1
|
Aydin F, Kayman T, Abay S, Hizlisoy H, Saticioğlu İB, Karakaya E, Sahin O. MLST genotypes and quinolone resistance profiles of Campylobacter jejuni isolates from various sources in Turkey. Int J Food Microbiol 2023; 391-393:110137. [PMID: 36842255 DOI: 10.1016/j.ijfoodmicro.2023.110137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/17/2023] [Accepted: 02/10/2023] [Indexed: 02/22/2023]
Abstract
This study was conducted to determine the overall genetic diversity, as well as prevalence and mechanisms of resistance to quinolone antibiotics of 178 Campylobacter jejuni isolated from humans, cattle, dogs, and chickens in Turkey. Multilocus sequence typing (MLST) and E-test were performed for genotyping and antimicrobial susceptibility testing, respectively. Mismatch Amplification Mutation Assay, Polymerase Chain Reaction (MAMA-PCR) was used to detect point mutations associated with quinolone resistance. Of the 178 isolates tested, 151 were included in 21 clonal complexes (CCs); the remaining 27 isolates did not belong to any existing CCs. CC21, CC353, CC206, and CC257 were the predominant clones, representing 38 % of all C. jejuni isolates tested. The isolates were assigned to 78 different sequence types (STs), three of which were novel (ST 8082, ST 8083, and ST 8084). Resistance to quinolones was found in 73 (41 %) of the isolates (42.85 %, 2.85 %, 20.58 %, and 43.75 % in human, cattle, dog, and chicken isolates, respectively). All of the resistant isolates had Thr-86-Ile mutation in the gyrA gene. The highest Sorensen coefficient index was detected for human/chicken meat and human/dog C. jejuni isolates (Ss = 0.71), suggesting a strong link between the isolates from respective sources. The Simpson diversity index of C. jejuni isolates analyzed was detected between 0.92 and 0.98. The study provides detailed information on the quinolone resistance and MLST-based genetic relatedness of C. jejuni isolates from humans, cattle, dog, and broiler meat in Turkey for the first time, enabling a better understanding of the transmission pathways of C. jejuni in this country. Our results suggest that broiler meat and dogs may be the most important sources of human campylobacteriosis in Turkey.
Collapse
Affiliation(s)
- Fuat Aydin
- Erciyes University, Faculty of Veterinary Medicine, Department of Microbiology, Kayseri, Türkiye
| | - Tuba Kayman
- Kırıkkale University, Faculty of Medicine, Department of Medical Microbiology, Kırıkkale, Türkiye
| | - Seçil Abay
- Erciyes University, Faculty of Veterinary Medicine, Department of Microbiology, Kayseri, Türkiye.
| | - Harun Hizlisoy
- Erciyes University, Faculty of Veterinary Medicine, Department of Veterinary Public Health, Kayseri, Türkiye
| | - İzzet Burçin Saticioğlu
- Bursa Uludag University, Faculty of Veterinary Medicine, Department of Aquatic Animal Diseases, Bursa, Türkiye
| | - Emre Karakaya
- Erciyes University, Faculty of Veterinary Medicine, Department of Microbiology, Kayseri, Türkiye
| | - Orhan Sahin
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, USA
| |
Collapse
|
2
|
Comparative meta-analysis of antimicrobial resistance from different food sources along with one health approach in Italy and Thailand. One Health 2022; 16:100477. [PMID: 36593979 PMCID: PMC9803827 DOI: 10.1016/j.onehlt.2022.100477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Antimicrobial resistance (AMR) is increasing worldwide due to overuse, misuse and incomplete treatment of antibiotics. Many countries are facing the excessive issue due to the spreading of AMR not only in humans and animals, but also in water and agri-food sector. Our main aim was to perform a competitive meta-analysis of surveillance-resistant microbes and their antimicrobial superintendence in Italy and Thailand. Data have been collected from reports published for the period 2012-2021. A total of 9507 and 11,753 food samples contained 3905 (41.07%) and 3526 (30%) AMR bacteria in Italy and Thailand, respectively. In Italy, the highest microbial prevalence was β-lactam and tetracycline, while in Thailand mostly isolates showed resistance to cephalosporin and aminoglycoside. Our findings contribute to highlighting the increment of AMR related to different microbes with tendency to become multidrug resistant.
