1
|
Ramírez-Sotelo U, García-Carnero LC, Martínez-Álvarez JA, Gómez-Gaviria M, Mora-Montes HM. An ELISA-based method for Galleria mellonella apolipophorin-III quantification. PeerJ 2024; 12:e17117. [PMID: 38500532 PMCID: PMC10946395 DOI: 10.7717/peerj.17117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/26/2024] [Indexed: 03/20/2024] Open
Abstract
Mammalian models, such as murine, are used widely in pathophysiological studies because they have a high degree of similarity in body temperature, metabolism, and immune response with humans. However, non-vertebrate animal models have emerged as alternative models to study the host-pathogen interaction with minimal ethical concerns. Galleria mellonella is an alternative model that has proved useful in studying the interaction of the host with either bacteria or fungi, performing drug testing, and assessing the immunological response to different microorganisms. The G. mellonella immune response includes cellular and humoral components with structural and functional similarities to the immune effectors found in higher vertebrates, such as humans. An important humoral effector stimulated during infections is apolipophorin III (apoLp-III), an opsonin characterized by its lipid and carbohydrate-binding properties that participate in lipid transport, as well as immunomodulatory activity. Despite some parameters, such as the measurement of phenoloxidase activity, melanin production, hemocytes counting, and expression of antimicrobial peptides genes are already used to assess the G. mellonella immune response to pathogens with different virulence degrees, the apoLp-III quantification remains to be a parameter to assess the immune response in this invertebrate. Here, we propose an immunological tool based on an enzyme-linked immunosorbent assay that allows apoLp-III quantification in the hemolymph of larvae challenged with pathogenic agents. We tested the system with hemolymph coming from larvae infected with Escherichia coli, Candida albicans, Sporothrix schenckii, Sporothrix globosa, and Sporothrix brasiliensis. The results revealed significantly higher concentrations of apoLp-III when each microbial species was inoculated, in comparison with untouched larvae, or inoculated with phosphate-buffered saline. We also demonstrated that the apoLp-III levels correlated with the strains' virulence, which was already reported. To our knowledge, this is one of the first attempts to quantify apoLp-III, using a quick and easy-to-use serological technique.
Collapse
|
2
|
Kim YG, Lee JH, Park S, Khadke SK, Shim JJ, Lee J. Hydroquinones Including Tetrachlorohydroquinone Inhibit Candida albicans Biofilm Formation by Repressing Hyphae-Related Genes. Microbiol Spectr 2022; 10:e0253622. [PMID: 36190417 PMCID: PMC9602536 DOI: 10.1128/spectrum.02536-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/14/2022] [Indexed: 01/04/2023] Open
Abstract
Candida albicans is an opportunistic pathogenic fungus responsible for candidiasis. The pathogen readily forms antifungal agent-resistant biofilms on implanted medical devices or human tissue. Morphologic transition from yeast to filamentous cells and subsequent biofilm formation is a key virulence factor and a prerequisite for biofilm development by C. albicans. We investigated the antibiofilm and antifungal activities of 18 hydroquinones against fluconazole-resistant C. albicans. Tetrachlorohydroquinone (TCHQ) at subinhibitory concentrations (2 to 10 μg/mL) significantly inhibited C. albicans biofilm formation with an MIC of 50 μg/mL, whereas the backbone hydroquinone did not (MIC > 400 μg/mL), and it markedly inhibited cell aggregation and hyphal formation. Transcriptomic analyses showed that TCHQ downregulated the expressions of several hyphae-forming and biofilm-related genes (ALS3, ECE1, HWP1, RBT5, and UME6) but upregulated hyphae- and biofilm-inhibitory genes (IFD6 and YWP1). Furthermore, it prevented C. albicans biofilm development on porcine skin and at concentrations of 20 to 50 μg/mL was nontoxic to the nematode Caenorhabditis elegans and did not adversely affect Brassica rapa seed germination and growth. This study indicates that hydroquinones, particularly TCHQ, diminish the virulence, biofilm formation, and animal tissue adhesion of C. albicans, which suggests hydroquinones should be considered potential candidate antifungal agents against drug-resistant C. albicans strains. IMPORTANCE Persistence in chronic infections by Candida albicans is due to its ability of biofilm formation that endures conventional antifungals and host immune systems. Hence, the inhibition of biofilm formation and virulence characteristics is another mean of addressing infections. This study is a distinctive one since 18 hydroquinone analogues were screened and TCHQ efficiently inhibited the biofilm formation by C. albicans with significantly changed expressional profile of hyphae-forming and biofilm-related genes. The antibiofilm efficacy was confirmed using a porcine skin model and chemical toxicity was investigated using plant seed germination and nematode models. Our findings reveal that TCHQ can efficiently control the C. albicans biofilms and virulence characteristics.
