gut environment.
Collapse
Affiliation(s)
- Zhijiang Xie
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Limin Xing
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Mengqiao Zhao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Lei Zhao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Jinling Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yushan Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Jiankang Gan
- Guangdong Tinoo’s Foods Group Co., Ltd., Qingyuan, China
| | - Siyu Chen
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
3
|
Jugert CS, Didier A, Jessberger N. Lactoferrin-based food supplements trigger toxin production of enteropathogenic Bacillus cereus. Front Microbiol 2023; 14:1284473. [PMID: 38029127 PMCID: PMC10646309 DOI: 10.3389/fmicb.2023.1284473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Lactoferrin is an iron-binding glycoprotein exhibiting antibacterial, antiviral, antifungal, antiparasitic, antiinflammatory, antianaemic and anticarcinogenic properties. While its inhibitory effects against bacterial pathogens are well investigated, little is known about its influence on the production and/or mode of action of bacterial toxins. Thus, the present study aimed to determine the impact of food supplements based on bovine lactoferrin on Bacillus cereus enterotoxin production. First, strain-specific growth inhibition of three representative isolates was observed in minimal medium with 1 or 10 mg/mL of a lactoferrin-based food supplement, designated as product no. 1. Growth inhibition did not result from iron deficiency. In contrast to that, all three strains showed increased amounts of enterotoxin component NheB in the supernatant, which corresponded with cytotoxicity. Moreover, lactoferrin product no. 1 enhanced NheB production of further 20 out of 28 B. cereus and Bacillus thuringiensis strains. These findings again suggested a strain-specific response toward lactoferrin. Product-specific differences also became apparent comparing the influence of further six products on highly responsive strain INRA C3. Highest toxin titres were detected after exposure to products no. 7, 1 and 2, containing no ingredients except pure bovine lactoferrin. INRA C3 was also used to determine the transcriptional response toward lactoferrin exposure via RNA sequencing. As control, iron-free medium was also included, which resulted in down-regulation of eight genes, mainly involved in amino acid metabolism, and in up-regulation of 52 genes, mainly involved in iron transport, uptake and utilization. In contrast to that, 153 genes were down-regulated in the presence of lactoferrin, including genes involved in flagellar assembly, motility, chemotaxis and sporulation as well as genes encoding regulatory proteins, transporters, heat and cold shock proteins and virulence factors. Furthermore, 125 genes were up-regulated in the presence of lactoferrin, comprising genes involved in sporulation and germination, nutrient uptake, iron transport and utilization, and resistance. In summary, lactoferrin exposure of B. cereus strain-specifically triggers an extensive transcriptional response that considerably exceeds the response toward iron deficiency and, despite down-regulation of various genes belonging to the PlcR-regulon, ultimately leads to an increased level of secreted enterotoxin by a mechanism, which has yet to be elucidated.
Collapse
Affiliation(s)
- Clara-Sophie Jugert
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Oberschleißheim, Germany
| | - Andrea Didier
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Oberschleißheim, Germany
| | - Nadja Jessberger
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
4
|
Cruz-Facundo IM, Adame-Gómez R, Castro-Alarcón N, Toribio-Jiménez J, Castro-Coronel Y, Santiago-Dionisio MC, Leyva-Vázquez MA, Tafolla-Venegas D, Ramírez-Peralta A. Enterotoxigenic profiles and submerged and interface biofilms in Bacillus cereus group isolates from foods. Rev Argent Microbiol 2023; 55:262-271. [PMID: 37019800 DOI: 10.1016/j.ram.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 04/05/2023] Open
Abstract
Biofilm formation by Bacillus cereus strains is now recognized as a systematic contamination mechanism in foods; the aim of this study was to evaluate the production of submerged and interface biofilms in strains of B. cereus group in different materials, the effect of dextrose, motility, the presence of genes related to biofilms and the enterotoxigenic profile of the strains. We determine biofilm production by safranin assay, motility on semi-solid medium, toxin gene profiling and genes related to biofilm production by PCR in B. cereus group isolated from food. In this study, we observe strains used a higher production of biofilms in PVC; in the BHI broth, no submerged biofilms were found compared to phenol red broth and phenol red broth supplemented with dextrose; no strains with the ces gene were found, the enterotoxin profile was the most common the profile that includes genes for the three enterotoxins. We observed a different distribution of tasA and sipW with the origin of isolation of the strain, being more frequent in the strains isolated from eggshell. The production and type of biofilms are differential according to the type of material and culture medium used.
Collapse
Affiliation(s)
- Itzel-Maralhi Cruz-Facundo
- Universidad Autónoma de Guerrero, Laboratorio de Investigación en Patometabolismo Microbiano, Facultad de Ciencias Químico Biológicas, Chilpancingo de los Bravo, Guerrero 39070, Mexico
| | - Roberto Adame-Gómez
- Universidad Autónoma de Guerrero, Laboratorio de Investigación en Patometabolismo Microbiano, Facultad de Ciencias Químico Biológicas, Chilpancingo de los Bravo, Guerrero 39070, Mexico
| | - Natividad Castro-Alarcón
- Universidad Autónoma de Guerrero, Laboratorio de Investigación en Microbiología, Facultad de Ciencias Químico Biológicas, Chilpancingo de los Bravo, Guerrero CP39070, Mexico
| | - Jeiry Toribio-Jiménez
- Universidad Autónoma de Guerrero, Laboratorio de Investigación en Microbiología Molecular y Biotecnología Ambiental, Facultad de Ciencias Químico Biológicas, Chilpancingo de los Bravo, Guerrero CP39070, Mexico
| | - Yaneth Castro-Coronel
- Universidad Autónoma de Guerrero, Laboratorio de Investigación en Citopatología e Histoquímica, Facultad de Ciencias Químico Biológicas, Chilpancingo de los Bravo, Guerrero CP39070, Mexico
| | - María-Cristina Santiago-Dionisio
- Universidad Autónoma de Guerrero, Laboratorio de Investigación en Análisis Microbiológicos, Facultad de Ciencias Químico Biológicas, Chilpancingo de los Bravo, Guerrero CP39070, Mexico
| | - Marco-Antonio Leyva-Vázquez
- Universidad Autónoma de Guerrero, Laboratorio de Investigación en Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Chilpancingo de los Bravo, Guerrero CP39070, Mexico
| | - David Tafolla-Venegas
- Universidad Michoacana de San Nicolás de Hidalgo, Facultad de Biología, Laboratorio de Parasitología, Morelia, Michoacan 58004, Mexico
| | - Arturo Ramírez-Peralta
- Universidad Autónoma de Guerrero, Laboratorio de Investigación en Patometabolismo Microbiano, Facultad de Ciencias Químico Biológicas, Chilpancingo de los Bravo, Guerrero 39070, Mexico.