Collapse
|
3
|
Agbankpe AJ, Kougblenou SD, Dougnon TV, Oussou A, Gbotche E, Koudokpon CH, Legba BB, Baba-Moussa L, Bankole HS. Prevalence and Antimicrobial Resistance of Campylobacter coli and Campylobacter jejuni Isolated from Pig Guts, Pig Feces, and Surface Swabs from the Cutting Tables at Slaughterhouse and Taverns in Southern Benin. Int J Microbiol 2022; 2022:5120678. [PMID: 36212611 PMCID: PMC9536969 DOI: 10.1155/2022/5120678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/01/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Campylobacter food-borne infections are a serious public health problem. In Benin, there is a proliferation of pork consumption in several forms. This study aims to determine the prevalence and the antimicrobial resistance of Campylobacter coli and Campylobacter jejuni strains isolated from pig guts, pig feces, and surface swabs from the cutting tables in southern Benin. For this purpose, 200 samples of pig guts, 40 samples of swabs from the cutting table surface, and 8 samples of pig feces were collected and subjected to bacteriological examination. The method used for the identification of bacteria was microbiological culture combined with molecular identification by PCR. The identified strains were then subjected to antibiotic susceptibility testing according to the methodology recommended by the EUCAST. Antibiotic profiles were compared between strains isolated from pig guts, pig feces, and cutting table surfaces on the one hand and among the different sampling sites on the other hand. The results obtained show that 47.6% of the samples analyzed were contaminated by Campylobacter spp. Molecular identification revealed 34.7% of Campylobacter coli and 9.3% of Campylobacter jejuni. The study of antimicrobial susceptibility showed resistance to ciprofloxacin, 44% to ampicillin, 23.9% to erythromycin, 11% to gentamicin, and 10.1% to amoxicillin + clavulanic acid. In total, 90.8% of the isolated Campylobacter strains were multidrug resistant. The use of antimicrobials in livestock production systems has increased considerably, which could explain, at least partially, the prevalence of Campylobacter and the resistance of strains to antibiotics. To limit the risk of Campylobacter food-borne infections, it is therefore important to include Campylobacter in the list of pathogens to be tested during sanitary quality control of meat and meat products in Benin.
Collapse
Affiliation(s)
- Alidehou Jerrold Agbankpe
- Research Unit in Applied Microbiology and Pharmacology of Natural Substances, Research Laboratory in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, P.O. Box 2009, Cotonou 01, Benin
| | - Sylvain D. Kougblenou
- Laboratory of Food Microbiology, Ministry of Health, P.O. Box 418, Cotonou 01, Benin
| | - Tamegnon Victorien Dougnon
- Research Unit in Applied Microbiology and Pharmacology of Natural Substances, Research Laboratory in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, P.O. Box 2009, Cotonou 01, Benin
| | - Alida Oussou
- Research Unit in Applied Microbiology and Pharmacology of Natural Substances, Research Laboratory in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, P.O. Box 2009, Cotonou 01, Benin
| | - Elodie Gbotche
- Research Unit in Applied Microbiology and Pharmacology of Natural Substances, Research Laboratory in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, P.O. Box 2009, Cotonou 01, Benin
| | - Charles Hornel Koudokpon
- Research Unit in Applied Microbiology and Pharmacology of Natural Substances, Research Laboratory in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, P.O. Box 2009, Cotonou 01, Benin
| | - Brice Boris Legba
- Research Unit in Applied Microbiology and Pharmacology of Natural Substances, Research Laboratory in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, P.O. Box 2009, Cotonou 01, Benin
| | - Lamine Baba-Moussa
- Laboratory of Biology and Molecular Typing in Microbiology, Faculty of Science and Technology, University of Abomey-Calavi, P.O. Box 1604, Cotonou 05, Benin
| | - Honore Sourou Bankole
- Research Unit in Applied Microbiology and Pharmacology of Natural Substances, Research Laboratory in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, P.O. Box 2009, Cotonou 01, Benin
| |
Collapse
|
4
|
Taghizadeh M, Nematollahi A, Bashiry M, Javanmardi F, Mousavil M, Hosseini H. The global prevalence of Campylobacter spp. in milk A systematic review and meta-analysis. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
5
|
Conesa A, Garofolo G, Di Pasquale A, Cammà C. Monitoring AMR in Campylobacter jejuni from Italy in the last 10 years (2011-2021): Microbiological and WGS data risk assessment. EFSA J 2022; 20:e200406. [PMID: 35634560 PMCID: PMC9131813 DOI: 10.2903/j.efsa.2022.e200406] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Campylobacter jejuni is considered as the main pathogen in human food-borne outbreaks worldwide. Over the past years, several studies have reported antimicrobial resistance (AMR) in C. jejuni strains. In Europe, the official monitoring of AMR comprises the testing of Campylobacter spp. from food-producing animals because this microorganism is responsible for human infections and usually predominant in poultry. Food-producing animals are considered to be a major source of campylobacteriosis through contamination of food products. Concerns are growing due to the current classification of C. jejuni by the WHO as a 'high priority pathogen' due to the emergence of resistance to multiple drugs such as those belonging to the fluoroquinolones, macrolides and other classes, which limits the treatment alternatives. Knowledge about the contributions of different food sources to gastrointestinal disease is fundamental to prioritise food safety interventions and to establish proper control strategies. Assessing the genetic diversity among Campylobacter species is essential to the understanding of their epidemiology and population structure. Using a population genetic approach and grouping the isolates into sequence types within different clonal complexes, it is possible to investigate the source of the human cases. The work programme was aimed for the fellow to assess the AMR of C. jejuni isolated from humans, poultry and birds from wild and urban Italian habitats. Given the public health concern represented by resistant pathogens in food-producing animals and the paucity of data about this topic in Italy, the aim was to identify correlations between phenotypic and genotypic AMR and comparing the origin of the isolates. The work programme allowed the fellow to acquire knowledge, skills and competencies on the web-based tools used by IZSAM to process the NGS data and perform bioinformatics analyses for the identification of epidemiological clusters, the study of AMR patterns in C. jejuni isolates, and the assessment of the human exposure to such AMR pathogens. Furthermore, the fellow became able to transfer the acquired knowledge through innovative web-based didactical tools applied to WGS and clustering of specific food-borne pathogens, with particular reference to C. jejuni. To achieve this objective, 2,734 C. jejuni strains isolated from domestic and wild animals and humans, during the period 2011-2021 were analysed. The resistance phenotypes of the isolates were determined using the microdilution method with EUCAST breakpoints, for the following antibiotics: nalidixic acid, ciprofloxacin, chloramphenicol, erythromycin, gentamicin, streptomycin, tetracycline. The data were complemented by WGS data for each strain, uploaded in the Italian information system for the collection and analysis of complete genome sequence of pathogens isolated from animal, food and environment (GENPAT) developed and maintained at IZSAM; information like clonal complex and sequence type to understand the phylogenetical distance between strains according to their origins were also considered. This work underlines that a better knowledge of the resistance levels of C. jejuni is necessary, and mandatory monitoring of Campylobacter species in the different animal productions is strongly suggested.