Collapse
Affiliation(s)
- Yong-Guy Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | - Sunyoung Park
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | - Sagar Kiran Khadke
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | - Jae-Jin Shim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
3
|
da Silva Neto JX, Dias LP, Lopes de Souza LA, Silva da Costa HP, Vasconcelos IM, Pereira ML, de Oliveira JTA, Cardozo CJP, Gonçalves Moura LFW, de Sousa JS, Carneiro RF, Lopes TDP, Bezerra de Sousa DDO. Insights into the structure and mechanism of action of the anti-candidal lectin Mo-CBP2 and evaluation of its synergistic effect and antibiofilm activity. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Staniszewska M, Kuryk Ł, Gryciuk A, Kawalec J, Rogalska M, Baran J, Łukowska-Chojnacka E, Kowalkowska A. In Vitro Anti- Candida Activity and Action Mode of Benzoxazole Derivatives. Molecules 2021; 26:5008. [PMID: 34443595 PMCID: PMC8398596 DOI: 10.3390/molecules26165008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/08/2021] [Accepted: 08/12/2021] [Indexed: 11/28/2022] Open
Abstract
A newly synthetized series of N-phenacyl derivatives of 2-mercaptobenzoxazole, including analogues of 5-bromo- and 5,7-dibromobenzoxazole, were screened against Candida strains and the action mechanism was evaluated. 2-(1,3-benzoxazol-2-ylsulfanyl)-1-(4-bromophenyl)ethanone (5d), 2-(1,3-benzoxazol-2-ylsulfanyl)-1-(2,3,4-trichloro-phenyl)ethanone (5i), 2-(1,3-benzoxazol-2-ylsulfanyl)-1-(2,4,6-trichlorophenyl)ethanone (5k) and 2-[(5-bromo-1,3-benzoxazol-2-yl)sulfanyl]-1-phenylethanone (6a) showed anti-C. albicans SC5314 activity, where 5d displayed MICT = 16 µg/mL (%R = 100) and a weak anti-proliferative activity against the clinical strains: C. albicans resistant to azoles (Itr and Flu) and C. glabrata. Derivatives 5k and 6a displayed MICP = 16 µg/mL and %R = 64.2 ± 10.6, %R = 88.0 ± 9.7, respectively, against the C. albicans isolate. Derivative 5i was the most active against C. glabrata (%R = 53.0 ± 3.5 at 16 µg/mL). Benzoxazoles displayed no MIC against C. glabrata. Benzoxazoles showed a pleiotropic action mode: (1) the total sterols content was perturbed; (2) 2-(1,3-benzoxazol-2-ylsulfanyl)-1-(3,4-dichlorophenyl)ethanol and 2-(1,3-benzoxazol-2-ylsulfanyl)-1-(2,3,4-trichlorophenyl)ethanol (8h-i) at the lowest fungistatic conc. inhibited the efflux of the Rho123 tracker during the membrane transport process; (3) mitochondrial respiration was affected/inhibited by the benzoxazoles: 2-(1,3-benzoxazol-2-ylsulfanyl)-1-(4-chlorophenyl)ethanol and 2-(1,3-benzoxazol-2-ylsulfanyl)-1-(4-bromophenyl)ethanol 8c-d and 8i. Benzoxazoles showed comparable activity to commercially available azoles due to (1) the interaction with exogenous ergosterol, (2) endogenous ergosterol synthesis blocking as well as (3) membrane permeabilizing properties typical of AmB. Benzoxazoles display a broad spectrum of anti-Candida activity and action mode towards the membrane without cross-resistance with AmB; furthermore, they are safe to mammals.