| |
Collapse
|
5
|
Hammerstad M, Rugtveit AK, Dahlen S, Andersen HK, Hersleth HP. Functional Diversity of Homologous Oxidoreductases-Tuning of Substrate Specificity by a FAD-Stacking Residue for Iron Acquisition and Flavodoxin Reduction. Antioxidants (Basel) 2023; 12:1224. [PMID: 37371954 DOI: 10.3390/antiox12061224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Although bacterial thioredoxin reductase-like ferredoxin/flavodoxin NAD(P)+ oxidoreductases (FNRs) are similar in terms of primary sequences and structures, they participate in diverse biological processes by catalyzing a range of different redox reactions. Many of the reactions are critical for the growth, survival of, and infection by pathogens, and insight into the structural basis for substrate preference, specificity, and reaction kinetics is crucial for the detailed understanding of these redox pathways. Bacillus cereus (Bc) encodes three FNR paralogs, two of which have assigned distinct biological functions in bacillithiol disulfide reduction and flavodoxin (Fld) reduction. Bc FNR2, the endogenous reductase of the Fld-like protein NrdI, belongs to a distinct phylogenetic cluster of homologous oxidoreductases containing a conserved His residue stacking the FAD cofactor. In this study, we have assigned a function to FNR1, in which the His residue is replaced by a conserved Val, in the reduction of the heme-degrading monooxygenase IsdG, ultimately facilitating the release of iron in an important iron acquisition pathway. The Bc IsdG structure was solved, and IsdG-FNR1 interactions were proposed through protein-protein docking. Mutational studies and bioinformatics analyses confirmed the importance of the conserved FAD-stacking residues on the respective reaction rates, proposing a division of FNRs into four functionally unique sequence similarity clusters likely related to the nature of this residue.
Collapse
Affiliation(s)
- Marta Hammerstad
- Department of Biosciences, Section for Biochemistry and Molecular Biology, University of Oslo, P.O. Box 1066, Blindern, NO-0316 Oslo, Norway
| | - Anne Kristine Rugtveit
- Department of Biosciences, Section for Biochemistry and Molecular Biology, University of Oslo, P.O. Box 1066, Blindern, NO-0316 Oslo, Norway
| | - Sondov Dahlen
- Department of Biosciences, Section for Biochemistry and Molecular Biology, University of Oslo, P.O. Box 1066, Blindern, NO-0316 Oslo, Norway
| | - Hilde Kristin Andersen
- Department of Biosciences, Section for Biochemistry and Molecular Biology, University of Oslo, P.O. Box 1066, Blindern, NO-0316 Oslo, Norway
| | - Hans-Petter Hersleth
- Department of Biosciences, Section for Biochemistry and Molecular Biology, University of Oslo, P.O. Box 1066, Blindern, NO-0316 Oslo, Norway
| |
Collapse
|
6
|
Toukabri H, Lereclus D, Slamti L. A Sporulation-Independent Way of Life for Bacillus thuringiensis in the Late Stages of an Infection. mBio 2023:e0037123. [PMID: 37129506 DOI: 10.1128/mbio.00371-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
The formation of endospores has been considered the unique survival and transmission mode of sporulating Firmicutes due to the exceptional resistance and persistence of this bacterial form. However, nonsporulated bacteria (Spo-) were reported at the early stages following the death of a host infected with Bacillus thuringiensis, an entomopathogenic sporulating bacterium. Here, we investigated the characteristics of the bacterial population in the late stages of an infection in the B. thuringiensis/Galleria mellonella infection model. Using fluorescent reporters and molecular markers coupled to flow cytometry, we demonstrated that the Spo- cells persist and constitute about half of the population 2 weeks post-infection (p.i.). Protein synthesis and growth recovery assays indicated that they are in a metabolically slowed-down state. These bacteria were extremely resistant to the insect cadaver environment, which did not support growth of in vitro-grown vegetative cells and spores. A transcriptomic analysis of this subpopulation at 7 days p.i. revealed a signature profile of this state, and the expression analysis of individual genes at the cell level showed that more bacteria mount an oxidative stress response as their survival time increases, in agreement with the increase of the free radical level in the host cadaver and in the number of reactive oxygen species (ROS)-producing bacteria. Altogether, these data show for the first time that nonsporulated bacteria are able to survive for a prolonged period of time in the context of an infection and indicate that they engage in a profound adaptation process that leads to their persistence in the host cadaver. IMPORTANCE Bacillus thuringiensis is an entomopathogenic bacterium widely used as a biopesticide. It belongs to the Bacillus cereus group, comprising the foodborne pathogen B. cereus sensu stricto and the anthrax agent Bacillus anthracis. Like other Firmicutes when they encounter harsh conditions, these Gram-positive bacteria can form dormant cells called spores. Due to its highly resistant nature, the spore was considered the unique mode of long-term survival, eclipsing any other form of persistence. Breaking this paradigm, we observed that B. thuringiensis was able to persist in its host cadaver in a nonsporulated form for at least 14 days. Our results show that these bacteria survived in the cadaver environment, which proved hostile for actively growing bacteria by engaging in a profound adaptation process. Studying this facet of the life cycle of a sporulating bacterium provides new fundamental knowledge and might lead to the development of strategies to combat sporulating pathogenic species.