Collapse
Affiliation(s)
- A Conesa
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise Giuseppe Caporale – IZSAMTeramoItaly
| | - G Garofolo
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise Giuseppe Caporale – IZSAMTeramoItaly
| | - A Di Pasquale
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise Giuseppe Caporale – IZSAMTeramoItaly
| | - C Cammà
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise Giuseppe Caporale – IZSAMTeramoItaly
| |
Collapse
|
6
|
Wysok B, Sołtysiuk M, Stenzel T. Wildlife Waterfowl as a Source of Pathogenic Campylobacter Strains. Pathogens 2022; 11:113. [PMID: 35215056 PMCID: PMC8879909 DOI: 10.3390/pathogens11020113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The aim of the study was to determine whether free-living birds belonging to game species whose meat is used for human consumption can constitute a reservoir of pathogenic Campylobacter strains, spreading these bacteria to other hosts or directly contributing to human infection. METHODS A total of 91 cloacal swabs were taken from different species of wildlife waterfowl to estimate the Campylobacter prevalence, the genetic diversity of the isolates, and the presence of virulence genes and to evaluate the antimicrobial resistance. RESULTS The presence of Campylobacter spp. was confirmed in 32.9% of samples. Based on flaA-SVR sequencing, a total of 19 different alleles among the tested Campylobacter isolates were revealed. The virulence genes involved in adhesion were detected at high frequencies among Campylobacter isolates regardless of the host species. The highest resistance was observed for ciprofloxacin. The resistance rates to erythromycin and tetracycline were observed at the same level. CONCLUSIONS These results suggest that wildlife waterfowl belonging to game species may constitute a reservoir of Campylobacter, spreading these bacteria to other hosts or directly contributing to human disease. The high distribution of virulence-associated genes among wildlife waterfowl Campylobacter isolates make them potentially able to induce infection in humans.
Collapse
Affiliation(s)
- Beata Wysok
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.W.); (M.S.)
| | - Marta Sołtysiuk
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (B.W.); (M.S.)
| | - Tomasz Stenzel
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| |
Collapse
|
7
|
Hudson LK, Andershock WE, Yan R, Golwalkar M, M’ikanatha NM, Nachamkin I, Thomas LS, Moore C, Qian X, Steece R, Garman KN, Dunn JR, Kovac J, Denes TG. Phylogenetic Analysis Reveals Source Attribution Patterns for Campylobacter spp. in Tennessee and Pennsylvania. Microorganisms 2021; 9:microorganisms9112300. [PMID: 34835426 PMCID: PMC8625337 DOI: 10.3390/microorganisms9112300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/22/2022] Open
Abstract
Campylobacteriosis is the most common bacterial foodborne illness in the United States and is frequently associated with foods of animal origin. The goals of this study were to compare clinical and non-clinical Campylobacter populations from Tennessee (TN) and Pennsylvania (PA), use phylogenetic relatedness to assess source attribution patterns, and identify potential outbreak clusters. Campylobacter isolates studied (n = 3080) included TN clinical isolates collected and sequenced for routine surveillance, PA clinical isolates collected from patients at the University of Pennsylvania Health System facilities, and non-clinical isolates from both states for which sequencing reads were available on NCBI. Phylogenetic analyses were conducted to categorize isolates into species groups and determine the population structure of each species. Most isolates were C. jejuni (n = 2132, 69.2%) and C. coli (n = 921, 29.9%), while the remaining were C. lari (0.4%), C. upsaliensis (0.3%), and C. fetus (0.1%). The C. jejuni group consisted of three clades; most non-clinical isolates were of poultry (62.7%) or cattle (35.8%) origin, and 59.7 and 16.5% of clinical isolates were in subclades associated with poultry or cattle, respectively. The C. coli isolates grouped into two clades; most non-clinical isolates were from poultry (61.2%) or swine (29.0%) sources, and 74.5, 9.2, and 6.1% of clinical isolates were in subclades associated with poultry, cattle, or swine, respectively. Based on genomic similarity, we identified 42 C. jejuni and one C. coli potential outbreak clusters. The C. jejuni clusters contained 188 clinical isolates, 19.6% of the total C. jejuni clinical isolates, suggesting that a larger proportion of campylobacteriosis may be associated with outbreaks than previously determined.
