1
|
Smith EL, Goley ED. House of CarDs: Functional insights into the transcriptional regulator CdnL. Mol Microbiol 2024; 122:789-796. [PMID: 38664995 PMCID: PMC11502505 DOI: 10.1111/mmi.15268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/12/2024] [Accepted: 04/11/2024] [Indexed: 07/07/2024]
Abstract
Regulation of bacterial transcription is a complex and multi-faceted phenomenon that is critical for growth and adaptation. Proteins in the CarD_CdnL_TRCF family are widespread, often essential, regulators of transcription of genes required for growth and metabolic homeostasis. Research in the last decade has described the mechanistic and structural bases of CarD-CdnL-mediated regulation of transcription initiation. More recently, studies in a range of bacteria have begun to elucidate the physiological roles of CarD-CdnL proteins as well as mechanisms by which these proteins, themselves, are regulated. A theme has emerged wherein regulation of CarD-CdnL proteins is central to bacterial adaptation to stress and/or changing environmental conditions.
Collapse
Affiliation(s)
- Erika L. Smith
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Erin D. Goley
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
2
|
Heckler C, Vale MG, Canales HDS, Stradiotto GC, Giordano ALPL, Schreiber AZ, Sant'Ana AS. Spore-forming bacteria in gelatin: Characterization, identification by 16S rRNA and MALDI-TOF mass spectrometry (MS), and presence of heat resistance and virulence genes. Int J Food Microbiol 2024; 422:110813. [PMID: 38970997 DOI: 10.1016/j.ijfoodmicro.2024.110813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024]
Abstract
Gelatin, a versatile protein derived from collagen, is widely used in the food, pharmaceutical and medical sectors. However, bacterial contamination by spore-forming bacteria during gelatin processing represents a significant concern for product safety and quality. In this study, an investigation was carried out to explore the heat and chemical resistance, as well as the identification and characterization of spore-forming bacteria isolated from gelatin processing. The methodologies involved chemical resistance tests with drastic pH in microplates and thermal resistance tests in capillary tubes of various isolates obtained at different processing stages. In addition, phenotypic and genotypic analyses were carried out to characterize the most resistant isolates of spore-forming bacteria. The findings of this study revealed the presence of several species, including Bacillus cereus, Bacillus licheniformis, Bacillus sonorensis, Bacillus subtilis, Geobacillus stearothermophilus, and Clostridium sporogenes, with some isolates exhibiting remarkable chemical and heat resistances. In addition, a significant proportion of the most resistant isolates showed gelatinase activity (n = 19/21; 90.5 %) and the presence of heat resistance (n = 5/21; 23.8 %), and virulence genes (n = 11/21; 52.4 %). The results of this study suggest that interventions should be done in quality control practices and that process parameter adjustments and effective contamination reduction strategies should be implemented through gelatin processing.
Collapse
Affiliation(s)
- Caroline Heckler
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Matheus G Vale
- Department of Integrated Systems, Faculty of Mechanical Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Héctor D S Canales
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Graziele C Stradiotto
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Ana Luisa P L Giordano
- Department of Clinical Pathology, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Angelica Z Schreiber
- Department of Clinical Pathology, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil.
| |
Collapse
|
3
|
Smith EL, Panis G, Woldemeskel SA, Viollier PH, Chien P, Goley ED. Regulation of the transcription factor CdnL promotes adaptation to nutrient stress in Caulobacter. PNAS NEXUS 2024; 3:pgae154. [PMID: 38650860 PMCID: PMC11034885 DOI: 10.1093/pnasnexus/pgae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
In response to nutrient deprivation, bacteria activate a conserved stress response pathway called the stringent response (SR). During SR activation in Caulobacter crescentus, SpoT synthesizes the secondary messengers guanosine 5'-diphosphate 3'-diphosphate and guanosine 5'-triphosphate 3'-diphosphate (collectively known as (p)ppGpp), which affect transcription by binding RNA polymerase (RNAP) to down-regulate anabolic genes. (p)ppGpp also impacts the expression of anabolic genes by controlling the levels and activities of their transcriptional regulators. In Caulobacter, a major regulator of anabolic genes is the transcription factor CdnL. If and how CdnL is controlled during the SR and why that might be functionally important are unclear. In this study, we show that CdnL is down-regulated posttranslationally during starvation in a manner dependent on SpoT and the ClpXP protease. Artificial stabilization of CdnL during starvation causes misregulation of ribosomal and metabolic genes. Functionally, we demonstrate that the combined action of SR transcriptional regulators and CdnL clearance allows for rapid adaptation to nutrient repletion. Moreover, cells that are unable to clear CdnL during starvation are outcompeted by wild-type cells when subjected to nutrient fluctuations. We hypothesize that clearance of CdnL during the SR, in conjunction with direct binding of (p)ppGpp and DksA to RNAP, is critical for altering the transcriptome in order to permit cell survival during nutrient stress.