Collapse
Affiliation(s)
- Hasna Toukabri
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Didier Lereclus
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Leyla Slamti
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
7
|
Zhang Y, Yu R, Zhan JY, Cao GZ, Feng XP, Chen X. Epidemiological and Microbiome Characterization of Black Tooth Stain in Preschool Children. Front Pediatr 2022; 10:751361. [PMID: 35155301 PMCID: PMC8826690 DOI: 10.3389/fped.2022.751361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 01/03/2022] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVE To assess the epidemiologic attributes and microbial variations associated with extrinsic black tooth stain (BTS) among Chinese preschool children. METHODS This cross-sectional study included 250 preschool children (3-4 years) from three kindergartens in Shanghai, China. Following clinical examination, and using a case-control design, saliva and dental plaque specimens were collected from caries-free participants with (n = 21, BTS group) and without (n = 48, control group) BTS. The chi-square test and logistic regression model were used to evaluate factors associated with BTS. 16S rRNA sequencing were used to characterize the associated microbial communities. RESULTS BTS was detected in 12.4% of participants, with a mean of 13.7 black-stained teeth. Participants with BTS had a lower caries burden and better oral hygiene (P = 0.003). Children with less frequent intake of marmalade or honey (P = 0.033) and regular application of fluoride (P = 0.007) had a lower likelihood of having BTS. Microbiota analysis revealed 14 phyla, 35 classes, 63 orders, 113 families, 221 genera, 452 species, and 1,771 operational taxonomic units (OTUs). In terms of microbial diversity, no significant differences were observed in the saliva of the two groups (P > 0.05). Dental plaque from the BTS group exhibited higher OTU richness but lower evenness than that from the control group (Chao P = 0.006, Shannon P = 0.007, respectively) and showed a significant difference in β diversity (P = 0.002). The microbiome in the two groups was characterized by various microbial biomarkers, such as Pseudomonas fluorescens, Leptotrichia sp._HMT_212, Actinomyces sp._HMT_169, and Aggregatibacter sp._HMT_898 in plaques from the BTS group. Functional analysis of the microbial species suggested the existence of a hyperactive metabolic state on teeth surfaces with BTS plaques and revealed that ferric iron, the iron complex transport system, and the iron (III) transport system were more abundant in BTS plaque samples. CONCLUSIONS This study provides insights into the epidemiologic and microbial features of BTS in preschool children. The microbiome in BTS is characterized by various microbial biomarkers, which can serve as indicators for BTS diagnosis and prognosis.
Collapse
Affiliation(s)
- Yu Zhang
- Shanghai Key Laboratory of Stomatology, Department of Preventive Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Rui Yu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Jing-Yu Zhan
- Shanghai Key Laboratory of Stomatology, Department of Preventive Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Gui-Zhi Cao
- Shanghai Key Laboratory of Stomatology, Department of Preventive Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xi-Ping Feng
- Shanghai Key Laboratory of Stomatology, Department of Preventive Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xi Chen
- Shanghai Key Laboratory of Stomatology, Department of Preventive Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
8
|
Cruz-Facundo IM, Adame-Gómez R, Vences-Velázquez A, Rodríguez-Bataz E, Muñoz-Barrios S, Pérez-Oláis JH, Ramírez-Peralta A. Bacillus Cereus in Eggshell: Enterotoxigenic Profiles and Biofilm Production. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2022. [DOI: 10.1590/1806-9061-2021-1535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Xia W, Li N, Shan H, Lin Y, Yin F, Yu X, Zhou Z. Gallium Porphyrin and Gallium Nitrate Reduce the High Vancomycin Tolerance of MRSA Biofilms by Promoting Extracellular DNA-Dependent Biofilm Dispersion. ACS Infect Dis 2021; 7:2565-2582. [PMID: 34346692 DOI: 10.1021/acsinfecdis.1c00280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biofilms, structured communities of bacterial cells embedded in a self-produced extracellular matrix (ECM) which consists of proteins, polysaccharide intercellular adhesins (PIAs), and extracellular DNA (eDNA), play a key role in clinical infections and are associated with an increased morbidity and mortality by protecting the embedded bacteria against drug and immune response. The high levels of antibiotic tolerance render classical antibiotic therapies impractical for biofilm-related infections. Thus, novel drugs and strategies are required to reduce biofilm tolerance and eliminate biofilm-protected bacteria. Here, we showed that gallium, an iron mimetic metal, can lead to nutritional iron starvation and act as dispersal agent triggering the reconstruction and dispersion of mature methicillin-resistant Staphylococcus aureus (MRSA) biofilms in an eDNA-dependent manner. The extracellular matrix, along with the integral bacteria themselves, establishes the integrated three-dimensional structure of the mature biofilm. The structures and compositions of gallium-treated mature biofilms differed from those of natural or antibiotic-survived mature biofilms but were similar to those of immature biofilms. Similar to immature biofilms, gallium-treated biofilms had lower levels of antibiotic tolerance, and our in vitro tests showed that treatment with gallium agents reduced the antibiotic tolerance of mature MRSA biofilms. Thus, the sequential administration of gallium agents (gallium porphyrin and gallium nitrate) and relatively low concentrations of vancomycin (16 mg/L) effectively eliminated mature MRSA biofilms and eradicated biofilm-enclosed bacteria within 1 week. Our results suggested that gallium agents may represent a potential treatment for refractory biofilm-related infections, such as prosthetic joint infections (PJI) and osteomyelitis, and provide a novel basis for future biofilm treatments based on the disruption of normal biofilm-development processes.
