1
|
Fukatsu T, Kakizawa S, Harumoto T, Sugio A, Kuo CH. Editorial: Spiroplasma, Mycoplasma, Phytoplasma, and other genome-reduced and wall-less mollicutes: their genetics, genomics, mechanics, interactions and symbiosis with insects, other animals and plants. Front Microbiol 2024; 15:1477536. [PMID: 39282558 PMCID: PMC11392750 DOI: 10.3389/fmicb.2024.1477536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024] Open
Affiliation(s)
- Takema Fukatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Shigeyuki Kakizawa
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Toshiyuki Harumoto
- Hakubi Center for Advanced Research, Kyoto University, Kyoto, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Akiko Sugio
- IGEPP, INRAE, Institut Agro, University of Rennes, Le Rheu, France
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
2
|
Georgakopoulou VE, Lempesis IG, Sklapani P, Trakas N, Spandidos DA. Exploring the pathogenetic mechanisms of Mycoplasmapneumoniae (Review). Exp Ther Med 2024; 28:271. [PMID: 38765654 PMCID: PMC11097136 DOI: 10.3892/etm.2024.12559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/17/2024] [Indexed: 05/22/2024] Open
Abstract
Mycoplasmas, the smallest self-replicating prokaryotes without a cell wall, are the most prevalent and extensively studied species in humans. They significantly contribute to chronic respiratory tract illnesses and pneumonia, with children and adolescents being particularly vulnerable. Mycoplasma pneumoniae (M. pneumoniae) infections typically tend to be self-limiting and mild but can progress to severe or even life-threatening conditions in certain individuals. Extrapulmonary effects often occur without pneumonia, and both intrapulmonary and extrapulmonary complications operate through separate pathological mechanisms. The indirect immune-mediated damage of the immune system, vascular blockages brought on by vasculitis or thrombosis and direct harm from invasion or locally induced inflammatory cytokines are potential causes of extrapulmonary manifestations due to M. pneumoniae. Proteins associated with adhesion serve as the primary factor crucial for the pathogenicity of M. pneumoniae, relying on a specialized polarized terminal attachment organelle. The type and density of these host receptors significantly impact the adhesion and movement of M. pneumoniae, subsequently influencing the pathogenic mechanism and infection outcomes. Adjacent proteins are crucial for the proper assembly of the attachment organelle, with variations in the genetic domains of P1, P40 and P90 surfaces contributing to the variability of clinical symptoms and offering new avenues for developing vaccines against M. pneumoniae infections. M. pneumoniae causes oxidative stress within respiratory tract epithelial cells by adhering to host cells and releasing hydrogen peroxide and superoxide radicals. This oxidative stress enhances the vulnerability of host cells to harm induced by oxygen molecules. The lack of superoxide dismutase and catalase of bacteria allows it to hinder the catalase activity of the host cell, leading to the reduced breakdown of peroxides. Lung macrophages play a significant role in managing M. pneumoniae infection, identifying it via Toll-like receptor 2 and initiating the myeloid differentiation primary response gene 88-nuclear factor κΒ signaling cascade. However, the precise mechanisms enabling M. pneumoniae to evade intracellular host defenses remain unknown, necessitating further exploration of the pathways involved in intracellular survival. The present comprehensive review delves into the pathogenesis of M. pneumoniae infection within the pulmonary system and into extrapulmonary areas, outlining its impact.
Collapse
Affiliation(s)
- Vasiliki Epameinondas Georgakopoulou
- Department of Pathophysiology, Laiko General Hospital, National and Kapodisttrian University of Athens, 11527 Athens, Greece
- Department of Infectious Diseases-COVID-19 Unit, Laiko General Hospital, 11527 Athens, Greece
| | - Ioannis G. Lempesis
- Department of Pathophysiology, Laiko General Hospital, National and Kapodisttrian University of Athens, 11527 Athens, Greece
| | - Pagona Sklapani
- Department of Biochemistry, Sismanogleio Hospital, 15126 Athens, Greece
| | - Nikolaos Trakas
- Department of Biochemistry, Sismanogleio Hospital, 15126 Athens, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
3
|
Fukushima M, Toyonaga T, O. Tahara Y, Nakane D, Miyata M. Internal structure of Mycoplasma mobile gliding machinery analyzed by negative staining electron tomography. Biophys Physicobiol 2024; 21:e210015. [PMID: 39206130 PMCID: PMC11347822 DOI: 10.2142/biophysico.bppb-v21.0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/21/2024] [Indexed: 09/04/2024] Open
Abstract
Mycoplasma mobile is a parasitic bacterium that forms gliding machinery on the cell pole and glides on a solid surface in the direction of the cell pole. The gliding machinery consists of both internal and surface structures. The internal structure is divided into a bell at the front and chain structure extending from the bell. In this study, the internal structures prepared under several conditions were analyzed using negative-staining electron microscopy and electron tomography. The chains were constructed by linked motors containing two complexes similar to ATP synthase. A cylindrical spacer with a maximum diameter of 6 nm and a height of 13 nm, and anonymous linkers with a diameter of 0.9-8.3 nm and length of 14.7±6.9 nm were found between motors. The bell is bowl-shaped and features a honeycomb surface with a periodicity of 8.4 nm. The chains of the motor are connected to the rim of the bell through a wedge-shaped structure. These structures may play roles in the assembly and cooperation of gliding machinery units.
Collapse
Affiliation(s)
- Minoru Fukushima
- Graduate School of Science, Osaka Metropolitan University, Osaka 558-8585, Japan
| | - Takuma Toyonaga
- Graduate School of Science, Osaka Metropolitan University, Osaka 558-8585, Japan
- The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka Metropolitan University, Osaka 558-8585, Japan
| | - Yuhei O. Tahara
- Graduate School of Science, Osaka Metropolitan University, Osaka 558-8585, Japan
| | - Daisuke Nakane
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
| | - Makoto Miyata
- Graduate School of Science, Osaka Metropolitan University, Osaka 558-8585, Japan
- The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka Metropolitan University, Osaka 558-8585, Japan
| |
Collapse
|
4
|
Yang J, Song Y, Xia K, Pomin VH, Wang C, Qiao M, Linhardt RJ, Dordick JS, Zhang F. Marine-Derived Sulfated Glycans Inhibit the Interaction of Heparin with Adhesion Proteins of Mycoplasma pneumoniae. Mar Drugs 2024; 22:232. [PMID: 38786623 PMCID: PMC11123223 DOI: 10.3390/md22050232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/06/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
Mycoplasma pneumoniae, a notable pathogen behind respiratory infections, employs specialized proteins to adhere to the respiratory epithelium, an essential process for initiating infection. The role of glycosaminoglycans, especially heparan sulfate, is critical in facilitating pathogen-host interactions, presenting a strategic target for therapeutic intervention. In this study, we assembled a glycan library comprising heparin, its oligosaccharide derivatives, and a variety of marine-derived sulfated glycans to screen the potential inhibitors for the pathogen-host interactions. By using Surface Plasmon Resonance spectroscopy, we evaluated the library's efficacy in inhibiting the interaction between M. pneumoniae adhesion proteins and heparin. Our findings offer a promising avenue for developing novel therapeutic strategies against M. pneumoniae infections.
Collapse
Affiliation(s)
- Jiyuan Yang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; (J.Y.); (M.Q.)
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; (Y.S.); (K.X.); (C.W.); (R.J.L.)
| | - Yuefan Song
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; (Y.S.); (K.X.); (C.W.); (R.J.L.)
| | - Ke Xia
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; (Y.S.); (K.X.); (C.W.); (R.J.L.)
| | - Vitor H. Pomin
- Department of BioMolecular Sciences, Research Institute of Pharmaceutical Sciences, The University of Mississippi, Oxford, MS 38677, USA;
| | - Chunyu Wang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; (Y.S.); (K.X.); (C.W.); (R.J.L.)
| | - Mingqiang Qiao
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; (J.Y.); (M.Q.)
| | - Robert J. Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; (Y.S.); (K.X.); (C.W.); (R.J.L.)
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Jonathan S. Dordick
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
5
|
Ou J, Dong H, Luan X, Wang X, Liu Q, Chen H, Cao M, Xu Z, Liu Y, Zhao W. iTRAQ-based differential proteomic analysis of high- and low-virulence strains of Spiroplasma eriocheiris. Microb Pathog 2023; 184:106365. [PMID: 37741306 DOI: 10.1016/j.micpath.2023.106365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
Spiroplasma eriocheiris is one of the major pathogenic bacteria in crustaceans, featuring high infectivity, rapid transmission, and an absence of effective control strategies, resulting in significant economic losses to the aquaculture industry. Research into virulence-related factors provides an important perspective to clarify how Spiroplasma eriocheiris is pathogenic to shrimps and crabs. Therefore, in this study, isobaric tags for relative and absolute quantitation (iTRAQ) technology was utilized to undertake a differential proteomic analysis of high- and low-virulence Spiroplasma eriocheiris strains at different growth phases. A total of 868 differentially expressed proteins (DEPs) were obtained, of which 31 novel proteins were identified by proteogenomic analysis. There were 62, 61, 175, and 235 DEPs between the log phase (YD) and non-log phase (YFD) of the high-virulence strain, between the log phase (CD) and non-log phase (CFD) of the low-virulence strain, between YD and CD, and between CFD and YFD, respectively. All the DEPs were compared with virulence protein databases (MvirDB and VFDB), and 68 virulence proteins of Spiroplasma eriocheiris were identified, of which 12 were involved in a total of 21 metabolic pathways, including motility, chemotaxis, growth, metabolism and virulence of the bacteria. The results of this study form the basis for further research into the molecular mechanism of virulence and physiological differences between high- and low-virulence strains of Spiroplasma eriocheiris, and provide a scientific basis for a detailed understanding of its pathogenesis.