Collapse
Affiliation(s)
- Lauren K. Hudson
- Department of Food Science, University of Tennessee, Knoxville, TN 37996, USA;
| | | | - Runan Yan
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA; (R.Y.); (J.K.)
| | - Mugdha Golwalkar
- Tennessee Department of Health, Nashville, TN 37243, USA; (M.G.); (K.N.G.); (J.R.D.)
| | | | - Irving Nachamkin
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Linda S. Thomas
- Division of Laboratory Services, Tennessee Department of Health, Nashville, TN 37216, USA; (L.S.T.); (C.M.); (X.Q.); (R.S.)
| | - Christina Moore
- Division of Laboratory Services, Tennessee Department of Health, Nashville, TN 37216, USA; (L.S.T.); (C.M.); (X.Q.); (R.S.)
| | - Xiaorong Qian
- Division of Laboratory Services, Tennessee Department of Health, Nashville, TN 37216, USA; (L.S.T.); (C.M.); (X.Q.); (R.S.)
| | - Richard Steece
- Division of Laboratory Services, Tennessee Department of Health, Nashville, TN 37216, USA; (L.S.T.); (C.M.); (X.Q.); (R.S.)
| | - Katie N. Garman
- Tennessee Department of Health, Nashville, TN 37243, USA; (M.G.); (K.N.G.); (J.R.D.)
| | - John R. Dunn
- Tennessee Department of Health, Nashville, TN 37243, USA; (M.G.); (K.N.G.); (J.R.D.)
| | - Jasna Kovac
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA; (R.Y.); (J.K.)
| | - Thomas G. Denes
- Department of Food Science, University of Tennessee, Knoxville, TN 37996, USA;
- Correspondence:
| |
Collapse
|
8
|
Arning N, Sheppard SK, Bayliss S, Clifton DA, Wilson DJ. Machine learning to predict the source of campylobacteriosis using whole genome data. PLoS Genet 2021; 17:e1009436. [PMID: 34662334 PMCID: PMC8553134 DOI: 10.1371/journal.pgen.1009436] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 10/28/2021] [Accepted: 08/26/2021] [Indexed: 11/18/2022] Open
Abstract
Campylobacteriosis is among the world's most common foodborne illnesses, caused predominantly by the bacterium Campylobacter jejuni. Effective interventions require determination of the infection source which is challenging as transmission occurs via multiple sources such as contaminated meat, poultry, and drinking water. Strain variation has allowed source tracking based upon allelic variation in multi-locus sequence typing (MLST) genes allowing isolates from infected individuals to be attributed to specific animal or environmental reservoirs. However, the accuracy of probabilistic attribution models has been limited by the ability to differentiate isolates based upon just 7 MLST genes. Here, we broaden the input data spectrum to include core genome MLST (cgMLST) and whole genome sequences (WGS), and implement multiple machine learning algorithms, allowing more accurate source attribution. We increase attribution accuracy from 64% using the standard iSource population genetic approach to 71% for MLST, 85% for cgMLST and 78% for kmerized WGS data using the classifier we named aiSource. To gain insight beyond the source model prediction, we use Bayesian inference to analyse the relative affinity of C. jejuni strains to infect humans and identified potential differences, in source-human transmission ability among clonally related isolates in the most common disease causing lineage (ST-21 clonal complex). Providing generalizable computationally efficient methods, based upon machine learning and population genetics, we provide a scalable approach to global disease surveillance that can continuously incorporate novel samples for source attribution and identify fine-scale variation in transmission potential.
Collapse
Affiliation(s)
- Nicolas Arning
- Big Data institute, Nuffield Department of Population Health, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, Oxford, United Kingdom
- * E-mail:
| | - Samuel K. Sheppard
- The Milner Centre of Evolution, Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
| | - Sion Bayliss
- The Milner Centre of Evolution, Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
| | - David A. Clifton
- Department of Engineering Science, University of Oxford, Oxford, UK; Oxford-Suzhou Centre for Advanced Research, Suzhou, China
| | - Daniel J. Wilson
- Big Data institute, Nuffield Department of Population Health, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, Oxford, United Kingdom
| |
Collapse
|
9
|
Igwaran A, Okoh AI. Occurrence, Virulence and Antimicrobial Resistance-Associated Markers in Campylobacter Species Isolated from Retail Fresh Milk and Water Samples in Two District Municipalities in the Eastern Cape Province, South Africa. Antibiotics (Basel) 2020; 9:E426. [PMID: 32708075 PMCID: PMC7400711 DOI: 10.3390/antibiotics9070426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 12/02/2022] Open
Abstract
Campylobacter species are among the major bacteria implicated in human gastrointestinal infections and are majorly found in faeces of domestic animals, sewage discharges and agricultural runoff. These pathogens have been implicated in diseases outbreaks through consumption of contaminated milk and water in some parts of the globe and reports on this is very scanty in the Eastern Cape Province. Hence, this study evaluated the occurrence as well as virulence and antimicrobial-associated makers of Campylobacter species recovered from milk and water samples. A total of 56 water samples and 72 raw milk samples were collected and the samples were processed for enrichment in Bolton broth and incubated for 48 h in 10% CO2 at 42 °C under microaerobic condition. Thereafter, the enriched cultures were further processed and purified. After which, presumptive Campylobacter colonies were isolated and later confirmed by PCR using specific primers for the detection of the genus Campylobacter, target species and virulence associated genes. Antimicrobial resistance profiles of the isolates were determined by disk diffusion method against a panel of 12 antibiotics and relevant genotypic resistance genes were assessed by PCR assay. A total of 438 presumptive Campylobacter isolates were obtained; from which, 162 were identified as belonging to the genus Campylobacter of which 36.92% were obtained from water samples and 37.11% from milk samples. The 162 confirmed isolates were further delineated into four species, of which, 7.41%, 27.16% and 8.64% were identified as C. fetus, C. jejuni and C. coli respectively. Among the virulence genes screened for, the iam (32.88%) was most prevalent, followed by flgR (26.87%) gene and cdtB and cadF (5.71% each) genes. Of the 12 antibiotics tested, the highest phenotypic resistance displayed by Campylobacter isolates was against clindamycin (95.68%), while the lowest was observed against imipenem (21.47%). Other high phenotypic resistance displayed by the isolates were against erythromycin (95.06%), followed by ceftriaxone (93.21%), doxycycline (87.65%), azithromycin and ampicillin (87.04% each), tetracycline (83.33%), chloramphenicol (78.27%), ciprofloxacin (77.78%), levofloxacin (59.88%) and gentamicin (56.17%). Relevant resistance genes were assessed in the isolates that showed high phenotypic resistance, and the highest resistance gene harbored by the isolates was catII (95%) gene while VIM, KPC, Ges, bla-OXA-48-like, tetC, tetD, tetK, IMI and catI genes were not detected. The occurrence of this pathogen and the detection of virulence and antimicrobial resistance-associated genes in Campylobacter isolates recovered from milk/water samples position them a risk to human health.