Collapse
Affiliation(s)
- Wenyang Xia
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Niya Li
- Department of Laboratory, Shanghai Sixth People’s Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai 200233, China
| | - Haojie Shan
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Yiwei Lin
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Fuli Yin
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Xiaowei Yu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Zubin Zhou
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| |
Collapse
|
10
|
Consentino L, Rejasse A, Crapart N, Bevilacqua C, Nielsen-LeRoux C. Laser capture microdissection to study Bacillus cereus iron homeostasis gene expression during Galleria mellonella in vivo gut colonization. Virulence 2021; 12:2104-2121. [PMID: 34374318 PMCID: PMC8366545 DOI: 10.1080/21505594.2021.1959790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Bacillus cereus is a Gram-positive opportunistic pathogen closely related to the entomopathogen, Bacillus thuringiensis, both of which are involved in intestinal infections. Iron is an essential micronutrient for full growth and virulence of pathogens during infection. However, little is known about iron homeostasis during gut infection. Therefore, we aimed to assess the expression of B. cereus genes related to bacterial iron homeostasis, virulence and oxidative stress. The hypothesis is that the expression of such genes would vary between early and later stage colonization in correlation to gut cell damage. To perform the study, a germ-free Galleria mellonella model was set up in order to adapt the use of Laser-capture microdissection (LCM), to select precise areas in the gut lumen from frozen whole larval cryo-sections. Analyses were performed from alive larvae and the expression of targeted genes was assessed byspecific pre-amplification of mRNA followed by quantitative PCR. Firstly, the results reinforce the reliability of LCM, despite a low amount of bacterial RNA recovered. Secondly, bacterial genes involved in iron homeostasis are expressed in the lumen at both 3 and 16 hours post force-feeding. Thirdly, iron gene expression is slightly modulated during gut infection, and lastly, the mRNA of G. mellonella encoding for ferritin and transferrin iron storage and transport are recovered too. Therefore, iron homeostasis should play a role in B. cereus gut colonization. Furthermore, we demonstrate for the first time the value of using LCM for specific in situ gene expression analysis of extracellular bacteria in a whole animal.
Collapse
Affiliation(s)
- Laurent Consentino
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Agnès Rejasse
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Nicolas Crapart
- Université Paris Saclay, INRAE, AgroParisTech, UMR GABI, Abridge, Jouy En Josas, France.,Exilone, Elancourt, France
| | - Claudia Bevilacqua
- Université Paris Saclay, INRAE, AgroParisTech, UMR GABI, Abridge, Jouy En Josas, France
| | | |
Collapse
|
11
|
Jovanovic J, Ornelis VFM, Madder A, Rajkovic A. Bacillus cereus food intoxication and toxicoinfection. Compr Rev Food Sci Food Saf 2021; 20:3719-3761. [PMID: 34160120 DOI: 10.1111/1541-4337.12785] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 12/12/2022]
Abstract
Bacillus cereus is one of the leading etiological agents of toxin-induced foodborne diseases. Its omnipresence in different environments, spore formation, and its ability to adapt to varying conditions and produce harmful toxins make this pathogen a health hazard that should not be underestimated. Food poisoning by B. cereus can manifest itself as an emetic or diarrheal syndrome. The former is caused by the release of the potent peptide toxin cereulide, whereas the latter is the result of proteinaceous enterotoxins (e.g., hemolysin BL, nonhemolytic enterotoxin, and cytotoxin K). The final harmful effect is not only toxin and strain dependent, but is also affected by the stress responses, accessory virulence factors, and phenotypic properties under extrinsic, intrinsic, and explicit food conditions and host-related environment. Infamous portrait of B. cereus as a foodborne pathogen, as well as a causative agent of nongastrointestinal infections and even nosocomial complications, has inspired vast volumes of multidisciplinary research in food and clinical domains. As a result, extensive original data became available asking for a new, both broad and deep, multifaceted look into the current state-of-the art regarding the role of B. cereus in food safety. In this review, we first provide an overview of the latest knowledge on B. cereus toxins and accessory virulence factors. Second, we describe the novel taxonomy and some of the most pertinent phenotypic characteristics of B. cereus related to food safety. We link these aspects to toxin production, overall pathogenesis, and interactions with its human host. Then we reflect on the prevalence of different toxinotypes in foods opening the scene for epidemiological aspects of B. cereus foodborne diseases and methods available to prevent food poisoning including overview of the different available methods to detect B. cereus and its toxins.