Collapse
Affiliation(s)
- Jiangtao Ou
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China.
| | - Huizi Dong
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Xiaoqi Luan
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China; Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Xiang Wang
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Qiao Liu
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Hao Chen
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Miao Cao
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Zheqi Xu
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Yang Liu
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Weihong Zhao
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| |
Collapse
|
6
|
Matsuike D, Tahara YO, Nonaka T, Wu HN, Hamaguchi T, Kudo H, Hayashi Y, Arai M, Miyata M. Structure and Function of Gli123 Involved in Mycoplasma mobile Gliding. J Bacteriol 2023; 205:e0034022. [PMID: 36749051 PMCID: PMC10029712 DOI: 10.1128/jb.00340-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Mycoplasma mobile is a fish pathogen that glides on solid surfaces by means of its own gliding machinery composed of internal and surface structures. In the present study, we focused on the function and structure of Gli123, a surface protein that is essential for the localization of other surface proteins. The amino acid sequence of Gli123, which is 1,128 amino acids long, contains lipoprotein-specific repeats. We isolated the native Gli123 protein from M. mobile cells and a recombinant protein, rGli123, from Escherichia coli. The isolated rGli123 complemented a nonbinding and nongliding mutant of M. mobile that lacked Gli123. Circular dichroism and rotary-shadowing electron microscopy (EM) showed that rGli123 has a structure that is not significantly different from that of the native protein. Rotary-shadowing EM suggested that Gli123 adopts two distinct globular and rod-like structures, depending on the ionic strength of the solution. Negative-staining EM coupled with single-particle analysis revealed that Gli123 forms a globular structure featuring a small protrusion with dimensions of approximately 15.7, 14.7, and 14.1 nm for the "height," major axis and minor axis, respectively. Small-angle X-ray scattering analyses indicated a rod-like structure composed of several tandem globular domains with total dimensions of approximately 34 nm in length and 6 nm in width. Both molecular structures were suggested to be dimers, based on the predicted molecular size and structure. Gli123 may have evolved by multiplication of repeating lipoprotein units and acquired a role for Gli521 and Gli349 assembly. IMPORTANCE Mycoplasmas are pathogenic bacteria that are widespread in animals. They are characterized by small cell and genome sizes but are equipped with unique abilities for infection, such as surface variation and gliding. Here, we focused on a surface-localizing protein named Gli123 that is essential for Mycoplasma mobile gliding. This study suggested that Gli123 undergoes drastic conformational changes between its rod-like and globular structures. These changes may be caused by a repetitive structure common in the surface proteins that is responsible for the modulation of the cell surface structure and related to the assembly process for the surface gliding machinery. An evolutionary process for surface proteins essential for this mycoplasma gliding was also suggested in the present study.
Collapse
Affiliation(s)
- Daiki Matsuike
- Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
| | - Yuhei O Tahara
- Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
- OCU Advanced Research Institute for Natural Science and Technology, Osaka Metropolitan University, Osaka, Japan
| | - Takahiro Nonaka
- Graduate School of Science, Osaka City University, Osaka, Japan
| | - Heng Ning Wu
- Graduate School of Science, Osaka City University, Osaka, Japan
| | - Tasuku Hamaguchi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Miyagi, Japan
| | - Hisashi Kudo
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, Nada, Kobe, Japan
| | - Yuuki Hayashi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, Japan
- Environmental Science Center, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Munehito Arai
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, Japan
- Department of Physics, Graduate School of Science, The University of Tokyo, Meguro, Tokyo, Japan
| | - Makoto Miyata
- Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
- OCU Advanced Research Institute for Natural Science and Technology, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
7
|
Genetic Manipulation of Mycoplasma pneumoniae. Methods Mol Biol 2023; 2646:347-357. [PMID: 36842129 DOI: 10.1007/978-1-0716-3060-0_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Mycoplasma pneumoniae is a small cell wall-lacking bacterium that is a common cause of bronchitis and pneumonia in humans. In addition to its clinical importance, M. pneumoniae has recently been considered a promising model organism for synthetic biology because of its small genome size and unique cell structure. At one cell pole, M. pneumoniae forms the attachment organelle that is responsible for adherence to host cells and gliding motility. The attachment organelle is a membrane protrusion and is composed of number of molecules, including adhesin and cytoskeletal proteins. Genetic manipulation techniques are key research approaches for understanding the structure and the function of this unique molecular machinery. In this chapter, standard genetic engineering methods for this species using the Tn4001 transposon vector are described.
Collapse
|
8
|
Toyonaga T, Miyata M. Purification and Structural Analysis of the Gliding Motility Machinery in Mycoplasma mobile. Methods Mol Biol 2023; 2646:311-319. [PMID: 36842125 DOI: 10.1007/978-1-0716-3060-0_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Isolating functional units from large insoluble protein complexes are a complex but valuable approach for quantitative and structural analysis. Mycoplasma mobile, a gliding bacterium, contains a large insoluble protein complex called gliding machinery. The machinery contains several chain structures formed by motors that are evolutionarily related to the F1-ATPase. Recently, we developed a method to purify functional motors and their chain structures using Triton X-100 and a high salt concentration buffer and resolved their structures using electron microscopy. In this chapter, we describe the processes of purification and structural analysis of functional motors for the gliding of M. mobile using negative-staining electron microscopy.
Collapse
Affiliation(s)
- Takuma Toyonaga
- Graduate School of Science, Osaka City University, Osaka, Japan. .,Graduate School of Science, Osaka Metropolitan University, Osaka, Japan. .,The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, Osaka, Japan. .,The OMU Advanced Research Center for Natural Science and Technology, Osaka Metropolitan University, Osaka, Japan.
| | - Makoto Miyata
- Graduate School of Science, Osaka City University, Osaka, Japan.,Graduate School of Science, Osaka Metropolitan University, Osaka, Japan.,The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, Osaka, Japan.,The OMU Advanced Research Center for Natural Science and Technology, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
9
|
Mizutani M, Miyata M. Direct Measurement of Kinetic Force Generated by Mycoplasma. Methods Mol Biol 2023; 2646:337-346. [PMID: 36842128 DOI: 10.1007/978-1-0716-3060-0_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Optical tweezers enable us to measure the force generated by bacterial motility and motor proteins. Here, we describe a method, using optical tweezers and related techniques, to measure the force generated during Mycoplasma gliding. An avidin-conjugated polystyrene bead trapped by a focused laser beam is bound to the surface-biotinylated Mycoplasma cell, which pulls the bead from the trap center of the laser. The force generated by Mycoplasma is calculated from a displacement measured and a spring constant of the laser trap.
Collapse
Affiliation(s)
- Masaki Mizutani
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan.
| | - Makoto Miyata
- Graduate School of Science, Osaka City University, Osaka, Japan
- Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
- The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, Osaka, Japan
- The OMU Advanced Research Center for Natural Science and Technology, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
10
|
Insight into the Pathogenic Mechanism of Mycoplasma pneumoniae. Curr Microbiol 2023; 80:14. [PMID: 36459213 PMCID: PMC9716528 DOI: 10.1007/s00284-022-03103-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 10/28/2022] [Indexed: 12/04/2022]
Abstract
Mycoplasma pneumoniae, an obligate parasitic pathogen without cell wall, can cause severe upper and lower respiratory tract symptoms. It is the pathogen of human bronchitis and walking pneumonia, and named community-acquired pneumonia. In addition to severe respiratory symptoms, there are clinical extrapulmonary manifestations in the skin, brain, kidney, musculoskeletal, digestive system, and even blood system after M. pneumoniae infection. Hereby, we comprehensively summarized and reviewed the intrapulmonary and extrapulmonary pathogenesis of M. pneumoniae infection. The pathogenesis of related respiratory symptoms caused by M. pneumoniae is mainly adhesion damage, direct damage including nutrient predation, invasion and toxin, cytokine induced inflammation damage and immune evasion effect. The pathogenesis of extrapulmonary manifestations includes direct damage mediated by invasion and inflammatory factors, indirect damage caused by host immune response, and vascular occlusion. The intrapulmonary and extrapulmonary pathogenic mechanisms of M. pneumoniae infection are independent and interrelated, and have certain commonalities. In fact, the pathogenic mechanisms of M. pneumoniae are complicated, and the specific content is still not completely clear, further researches are necessary for determining the detailed pathogenesis of M. pneumoniae. This review can provide certain guidance for the effective prevention and treatment of M. pneumoniae infection.
Collapse
|
11
|
Kiyama H, Kakizawa S, Sasajima Y, Tahara YO, Miyata M. Reconstitution of a minimal motility system based on Spiroplasma swimming by two bacterial actins in a synthetic minimal bacterium. SCIENCE ADVANCES 2022; 8:eabo7490. [PMID: 36449609 PMCID: PMC9710875 DOI: 10.1126/sciadv.abo7490] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 10/14/2022] [Indexed: 05/24/2023]
Abstract
Motility is one of the most important features of life, but its evolutionary origin remains unknown. In this study, we focused on Spiroplasma, commensal, or parasitic bacteria. They swim by switching the helicity of a ribbon-like cytoskeleton that comprises six proteins, each of which evolved from a nucleosidase and bacterial actin called MreB. We expressed these proteins in a synthetic, nonmotile minimal bacterium, JCVI-syn3B, whose reduced genome was computer-designed and chemically synthesized. The synthetic bacterium exhibited swimming motility with features characteristic of Spiroplasma swimming. Moreover, combinations of Spiroplasma MreB4-MreB5 and MreB1-MreB5 produced a helical cell shape and swimming. These results suggest that the swimming originated from the differentiation and coupling of bacterial actins, and we obtained a minimal system for motility of the synthetic bacterium.
Collapse
Affiliation(s)
- Hana Kiyama
- Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
- Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Shigeyuki Kakizawa
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Yuya Sasajima
- Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
- Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Yuhei O. Tahara
- Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
- Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Makoto Miyata
- Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
- Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| |
Collapse
|
12
|
Sasajima Y, Kato T, Miyata T, Kawamoto A, Namba K, Miyata M. Isolation and structure of the fibril protein, a major component of the internal ribbon for Spiroplasma swimming. Front Microbiol 2022; 13:1004601. [PMID: 36274716 PMCID: PMC9582952 DOI: 10.3389/fmicb.2022.1004601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/01/2022] [Indexed: 11/05/2022] Open
Abstract
Spiroplasma, which are known pathogens and commensals of arthropods and plants, are helical-shaped bacteria that lack a peptidoglycan layer. Spiroplasma swim by alternating between left- and right-handed helicity. Of note, this system is not related to flagellar motility, which is widespread in bacteria. A helical ribbon running along the inner side of the helical cell should be responsible for cell helicity and comprises the bacterial actin homolog, MreB, and a protein specific to Spiroplasma, fibril. Here, we isolated the ribbon and its major component, fibril filament, for electron microscopy (EM) analysis. Single-particle analysis of the fibril filaments using the negative-staining EM revealed a three-dimensional chain structure composed of rings with a size of 11 nm wide and 6 nm long, connected by a backbone cylinder with an 8.7 nm interval with a twist along the filament axis. This structure was verified through EM tomography of quick-freeze deep-etch replica sample, with a focus on its handedness. The handedness and pitch of the helix for the isolated ribbon and fibril filament agreed with those of the cell in the resting state. Structures corresponding to the alternative state were not identified. These results suggest that the helical cell structure is supported by fibril filaments; however, the helical switch is caused by the force generated by the MreB proteins. The isolation and structural outline of the fibril filaments provide crucial information for an in-depth clarification of the unique swimming mechanism of Spiroplasma.