Collapse
Affiliation(s)
- Aboi Igwaran
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa;
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
| | - Anthony Ifeanyi Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa;
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
| |
Collapse
|
10
|
Mäesaar M, Tedersoo T, Meremäe K, Roasto M. The source attribution analysis revealed the prevalent role of poultry over cattle and wild birds in human campylobacteriosis cases in the Baltic States. PLoS One 2020; 15:e0235841. [PMID: 32645064 PMCID: PMC7347188 DOI: 10.1371/journal.pone.0235841] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/23/2020] [Indexed: 02/04/2023] Open
Abstract
The reservoir and source of human campylobacteriosis is primarily considered to be poultry, but also other such as ruminants, pets and environmental sources are related with infection burden. Multilocus sequence typing is often used for Campylobacter epidemiological studies to determine potential sources of human infections. The collection of 420 Campylobacter jejuni isolates with assigned MLST genotype from poultry (n = 139), cattle (n = 48) and wild birds (n = 101) were used in source attribution analysis. Asymmetric island model with accurate and congruent self-attribution results, was used to determine potential sources of human C. jejuni infections (n = 132) in Baltic States. Source attribution analysis revealed that poultry (88.3%) is the main source of C. jejuni human infections followed by cattle and wild bird with 9.4% and 2.3%, respectively. Our findings demonstrated that clinical cases of C. jejuni infections in Baltic countries are mainly linked to poultry, but also to cattle and wild bird sources.
Collapse
Affiliation(s)
- Mihkel Mäesaar
- Chair of Food Hygiene and Veterinary Public Health, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
- * E-mail:
| | | | - Kadrin Meremäe
- Chair of Food Hygiene and Veterinary Public Health, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Mati Roasto
- Chair of Food Hygiene and Veterinary Public Health, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| |
Collapse
|
11
|
Core Genome Multilocus Sequence Typing for Food Animal Source Attribution of Human Campylobacter jejuni Infections. Pathogens 2020; 9:pathogens9070532. [PMID: 32630646 PMCID: PMC7400327 DOI: 10.3390/pathogens9070532] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 11/17/2022] Open
Abstract
Campylobacter jejuni is a major foodborne pathogen and common cause of bacterial enteritis worldwide. A total of 622 C. jejuni isolates recovered from food animals and retail meats in the United States through the National Antimicrobial Resistance Monitoring System between 2013 and 2017 were sequenced using an Illumina MiSeq. Sequences were combined with WGS data of 222 human isolates downloaded from NCBI and analyzed by core genome multilocus sequence typing (cgMLST) and traditional MLST. cgMLST allelic difference (AD) thresholds of 0, 5, 10, 25, 50, 100 and 200 identified 828, 734, 652, 543, 422, 298 and 197 cgMLST types among the 844 isolates, respectively, and traditional MLST identified 174 ST. The cgMLST scheme allowing an AD of 200 (cgMLST200) revealed strong correlation with MLST. cgMLST200 showed 40.5% retail chicken isolates, 56.5% swine, 77.4% dairy cattle and 78.9% beef cattle isolates shared cgMLST sequence type with human isolates. All ST-8 had the same cgMLST200 type (cgMLST200-12) and 74.3% of ST-8 and 75% cgMLST200-12 were confirmed as sheep abortion virulence clones by PorA analysis. Twenty-nine acquired resistance genes, including 21 alleles of blaOXA, tetO, aph(3′)-IIIa, ant(6)-Ia, aadE, aad9, aph(2′)-Ig, aph(2′)-Ih, sat4 plus mutations in gyrA, 23SrRNA and L22 were identified. Resistance genotypes were strongly linked with cgMLST200 type for certain groups including 12/12 cgMLST200-510 with the A103V substitution in L22 and 10/11 cgMLST200-608 with the T86I GyrA substitution associated with macrolide and quinolone resistance, respectively. In summary, the cgMLST200 threshold scheme combined with resistance genotype information could provide an excellent subtyping scheme for source attribution of human C. jejuni infections.