Collapse
Affiliation(s)
- Jelena Jovanovic
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Vincent F M Ornelis
- Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Annemieke Madder
- Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Andreja Rajkovic
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
12
|
Xu Z, Mandic-Mulec I, Zhang H, Liu Y, Sun X, Feng H, Xun W, Zhang N, Shen Q, Zhang R. Antibiotic Bacillomycin D Affects Iron Acquisition and Biofilm Formation in Bacillus velezensis through a Btr-Mediated FeuABC-Dependent Pathway. Cell Rep 2020; 29:1192-1202.e5. [PMID: 31665633 DOI: 10.1016/j.celrep.2019.09.061] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 05/31/2019] [Accepted: 09/19/2019] [Indexed: 02/06/2023] Open
Abstract
Bacillus spp. produce a wide range of secondary metabolites, including antibiotics, which have been well studied for their antibacterial properties but less so as signaling molecules. Previous results indicated that the lipopeptide bacillomycin D is a signal that promotes biofilm development of Bacillus velezensis SQR9. However, the mechanism behind this signaling is still unknown. Here, we show that bacillomycin D promotes biofilm development by promoting the acquisition of iron. Bacillomycin D promotes the transcription of the iron ABC transporter FeuABC by binding to its transcription factor, Btr. These actions increase intracellular iron concentration and activate the KinB-Spo0A-SinI-SinR-dependent synthesis of biofilm matrix components. We demonstrate that this strategy is beneficial for biofilm development and competition with the Pseudomonas fluorescens PF-5. Our results unravel an antibiotic-dependent signaling mechanism that links iron acquisition to biofilm development and ecological competition.
Collapse
Affiliation(s)
- Zhihui Xu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, Peoples R China
| | - Ines Mandic-Mulec
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Huihui Zhang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, Peoples R China
| | - Yan Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, Peoples R China
| | - Xinli Sun
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, Peoples R China
| | - Haichao Feng
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, Peoples R China
| | - Weibing Xun
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, Peoples R China
| | - Nan Zhang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, Peoples R China
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, Peoples R China
| | - Ruifu Zhang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, Peoples R China; Key Laboratory of Microbial Resource Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agriculture Sciences, Beijing, Peoples R China.
| |
Collapse
|
13
|
Zhang Y, Zheng J. Bioinformatics of Metalloproteins and Metalloproteomes. Molecules 2020; 25:molecules25153366. [PMID: 32722260 PMCID: PMC7435645 DOI: 10.3390/molecules25153366] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 12/14/2022] Open
Abstract
Trace metals are inorganic elements that are required for all organisms in very low quantities. They serve as cofactors and activators of metalloproteins involved in a variety of key cellular processes. While substantial effort has been made in experimental characterization of metalloproteins and their functions, the application of bioinformatics in the research of metalloproteins and metalloproteomes is still limited. In the last few years, computational prediction and comparative genomics of metalloprotein genes have arisen, which provide significant insights into their distribution, function, and evolution in nature. This review aims to offer an overview of recent advances in bioinformatic analysis of metalloproteins, mainly focusing on metalloprotein prediction and the use of different metals across the tree of life. We describe current computational approaches for the identification of metalloprotein genes and metal-binding sites/patterns in proteins, and then introduce a set of related databases. Furthermore, we discuss the latest research progress in comparative genomics of several important metals in both prokaryotes and eukaryotes, which demonstrates divergent and dynamic evolutionary patterns of different metalloprotein families and metalloproteomes. Overall, bioinformatic studies of metalloproteins provide a foundation for systematic understanding of trace metal utilization in all three domains of life.
Collapse
Affiliation(s)
- Yan Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China;
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
- Correspondence: ; Tel.: +86-755-2692-2024
| | - Junge Zheng
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China;
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
14
|
Lianou A, Nychas GJE, Koutsoumanis KP. Strain variability in biofilm formation: A food safety and quality perspective. Food Res Int 2020; 137:109424. [PMID: 33233106 DOI: 10.1016/j.foodres.2020.109424] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 12/20/2022]
Abstract
The inherent differences in microbial behavior among identically treated strains of the same microbial species, referred to as "strain variability", are regarded as an important source of variability in microbiological studies. Biofilms are defined as the structured multicellular communities with complex architecture that enable microorganisms to grow adhered to abiotic or living surfaces and constitute a fundamental aspect of microbial ecology. The research studies assessing the strain variability in biofilm formation are relatively few compared to the ones evaluating other aspects of microbial behavior such as virulence, growth and stress resistance. Among the available research data on intra-species variability in biofilm formation, compiled and discussed in the present review, most of them refer to foodborne pathogens as compared to spoilage microorganisms. Molecular and physiological aspects of biofilm formation potentially related to strain-specific responses, as well as information on the characterization and quantitative description of this type of biological variability are presented and discussed. Despite the considerable amount of available information on the strain variability in biofilm formation, there are certain data gaps and still-existing challenges that future research should cover and address. Current and future advances in systems biology and omics technologies are expected to aid significantly in the explanation of phenotypic strain variability, including biofilm formation variability, allowing for its integration in microbiological risk assessment.
Collapse
Affiliation(s)
- Alexandra Lianou
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Athens 11855, Greece
| | - George-John E Nychas
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Athens 11855, Greece
| | - Konstantinos P Koutsoumanis
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Technology, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| |
Collapse
|
15
|
Zhang M, Zhang X, Tong L, Ou D, Wang Y, Zhang J, Wu Q, Ye Y. Random Mutagenesis Applied to Reveal Factors Involved in Oxidative Tolerance and Biofilm Formation in Foodborne Cronobacter malonaticus. Front Microbiol 2019; 10:877. [PMID: 31118922 PMCID: PMC6504702 DOI: 10.3389/fmicb.2019.00877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 04/05/2019] [Indexed: 12/16/2022] Open
Abstract
Cronobacter species are linked with life-treating diseases in neonates and show strong tolerances to environmental stress. However, the information about factors involved in oxidative tolerance in Cronobacter remains elusive. Here, factors involved in oxidative tolerance in C. malonaticus were identified using a transposon mutagenesis. Eight mutants were successfully screened based on a comparison of the growth of strains from mutant library (n = 215) and wild type (WT) strain under 1.0 mM H2O2. Mutating sites including thioredoxin 2, glutaredoxin 3, pantothenate kinase, serine/threonine protein kinase, pyruvate kinase, phospholipase A, ferrous iron transport protein A, and alanine racemase 2 were successfully identified by arbitrary PCR and sequencing alignment. Furthermore, the comparison about quantity and structure of biofilms formation among eight mutants and WT was determined using crystal violet staining (CVS), scanning electron microscopy (SEM), and confocal laser scanning microscopy (CLSM). Results showed that the biofilms of eight mutants significantly decreased within 48 h compared to that of WT, suggesting that mutating genes play important roles in biofilm formation under oxidative stress. The findings provide valuable information for deeply understanding molecular mechanism about oxidative tolerance of C. malonaticus.