Collapse
Affiliation(s)
- Monika Staniszewska
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland;
| | - Łukasz Kuryk
- Department of Virology, National Institute of Public Health-NIH-National Research Institute, Chocimska 24, 00-791 Warsaw, Poland;
- Clinical Science, Targovax Oy, Saukonpaadenranta 2, 00180 Helsinki, Finland
| | - Aleksander Gryciuk
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland; (A.G.); (J.K.); (M.R.); (E.Ł.-C.)
| | - Joanna Kawalec
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland; (A.G.); (J.K.); (M.R.); (E.Ł.-C.)
| | - Marta Rogalska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland; (A.G.); (J.K.); (M.R.); (E.Ł.-C.)
| | - Joanna Baran
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland;
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland; (A.G.); (J.K.); (M.R.); (E.Ł.-C.)
| | - Edyta Łukowska-Chojnacka
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland; (A.G.); (J.K.); (M.R.); (E.Ł.-C.)
| | - Anna Kowalkowska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland; (A.G.); (J.K.); (M.R.); (E.Ł.-C.)
| |
Collapse
|
5
|
Staniszewska M, Sobiepanek A, Gizińska M, Peña-Cabrera E, Arroyo-Córdoba IJ, Kazek M, Kuryk Ł, Wieczorek M, Koronkiewicz M, Kobiela T, Ochal Z. Sulfone derivatives enter the cytoplasm of Candida albicans sessile cells. Eur J Med Chem 2020; 191:112139. [PMID: 32109777 DOI: 10.1016/j.ejmech.2020.112139] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/20/2020] [Accepted: 02/09/2020] [Indexed: 01/28/2023]
Abstract
Since our study showed that sulfone derivatives' action mode creates a lesser risk of inducing widespread resistance among Candida spp., we continued verifying sulfones' antifungal activity using the following newly synthesized derivatives: bromodichloromethy-4-hydrazinyl-3-nitrophenyl sulfone (S1), difluoroiodomethyl-4-hydrazinyl-3-nitrophenyl sulfone (S2), and chlorodifluoromethyl-4-hydrazinyl-3-nitrophenyl sulfone (S3). As the mechanism by which sulfones gain access to the cytoplasm has not been elucidated yet, in order to track S1-3, we coupled their hydrazine group with BODIPY (final S1-3 BODIPY-labelled were named SB1-3). This approach allowed us to follow the vital internalization and endocytic routing of SB1-3, while BODIPY interacts primarily with fungal surfaces, thus confirming that S1-3 and their counterparts SB1-2 behaved as non-typical agents by damaging the cell membrane and wall after being endocytosed (SB1-3 fluorescence visible inside the unlysed sessile cells). Thus greatly decreasing the likelihood of the appearance of strains resistance. Core sulfones S1-3 are a promising alternative not only to treat planktonic C. albicans but also biofilm-embedded cells. In the flow cytometric analysis, the planktonic cell surface was digested by S1-3, which made the externalized PS accessible to AnnexinV binding and PI input (accidental cell death ACD). The occurrence of ACD as well as apoptosis (crescent-shaped nuclei) and anoikis of sessile cells (regulated cell death by 100%-reduction in attachment to epithelium) was assessed through monitoring the AO/PI/HO342 markers. CLSM revealed the invasion of S1-3 and SB1-3 in C. albicans without inducing cell lysis. This was a novel approach in which QCM-D was used for real-time in situ detection of viscoelastic changes in the C. albicans biofilm, and its interaction with S1 as a representative of the sulfones tested. S1 (not toxic in vivo) is a potent fungicidal agent against C. albicans and could be administered to treat invasive candidiasis as a monotherapy or in combination with antifungal agents of reference to treat C. albicans infections.