Collapse
|
12
|
Kouglenou SD, Agbankpe AJ, Dougnon V, Djeuda AD, Deguenon E, Hidjo M, Baba-Moussa L, Bankole H. Prevalence and susceptibility to antibiotics from Campylobacter jejuni and Campylobacter coli isolated from chicken meat in southern Benin, West Africa. BMC Res Notes 2020; 13:305. [PMID: 32591026 PMCID: PMC7318530 DOI: 10.1186/s13104-020-05150-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022] Open
Abstract
Objective Poultry is commonly considered to be the primary vehicle for Campylobacter infection in humans. The aim of this study is to assess the risk of Campylobacteriosis in chicken meat consumers in southern Benin by assessing the prevalence and resistance profile of Campylobacter coli and Campylobacter jejuni isolated from chicken thigh in Southern Benin. Results The contamination rate of Campylobacter in the samples was 32.8%. From this percentage, 59.5% were local chicken thighs and 40.5% of imported chicken thighs (p = 0.045). After molecular identification, on the 256 samples analyzed, the prevalence of C. jejuni was 23.4% and 7.8% for C. coli, with a concordance of 0.693 (Kappa coefficient of concordance) with the results from phenotypic identification. Seventy-two-point seven percent of Campylobacter strains were resistant to Ciprofloxacin, 71.4% were resistant to Ampicillin and Tetracycline. 55.8% of the strains were multi-drug resistant.
Collapse
Affiliation(s)
| | - Alidehou Jerrold Agbankpe
- Research Unit in Applied Microbiology and Pharmacology of Natural Substances, Research Laboratory in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, 01, P.O. Box 2009, Cotonou, Benin.
| | - Victorien Dougnon
- Research Unit in Applied Microbiology and Pharmacology of Natural Substances, Research Laboratory in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, 01, P.O. Box 2009, Cotonou, Benin
| | - Armando Djiyou Djeuda
- Laboratory for Public Health Research Biotechnologies, Biotechnology Center, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon
| | - Esther Deguenon
- Research Unit in Applied Microbiology and Pharmacology of Natural Substances, Research Laboratory in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, 01, P.O. Box 2009, Cotonou, Benin
| | - Marie Hidjo
- Research Unit in Applied Microbiology and Pharmacology of Natural Substances, Research Laboratory in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, 01, P.O. Box 2009, Cotonou, Benin
| | - Lamine Baba-Moussa
- Laboratory of Biology and Molecular Typing in Microbiology, Faculty of Science and Technology, University of Abomey-Calavi, 05, P.O. Box 1604, Cotonou, Benin
| | - Honore Bankole
- Laboratory of Food Microbiology, Ministry of Health, 01, P.O. Box 418, Cotonou, Benin.,Research Unit in Applied Microbiology and Pharmacology of Natural Substances, Research Laboratory in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, 01, P.O. Box 2009, Cotonou, Benin
| |
Collapse
|
13
|
Marotta F, Janowicz A, Di Marcantonio L, Ercole C, Di Donato G, Garofolo G, Di Giannatale E. Molecular Characterization and Antimicrobial Susceptibility of C. jejuni Isolates from Italian Wild Bird Populations. Pathogens 2020; 9:E304. [PMID: 32326051 PMCID: PMC7238051 DOI: 10.3390/pathogens9040304] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
Poultry is considered a major reservoir of human campylobacteriosis. It also been reported that not only poultry, but also wild birds, are capable of carrying C. jejuni, thus demonstrating to be a risk of spreading the bacteria in the environment. To gain insight into the population structure and investigate the antimicrobial resistance genotypes and phenotypes, we analyzed a collection of 135 C. jejuni from 15 species of wild birds in Italy. MLST revealed the presence of 41 sequence types (STs) and 13 clonal complexes (CCs). ST-179 complex and the generalist ST-45 complex were the most prevalent. Core genome MLST revealed that C. jejuni from ST-45 complex clustered according to the bird species, unlike the ST-179 complex which featured 3 different species in the same cluster. Overall we found a moderate prevalence of resistance to tetracycline (12.5%), ciprofloxacin and nalidixic acid (10%). The novel ST isolated from one pigeon showed resistance to all the antibiotics tested. The ST-179 complex (33.3%) was identified with significantly higher nalidixic acid resistance relative to other tested STs. Nine AMR genes (tet(O), cmeA, cmeB, cmeC, cmeR, aad, blaOXA-61, blaOXA-184 and erm(B)) and 23S rRNA and gyrA-associated point mutations were also described, indicating a concordance level between genotypic and phenotypic resistance of 23.3%, 23.4% and of 37.5% for streptomycin, tetracycline and quinolones/fluoroquinolones, respectively. We recommend that particular attention should be given to wild birds as key sentinel animals for the ecosystem contamination surveillance.