Collapse
Affiliation(s)
- Maofeng Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, China.,State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China
| | - Xiyan Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, China
| | - Liaowang Tong
- School of Food Science and Engineering, Hefei University of Technology, Hefei, China
| | - Dexin Ou
- School of Food Science and Engineering, Hefei University of Technology, Hefei, China
| | - Yaping Wang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, China
| | - Jumei Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China
| | - Yingwang Ye
- School of Food Science and Engineering, Hefei University of Technology, Hefei, China.,State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China
| |
Collapse
|
16
|
Zhang Y, Ying H, Xu Y. Comparative genomics and metagenomics of the metallomes. Metallomics 2019; 11:1026-1043. [DOI: 10.1039/c9mt00023b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent achievements and advances in comparative genomic and metagenomic analyses of trace metals were reviewed and discussed.
Collapse
Affiliation(s)
- Yan Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology
- College of Life Sciences and Oceanography
- Shenzhen University
- Shenzhen
- P. R. China
| | - Huimin Ying
- Department of Endocrinology
- Hangzhou Xixi Hospital
- Hangzhou
- P. R. China
| | - Yinzhen Xu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology
- College of Life Sciences and Oceanography
- Shenzhen University
- Shenzhen
- P. R. China
| |
Collapse
|
17
|
Zeng Q, Xie J, Li Y, Gao T, Xu C, Wang Q. Comparative genomic and functional analyses of four sequenced Bacillus cereus genomes reveal conservation of genes relevant to plant-growth-promoting traits. Sci Rep 2018; 8:17009. [PMID: 30451927 PMCID: PMC6242881 DOI: 10.1038/s41598-018-35300-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/30/2018] [Indexed: 12/31/2022] Open
Abstract
Some Bacillus strains function as predominant plant-growth-promoting rhizobacteria. Bacillus cereus 905 is a rod-shaped Gram-positive bacterium isolated from wheat rhizosphere and is a rhizobacterium that exhibits significant plant-growth-promoting effects. Species belonging to the genus Bacillus are observed in numerous different habitats. Several papers on B. cereus are related to pathogens that causes food-borne illness and industrial applications. However, genomic analysis of plant-associated B. cereus has yet to be reported. Here, we conducted a genomic analysis comparing strain 905 with three other B. cereus strains and investigate the genomic characteristics and evolution traits of the species in different niches. The genome sizes of four B. cereus strains range from 5.38 M to 6.40 M, and the number of protein-coding genes varies in the four strains. Comparisons of the four B. cereus strains reveal 3,998 core genes. The function of strain-specific genes are related to carbohydrate, amino acid and coenzyme metabolism and transcription. Analysis of single nucleotide polymorphisms (SNPs) indicates local diversification of the four strains. SNPs are unevenly distributed throughout the four genomes, and function interpretation of regions with high SNP density coincides with the function of strain-specific genes. Detailed analysis indicates that certain SNPs contribute to the formation of strain-specific genes. By contrast, genes related to plant-growth-promoting traits are highly conserved. This study shows the genomic differences between four strains from different niches and provides an in-depth understanding of the genome architecture of these species, thus facilitating genetic engineering and agricultural applications in the future.
Collapse
Affiliation(s)
- Qingchao Zeng
- Key Laboratory of Plant Pathology, Ministry of Agriculture, College of Plant Protection, China Agricultural University, Beijing, 100193, P. R. China
| | - Jianbo Xie
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Yan Li
- Key Laboratory of Plant Pathology, Ministry of Agriculture, College of Plant Protection, China Agricultural University, Beijing, 100193, P. R. China
| | - Tantan Gao
- Key Laboratory of Plant Pathology, Ministry of Agriculture, College of Plant Protection, China Agricultural University, Beijing, 100193, P. R. China
| | - Cheng Xu
- Key Laboratory of Plant Pathology, Ministry of Agriculture, College of Plant Protection, China Agricultural University, Beijing, 100193, P. R. China
| | - Qi Wang
- Key Laboratory of Plant Pathology, Ministry of Agriculture, College of Plant Protection, China Agricultural University, Beijing, 100193, P. R. China.
| |
Collapse
|
18
|
Eze EC, Chenia HY, El Zowalaty ME. Acinetobacter baumannii biofilms: effects of physicochemical factors, virulence, antibiotic resistance determinants, gene regulation, and future antimicrobial treatments. Infect Drug Resist 2018; 11:2277-2299. [PMID: 30532562 PMCID: PMC6245380 DOI: 10.2147/idr.s169894] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Acinetobacter baumannii is a leading cause of nosocomial infections due to its increased antibiotic resistance and virulence. The ability of A. baumannii to form biofilms contributes to its survival in adverse environmental conditions including hospital environments and medical devices. A. baumannii has undoubtedly propelled the interest of biomedical researchers due to its broad range of associated infections especially in hospital intensive care units. The interplay among microbial physicochemistry, alterations in the phenotype and genotypic determinants, and the impact of existing ecological niche and the chemistry of antimicrobial agents has led to enhanced biofilm formation resulting in limited access of drugs to their specific targets. Understanding the triggers to biofilm formation is a step towards limiting and containing biofilm-associated infections and development of biofilm-specific countermeasures. The present review therefore focused on explaining the impact of environmental factors, antimicrobial resistance, gene alteration and regulation, and the prevailing microbial ecology in A. baumannii biofilm formation and gives insights into prospective anti-infective treatments.