Collapse
Affiliation(s)
- Monika Staniszewska
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland.
| | - Anna Sobiepanek
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | | | - Eduardo Peña-Cabrera
- Departamento de Química, Universidad de Guanajuato, Noria Alta S/N, Guanajuato, Guanajuato, 36050, Mexico
| | - Ismael J Arroyo-Córdoba
- Departamento de Química, Universidad de Guanajuato, Noria Alta S/N, Guanajuato, Guanajuato, 36050, Mexico
| | - Michalina Kazek
- Laboratory of Physiology, The Witold Stefański Institute of Parasitology, Polish Academy of Science, Twarda 51/55, 00-818, Warsaw, Poland
| | - Łukasz Kuryk
- National Institute of Public Health-National Institute of Hygiene, 00-791, Warsaw, Poland
| | - Magdalena Wieczorek
- National Institute of Public Health-National Institute of Hygiene, 00-791, Warsaw, Poland
| | - Mirosława Koronkiewicz
- Department of Drug Biotechnology and Bioinformatics, National Medicines Institute, Warsaw, 00-725, Poland
| | - Tomasz Kobiela
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - Zbigniew Ochal
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland.
| |
Collapse
|
6
|
Monk BC, Sagatova AA, Hosseini P, Ruma YN, Wilson RK, Keniya MV. Fungal Lanosterol 14α-demethylase: A target for next-generation antifungal design. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1868:140206. [PMID: 30851431 DOI: 10.1016/j.bbapap.2019.02.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 02/15/2019] [Accepted: 02/21/2019] [Indexed: 12/19/2022]
Abstract
The cytochrome P450 enzyme lanosterol 14α-demethylase (LDM) is the target of the azole antifungals used widely in medicine and agriculture as prophylaxis or treatments of infections or diseases caused by fungal pathogens. These drugs and agrochemicals contain an imidazole, triazole or tetrazole substituent, with one of the nitrogens in the azole ring coordinating as the sixth axial ligand to the LDM heme iron. Structural studies show that this membrane bound enzyme contains a relatively rigid ligand binding pocket comprised of a deeply buried heme-containing active site together with a substrate entry channel and putative product exit channel that reach to the membrane. Within the ligand binding pocket the azole antifungals have additional affinity determining interactions with hydrophobic side-chains, the polypeptide backbone and via water-mediated hydrogen bond networks. This review will describe the tools that can be used to identify and characterise the next generation of antifungals targeting LDM, with the goal of obtaining highly potent broad-spectrum fungicides that will be able to avoid target and drug efflux mediated antifungal resistance.
Collapse
Affiliation(s)
- Brian C Monk
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | - Alia A Sagatova
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Parham Hosseini
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Yasmeen N Ruma
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Rajni K Wilson
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Mikhail V Keniya
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
7
|
Gizińska M, Staniszewska M, Ochal Z. Novel Sulfones with Antifungal Properties: Antifungal Activities and Interactions with Candida spp. Virulence Factors. Mini Rev Med Chem 2019; 19:12-21. [PMID: 30246638 DOI: 10.2174/1389557518666180924121209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/05/2018] [Accepted: 07/09/2018] [Indexed: 02/08/2023]
Abstract
Since candidiasis is so difficult to eradicate with an antifungal treatment and the existing antimycotics display many limitations, hopefully new sulfone derivatives may overcome these deficiencies. It is pertinent to study new strategies such as sulfone derivatives targeting the virulence attributes of C. albicans that differentiate them from the host. During infections, the pathogenic potential of C. albicans relies on the virulence factors as follows: hydrolytic enzymes, transcriptional factors, adhesion, and development of biofilms. In the article we explored how the above-presented C. albicans fitness and virulence attributes provided a robust response to the environmental stress exerted by sulfones upon C. albicans; C. albicans fitness and virulence attributes are fungal properties whose inactivation attenuates virulence. Our understanding of how these mechanisms and factors are inhibited by sulfones has increased over the last years. As lack of toxicity is a prerequisite for medical approaches, sulfones (non-toxic as assessed in vitro and in vivo) may prove to be useful for reducing C. albicans pathogenesis in humans. The antifungal activity of sulfones dealing with these multiple virulence factors and fitness attributes is discussed.