Collapse
Affiliation(s)
- Erika L Smith
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Gaël Panis
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Selamawit Abi Woldemeskel
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Patrick H Viollier
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Peter Chien
- Department of Biochemistry and Molecular Biology, University of Massachusetts-Amherst, Amherst, MA 01003, USA
| | - Erin D Goley
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
4
|
Huijboom L, Tempelaars M, Fan M, Zhu Y, Boeren S, van der Linden E, Abee T. l-tyrosine modulates biofilm formation of Bacillus cereus ATCC 14579. Res Microbiol 2023; 174:104072. [PMID: 37080258 DOI: 10.1016/j.resmic.2023.104072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/22/2023]
Abstract
Bacillus cereus is a food-borne pathogen capable of producing biofilms. Following analysis of biofilm formation by B. cereus ATCC 14579 transposon mutants in defined medium (DM), a deletion mutant of bc2939 (Δbc2939) was constructed that showed decreased crystal violet biofilm staining and biofilm cell counts. In addition, Δbc2939 also produced smaller colony biofilms with lower cell counts and loss of wrinkly morphology. The bc2939 gene encodes for Prephenate dehydrogenase, which converts Prephenate to 4-Hydroxy-phenylpyruvate (4-HPPA) in the l-tyrosine branch of the Shikimate pathway. While growth of the mutant and WT in DM was similar, addition of l-tyrosine was required to restore WT-like (colony) biofilm formation. Comparative proteomics showed reduced expression of Tyrosine-protein kinase/phosphatase regulators and extracellular polysaccharide cluster 1 (EPS1) proteins, aerobic electron transfer chain cytochrome aa3/d quinol oxidases, and iso-chorismate synthase involved in menaquinone synthesis in DM grown mutant biofilm cells, while multiple oxidative stress-related catalases and superoxide dismutases were upregulated. Performance in shaking cultures showed a 100-fold lower concentration of menaquinone-7 and reduction in cell counts of DM grown Δbc2939 indicating increased oxygen sensitivity. Combining all results, points to an important role of Tyrosine-modulated EPS1 production and menaquinone-dependent aerobic respiration in B. cereus ATCC 14579 (colony) biofilm formation.
Collapse
Affiliation(s)
- Linda Huijboom
- Food Microbiology, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands.
| | - Marcel Tempelaars
- Food Microbiology, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands.
| | - Mingzhen Fan
- Food Microbiology, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands.
| | - Yourong Zhu
- Food Microbiology, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands.
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, Wageningen, 6708, WE, the Netherlands.
| | - Erik van der Linden
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands.
| | - Tjakko Abee
- Food Microbiology, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands.
| |
Collapse
|
5
|
Yeak KYC, Tempelaars M, Wu JL, Westerveld W, Reder A, Michalik S, Dhople VM, Völker U, Pané-Farré J, Wells-Bennik MHJ, Abee T. SigB modulates expression of novel SigB regulon members via Bc1009 in non-stressed and heat-stressed cells revealing its alternative roles in Bacillus cereus. BMC Microbiol 2023; 23:37. [PMID: 36759782 PMCID: PMC9912610 DOI: 10.1186/s12866-023-02783-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND The Bacillus cereus Sigma B (SigB) dependent general stress response is activated via the two-component RsbKY system, which involves a phosphate transfer from RsbK to RsbY. It has been hypothesized that the Hpr-like phosphocarrier protein (Bc1009) encoded by bc1009 in the SigB gene cluster may play a role in this transfer, thereby acting as a regulator of SigB activation. Alternatively, Bc1009 may be involved in the activation of a subset of SigB regulon members. RESULTS We first investigated the potential role of bc1009 to act as a SigB regulator but ruled out this possibility as the deletion of bc1009 did not affect the expression of sigB and other SigB gene cluster members. The SigB-dependent functions of Bc1009 were further examined in B. cereus ATCC14579 via comparative proteome profiling (backed up by transcriptomics) of wt, Δbc1009 and ΔsigB deletion mutants under heat stress at 42 °C. This revealed 284 proteins displaying SigB-dependent alterations in protein expression levels in heat-stressed cells, including a subgroup of 138 proteins for which alterations were also Bc1009-dependent. Next to proteins with roles in stress defense, newly identified SigB and Bc1009-dependent proteins have roles in cell motility, signal transduction, transcription, cell wall biogenesis, and amino acid transport and metabolism. Analysis of lethal stress survival at 50 °C after pre-adaptation at 42 °C showed intermediate survival efficacy of Δbc1009 cells, highest survival of wt, and lowest survival of ΔsigB cells, respectively. Additional comparative proteome analysis of non-stressed wt and mutant cells at 30 °C revealed 96 proteins with SigB and Bc1009-dependent differences in levels: 51 were also identified under heat stress, and 45 showed significant differential expression at 30 °C. This includes proteins with roles in carbohydrate/ion transport and metabolism. Overlapping functions at 30 °C and 42 °C included proteins involved in motility, and ΔsigB and Δbc1009 cells showed reduced motility compared to wt cells in swimming assays at both temperatures. CONCLUSION Our results extend the B. cereus SigB regulon to > 300 members, with a novel role of SigB-dependent Bc1009 in the activation of a subregulon of > 180 members, conceivably via interactions with other transcriptional regulatory networks.