Collapse
Affiliation(s)
- Yuya Sasajima
- Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
| | - Takayuki Kato
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Tomoko Miyata
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Akihiro Kawamoto
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
- RIKEN Center for Biosystems Dynamics Research and Spring-8 Center, Suita, Osaka, Japan
- JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, Suita, Osaka, Japan
| | - Makoto Miyata
- Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
- The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
13
|
Rüger N, Szostak MP, Rautenschlein S. The expression of GapA and CrmA correlates with the Mycoplasma gallisepticum in vitro infection process in chicken TOCs. Vet Res 2022; 53:66. [PMID: 36056451 PMCID: PMC9440553 DOI: 10.1186/s13567-022-01085-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/03/2022] [Indexed: 11/10/2022] Open
Abstract
Mycoplasma (M.) gallisepticum is the most pathogenic mycoplasma species in poultry. Infections cause mild to severe clinical symptoms associated with respiratory epithelial lesion development. Adherence, biofilm formation, and cell invasion of M. gallisepticum contribute to successful infection, immune evasion, and survival within the host. The important M. gallisepticum membrane-bound proteins, GapA and CrmA, are key factors for host cell interaction and the bacterial life-cycle, including its gliding motility, although their precise role in the individual infection step is not yet fully understood. In this study, we investigated the correlation between the host-pathogen interaction and the GapA/CrmA expression in an environment that represents the natural host's multicellular compartment. We used an in vitro tracheal organ culture (TOC) model, allowing the investigation of the M. gallisepticum variants, Rlow, RCL1, RCL2, and Rhigh, under standardised conditions. In this regard, we examined the bacterial adherence, motility and colonisation pattern, host lesion development and alterations of mucociliary clearance. Compared to low virulent RCL2 and Rhigh, the high virulent Rlow and RCL1 were more efficient in adhering to TOCs and epithelium colonisation, including faster movement from the cilia tips to the apical membrane and subsequent cell invasion. RCL2 and Rhigh showed a more localised invasion pattern, accompanied by significantly fewer lesions than Rlow and RCL1. Unrelated to virulence, comparable mucus production was observed in all M. gallisepticum infected TOCs. Overall, the present study demonstrates the role of GapA/CrmA in virulence factors from adherence to colonisation, as well as the onset and severity of lesion development in the tracheal epithelium.
Collapse
Affiliation(s)
- Nancy Rüger
- Clinic for Poultry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Michael P Szostak
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Silke Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine Hannover, Hannover, Germany.
| |
Collapse
|
14
|
Liu Z, Dong WT, Wei WF, Huo JH, Wang WM. Exploring the mechanism of Qinbaiqingfei-concentrate pills in the treatment of Mycoplasma pneumoniae pneumonia from the perspective of intestinal microbiota and mucosal immunity. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115308. [PMID: 35460847 DOI: 10.1016/j.jep.2022.115308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine categorizes Mycoplasma pneumoniae pneumonia as "lung heat", and treatment with heat clear and detoxify. Traditional Chinese medicine believes that the lungs and intestines come from the same source, and the intestine is related to pneumonia. This is the same as the gut-lung axis theory. Qinbaiqingfei concentrate pills (QBs) were modified based on Cough San in the ancient medical book Medical Awareness. It clears lung heat, moisturizes the lungs and dredges collaterals, and has a good ability to treat Mycoplasma pneumoniae. AIM OF THE STUDY A rat model of Mycoplasma pneumoniae was established. From the aspect of intestinal flora and mucosal immunity, the potential mechanism of the QBs was researched. MATERIALS AND METHODS First, the content of Mycoplasma pneumoniae in lung tissue and the levels of the inflammatory factors IL-4, IL-10, TNF-α and INF-γ were detected. To determine the expression of NF-kB related proteins in lung tissue, which can understand the ability in treating disease. Next, metagenomic sequencing was performed to detect changes in short-chain fatty acids, proving the ability of the drug to regulate intestinal microecology. Finally, HDAC, LPS, SIgA, etc. were detected to facilitate the correlation of the overall experimental indicators. RESULTS QBs reduces the levels of IL-4, IL-10, TNF-α and INF-γ in the serum by inhibiting the expression of MyD88, IKKα, IκBα, and NF-κB p65 in lung tissue. In addition, QBs restores the ratio of gram-negative bacteria to gram-positive bacteria in the intestine, restores the secretion of acetic acid, propionic acid, butyric acid, isobutyric acid and isovaleric acid, and promotes the secretion of NF-κB p65 and SIgA by HDAC1/3. The result is that the lung tissue is repaired and the proliferation of Mycoplasma pneumoniae is inhibited. CONCLUSIONS From the "gut-lung axis", a new research perspective was discovered. QBs intervened in the intestines and lungs to treat Mycoplasma pneumoniae.
Collapse
Affiliation(s)
- Zheng Liu
- Heilongjiang Academy of Chinese Medicine Science, Institute of Chinese Materia Medica, Harbin, 15000, PR China
| | - Wen-Ting Dong
- Heilongjiang Academy of Chinese Medicine Science, Institute of Chinese Materia Medica, Harbin, 15000, PR China
| | - Wen-Feng Wei
- Heilongjiang Academy of Chinese Medicine Science, Institute of Chinese Materia Medica, Harbin, 15000, PR China
| | - Jin-Hai Huo
- Heilongjiang Academy of Chinese Medicine Science, Institute of Chinese Materia Medica, Harbin, 15000, PR China.
| | - Wei-Ming Wang
- Heilongjiang Academy of Chinese Medicine Science, Institute of Chinese Materia Medica, Harbin, 15000, PR China.
| |
Collapse
|
15
|
Nakane D, Kabata Y, Nishizaka T. Cell shape controls rheotaxis in small parasitic bacteria. PLoS Pathog 2022; 18:e1010648. [PMID: 35834494 PMCID: PMC9282661 DOI: 10.1371/journal.ppat.1010648] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/06/2022] [Indexed: 12/27/2022] Open
Abstract
Mycoplasmas, a group of small parasitic bacteria, adhere to and move across host cell surfaces. The role of motility across host cell surfaces in pathogenesis remains unclear. Here, we used optical microscopy to visualize rheotactic behavior in three phylogenetically distant species of Mycoplasma using a microfluidic chamber that enabled the application of precisely controlled fluid flow. We show that directional movements against fluid flow occur synchronously with the polarized cell orienting itself to be parallel against the direction of flow. Analysis of depolarized cells revealed that morphology itself functions as a sensor to recognize rheological properties that mimic those found on host-cell surfaces. These results demonstrate the vital role of cell morphology and motility in responding to mechanical forces encountered in the native environment. The small, parasitic bacterium Mycoplasma pneumoniae attaches to, and moves over, host cell surfaces. Adherence to host surfaces and motility are critical for the pathogenicity of M. pneumoniae. The role of motility by M. pneumoniae in vivo, however, is poorly understood. Host airways generate constant fluid flow toward the mouth as part of their defense against pathogens and irritants. Consequently, pulmonary invaders must counter the rheological forces found in host airways in order to successfully colonize the host. Here, we demonstrate that M. pneumoniae exhibits directional movement against fluid flow. These findings suggest there is a vital role for rheotactic motility that has evolved in order to overcome host defense mechanisms such as mucociliary clearance.
Collapse
Affiliation(s)
- Daisuke Nakane
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
- * E-mail: (DN); (TN)
| | - Yoshiki Kabata
- Department of Physics, Gakushuin University, Tokyo, Japan
| | - Takayuki Nishizaka
- Department of Physics, Gakushuin University, Tokyo, Japan
- * E-mail: (DN); (TN)
| |
Collapse
|
16
|
Rüger N, Sid H, Meens J, Szostak MP, Baumgärtner W, Bexter F, Rautenschlein S. New Insights into the Host-Pathogen Interaction of Mycoplasma gallisepticum and Avian Metapneumovirus in Tracheal Organ Cultures of Chicken. Microorganisms 2021; 9:microorganisms9112407. [PMID: 34835532 PMCID: PMC8618481 DOI: 10.3390/microorganisms9112407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 01/04/2023] Open
Abstract
Respiratory pathogens are a health threat for poultry. Co-infections lead to the exacerbation of clinical symptoms and lesions. Mycoplasma gallisepticum (M. gallispeticum) and Avian Metapneumovirus (AMPV) are two avian respiratory pathogens that co-circulate worldwide. The knowledge about the host-pathogen interaction of M. gallispeticum and AMPV in the chicken respiratory tract is limited. We aimed to investigate how co-infections affect the pathogenesis of the respiratory disease and whether the order of invading pathogens leads to changes in host-pathogen interaction. We used chicken tracheal organ cultures (TOC) to investigate pathogen invasion and replication, lesion development, and selected innate immune responses, such as interferon (IFN) α, inducible nitric oxide synthase (iNOS) and IFNλ mRNA expression levels. We performed mono-inoculations (AMPV or M. gallispeticum) or dual-inoculations in two orders with a 24-h interval between the first and second pathogen. Dual-inoculations compared to mono-inoculations resulted in more severe host reactions. Pre-infection with AMPV followed by M. gallispeticum resulted in prolonged viral replication, more significant innate immune responses, and lesions (p < 0.05). AMPV as the secondary pathogen impaired the bacterial attachment process. Consequently, the M. gallispeticum replication was delayed, the innate immune response was less pronounced, and lesions appeared later. Our results suggest a competing process in co-infections and offer new insights in disease processes.
Collapse
Affiliation(s)
- Nancy Rüger
- Clinic for Poultry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (N.R.); (F.B.)
| | - Hicham Sid
- Reproductive Biotechnology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Munich, Germany;
| | - Jochen Meens
- Institute for Microbiology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
| | - Michael P. Szostak
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
| | - Frederik Bexter
- Clinic for Poultry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (N.R.); (F.B.)
| | - Silke Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (N.R.); (F.B.)
- Correspondence: ; Tel.: +49-511-953-8779
| |
Collapse
|
17
|
Mizutani M, Sasajima Y, Miyata M. Force and Stepwise Movements of Gliding Motility in Human Pathogenic Bacterium Mycoplasma pneumoniae. Front Microbiol 2021; 12:747905. [PMID: 34630372 PMCID: PMC8498583 DOI: 10.3389/fmicb.2021.747905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/24/2021] [Indexed: 11/23/2022] Open
Abstract
Mycoplasma pneumoniae, a human pathogenic bacterium, binds to sialylated oligosaccharides and glides on host cell surfaces via a unique mechanism. Gliding motility is essential for initiating the infectious process. In the present study, we measured the stall force of an M. pneumoniae cell carrying a bead that was manipulated using optical tweezers on two strains. The stall forces of M129 and FH strains were averaged to be 23.7 and 19.7 pN, respectively, much weaker than those of other bacterial surface motilities. The binding activity and gliding speed of the M129 strain on sialylated oligosaccharides were eight and two times higher than those of the FH strain, respectively, showing that binding activity is not linked to gliding force. Gliding speed decreased when cell binding was reduced by addition of free sialylated oligosaccharides, indicating the existence of a drag force during gliding. We detected stepwise movements, likely caused by a single leg under 0.2-0.3 mM free sialylated oligosaccharides. A step size of 14-19 nm showed that 25-35 propulsion steps per second are required to achieve the usual gliding speed. The step size was reduced to less than half with the load applied using optical tweezers, showing that a 2.5 pN force from a cell is exerted on a leg. The work performed in this step was 16-30% of the free energy of the hydrolysis of ATP molecules, suggesting that this step is linked to the elementary process of M. pneumoniae gliding. We discuss a model to explain the gliding mechanism, based on the information currently available.