Collapse
Affiliation(s)
- Małgorzata Gizińska
- National Institute of Public Health-National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland
| | - Monika Staniszewska
- National Institute of Public Health-National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland
| | - Zbigniew Ochal
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
8
|
Borowiecki P, Wińska P, Bretner M, Gizińska M, Koronkiewicz M, Staniszewska M. Synthesis of novel proxyphylline derivatives with dual Anti-Candida albicans and anticancer activity. Eur J Med Chem 2018. [PMID: 29533875 DOI: 10.1016/j.ejmech.2018.02.077] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Three out of 16 newly synthesized 1,3-dimethylxanthine derivatives (proxyphylline analogues) exhibited consistencies between antifungal and anticancer properties. Proxyphylline possessing 1-(10H-phenothiazin-10-yl)propan-2-yl (6) and polybrominated benzimidazole (41) or benzotriazole moiety (42) remained selectively cidal against Candida albicans (lg R ≥ 3 at conc. of 31, 36 and 20 μM, respectively) however not against normal mammalian Vero cell line in vitro (IC50 ≥ 280 μM) and Galleria mellonella in vivo. These compounds also displayed moderate antineoplastic activity against human breast adenocarcinoma (MCF-7) cell line (EC50 = 80 μM) and high against peripheral blood T lymphoblast (CCRF-CEM) (EC50 = 6.3-6.5 μM). In addition, 6 and 42 exerted: (1) dual activity against fungal adhesion and damage mature biofilm; (2) necrosis of planktonic cells due to loss of membrane function and of structural integrity; (3) biochemical (inhibition of sessile cell respiration) and morphological changes in cell wall polysaccharide contents. Therefore, leading proxyphylline derivatives can be employed to prevent cancer-associated biofilm Candida infections.
Collapse
Affiliation(s)
- Paweł Borowiecki
- Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland.
| | - Patrycja Wińska
- Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Maria Bretner
- Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Małgorzata Gizińska
- National Institute of Public Health-National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland
| | | | - Monika Staniszewska
- National Institute of Public Health-National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland.
| |
Collapse
|
9
|
Staniszewska M, Gizińska M, Mikulak E, Adamus K, Koronkiewicz M, Łukowska-Chojnacka E. New 1,5 and 2,5-disubstituted tetrazoles-dependent activity towards surface barrier of Candida albicans. Eur J Med Chem 2017; 145:124-139. [PMID: 29324336 DOI: 10.1016/j.ejmech.2017.11.089] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/13/2017] [Accepted: 11/28/2017] [Indexed: 02/07/2023]
Abstract
A series of novel tetrazole derivatives was synthetized using N-alkylation or Michael-type addition reactions, and screened for their fungistatic potential against Candida albicans (the lack of endpoint = 100%). Among them, the selected compounds 2d, 4b, and 6a differing in substituents at the tetrazole ring were non-toxic to Galleria mellonella larvae in vivo and exerted slight toxicity against Caco-2 in vitro (CC50 at 256 μg/mL). An antagonistic effect of tetrazole derivatives 2d, 4b, and 6a respectively in combination with Fluconazole was shown using the checker board and colorimetric methods (fractional inhibitory concentration indexes FICIs >1). The most active 2d and 6a displayed an inverse relation between MICs in the presence of exogenous ergosterol, the effect was opposite to Itraconazole and Amphotericin B. The differences between 6a's and 2d's action mode were noted. Combining both flow cytometry and fluorescence image analyses respectively showed the complexity of planktonic and biofilm cell demise mode under the tetrazole derivatives tested. The following evidences for 6a's interaction with fungal membrane were noted: necrosis-like programmed cell death (97.03 ± 0.88), DNA denaturation (no laddering), mitochondrial damage (XTT assay), reduced adhesion to human epithelium (>50% at 0.0313 μg/mL, p ≤ .05), irregular deposit of chitin, and attenuated morphogenesis in mature biofilm. The treatment with 6a reduced pathogenicity of C. albicans during infection in G. mellonella. Contrariwise, 2d enhancing fungal adhesion displayed mechanism targeted to the cell wall (due to the presence of 3-chloropropyl clubbed with aryltetrazole) in the presence of osmotic protector. Under 2d, the accidental cell death (88.60% ± 4.81) was observed. In conclusion, all tetrazole derivatives were obtained in satisfactory yields (60-95%) using efficient, simple and not expensive methods. Fungistatic and slightly anticancer tetrazole derivatives with the novel action mode can circumvent an appearance of antifungal-resistant strains. These results indicate that they are worthy of further studies.