Collapse
Affiliation(s)
- Kah Yen Claire Yeak
- grid.419921.60000 0004 0588 7915NIZO, Kernhemseweg 2, PO Box 20, 6718 ZB Ede, The Netherlands ,grid.4818.50000 0001 0791 5666Food Microbiology, Wageningen University and Research, PO Box 8129, 6700 EV Wageningen, The Netherlands
| | - Marcel Tempelaars
- grid.4818.50000 0001 0791 5666Food Microbiology, Wageningen University and Research, PO Box 8129, 6700 EV Wageningen, The Netherlands
| | - Jia Lun Wu
- grid.4818.50000 0001 0791 5666Food Microbiology, Wageningen University and Research, PO Box 8129, 6700 EV Wageningen, The Netherlands
| | - Wouter Westerveld
- grid.4818.50000 0001 0791 5666Food Microbiology, Wageningen University and Research, PO Box 8129, 6700 EV Wageningen, The Netherlands
| | - Alexander Reder
- grid.5603.0Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Stephan Michalik
- grid.5603.0Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Vishnu M. Dhople
- grid.5603.0Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- grid.5603.0Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Jan Pané-Farré
- grid.10253.350000 0004 1936 9756Center for Synthetic Microbiology (SYNMIKRO) & Department of Chemistry, Philipps-University Marburg, Karl-Von-Frisch-Strasse 14, 35043 Marburg, Germany
| | | | - Tjakko Abee
- Food Microbiology, Wageningen University and Research, PO Box 8129, 6700 EV, Wageningen, The Netherlands.
| |
Collapse
|
6
|
Navaneethan Y, Effarizah ME. Post-Cooking Growth and Survival of Bacillus cereus Spores in Rice and Their Enzymatic Activities Leading to Food Spoilage Potential. Foods 2023; 12:foods12030626. [PMID: 36766153 PMCID: PMC9914848 DOI: 10.3390/foods12030626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/25/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
Bacillus cereus strains vary in their heat resistance, post-processing survival and growth capacity in foods. Hence, this study was carried out to determine the effect of cooking on the survival and growth of eight B. cereus spores in rice at different temperatures in terms of their toxigenic profiles and extracellular enzyme activity. Samples of rice inoculated with different B. cereus spores were cooked and stored at 4 °C, 25 °C and 30 °C for up to 7 days, 48 h and 24 h, respectively. Out of eight B. cereus strains, four and three spore strains were able to grow at 30 °C and 25 °C post-cooking, respectively. Rapid growth was observed after a minimum of 6 h of incubation at 30 °C. All strains possessed proteolytic activity, whereas lipolytic and amylolytic activities were exhibited by 50% and 12.5% of the strains, respectively. The post-cooking survival and growth capacity of the B. cereus strains appeared to be independent of their toxigenic profiles, whereas extracellular enzymatic activities were required for their vegetative growth. Due to the B. cereus spores' abilities to survive cooking and return to their active cellular form, great care should be taken when handling ready-to-eat foods.