Collapse
Affiliation(s)
- Masaki Mizutani
- Graduate School of Science, Osaka City University, Osaka, Japan
| | - Yuya Sasajima
- Graduate School of Science, Osaka City University, Osaka, Japan
| | - Makoto Miyata
- Graduate School of Science, Osaka City University, Osaka, Japan.,The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, Osaka, Japan
| |
Collapse
|
18
|
Abstract
Bacteria have developed a large array of motility mechanisms to exploit available resources and environments. These mechanisms can be broadly classified into swimming in aqueous media and movement over solid surfaces. Swimming motility involves either the rotation of rigid helical filaments through the external medium or gyration of the cell body in response to the rotation of internal filaments. On surfaces, bacteria swarm collectively in a thin layer of fluid powered by the rotation of rigid helical filaments, they twitch by assembling and disassembling type IV pili, they glide by driving adhesins along tracks fixed to the cell surface and, finally, non-motile cells slide over surfaces in response to outward forces due to colony growth. Recent technological advances, especially in cryo-electron microscopy, have greatly improved our knowledge of the molecular machinery that powers the various forms of bacterial motility. In this Review, we describe the current understanding of the physical and molecular mechanisms that allow bacteria to move around.
Collapse
|
19
|
Sasajima Y, Miyata M. Prospects for the Mechanism of Spiroplasma Swimming. Front Microbiol 2021; 12:706426. [PMID: 34512583 PMCID: PMC8432965 DOI: 10.3389/fmicb.2021.706426] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/12/2021] [Indexed: 11/18/2022] Open
Abstract
Spiroplasma are helical bacteria that lack a peptidoglycan layer. They are widespread globally as parasites of arthropods and plants. Their infectious processes and survival are most likely supported by their unique swimming system, which is unrelated to well-known bacterial motility systems such as flagella and pili. Spiroplasma swims by switching the left- and right-handed helical cell body alternately from the cell front. The kinks generated by the helicity shift travel down along the cell axis and rotate the cell body posterior to the kink position like a screw, pushing the water backward and propelling the cell body forward. An internal structure called the "ribbon" has been focused to elucidate the mechanisms for the cell helicity formation and swimming. The ribbon is composed of Spiroplasma-specific fibril protein and a bacterial actin, MreB. Here, we propose a model for helicity-switching swimming focusing on the ribbon, in which MreBs generate a force like a bimetallic strip based on ATP energy and switch the handedness of helical fibril filaments. Cooperative changes of these filaments cause helicity to shift down the cell axis. Interestingly, unlike other motility systems, the fibril protein and Spiroplasma MreBs can be traced back to their ancestors. The fibril protein has evolved from methylthioadenosine/S-adenosylhomocysteine (MTA/SAH) nucleosidase, which is essential for growth, and MreBs, which function as a scaffold for peptidoglycan synthesis in walled bacteria.
Collapse
Affiliation(s)
- Yuya Sasajima
- Department of Biology, Graduate School of Science, Osaka City University, Osaka, Japan
| | - Makoto Miyata
- Department of Biology, Graduate School of Science, Osaka City University, Osaka, Japan
- The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, Osaka, Japan
| |
Collapse
|
20
|
Abstract
Mycoplasma mobile, a fish pathogen, exhibits gliding motility using ATP hydrolysis on solid surfaces, including animal cells. The gliding machinery can be divided into surface and internal structures. The internal structure of the motor is composed of 28 so-called “chains” that are each composed of 17 repeating protein units called “particles.” These proteins include homologs of the catalytic α and β subunits of F1-ATPase. In this study, we isolated the particles and determined their structures using negative-staining electron microscopy and high-speed atomic force microscopy. The isolated particles were composed of five proteins, MMOB1660 (α-subunit homolog), -1670 (β-subunit homolog), -1630, -1620, and -4530, and showed ATP hydrolyzing activity. The two-dimensional (2D) structure, with dimensions of 35 and 26 nm, showed a dimer of hexameric ring approximately 12 nm in diameter, resembling F1-ATPase catalytic (αβ)3. We isolated the F1-like ATPase unit, which is composed of MMOB1660, -1670, and -1630. Furthermore, we isolated the chain and analyzed the three-dimensional (3D) structure, showing that dimers of mushroom-like structures resembling F1-ATPase were connected and aligned along the dimer axis at 31-nm intervals. An atomic model of F1-ATPase catalytic (αβ)3 from Bacillus PS3 was successfully fitted to each hexameric ring of the mushroom-like structure. These results suggest that the motor for M. mobile gliding shares an evolutionary origin with F1-ATPase. Based on the obtained structure, we propose possible force transmission processes in the gliding mechanism.
Collapse
|
21
|
Molecular ruler of the attachment organelle in Mycoplasma pneumoniae. PLoS Pathog 2021; 17:e1009621. [PMID: 34111235 PMCID: PMC8191905 DOI: 10.1371/journal.ppat.1009621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/07/2021] [Indexed: 11/24/2022] Open
Abstract
Length control is a fundamental requirement for molecular architecture. Even small wall-less bacteria have specially developed macro-molecular structures to support their survival. Mycoplasma pneumoniae, a human pathogen, forms a polar extension called an attachment organelle, which mediates cell division, cytadherence, and cell movement at host cell surface. This characteristic ultrastructure has a constant size of 250–300 nm, but its design principle remains unclear. In this study, we constructed several mutants by genetic manipulation to increase or decrease coiled-coil regions of HMW2, a major component protein of 200 kDa aligned in parallel along the cell axis. HMW2-engineered mutants produced both long and short attachment organelles, which we quantified by transmission electron microscopy and fluorescent microscopy with nano-meter precision. This simple design of HMW2 acting as a molecular ruler for the attachment organelle should provide an insight into bacterial cellular organization and its function for their parasitic lifestyles. Mycoplasma pneumoniae, a pathogen of “walking pneumonia”, have a membrane protrusion with a precise length of 250–300 nm specially developed to support their parasitic lifestyles. To date, however, there has been no report focusing on the potential length-control mechanisms of this characteristic architecture called an attachment organelle. Here, we found that the coiled-coil domains of the 200-kDa protein HMW2 are aligned in parallel along the cell axis, and acts as a molecular ruler by the assembly into a physical scaffold. The molecular ruler could be engineered by genetic modification to produce both longer and shorter attachment organelle. The analyses of the length-controlled mutant highlight a simple design principle of cellular organization in a small bacterium.
Collapse
|
22
|
Yiwen C, Yueyue W, Lianmei Q, Cuiming Z, Xiaoxing Y. Infection strategies of mycoplasmas: Unraveling the panoply of virulence factors. Virulence 2021; 12:788-817. [PMID: 33704021 PMCID: PMC7954426 DOI: 10.1080/21505594.2021.1889813] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Mycoplasmas, the smallest bacteria lacking a cell wall, can cause various diseases in both humans and animals. Mycoplasmas harbor a variety of virulence factors that enable them to overcome numerous barriers of entry into the host; using accessory proteins, mycoplasma adhesins can bind to the receptors or extracellular matrix of the host cell. Although the host immune system can eradicate the invading mycoplasma in most cases, a few sagacious mycoplasmas employ a series of invasion and immune escape strategies to ensure their continued survival within their hosts. For instance, capsular polysaccharides are crucial for anti-phagocytosis and immunomodulation. Invasive enzymes degrade reactive oxygen species, neutrophil extracellular traps, and immunoglobulins. Biofilm formation is important for establishing a persistent infection. During proliferation, successfully surviving mycoplasmas generate numerous metabolites, including hydrogen peroxide, ammonia and hydrogen sulfide; or secrete various exotoxins, such as community-acquired respiratory distress syndrome toxin, and hemolysins; and express various pathogenic enzymes, all of which have potent toxic effects on host cells. Furthermore, some inherent components of mycoplasmas, such as lipids, membrane lipoproteins, and even mycoplasma-generated superantigens, can exert a significant pathogenic impact on the host cells or the immune system. In this review, we describe the proposed virulence factors in the toolkit of notorious mycoplasmas to better understand the pathogenic features of these bacteria, along with their pathogenic mechanisms.
Collapse
Affiliation(s)
- Chen Yiwen
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Wu Yueyue
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Qin Lianmei
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Zhu Cuiming
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - You Xiaoxing
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| |
Collapse
|
23
|
Mycoplasma pneumoniae Infections: Pathogenesis and Vaccine Development. Pathogens 2021; 10:pathogens10020119. [PMID: 33503845 PMCID: PMC7911756 DOI: 10.3390/pathogens10020119] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/17/2021] [Accepted: 01/21/2021] [Indexed: 12/16/2022] Open
Abstract
Mycoplasma pneumoniae is a major causative agent of community-acquired pneumonia which can lead to both acute upper and lower respiratory tract inflammation, and extrapulmonary syndromes. Refractory pneumonia caused by M. pneumonia can be life-threatening, especially in infants and the elderly. Here, based on a comprehensive review of the scientific literature related to the respective area, we summarize the virulence factors of M. pneumoniae and the major pathogenic mechanisms mediated by the pathogen: adhesion to host cells, direct cytotoxicity against host cells, inflammatory response-induced immune injury, and immune evasion. The increasing rate of macrolide-resistant strains and the harmful side effects of other sensitive antibiotics (e.g., respiratory quinolones and tetracyclines) in young children make it difficult to treat, and increase the health risk or re-infections. Hence, there is an urgent need for development of an effective vaccine to prevent M. pneumoniae infections in children. Various types of M. pneumoniae vaccines have been reported, including whole-cell vaccines (inactivated and live-attenuated vaccines), subunit vaccines (involving M. pneumoniae protein P1, protein P30, protein P116 and CARDS toxin) and DNA vaccines. This narrative review summarizes the key pathogenic mechanisms underlying M. pneumoniae infection and highlights the relevant vaccines that have been developed and their reported effectiveness.