Collapse
Affiliation(s)
- Francesca Marotta
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, National Reference Laboratory for Campylobacter, 64100 Teramo, Italy; (A.J.); (L.D.M.); (G.D.D.); (G.G.); (E.D.G.)
| | - Anna Janowicz
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, National Reference Laboratory for Campylobacter, 64100 Teramo, Italy; (A.J.); (L.D.M.); (G.D.D.); (G.G.); (E.D.G.)
| | - Lisa Di Marcantonio
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, National Reference Laboratory for Campylobacter, 64100 Teramo, Italy; (A.J.); (L.D.M.); (G.D.D.); (G.G.); (E.D.G.)
| | - Claudia Ercole
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Guido Di Donato
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, National Reference Laboratory for Campylobacter, 64100 Teramo, Italy; (A.J.); (L.D.M.); (G.D.D.); (G.G.); (E.D.G.)
| | - Giuliano Garofolo
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, National Reference Laboratory for Campylobacter, 64100 Teramo, Italy; (A.J.); (L.D.M.); (G.D.D.); (G.G.); (E.D.G.)
| | - Elisabetta Di Giannatale
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, National Reference Laboratory for Campylobacter, 64100 Teramo, Italy; (A.J.); (L.D.M.); (G.D.D.); (G.G.); (E.D.G.)
| |
Collapse
|
14
|
Marotta F, Garofolo G, di Marcantonio L, Di Serafino G, Neri D, Romantini R, Sacchini L, Alessiani A, Di Donato G, Nuvoloni R, Janowicz A, Di Giannatale E. Antimicrobial resistance genotypes and phenotypes of Campylobacter jejuni isolated in Italy from humans, birds from wild and urban habitats, and poultry. PLoS One 2019; 14:e0223804. [PMID: 31603950 PMCID: PMC6788699 DOI: 10.1371/journal.pone.0223804] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/27/2019] [Indexed: 11/18/2022] Open
Abstract
Campylobacter jejuni, a common foodborne zoonotic pathogen, causes gastroenteritis worldwide and is increasingly resistant to antibiotics. We aimed to investigate the antimicrobial resistance (AMR) genotypes of C. jejuni isolated from humans, poultry and birds from wild and urban Italian habitats to identify correlations between phenotypic and genotypic AMR in the isolates. Altogether, 644 C. jejuni isolates from humans (51), poultry (526) and wild- and urban-habitat birds (67) were analysed. The resistance phenotypes of the isolates were determined using the microdilution method with EUCAST breakpoints, and AMR-associated genes and single nucleotide polymorphisms were obtained from a publicly available database. Antimicrobial susceptibility testing showed that C. jejuni isolates from poultry and humans were highly resistant to ciprofloxacin (85.55% and 76.47%, respectively), nalidixic acid (75.48% and 74.51%, respectively) and tetracycline (67.87% and 49.02%, respectively). Fewer isolates from the wild- and urban-habitat birds were resistant to tetracycline (19.40%), fluoroquinolones (13.43%), and quinolone and streptomycin (10.45%). We retrieved seven AMR genes (tet (O), cmeA, cmeB, cmeC, cmeR, blaOXA-61 and blaOXA-184) and gyrA-associated point mutations. Two major B-lactam genes called blaOXA-61 and blaOXA-184 were prevalent at 62.93% and 82.08% in the poultry and the other bird groups, respectively. Strong correlations between genotypic and phenotypic resistance were found for fluoroquinolones and tetracycline. Compared with the farmed chickens, the incidence of AMR in the C. jejuni isolates from the other bird groups was low, confirming that the food-production birds are much more exposed to antimicrobials. The improper and overuse of antibiotics in the human population and in animal husbandry has resulted in an increase in antibiotic-resistant infections, particularly fluoroquinolone resistant ones. Better understanding of the AMR mechanisms in C. jejuni is necessary to develop new strategies for improving AMR programs and provide the most appropriate therapies to human and veterinary populations.
Collapse
Affiliation(s)
- Francesca Marotta
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Giuliano Garofolo
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Lisa di Marcantonio
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Gabriella Di Serafino
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Diana Neri
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Romina Romantini
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Lorena Sacchini
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Alessandra Alessiani
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Guido Di Donato
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Roberta Nuvoloni
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - Anna Janowicz
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Elisabetta Di Giannatale
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| |
Collapse
|
15
|
Cody AJ, Maiden MC, Strachan NJ, McCarthy ND. A systematic review of source attribution of human campylobacteriosis using multilocus sequence typing. Euro Surveill 2019; 24:1800696. [PMID: 31662159 PMCID: PMC6820127 DOI: 10.2807/1560-7917.es.2019.24.43.1800696] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 06/07/2019] [Indexed: 12/31/2022] Open
Abstract
BackgroundCampylobacter is a leading global cause of bacterial gastroenteritis, motivating research to identify sources of human infection. Population genetic studies have been increasingly applied to this end, mainly using multilocus sequence typing (MLST) data.ObjectivesThis review aimed to summarise approaches and findings of these studies and identify best practice lessons for this form of genomic epidemiology.MethodsWe systematically reviewed publications using MLST data to attribute human disease isolates to source. Publications were from January 2001, when this type of approach began. Searched databases included Scopus, Web of Science and PubMed. Information on samples and isolate datasets used, as well as MLST schemes and attribution algorithms employed, was obtained. Main findings were extracted, as well as any results' validation with subsequent correction for identified biases. Meta-analysis is not reported given high levels of heterogeneity.ResultsOf 2,109 studies retrieved worldwide, 25 were included, and poultry, specifically chickens, were identified as principal source of human infection. Ruminants (cattle or sheep) were consistently implicated in a substantial proportion of cases. Data sampling and analytical approaches varied, with five different attribution algorithms used. Validation such as self-attribution of isolates from known sources was reported in five publications. No publication reported adjustment for biases identified by validation.ConclusionsCommon gaps in validation and adjustment highlight opportunities to generate improved estimates in future genomic attribution studies. The consistency of chicken as the main source of human infection, across high income countries, and despite methodological variations, highlights the public health importance of this source.