Collapse
Affiliation(s)
- Monika Staniszewska
- National Institute of Public Health-National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland.
| | - Małgorzata Gizińska
- National Institute of Public Health-National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland
| | - Ewa Mikulak
- National Institute of Public Health-National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland
| | - Klaudia Adamus
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | | | | |
Collapse
|
10
|
Staniszewska M, Bondaryk M, Ochal Z. Role of Virulence Determinants in Candida albicans' Resistance to Novel 2-bromo-2-chloro-2-(4-chlorophenylsulfonyl)-1-phenylethanone. J Fungi (Basel) 2017; 3:jof3030032. [PMID: 29371550 PMCID: PMC5715941 DOI: 10.3390/jof3030032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/17/2017] [Accepted: 06/20/2017] [Indexed: 11/16/2022] Open
Abstract
We investigated the role of KEX2, SAP4-6, EFG1, and CPH1 in the virulence of Candida under a novel compound 2-bromo-2-chloro-2-(4-chlorophenylsulfonyl)-1-phenylethanone (Compound 4). We examined whether the exposure of C. albicans cells to Compound 4, non-cytotoxic to mammalian cells, reduces their adhesion to the human epithelium. We next assessed whether the exposure of C. albicans cells to Compound 4 modulates the anti-inflammatory response (IL-10) and induces human macrophages to respond to the Candida cells. There was a marked reduction in the growth of the sap4Δsap5Δsap6Δ mutant cells when incubated with Compound 4. Under Compound 4 (minimal fungicidal concentration MFC = 0.5–16 µg/mL): (1) wild type strain SC5314 showed a resistant phenotype with down-regulation of the KEX2 expression; (2) the following mutants of C.albicans: sap4Δ, sap5Δ, sap6Δ, and cph1Δ displayed decreased susceptibility with the paradoxical effect and up-regulation of the KEX2 expression compared to SC5314; (3) the immune recognition of C. albicans by macrophages and (4) the stimulation of IL-10 were not blocked ex vivo. The effect of deleting KEX2 in C. albicans had a minor impact on the direct activation of Compound 4’s antifungal activity. The adhesion of kex2Δ is lower than that of the wild parental strain SC5314, and tends to decrease if grown in the presence of a sub-endpoint concentration of Compound 4. Our results provide evidence that SAP4–6 play a role as regulators of the anti-Candida resistance to Compound 4. Compound 4 constitutes a suitable core to be further exploited for lead optimization to develop potent antimycotics.