Collapse
|
24
|
Vizarraga D, Kawamoto A, Matsumoto U, Illanes R, Pérez-Luque R, Martín J, Mazzolini R, Bierge P, Pich OQ, Espasa M, Sanfeliu I, Esperalba J, Fernández-Huerta M, Scheffer MP, Pinyol J, Frangakis AS, Lluch-Senar M, Mori S, Shibayama K, Kenri T, Kato T, Namba K, Fita I, Miyata M, Aparicio D. Immunodominant proteins P1 and P40/P90 from human pathogen Mycoplasma pneumoniae. Nat Commun 2020; 11:5188. [PMID: 33057023 PMCID: PMC7560827 DOI: 10.1038/s41467-020-18777-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/08/2020] [Indexed: 12/19/2022] Open
Abstract
Mycoplasma pneumoniae is a bacterial human pathogen that causes primary atypical pneumonia. M. pneumoniae motility and infectivity are mediated by the immunodominant proteins P1 and P40/P90, which form a transmembrane adhesion complex. Here we report the structure of P1, determined by X-ray crystallography and cryo-electron microscopy, and the X-ray structure of P40/P90. Contrary to what had been suggested, the binding site for sialic acid was found in P40/P90 and not in P1. Genetic and clinical variability concentrates on the N-terminal domain surfaces of P1 and P40/P90. Polyclonal antibodies generated against the mostly conserved C-terminal domain of P1 inhibited adhesion of M. pneumoniae, and serology assays with sera from infected patients were positive when tested against this C-terminal domain. P40/P90 also showed strong reactivity against human infected sera. The architectural elements determined for P1 and P40/P90 open new possibilities in vaccine development against M. pneumoniae infections.
Collapse
Affiliation(s)
- David Vizarraga
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Akihiro Kawamoto
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - U Matsumoto
- Graduate School of Science, Osaka City University, Osaka, 558-8585, Japan
| | - Ramiro Illanes
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Rosa Pérez-Luque
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Jesús Martín
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Rocco Mazzolini
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003, Barcelona, Spain
| | - Paula Bierge
- Laboratori de Recerca en Microbiologia i Malalties Infeccioses, Institut d'Investigació i Innovació Parc Taulí (I3PT), Hospital Universitari Parc Taulí, Universitat Autònoma de Barcelona, 08208, Sabadell, Spain
| | - Oscar Q Pich
- Laboratori de Recerca en Microbiologia i Malalties Infeccioses, Institut d'Investigació i Innovació Parc Taulí (I3PT), Hospital Universitari Parc Taulí, Universitat Autònoma de Barcelona, 08208, Sabadell, Spain.,Departament de Bioquímica i Biologia Molecular, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Mateu Espasa
- Departament de Microbiologia, Hospital Universitari Parc Taulí, Universitat Autònoma de Barcelona, 08208, Sabadell, Spain
| | - Isabel Sanfeliu
- Departament de Microbiologia, Hospital Universitari Parc Taulí, Universitat Autònoma de Barcelona, 08208, Sabadell, Spain
| | - Juliana Esperalba
- Departament de Microbiologia, Hospital Universitari Vall d´Hebron, Universitat Autònoma de Barcelona, 08035, Barcelona, Spain
| | - Miguel Fernández-Huerta
- Departament de Microbiologia, Hospital Universitari Vall d´Hebron, Universitat Autònoma de Barcelona, 08035, Barcelona, Spain
| | - Margot P Scheffer
- Buchmann Institute for Molecular Life Sciences, Max-von-Laue Str. 15, 60438, Frankfurt, Germany
| | - Jaume Pinyol
- Departament de Bioquímica i Biologia Molecular, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Achilleas S Frangakis
- Buchmann Institute for Molecular Life Sciences, Max-von-Laue Str. 15, 60438, Frankfurt, Germany
| | - Maria Lluch-Senar
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003, Barcelona, Spain
| | - Shigetarou Mori
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Keigo Shibayama
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tsuyoshi Kenri
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takayuki Kato
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.,RIKEN Center for Biosystems Dynamics Research and SPring-8 Center, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.,JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ignacio Fita
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Makoto Miyata
- Graduate School of Science, Osaka City University, Osaka, 558-8585, Japan. .,The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, Osaka, 558-8585, Japan.
| | - David Aparicio
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Baldiri Reixac 10, 08028, Barcelona, Spain.
| |
Collapse
|
25
|
Kenri T, Suzuki M, Sekizuka T, Ohya H, Oda Y, Yamazaki T, Fujii H, Hashimoto T, Nakajima H, Katsukawa C, Kuroda M, Shibayama K. Periodic Genotype Shifts in Clinically Prevalent Mycoplasma pneumoniae Strains in Japan. Front Cell Infect Microbiol 2020; 10:385. [PMID: 32850484 PMCID: PMC7424021 DOI: 10.3389/fcimb.2020.00385] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 06/24/2020] [Indexed: 11/13/2022] Open
Abstract
Nationwide increases in Mycoplasma pneumoniae pneumonia cases in Japan were reported in 2011, 2012, 2015, and 2016. In this study, we isolated 554 M. pneumoniae strains in 4 areas in Japan (Kanagawa, Okayama, Osaka, and Saitama) between 2006 and 2019, and performed genotyping analysis. More than 80% of the strains isolated in 2011 and 2012 harbored type 1 p1 adhesin gene; however, strains harboring type 2 or its variant p1 gene increased in 2015 and 2016 and dominated after 2017. These findings suggested that a shift in the prevalent genotype of M. pneumoniae clinical strains occurred recently in Japan. More than 90% of the type 1 strains isolated after 2010 harbored macrolide-resistance mutations in their 23S rRNA gene, whereas most type 2 lineage strains had no such mutations. Consequently, the increase in type 2 lineage strains in Japan has reduced the macrolide resistance rate of clinical M. pneumoniae strains. During this analysis, we also identified M. pneumoniae strains carrying a novel variant type 1 p1 gene, and we classified it as type 1b. We then sequenced the genomes of 81 selected M. pneumoniae strains that we collected between 1976 and 2017 in Japan, and compared them with 156 M. pneumoniae genomes deposited in public databases to provide insights into the interpretation of M. pneumoniae genotyping methods, including p1 typing, multiple-locus variable-number tandem repeat analysis (MLVA), multi-locus sequence typing (MLST), and typing by 8 single-nucleotide polymorphism markers (SNP-8). As expected, p1 typing, MLST, and SNP-8 results exhibited good correlation with whole-genome SNP analysis results in terms of phylogenetic relationships; however, MLVA typing results were less comparable to those of the other methods. MLVA may be useful for the discrimination of strains derived from a single outbreak within a limited area; however, is not reliable for classification of strains collected from distantly separated areas at different time points. This study showed the usefulness of genome-based comparison of M. pneumoniae for molecular epidemiology. Genome sequencing of more strains will improve our understanding of global propagation routes of this pathogen and evolutionary aspects of M. pneumoniae strains.
Collapse
Affiliation(s)
- Tsuyoshi Kenri
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masato Suzuki
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hitomi Ohya
- Kanagawa Prefectural Institute of Public Health, Kanagawa, Japan
| | | | | | | | | | - Hiroshi Nakajima
- Okayama Prefectural Institute for Environmental Science and Public Health, Okayama, Japan
| | - Chihiro Katsukawa
- Osaka Institute of Public Health, Osaka, Japan.,Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Keigo Shibayama
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
26
|
Miyata M, Robinson RC, Uyeda TQP, Fukumori Y, Fukushima SI, Haruta S, Homma M, Inaba K, Ito M, Kaito C, Kato K, Kenri T, Kinosita Y, Kojima S, Minamino T, Mori H, Nakamura S, Nakane D, Nakayama K, Nishiyama M, Shibata S, Shimabukuro K, Tamakoshi M, Taoka A, Tashiro Y, Tulum I, Wada H, Wakabayashi KI. Tree of motility - A proposed history of motility systems in the tree of life. Genes Cells 2020; 25:6-21. [PMID: 31957229 PMCID: PMC7004002 DOI: 10.1111/gtc.12737] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/11/2019] [Accepted: 11/17/2019] [Indexed: 12/27/2022]
Abstract
Motility often plays a decisive role in the survival of species. Five systems of motility have been studied in depth: those propelled by bacterial flagella, eukaryotic actin polymerization and the eukaryotic motor proteins myosin, kinesin and dynein. However, many organisms exhibit surprisingly diverse motilities, and advances in genomics, molecular biology and imaging have showed that those motilities have inherently independent mechanisms. This makes defining the breadth of motility nontrivial, because novel motilities may be driven by unknown mechanisms. Here, we classify the known motilities based on the unique classes of movement‐producing protein architectures. Based on this criterion, the current total of independent motility systems stands at 18 types. In this perspective, we discuss these modes of motility relative to the latest phylogenetic Tree of Life and propose a history of motility. During the ~4 billion years since the emergence of life, motility arose in Bacteria with flagella and pili, and in Archaea with archaella. Newer modes of motility became possible in Eukarya with changes to the cell envelope. Presence or absence of a peptidoglycan layer, the acquisition of robust membrane dynamics, the enlargement of cells and environmental opportunities likely provided the context for the (co)evolution of novel types of motility.
Collapse
Affiliation(s)
- Makoto Miyata
- Department of Biology, Graduate School of Science, Osaka City University, Osaka, Japan.,The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, Osaka, Japan
| | - Robert C Robinson
- Research Institute for Interdisciplinary Science, Okayama University, Okayama, Japan.,School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Taro Q P Uyeda
- Department of Physics, Faculty of Science and Technology, Waseda University, Tokyo, Japan
| | - Yoshihiro Fukumori
- Faculty of Natural System, Institute of Science and Engineering, Kanazawa University, Kanazawa, Japan.,WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Shun-Ichi Fukushima
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo, Japan
| | - Shin Haruta
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo, Japan
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Kazuo Inaba
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | - Masahiro Ito
- Graduate School of Life Sciences, Toyo University, Gunma, Japan
| | - Chikara Kaito
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kentaro Kato
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| | - Tsuyoshi Kenri
- Laboratory of Mycoplasmas and Haemophilus, Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Hiroyuki Mori
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Shuichi Nakamura
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Miyagi, Japan
| | - Daisuke Nakane
- Department of Physics, Gakushuin University, Tokyo, Japan
| | - Koji Nakayama
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Masayoshi Nishiyama
- Department of Physics, Faculty of Science and Engineering, Kindai University, Osaka, Japan
| | - Satoshi Shibata
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Katsuya Shimabukuro
- Department of Chemical and Biological Engineering, National Institute of Technology, Ube College, Yamaguchi, Japan
| | - Masatada Tamakoshi
- Department of Molecular Biology, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Azuma Taoka
- Faculty of Natural System, Institute of Science and Engineering, Kanazawa University, Kanazawa, Japan.,WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Yosuke Tashiro
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Isil Tulum
- Department of Botany, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Hirofumi Wada
- Department of Physics, Graduate School of Science and Engineering, Ritsumeikan University, Shiga, Japan
| | - Ken-Ichi Wakabayashi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Kanagawa, Japan
| |
Collapse
|
27
|
Tulum I, Kimura K, Miyata M. Identification and sequence analyses of the gliding machinery proteins from Mycoplasma mobile. Sci Rep 2020; 10:3792. [PMID: 32123220 PMCID: PMC7052211 DOI: 10.1038/s41598-020-60535-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/10/2020] [Indexed: 11/09/2022] Open
Abstract
Mycoplasma mobile, a fish pathogen, exhibits its own specialized gliding motility on host cells based on ATP hydrolysis. The special protein machinery enabling this motility is composed of surface and internal protein complexes. Four proteins, MMOBs 1630, 1660, 1670, and 4860 constitute the internal complex, including paralogs of F-type ATPase/synthase α and β subunits. In the present study, the cellular localisation for the candidate gliding machinery proteins, MMOBs 1620, 1640, 1650, and 5430 was investigated by using a total internal reflection fluorescence microscopy system after tagging these proteins with the enhanced yellow fluorescent protein (EYFP). The M. mobile strain expressing a fusion protein MMOB1620-EYFP exhibited reduced cell-binding activity and a strain expressing MMOB1640 fused with EYFP exhibited increased gliding speed, showing the involvement of these proteins in the gliding mechanism. Based on the genomic sequences, we analysed the sequence conservativity in the proteins of the internal and the surface complexes from four gliding mycoplasma species. The proteins in the internal complex were more conserved compared to the surface complex, suggesting that the surface complex undergoes modifications depending on the host. The analyses suggested that the internal gliding complex was highly conserved probably due to its role in the motility mechanism.