Collapse
Affiliation(s)
- Emmanuel C Eze
- Virology and Microbiology Research Group, School of Health Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa,
| | - Hafizah Y Chenia
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mohamed E El Zowalaty
- Virology and Microbiology Research Group, School of Health Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa,
| |
Collapse
|
19
|
Hussain MS, Kwon M, Oh DH. Impact of manganese and heme on biofilm formation of Bacillus cereus food isolates. PLoS One 2018; 13:e0200958. [PMID: 30048488 PMCID: PMC6062052 DOI: 10.1371/journal.pone.0200958] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/04/2018] [Indexed: 12/02/2022] Open
Abstract
The objective of this study was to determine the impact of manganese (Mn2+) and heme on the biofilm formation characteristics of six B. cereus food isolates and two reference strains (ATCC 10987 and ATCC 14579). The data obtained from the crystal violet assay revealed that addition of a combination of Mn2+ and heme to BHI growth medium induced B. cereus biofilm formation. However, the induction of biofilm formation was strictly strain-dependent. In all of the induced strains, the impact of Mn2+ was greater than that of heme. The impact of these two molecules on the phenotypic characteristics related to biofilm formation, such as cell density, sporulation and swarming ability, was determined in a selected food isolate (GIHE 72-5). Addition of Mn2+ and heme to BHI significantly (p < 0.05) increased the number of cells, which was correlated with the results of crystal violet assays as well as scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) analyses. In addition, induced biofilms showed higher numbers of spores and greater resistance to benzalkonium chloride. The swarming ability of B. cereus planktonic cells was increased in the presence of Mn2+ and heme in BHI. The expression levels of a number of selected genes, which are involved in mobility and extracellular polymeric substances (EPS) formation in B. cereus, were positively correlated with biofilm formation in the presence of Mn2+ and heme in BHI. These results further confirming the role of these molecules in swarming mobility and making matrix components related to B. cereus biofilm formation. These data indicate that signaling molecules present in the food environment might substantially trigger B. cereus biofilm formation, which could pose a threat to the food industry.
Collapse
Affiliation(s)
- Mohammad Shakhawat Hussain
- Department of Food Science and Biotechnology, College of Agriculture & Life Science, Kangwon National University, Chuncheon, Gangwon, South Korea
| | - Minyeong Kwon
- Department of Food Science and Biotechnology, College of Agriculture & Life Science, Kangwon National University, Chuncheon, Gangwon, South Korea
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture & Life Science, Kangwon National University, Chuncheon, Gangwon, South Korea
| |
Collapse
|
20
|
Teng T, Xi B, Chen K, Pan L, Xie J, Xu P. Comparative transcriptomic and proteomic analyses reveal upregulated expression of virulence and iron transport factors of Aeromonas hydrophila under iron limitation. BMC Microbiol 2018; 18:52. [PMID: 29866030 PMCID: PMC5987420 DOI: 10.1186/s12866-018-1178-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 04/05/2018] [Indexed: 12/26/2022] Open
Abstract
Background Iron plays important roles in the growth, reproduction and pathogenicity of Aeromonas hydrophila. In this study, we detected and compared the mRNA and protein expression profiles of A. hydrophila under normal and iron restricted medium with 200 μM 2,2-Dipyridyl using RNA Sequencing (RNA-seq) and isobaric tags for relative and absolute quantification (iTRAQ) analyses. Results There were 1204 genes (601 up- and 603 down-regulated) and 236 proteins (90 up- and 146 down-regulated) shown to be differentially expressed, and 167 genes and proteins that showed consistent expression. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that the differentially expressed genes and proteins were mainly involved in iron ion transport, protein activity, energy metabolism and virulence processes. Further validation of the RNA-seq and iTRAQ results by quantitative real-time PCR (qPCR) revealed that 18 of the 20 selected genes were consistently expressed. The iron-ion absorption and concentration of A. hydrophila under iron-limited conditions were enhanced, and most virulence factors (protease activity, hemolytic activity, lipase activity, and swimming ability) were also increased. Artificial A. hydrophila infection caused higher mortality in cyprinid Megalobrama amblycephala under iron-limited conditions. Conclusion Understanding the responses of pathogenic Aeromonas hydrophila within the hostile environment of the fish host, devoid of free iron, is important to reveal bacterial infection and pathogenesis. This study further confirmed the previous finding that iron-limitation efficiently enhanced the virulence of A. hydrophila using multi-omics analyses. We identified differentially expressed genes and proteins, related to enterobactin synthesis and virulence establishment, that play important roles in addressing iron scarcity. Electronic supplementary material The online version of this article (10.1186/s12866-018-1178-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tao Teng
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.,Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Bingwen Xi
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.,Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Kai Chen
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Liangkun Pan
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Jun Xie
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China. .,Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China. .,Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| |
Collapse
|
21
|
Cao K, Zhang J, Miao XY, Wei QX, Zhao XL, He QY, Sun X. Evolution and molecular mechanism of PitAs in iron transport of Streptococcus species. J Inorg Biochem 2018; 182:113-123. [PMID: 29455001 DOI: 10.1016/j.jinorgbio.2018.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/05/2018] [Accepted: 02/07/2018] [Indexed: 12/24/2022]
Abstract