Collapse
|
7
|
Bannenberg JW, Tempelaars MH, Zwietering MH, Abee T, den Besten HMW. Heterogeneity in single-cell outgrowth of Listeria monocytogenes in half Fraser enrichment broth is affected by strain variability and physiological state. Food Res Int 2021; 150:110783. [PMID: 34865798 DOI: 10.1016/j.foodres.2021.110783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/29/2021] [Accepted: 10/20/2021] [Indexed: 10/20/2022]
Abstract
The behaviour of pathogens at the single-cell level can be highly variable and can thus affect the detection efficacy of enrichment-based detection methods. The outgrowth of single cells of three Listeria monocytogenes strains was monitored after fluorescence-activated single-cell sorting in non-selective brain heart infusion (BHI) broth and selective half Fraser enrichment broth (HFB) to quantify outgrowth heterogeneity and its effect on the detection probability. Single-cell heterogeneity was higher in HFB compared to non-selective BHI and heterogeneity increased further when cells were heat-stressed. The increase in heterogeneity was also strain-dependent because the fast-recovering strain Scott A showed less outgrowth heterogeneity than the slower-recovering strains EGDe and H7962. Modelling of the outgrowth kinetics during the primary enrichment demonstrated that starting at low cell concentrations could fail detection of L. monocytogenes at least partly due to cell heterogeneity. This highlights that it is important to take single-cell heterogeneity into account when optimizing enrichment formulations and procedures when L. monocytogenes contamination levels are low.
Collapse
Affiliation(s)
- Jasper W Bannenberg
- Food Microbiology, Wageningen University & Research, Bornse Weilanden 9, 6700 AA Wageningen, the Netherlands
| | - Marcel H Tempelaars
- Food Microbiology, Wageningen University & Research, Bornse Weilanden 9, 6700 AA Wageningen, the Netherlands
| | - Marcel H Zwietering
- Food Microbiology, Wageningen University & Research, Bornse Weilanden 9, 6700 AA Wageningen, the Netherlands
| | - Tjakko Abee
- Food Microbiology, Wageningen University & Research, Bornse Weilanden 9, 6700 AA Wageningen, the Netherlands
| | - Heidy M W den Besten
- Food Microbiology, Wageningen University & Research, Bornse Weilanden 9, 6700 AA Wageningen, the Netherlands.
| |
Collapse
|
8
|
Evelyn, Utami SP, Chairul. Effect of temperature and soluble solid on Bacillus subtilis and Bacillus licheniformis spore inactivation and quality degradation of pineapple juice. FOOD SCI TECHNOL INT 2021; 28:285-296. [PMID: 34018829 DOI: 10.1177/10820132211019143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bacillus subtilis and Bacillus licheniformis spores can survive processing temperatures used in the thermal processes of high-acid foods. Therefore, this study investigated the thermal inactivation of B. subtilis and B. licheniformis spores in pineapple juice at different temperatures (85-100°C) and soluble solids (SS, 11-30°Brix). The quality of juices and microbial loads after the thermal treatments during storage at 4 °C for 35 days was then checked. A linear decrease in D-value was observed with increasing temperature of treatment. Furthermore, the D-values determined in pineapple juice were: D90°C=13.2 ± 0.5 mins, D95°C = 6.8 ± 0.9 mins and D100°C = 2.1 ± 1.7 mins for B. subtilis spores, and D85°C = 16.6 ± 0.4 mins, D90°C = 7.6 ± 0.5 mins and D95°C = 3.6 ± 1.5 min, for B. licheniformis. Generally, the susceptibility of the bacteria to soluble solid change was affected by the interaction between temperature, SS and strain. In addition, pasteurization processes of ≥95°C for ≥33.8 mins was needed to ensure a recommended 5-log reduction of B. subtilis spores and limit vitamin C degradation of pineapple juice within three-week of storage at 4 °C.
Collapse
Affiliation(s)
- Evelyn
- Department of Chemical Engineering, University of Riau, Pekanbaru, Indonesia
| | - Syelvia Putri Utami
- Department of Chemical Engineering, University of Riau, Pekanbaru, Indonesia
| | - Chairul
- Department of Chemical Engineering, University of Riau, Pekanbaru, Indonesia
| |
Collapse
|
9
|
Pina-Perez M, Martinet D, Palacios-Gorba C, Ellert C, Beyrer M. Low-energy short-term cold atmospheric plasma: Controlling the inactivation efficacy of bacterial spores in powders. Food Res Int 2020; 130:108921. [DOI: 10.1016/j.foodres.2019.108921] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/10/2019] [Accepted: 12/15/2019] [Indexed: 02/07/2023]
|
10
|
Microbiota of milk powders and the heat resistance and spoilage potential of aerobic spore-forming bacteria. Int Dairy J 2018. [DOI: 10.1016/j.idairyj.2018.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|