Collapse
Affiliation(s)
- Isil Tulum
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Kenta Kimura
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Makoto Miyata
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, 558-8585, Japan.
| |
Collapse
|
28
|
Refined Mechanism of Mycoplasma mobile Gliding Based on Structure, ATPase Activity, and Sialic Acid Binding of Machinery. mBio 2019; 10:mBio.02846-19. [PMID: 31874918 PMCID: PMC6935860 DOI: 10.1128/mbio.02846-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Mycoplasma mobile, a fish pathogen, glides on solid surfaces by repeated catch, pull, and release of sialylated oligosaccharides by a unique mechanism based on ATP energy. The gliding machinery is composed of huge surface proteins and an internal "jellyfish"-like structure. Here, we elucidated the detailed three-dimensional structures of the machinery by electron cryotomography. The internal "tentacle"-like structure hydrolyzed ATP, which was consistent with the fact that the paralogs of the α- and β-subunits of F1-ATPase are at the tentacle structure. The electron microscopy suggested conformational changes of the tentacle structure depending on the presence of ATP analogs. The gliding machinery was isolated and showed that the binding activity to sialylated oligosaccharide was higher in the presence of ADP than in the presence of ATP. Based on these results, we proposed a model to explain the mechanism of M. mobile gliding.IMPORTANCE The genus Mycoplasma is made up of the smallest parasitic and sometimes commensal bacteria; Mycoplasma pneumoniae, which causes human "walking pneumonia," is representative. More than ten Mycoplasma species glide on host tissues by novel mechanisms, always in the direction of the distal side of the machinery. Mycoplasma mobile, the fastest species in the genus, catches, pulls, and releases sialylated oligosaccharides (SOs), the carbohydrate molecules also targeted by influenza viruses, by means of a specific receptor and using ATP hydrolysis for energy. Here, the architecture of the gliding machinery was visualized three dimensionally by electron cryotomography (ECT), and changes in the structure and binding activity coupled to ATP hydrolysis were discovered. Based on the results, a refined mechanism was proposed for this unique motility.
Collapse
|
29
|
Sasajima Y, Kato T, Miyata T, Namba K, Miyata M. SS1-3 Internal Ribbon Structure Driving Helicity-Switching Swimming of Spiroplasma. Microscopy (Oxf) 2019. [DOI: 10.1093/jmicro/dfz064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | | | | | - Keiichi Namba
- Grad. Sch. Frontier Biosci., Osaka Univ., Japan
- RIKEN BDR & SPring-8 Center, Japan
| | - Makoto Miyata
- Grad. Sch. Sci., Osaka City Univ., Japan
- OCARINA, Osaka City Univ., Japan
| |
Collapse
|
30
|
Meygret A, Peuchant O, Dordet-Frisoni E, Sirand-Pugnet P, Citti C, Bébéar C, Béven L, Pereyre S. High Prevalence of Integrative and Conjugative Elements Encoding Transcription Activator-Like Effector Repeats in Mycoplasma hominis. Front Microbiol 2019; 10:2385. [PMID: 31681239 PMCID: PMC6813540 DOI: 10.3389/fmicb.2019.02385] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/01/2019] [Indexed: 12/02/2022] Open
Abstract
Integrative and conjugative elements (ICEs) are modular mobile genetic elements that can disseminate through excision, circularization, and transfer. Mycoplasma ICEs have recently been found distributed among some mycoplasma species and there is accumulating evidence that they play a pivotal role in horizontal gene transfers. The occurrence of ICEs has not been documented in Mycoplasma hominis, a human urogenital pathogen responsible for urogenital infections, neonatal infections and extragenital infections. In this study, we searched for, characterized, and compared ICEs by genome analyses of 12 strains of M. hominis. ICEs of 27–30 kb were found in one or two copies in seven of the 12 M. hominis strains sequenced. Only five of these ICEs seemed to be functional, as assessed by detection of circular forms of extrachromosomal ICE. Moreover, the prevalence of ICEs in M. hominis was estimated to be 45% in a collection of 120 clinical isolates of M. hominis, including 27 tetracycline-resistant tet(M)-positive isolates. The proportion of ICEs was not higher in isolates carrying the tet(M) gene, suggesting that ICEs are not involved in tetracycline resistance. Notably, all M. hominis ICEs had a very similar structure, consisting of a 4.0–5.1 kb unusual module composed of five to six juxtaposed CDSs. All the genes forming this module were specific to M. hominis ICEs as they had no homologs in other mycoplasma ICEs. In each M. hominis ICE, one to three CDSs encode proteins that share common structural features with transcription activator-like (TAL) effectors involved in polynucleotide recognition and signal transduction in symbiotic plant pathogen bacteria. The conserved and specific structure of M. hominis ICEs and the high prevalence in clinical strains suggest that these ICEs may confer a selective advantage for the physiology or pathogenicity of this human pathogenic bacterium. These data open the way for further studies aiming at unraveling horizontal gene transfers and virulence factors in M. hominis.
Collapse
Affiliation(s)
- Alexandra Meygret
- USC EA 3671 Mycoplasmal and Chlamydial Infections in Humans, University of Bordeaux, Bordeaux, France.,INRA, USC-EA 3671 Mycoplasmal and Chlamydial Infections in Humans, University of Bordeaux, Bordeaux, France.,Department of Bacteriology, French National Reference Center for Bacterial STI, CHU Bordeaux, Bordeaux, France
| | - Olivia Peuchant
- USC EA 3671 Mycoplasmal and Chlamydial Infections in Humans, University of Bordeaux, Bordeaux, France.,INRA, USC-EA 3671 Mycoplasmal and Chlamydial Infections in Humans, University of Bordeaux, Bordeaux, France.,Department of Bacteriology, French National Reference Center for Bacterial STI, CHU Bordeaux, Bordeaux, France
| | - Emilie Dordet-Frisoni
- IHAP, INRA, Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, Toulouse, France
| | - Pascal Sirand-Pugnet
- UMR 1332, BFP, University of Bordeaux, Bordeaux, France.,INRA, UMR 1332, BFP, Bordeaux, France
| | - Christine Citti
- IHAP, INRA, Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, Toulouse, France
| | - Cécile Bébéar
- USC EA 3671 Mycoplasmal and Chlamydial Infections in Humans, University of Bordeaux, Bordeaux, France.,INRA, USC-EA 3671 Mycoplasmal and Chlamydial Infections in Humans, University of Bordeaux, Bordeaux, France.,Department of Bacteriology, French National Reference Center for Bacterial STI, CHU Bordeaux, Bordeaux, France
| | - Laure Béven
- UMR 1332, BFP, University of Bordeaux, Bordeaux, France.,INRA, UMR 1332, BFP, Bordeaux, France
| | - Sabine Pereyre
- USC EA 3671 Mycoplasmal and Chlamydial Infections in Humans, University of Bordeaux, Bordeaux, France.,INRA, USC-EA 3671 Mycoplasmal and Chlamydial Infections in Humans, University of Bordeaux, Bordeaux, France.,Department of Bacteriology, French National Reference Center for Bacterial STI, CHU Bordeaux, Bordeaux, France
| |
Collapse
|
31
|
Behaviors and Energy Source of Mycoplasma gallisepticum Gliding. J Bacteriol 2019; 201:JB.00397-19. [PMID: 31308069 DOI: 10.1128/jb.00397-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 07/04/2019] [Indexed: 01/06/2023] Open
Abstract
Mycoplasma gallisepticum, an avian-pathogenic bacterium, glides on host tissue surfaces by using a common motility system with Mycoplasma pneumoniae In the present study, we observed and analyzed the gliding behaviors of M. gallisepticum in detail by using optical microscopes. M. gallisepticum glided at a speed of 0.27 ± 0.09 μm/s with directional changes relative to the cell axis of 0.6 degree ± 44.6 degrees/5 s without the rolling of the cell body. To examine the effects of viscosity on gliding, we analyzed the gliding behaviors under viscous environments. The gliding speed was constant in various concentrations of methylcellulose but was affected by Ficoll. To investigate the relationship between binding and gliding, we analyzed the inhibitory effects of sialyllactose on binding and gliding. The binding and gliding speed sigmoidally decreased with sialyllactose concentration, indicating the cooperative binding of the cell. To determine the direct energy source of gliding, we used a membrane-permeabilized ghost model. We permeabilized M. gallisepticum cells with Triton X-100 or Triton X-100 containing ATP and analyzed the gliding of permeabilized cells. The cells permeabilized with Triton X-100 did not show gliding; in contrast, the cells permeabilized with Triton X-100 containing ATP showed gliding at a speed of 0.014 ± 0.007 μm/s. These results indicate that the direct energy source for the gliding motility of M. gallisepticum is ATP.IMPORTANCE Mycoplasmas, the smallest bacteria, are parasitic and occasionally commensal. Mycoplasma gallisepticum is related to human-pathogenic mycoplasmas-Mycoplasma pneumoniae and Mycoplasma genitalium-which cause so-called "walking pneumonia" and nongonococcal urethritis, respectively. These mycoplasmas trap sialylated oligosaccharides, which are common targets among influenza viruses, on host trachea or urinary tract surfaces and glide to enlarge the infected areas. Interestingly, this gliding motility is not related to other bacterial motilities or eukaryotic motilities. Here, we quantitatively analyze cell behaviors in gliding and clarify the direct energy source. The results provide clues for elucidating this unique motility mechanism.