Iron is an essential element for almost all bacteria. The iron ATP-binding cassette (ABC) transporters located on the cell membrane affects bacterial virulence and infection. Although a variety of Fe3+-transporters have been found in bacteria, their evolutionary processes are rarely studied. Pneumococcal iron ABC transporter (PitA), a highly conserved Fe3+-transporter in most pathogenic bacteria, influences the capsule formation and virulence of bacteria. However, multiple sequence alignment revealed that PitA is expressed in four different variants in bacteria, and the structural complexity of these variants increases progressively. To more efficiently import Fe3+ ions into bacterial cells, bacteria have evolved a fused PitA from two separately expressed PitA-1 (SPD_0227) and PitA-2 (SPD_0226) proteins. Further biochemical characterization indicated that both PitA-1 and PitA-2 have weaker Fe3+-binding ability than their protein complex. More importantly, Glutathione S-Transferase (GST) pull-down and isothermal titration calorimetry (ITC) detection showed that PitA-1 and PitA-2 interact with each other via Tyr111-Leu37, Asn112-Gln38, Asn103-Leu33, and Asn103-Thr34. Further molecular dynamics (MD) simulations demonstrated that this interaction in full-length PitA is stronger than that in the two individual proteins. Deletion of PitA family genes could lead to decrease in the ability of iron acquisition and of adhesion and invasion of S. pneumoniae. Our study revealed the evolving state and molecular mechanism of Fe3+-transporter PitAs in bacteria and provided important information for understanding the iron transportation mechanism in bacteria and designing new antibacterial drugs.
Collapse
Affiliation(s)
- Kun Cao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jing Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xin-Yu Miao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qiu-Xia Wei
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xin-Lu Zhao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qing-Yu He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Xuesong Sun
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
22
|
Oliveira F, França Â, Cerca N. Staphylococcus epidermidis is largely dependent on iron availability to form biofilms. Int J Med Microbiol 2017; 307:552-563. [DOI: 10.1016/j.ijmm.2017.08.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/25/2017] [Accepted: 08/23/2017] [Indexed: 10/19/2022] Open
|
23
|
Zhang F, Li Y, Xun Z, Zhang Q, Liu H, Chen F. A preliminary study on the relationship between iron and black extrinsic tooth stain in children. Lett Appl Microbiol 2017; 64:424-429. [PMID: 28266718 DOI: 10.1111/lam.12728] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 02/06/2017] [Accepted: 02/06/2017] [Indexed: 12/14/2022]
Abstract
Black extrinsic tooth stain, which has long troubled many people, is common among children and influences the aesthetics of teeth. The pigment was proposed to be a black insoluble ferric compound, but this is controversial. To determine whether iron exists in black stain, we collected 10 samples of black stain and 10 samples of plaque separately from children with and without black stain using sterile titanium implant curettes, and analysed the samples by inductively coupled plasma-mass spectrometry. Iron was present in both black stain and plaque, with concentrations ranging from 76·12 to 1116·88 μg g-1 . The contents of iron in black stain were significantly higher than in plaque. Because bacteria may be involved in the aetiology of black stain, we assessed the functional genes of bacteria in black stain based on 16S rRNA gene sequencing results obtained using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States. Of 253 Kyoto Encyclopedia of Gene and Genomes (KEGG) pathways tested, 56 differed in abundance between samples from children with and without black stain. Genera altered in black stain were related to many of the pathways. Some KEGG Orthology groups showed differences between black stain and plaque of control group were found to be related to iron. SIGNIFICANCE AND IMPACT OF THE STUDY In this study, we have confirmed the existence of iron in black extrinsic tooth stain by ICP-MS. It was the first time the functional genes of bacteria in black stain were accessed and the genes associated with iron were found. These findings provided clues on the research of aetiology of black stain, which troubled millions of children. It also revealed the association between metabolic pathway of microbiota and oral phenomenon.
Collapse
Affiliation(s)
- F Zhang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Y Li
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Z Xun
- Central Laboratory, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Q Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - H Liu
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - F Chen
- Central Laboratory, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| |
Collapse
|
24
|
Transferrin Impacts Bacillus thuringiensis Biofilm Levels. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3628268. [PMID: 28025643 PMCID: PMC5153491 DOI: 10.1155/2016/3628268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 01/17/2023]
Abstract
The present study examined the impact of transferrin on Bacillus thuringiensis biofilms. Three commercial strains, an environmental strain (33679), the type strain (10792), and an isolate from a diseased insect (700872), were cultured in iron restricted minimal medium. All strains produced biofilm when grown in vinyl plates at 30°C. B. thuringiensis 33679 had a biofilm biomass more than twice the concentration exhibited by the other strains. The addition of transferrin resulted in slightly increased growth yields for 2 of the 3 strains tested, including 33679. In contrast, the addition of 50 μg/mL of transferrin resulted in an 80% decrease in biofilm levels for strain 33679. When the growth temperature was increased to 37°C, the addition of 50 μg/mL of transferrin increased culture turbidity for only strain 33679. Biofilm levels were again decreased in strain 33679 at 37°C. Growth of B. thuringiensis cultures in polystyrene resulted in a decrease in overall growth yields at 30°C, with biofilm levels significantly decreased for 33679 in the presence of transferrin. These findings demonstrate that transferrin impacts biofilm formation in select strains of B. thuringiensis. Identification of these differences in biofilm regulation may be beneficial in elucidating potential virulence mechanisms among the differing strains.
Collapse
|