Collapse
Affiliation(s)
- Alison J Cody
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Oxford, Oxford, United Kingdom
| | - Martin Cj Maiden
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Oxford, Oxford, United Kingdom
| | - Norval Jc Strachan
- School of Biological Sciences, University of Aberdeen, St. Machar Drive, Aberdeen, United Kingdom
| | - Noel D McCarthy
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Oxford, Oxford, United Kingdom
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
16
|
Whitehouse CA, Zhao S, Tate H. Antimicrobial Resistance in Campylobacter Species: Mechanisms and Genomic Epidemiology. ADVANCES IN APPLIED MICROBIOLOGY 2018; 103:1-47. [PMID: 29914655 DOI: 10.1016/bs.aambs.2018.01.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Campylobacter genus is a large and diverse group of Gram-negative bacteria that are known to colonize humans and other mammals, birds, reptiles, and shellfish. While it is now recognized that several emerging Campylobacter species can be associated with human disease, two species, C. jejuni and C. coli, are responsible for the vast majority of bacterial gastroenteritis in humans worldwide. Infection with C. jejuni, in particular, has also been associated with a number of extragastrointestinal manifestations and autoimmune conditions, most notably Guillain-Barré syndrome. The antimicrobial drugs of choice for the treatment of severe Campylobacter infection include macrolides, such as erythromycin, clarithromycin, or azithromycin. Fluoroquinolones, such as ciprofloxacin, are also commonly used for empirical treatment of undiagnosed diarrheal disease. However, resistance to these and other classes of antimicrobial drugs is increasing and is a major public health problem. The US Centers for Disease Control and Prevention estimates that over 300,000 infections per year are caused by drug-resistant Campylobacter. In this chapter, we discuss the taxonomy of the Campylobacter genus, the clinical and global epidemiological aspects of Campylobacter infection, with an emphasis on C. jejuni and C. coli, and issues related to the treatment of infection and antimicrobial resistance mechanisms. We further discuss the use of next-generation sequencing for the detection and surveillance of antimicrobial resistance genes.
Collapse
Affiliation(s)
| | - Shaohua Zhao
- U.S. Food and Drug Administration, Laurel, MD, United States
| | - Heather Tate
- U.S. Food and Drug Administration, Laurel, MD, United States
| |
Collapse
|
17
|
Ravel A, Hurst M, Petrica N, David J, Mutschall SK, Pintar K, Taboada EN, Pollari F. Source attribution of human campylobacteriosis at the point of exposure by combining comparative exposure assessment and subtype comparison based on comparative genomic fingerprinting. PLoS One 2017; 12:e0183790. [PMID: 28837643 PMCID: PMC5570367 DOI: 10.1371/journal.pone.0183790] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 08/12/2017] [Indexed: 12/29/2022] Open
Abstract
Human campylobacteriosis is a common zoonosis with a significant burden in many countries. Its prevention is difficult because humans can be exposed to Campylobacter through various exposures: foodborne, waterborne or by contact with animals. This study aimed at attributing campylobacteriosis to sources at the point of exposure. It combined comparative exposure assessment and microbial subtype comparison with subtypes defined by comparative genomic fingerprinting (CGF). It used isolates from clinical cases and from eight potential exposure sources (chicken, cattle and pig manure, retail chicken, beef, pork and turkey meat, and surface water) collected within a single sentinel site of an integrated surveillance system for enteric pathogens in Canada. Overall, 1518 non-human isolates and 250 isolates from domestically-acquired human cases were subtyped and their subtype profiles analyzed for source attribution using two attribution models modified to include exposure. Exposure values were obtained from a concurrent comparative exposure assessment study undertaken in the same area. Based on CGF profiles, attribution was possible for 198 (79%) human cases. Both models provide comparable figures: chicken meat was the most important source (65-69% of attributable cases) whereas exposure to cattle (manure) ranked second (14-19% of attributable cases), the other sources being minor (including beef meat). In comparison with other attributions conducted at the point of production, the study highlights the fact that Campylobacter transmission from cattle to humans is rarely meat borne, calling for a closer look at local transmission from cattle to prevent campylobacteriosis, in addition to increasing safety along the chicken supply chain.
Collapse
Affiliation(s)
- André Ravel
- Groupe de recherche en épidémiologie des zoonoses et santé publique, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Département de pathologie et microbiologie, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Matt Hurst
- Centre for Food-borne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Nicoleta Petrica
- Groupe de recherche en épidémiologie des zoonoses et santé publique, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Julie David
- Groupe de recherche en épidémiologie des zoonoses et santé publique, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Steven K. Mutschall
- National Microbiology Laboratory at Lethbridge, Public Health Agency of Canada, Lethbridge, Alberta, Canada
| | - Katarina Pintar
- Centre for Food-borne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Eduardo N. Taboada
- National Microbiology Laboratory at Lethbridge, Public Health Agency of Canada, Lethbridge, Alberta, Canada
| | - Frank Pollari
- Centre for Food-borne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, Ontario, Canada
| |
Collapse
|