Collapse
|
32
|
Aparicio D, Torres-Puig S, Ratera M, Querol E, Piñol J, Pich OQ, Fita I. Mycoplasma genitalium adhesin P110 binds sialic-acid human receptors. Nat Commun 2018; 9:4471. [PMID: 30367053 PMCID: PMC6203739 DOI: 10.1038/s41467-018-06963-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 09/27/2018] [Indexed: 01/30/2023] Open
Abstract
Adhesion of pathogenic bacteria to target cells is a prerequisite for colonization and further infection. The main adhesins of the emerging sexually transmitted pathogen Mycoplasma genitalium, P140 and P110, interact to form a Nap complex anchored to the cell membrane. Herein, we present the crystal structures of the extracellular region of the virulence factor P110 (916 residues) unliganded and in complex with sialic acid oligosaccharides. P110 interacts only with the neuraminic acid moiety of the oligosaccharides and experiments with human cells demonstrate that these interactions are essential for mycoplasma cytadherence. Additionally, structural information provides a deep insight of the P110 antigenic regions undergoing programmed variation to evade the host immune response. These results enlighten the interplay of M. genitalium with human target cells, offering new strategies to control mycoplasma infections. How the Mycoplasma genitalium cytadhesins P140 and P110 promote host cell invasion remains poorly understood. Here, combining structural analysis with functional assays, Aparicio et al. identify the P110 domain that binds to sialylated receptors essential for mycoplasma cytadherence.
Collapse
Affiliation(s)
- David Aparicio
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC) and Maria de Maeztu Unit of Excellence, Parc Científic de Barcelona, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Sergi Torres-Puig
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Mercè Ratera
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC) and Maria de Maeztu Unit of Excellence, Parc Científic de Barcelona, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Enrique Querol
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Jaume Piñol
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Oscar Q Pich
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.
| | - Ignacio Fita
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC) and Maria de Maeztu Unit of Excellence, Parc Científic de Barcelona, Baldiri Reixac 10, 08028, Barcelona, Spain.
| |
Collapse
|
33
|
Williams CR, Chen L, Driver AD, Arnold EA, Sheppard ES, Locklin J, Krause DC. Sialylated Receptor Setting Influences Mycoplasma pneumoniae Attachment and Gliding Motility. Mol Microbiol 2018; 109:735-744. [PMID: 29885004 DOI: 10.1111/mmi.13997] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2018] [Indexed: 01/21/2023]
Abstract
Mycoplasma pneumoniae is a common cause of human respiratory tract infections, including bronchitis and atypical pneumonia. M. pneumoniae binds glycoprotein receptors having terminal sialic acid residues via the P1 adhesin protein. Here, we explored the impact of sialic acid presentation on M. pneumoniae adherence and gliding on surfaces coated with sialylated glycoproteins, or chemically functionalized with α-2,3- and α-2,6-sialyllactose ligated individually or in combination to a polymer scaffold in precisely controlled densities. In both models, gliding required a higher receptor density threshold than adherence, and receptor density influenced gliding frequency but not gliding speed. However, very high densities of α-2,3-sialyllactose actually reduced gliding frequency over peak levels observed at lower densities. Both α-2,3- and α-2,6-sialyllactose supported M. pneumoniae adherence, but gliding was only observed on the former. Finally, gliding on α-2,3-sialyllactose was inhibited on surfaces also conjugated with α-2,6-sialyllactose, suggesting that both moieties bind P1 despite the inability of the latter to support gliding. Our results indicate that the nature and density of host receptor moieties profoundly influences M. pneumoniae gliding, which could affect pathogenesis and infection outcome. Furthermore, precise functionalization of polymer scaffolds shows great promise for further analysis of sialic acid presentation and M. pneumoniae adherence and gliding.
Collapse
Affiliation(s)
| | - Li Chen
- Department of Chemistry, College of Engineering, and New Materials Institute, University of Georgia, Athens, Georgia, USA
| | - Ashley D Driver
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Edward A Arnold
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Edward S Sheppard
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Jason Locklin
- Department of Chemistry, College of Engineering, and New Materials Institute, University of Georgia, Athens, Georgia, USA
| | - Duncan C Krause
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
34
|
Mizutani M, Tulum I, Kinosita Y, Nishizaka T, Miyata M. Detailed Analyses of Stall Force Generation in Mycoplasma mobile Gliding. Biophys J 2018; 114:1411-1419. [PMID: 29590598 PMCID: PMC5883615 DOI: 10.1016/j.bpj.2018.01.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 01/24/2018] [Accepted: 01/29/2018] [Indexed: 02/01/2023] Open
Abstract
Mycoplasma mobile is a bacterium that uses a unique mechanism to glide on solid surfaces at a velocity of up to 4.5 μm/s. Its gliding machinery comprises hundreds of units that generate the force for gliding based on the energy derived from ATP; the units catch and pull sialylated oligosaccharides fixed to solid surfaces. In this study, we measured the stall force of wild-type and mutant strains of M. mobile carrying a bead manipulated using optical tweezers. The strains that had been enhanced for binding exhibited weaker stall forces than the wild-type strain, indicating that stall force is related to force generation rather than to binding. The stall force of the wild-type strain decreased linearly from 113 to 19 picoNewtons after the addition of 0-0.5 mM free sialyllactose (a sialylated oligosaccharide), with a decrease in the number of working units. After the addition of 0.5 mM sialyllactose, the cells carrying a bead loaded using optical tweezers exhibited stepwise movements with force increments. The force increments ranged from 1 to 2 picoNewtons. Considering the 70-nm step size, this small-unit force may be explained by the large gear ratio involved in the M. mobile gliding machinery.
Collapse
Affiliation(s)
- Masaki Mizutani
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, Japan
| | - Isil Tulum
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, Japan; The OCU Advanced Research Institute for Natural Science and Technology, Osaka City University, Sumiyoshi-ku, Osaka, Japan
| | - Yoshiaki Kinosita
- Department of Physics, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo, Japan
| | - Takayuki Nishizaka
- Department of Physics, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo, Japan
| | - Makoto Miyata
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, Japan; The OCU Advanced Research Institute for Natural Science and Technology, Osaka City University, Sumiyoshi-ku, Osaka, Japan.
| |
Collapse
|
35
|
Seybert A, Gonzalez-Gonzalez L, Scheffer MP, Lluch-Senar M, Mariscal AM, Querol E, Matthaeus F, Piñol J, Frangakis AS. Cryo-electron tomography analyses of terminal organelle mutants suggest the motility mechanism of Mycoplasma genitalium. Mol Microbiol 2018; 108:319-329. [PMID: 29470847 DOI: 10.1111/mmi.13938] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2018] [Indexed: 11/28/2022]
Abstract
The terminal organelle of Mycoplasma genitalium is responsible for bacterial adhesion, motility and pathogenicity. Localized at the cell tip, it comprises an electron-dense core that is anchored to the cell membrane at its distal end and to the cytoplasm at its proximal end. The surface of the terminal organelle is also covered with adhesion proteins. We performed cellular cryoelectron tomography on deletion mutants of eleven proteins that are implicated in building the terminal organelle, to systematically analyze the ultrastructural effects. These data were correlated with microcinematographies, from which the motility patterns can be quantitatively assessed. We visualized diverse phenotypes, ranging from mild to severe cell adhesion, motility and segregation defects. Based on our observations, we propose a double-spring ratchet model for the motility mechanism that explains our current and previous observations. Our model, which expands and integrates the previously suggested inchworm model, allocates specific functions to each of the essential components of this unique bacterial motility system.
Collapse
Affiliation(s)
- Anja Seybert
- Buchmann Institute for Molecular Life Sciences and Institute of Biophysics, Goethe University Frankfurt, Max-von-Laue Str. 15, Frankfurt 60438, Germany
| | - Luis Gonzalez-Gonzalez
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Margot P Scheffer
- Buchmann Institute for Molecular Life Sciences and Institute of Biophysics, Goethe University Frankfurt, Max-von-Laue Str. 15, Frankfurt 60438, Germany
| | - Maria Lluch-Senar
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Ana M Mariscal
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Enrique Querol
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Franziska Matthaeus
- Faculty of Biological Sciences & FIAS, Goethe University Frankfurt, Ruth-Moufang-Straße 1, Frankfurt 60438, Germany
| | - Jaume Piñol
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Achilleas S Frangakis
- Buchmann Institute for Molecular Life Sciences and Institute of Biophysics, Goethe University Frankfurt, Max-von-Laue Str. 15, Frankfurt 60438, Germany
| |
Collapse
|
36
|
Krause DC, Chen S, Shi J, Jensen AJ, Sheppard ES, Jensen GJ. Electron cryotomography of Mycoplasma pneumoniae mutants correlates terminal organelle architectural features and function. Mol Microbiol 2018; 108:306-318. [PMID: 29470845 DOI: 10.1111/mmi.13937] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2018] [Indexed: 11/28/2022]
Abstract
The Mycoplasma pneumoniae terminal organelle functions in adherence and gliding motility and is comprised of at least eleven substructures. We used electron cryotomography to correlate impaired gliding and adherence function with changes in architecture in diverse terminal organelle mutants. All eleven substructures were accounted for in the prkC, prpC and P200 mutants, and variably so for the HMW3 mutant. Conversely, no terminal organelle substructures were evident in HMW1 and HMW2 mutants. The P41 mutant exhibits a terminal organelle detachment phenotype and lacked the bowl element normally present at the terminal organelle base. Complementation restored this substructure, establishing P41 as either a component of the bowl element or required for its assembly or stability, and that this bowl element is essential to anchor the terminal organelle but not for leverage in gliding. Mutants II-3, III-4 and topJ exhibited a visibly lower density of protein knobs on the terminal organelle surface. Mutants II-3 and III-4 lack accessory proteins required for a functional adhesin complex, while the topJ mutant lacks a DnaJ-like co-chaperone essential for its assembly. Taken together, these observations expand our understanding of the roles of certain terminal organelle proteins in the architecture and function of this complex structure.
Collapse
Affiliation(s)
- Duncan C Krause
- Department of Microbiology, University of Georgia, Athens, GA
| | - Songye Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Jian Shi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Ashley J Jensen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | | | - Grant J Jensen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA.,Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA
| |
Collapse
|
37
|
Scheffer MP, Gonzalez-Gonzalez L, Seybert A, Ratera M, Kunz M, Valpuesta JM, Fita I, Querol E, Piñol J, Martín-Benito J, Frangakis AS. Structural characterization of the NAP; the major adhesion complex of the human pathogen Mycoplasma genitalium. Mol Microbiol 2017; 105:869-879. [PMID: 28671286 DOI: 10.1111/mmi.13743] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2017] [Indexed: 01/09/2023]
Abstract
Mycoplasma genitalium, the causative agent of non-gonococcal urethritis and pelvic inflammatory disease in humans, is a small eubacterium that lacks a peptidoglycan cell wall. On the surface of its plasma membrane is the major surface adhesion complex, known as NAP that is essential for adhesion and gliding motility of the organism. Here, we have performed cryo-electron tomography of intact cells and detergent permeabilized M. genitalium cell aggregates, providing sub-tomogram averages of free and cell-attached NAPs respectively, revealing a tetrameric complex with two-fold rotational (C2) symmetry. Each NAP has two pairs of globular lobes (named α and β lobes), arranged as a dimer of heterodimers with each lobe connected by a stalk to the cell membrane. The β lobes are larger than the α lobes by 20%. Classification of NAPs showed that the complex can tilt with respect to the cell membrane. A protein complex containing exclusively the proteins P140 and P110, was purified from M. genitalium and was structurally characterized by negative-stain single particle EM reconstruction. The close structural similarity found between intact NAPs and the isolated P140/P110 complexes, shows that dimers of P140/P110 heterodimers are the only components of the extracellular region of intact NAPs in M. genitalium.
Collapse
Affiliation(s)
- Margot P Scheffer
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue Str. 15, Frankfurt 60438, Germany
| | - Luis Gonzalez-Gonzalez
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Anja Seybert
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue Str. 15, Frankfurt 60438, Germany
| | - Mercè Ratera
- Parc Científic de Barcelona, Instituto de Biología Molecular de Barcelona del (IBMB-CSIC), Baldiri i Reixac 10, Barcelona 08028, Spain
| | - Michael Kunz
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue Str. 15, Frankfurt 60438, Germany
| | - José M Valpuesta
- Department for Macromolecular Structures, Centro Nacional de Biotecnologıa (CNB-CSIC), Madrid 28049, Spain
| | - Ignacio Fita
- Parc Científic de Barcelona, Instituto de Biología Molecular de Barcelona del (IBMB-CSIC), Baldiri i Reixac 10, Barcelona 08028, Spain
| | - Enrique Querol
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Jaume Piñol
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Jaime Martín-Benito
- Department for Macromolecular Structures, Centro Nacional de Biotecnologıa (CNB-CSIC), Madrid 28049, Spain
| | - Achilleas S Frangakis
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue Str. 15, Frankfurt 60438, Germany
| |
Collapse
|
38
|
Liu P, Zheng H, Meng Q, Terahara N, Gu W, Wang S, Zhao G, Nakane D, Wang W, Miyata M. Chemotaxis without Conventional Two-Component System, Based on Cell Polarity and Aerobic Conditions in Helicity-Switching Swimming of Spiroplasma eriocheiris. Front Microbiol 2017; 8:58. [PMID: 28217108 PMCID: PMC5289999 DOI: 10.3389/fmicb.2017.00058] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 01/09/2017] [Indexed: 11/13/2022] Open
Abstract
Spiroplasma eriocheiris is a pathogen that causes mass mortality in Chinese mitten crab, Eriocheir sinensis. S. eriocheiris causes tremor disease and infects almost all of the artificial breeding crustaceans, resulting in disastrous effects on the aquaculture economy in China. S. eriocheiris is a wall-less helical bacterium, measuring 2.0 to 10.0 μm long, and can swim up to 5 μm per second in a viscous medium without flagella by switching the cell helicity at a kink traveling from the front to the tail. In this study, we showed that S. eriocheiris performs chemotaxis without the conventional two-component system, a system commonly found in bacterial chemotaxis. The chemotaxis of S. eriocheiris was observed more clearly when the cells were cultivated under anaerobic conditions. The cells were polarized as evidenced by a tip structure, swimming in the direction of the tip, and were shown to reverse their swimming direction in response to attractants. Triton X-100 treatment revealed the internal structure, a dumbbell-shaped core in the tip that is connected by a flat ribbon, which traces the shortest line in the helical cell shape from the tip to the other pole. Sixteen proteins were identified as the components of the internal structure by mass spectrometry, including Fibril protein and four types of MreB proteins.
Collapse
Affiliation(s)
- Peng Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal UniversityJiangsu, China; Department of Biology, Graduate School of Science, Osaka City UniversityOsaka, Japan
| | - Huajun Zheng
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai Shanghai, China
| | - Qingguo Meng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University Jiangsu, China
| | - Natsuho Terahara
- Department of Biology, Graduate School of Science, Osaka City University Osaka, Japan
| | - Wei Gu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University Jiangsu, China
| | - Shengyue Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai Shanghai, China
| | - Guoping Zhao
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai Shanghai, China
| | - Daisuke Nakane
- Department of Physics, Gakushuin University Tokyo, Japan
| | - Wen Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University Jiangsu, China
| | - Makoto Miyata
- Department of Biology, Graduate School of Science, Osaka City UniversityOsaka, Japan; The OCU Advanced Research Institute for Natural Science and Technology, Osaka City UniversityOsaka, Japan
| |
Collapse
|
39
|
Meng YL, Wang WM, Lv DD, An QX, Lu WH, Wang X, Tang G. The effect of Platycodin D on the expression of cytoadherence proteins P1 and P30 in Mycoplasma pneumoniae models. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 49:188-193. [PMID: 28073091 DOI: 10.1016/j.etap.2017.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 12/29/2016] [Accepted: 01/01/2017] [Indexed: 06/06/2023]
Abstract
Platycodin D is one of the most important monomers of the Qinbaiqingfei pellet (Qinbai), which has already been approved as the first effective new Traditional Chinese Medicine used to fight against Mycoplasma pneumoniae (M. pneumoniae) in clinic in China. In previous studies, pharmacodynamics experiment has proved that Platycodin D has anti-M. pneumoniae effect and the minimum inhibitory concentration (MIC) is 16mμg/ml. This paper further clarified that the mechanism underlying the anti-M. pneumoniae effect of Platycodin D might be due to M. pneumoniae adhesion proteins P1 and P30. P1 and P30 expression levels in M. pneumoniae strain, M. pneumoniae-infected BALB/c mice, and M. pneumoniae-infected A549 cells were determined by reverse transcription PCR. Platycodin D strongly inhibited P1 and P30 expression in M. pneumonia and high dosage of Platycodin D exhibited a greater effect on reducing P1 and P30 expression than low dose Platycodin D. Platycodin D prevented M. pneumoniae infection through inhibiting the expression of adhesion proteins, which might be one of the mechanisms for the anti-M. pneumoniae properties of Qinbai. These results provide a foundation to further explore the mechanisms of action of Qinbai in future studies.
Collapse
Affiliation(s)
- Yan-Li Meng
- Heilongjiang Academy of Chinese Medicine Sciences, Harbin 150036, China
| | - Wei-Ming Wang
- Heilongjiang Academy of Chinese Medicine Sciences, Harbin 150036, China.
| | - Dan-Dan Lv
- Heilongjiang Academy of Chinese Medicine Sciences, Harbin 150036, China
| | - Qiu-Xia An
- Heilongjiang Academy of Chinese Medicine Sciences, Harbin 150036, China
| | - Wei-Hong Lu
- Harbin Institute of Technology, Harbin 150090, China
| | - Xin Wang
- Heilongjiang Academy of Chinese Medicine Sciences, Harbin 150036, China
| | - Guixin Tang
- Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
40
|
Structural Study of MPN387, an Essential Protein for Gliding Motility of a Human-Pathogenic Bacterium, Mycoplasma pneumoniae. J Bacteriol 2016; 198:2352-9. [PMID: 27325681 DOI: 10.1128/jb.00160-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 06/17/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Mycoplasma pneumoniae is a human pathogen that glides on host cell surfaces with repeated catch and release of sialylated oligosaccharides. At a pole, this organism forms a protrusion called the attachment organelle, which is composed of surface structures, including P1 adhesin and the internal core structure. The core structure can be divided into three parts, the terminal button, paired plates, and bowl complex, aligned in that order from the front end of the protrusion. To elucidate the gliding mechanism, we focused on MPN387, a component protein of the bowl complex which is essential for gliding but dispensable for cytadherence. The predicted amino acid sequence showed that the protein features a coiled-coil region spanning residue 72 to residue 290 of the total of 358 amino acids in the protein. Recombinant MPN387 proteins were isolated with and without an enhanced yellow fluorescent protein (EYFP) fusion tag and analyzed by gel filtration chromatography, circular dichroism spectroscopy, analytical ultracentrifugation, partial proteolysis, and rotary-shadowing electron microscopy. The results showed that MPN387 is a dumbbell-shaped homodimer that is about 42.7 nm in length and 9.1 nm in diameter and includes a 24.5-nm-long central parallel coiled-coil part. The molecular image was superimposed onto the electron micrograph based on the localizing position mapped by fluorescent protein tagging. A proposed role of this protein in the gliding mechanism is discussed. IMPORTANCE Human mycoplasma pneumonia is caused by a pathogenic bacterium, Mycoplasma pneumoniae This tiny, 2-μm-long bacterium is suggested to infect humans by gliding on the surface of the trachea through binding to sialylated oligosaccharides. The mechanism underlying mycoplasma "gliding motility" is not related to any other well-studied motility systems, such as bacterial flagella and eukaryotic motor proteins. Here, we isolated and analyzed the structure of a key protein which is directly involved in the gliding mechanism.
Collapse
|
41
|
Directed Binding of Gliding Bacterium, Mycoplasma mobile, Shown by Detachment Force and Bond Lifetime. mBio 2016; 7:mBio.00455-16. [PMID: 27353751 PMCID: PMC4937208 DOI: 10.1128/mbio.00455-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mycoplasma mobile, a fish-pathogenic bacterium, features a protrusion that enables it to glide smoothly on solid surfaces at a velocity of up to 4.5 µm s−1 in the direction of the protrusion. M. mobile glides by a repeated catch-pull-release of sialylated oligosaccharides fixed on a solid surface by hundreds of 50-nm flexible “legs” sticking out from the protrusion. This gliding mechanism may be explained by a possible directed binding of each leg with sialylated oligosaccharides, by which the leg can be detached more easily forward than backward. In the present study, we used a polystyrene bead held by optical tweezers to detach a starved cell at rest from a glass surface coated with sialylated oligosaccharides and concluded that the detachment force forward is 1.6- to 1.8-fold less than that backward, which may be linked to a catch bond-like behavior of the cell. These results suggest that this directed binding has a critical role in the gliding mechanism. Mycoplasma species are the smallest bacteria and are parasitic and occasionally commensal, as represented by Mycoplasma pneumoniae, which causes so-called “walking pneumonia” in humans. Dozens of species glide on host tissues, always in the direction of the characteristic cellular protrusion, by novel mechanisms. The fastest species, Mycoplasma mobile, catches, pulls, and releases sialylated oligosaccharides (SOs), which are common targets among influenza viruses, by means of a specific receptor based on the energy of ATP hydrolysis. Here, force measurements made with optical tweezers revealed that the force required to detach a cell from SOs is smaller forward than backward along the gliding direction. The directed binding should be a clue to elucidate this novel motility mechanism.
Collapse
|