Collapse
Affiliation(s)
- Monika Staniszewska
- National Institute of Public Health-National Institute of Hygiene, Chocimska 24, Warsaw 00-791, Poland.
| | - Małgorzata Bondaryk
- National Institute of Public Health-National Institute of Hygiene, Chocimska 24, Warsaw 00-791, Poland.
| | - Zbigniew Ochal
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw 00-664, Poland.
| |
Collapse
|
11
|
Antifungal Resistance, Metabolic Routes as Drug Targets, and New Antifungal Agents: An Overview about Endemic Dimorphic Fungi. Mediators Inflamm 2017; 2017:9870679. [PMID: 28694566 PMCID: PMC5485324 DOI: 10.1155/2017/9870679] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/28/2017] [Accepted: 05/23/2017] [Indexed: 12/30/2022] Open
Abstract
Diseases caused by fungi can occur in healthy people, but immunocompromised patients are the major risk group for invasive fungal infections. Cases of fungal resistance and the difficulty of treatment make fungal infections a public health problem. This review explores mechanisms used by fungi to promote fungal resistance, such as the mutation or overexpression of drug targets, efflux and degradation systems, and pleiotropic drug responses. Alternative novel drug targets have been investigated; these include metabolic routes used by fungi during infection, such as trehalose and amino acid metabolism and mitochondrial proteins. An overview of new antifungal agents, including nanostructured antifungals, as well as of repositioning approaches is discussed. Studies focusing on the development of vaccines against antifungal diseases have increased in recent years, as these strategies can be applied in combination with antifungal therapy to prevent posttreatment sequelae. Studies focused on the development of a pan-fungal vaccine and antifungal drugs can improve the treatment of immunocompromised patients and reduce treatment costs.
Collapse
|
12
|
Staniszewska M, Bondaryk M, Kazek M, Gliniewicz A, Braunsdorf C, Schaller M, Mora-Montes HM, Ochal Z. Effect of serine protease KEX2 on Candida albicans virulence under halogenated methyl sulfones. Future Microbiol 2017; 12:285-306. [DOI: 10.2217/fmb-2016-0141] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The effect of KEX2 mutations on C. albicans virulence and resistance to halogenated methyl sulfones was assessed. Materials & methods: The mechanism of action of sulfones was studied using flow cytometry and microscopy. Expression of KEX2 and SAP5 was assessed using quantitative Real-Time-PCR. 2,3-Bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide and lactate dehydrogenase assays were elaborated to study, respectively, metabolism of Candida treated with sulfones and their cytotoxicity against tissues. Inflammatory response was detected by ELISA. Results: Lysosome permeabilization and dose-dependent programmed cell death under sulfones were noted. KEX2 induction depended on halogenomethylsulfonyl groups, which affected cell wall biosynthesis and adhesion. Conclusion: Sulfones treatment reduced Candida pathogenicity in Galleria mellonella. Sulfones are an alternative for antifungal therapies due to their safety profile and antibiofilm activity.
Collapse
Affiliation(s)
- Monika Staniszewska
- Independent Laboratory of Streptomyces and Fungi Imperfecti, National Institute of Public Health–National Institute of Hygiene, Chocimska 24, 00–791 Warsaw, Poland
| | - Małgorzata Bondaryk
- Independent Laboratory of Streptomyces and Fungi Imperfecti, National Institute of Public Health–National Institute of Hygiene, Chocimska 24, 00–791 Warsaw, Poland
| | - Michalina Kazek
- Laboratory of Physiology, The Witold Stefański Institute of Parasitology, Polish Academy of Science, Twarda 51/55, 00–818 Warsaw, Poland
| | - Aleksandra Gliniewicz
- Laboratory of Medical Entomology and Pest Control, National Institute of Public Health-National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland
| | - Christina Braunsdorf
- Department of Dermatology, University Hospital Tübingen, Liebermeisterstr.25, Tübingen, Germany
| | - Martin Schaller
- Department of Dermatology, University Hospital Tübingen, Liebermeisterstr.25, Tübingen, Germany
| | - Hector M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050, Guanajuato, Gto., México
| | - Zbigniew Ochal
- Warsaw University of Technology, Faculty of Chemistry, Institute of Biotechnology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
13
|
Łukowska-Chojnacka E, Mierzejewska J, Milner-Krawczyk M, Bondaryk M, Staniszewska M. Synthesis of novel tetrazole derivatives and evaluation of their antifungal activity. Bioorg Med Chem 2016; 24:6058-6065. [DOI: 10.1016/j.bmc.2016.09.066] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/17/2016] [Accepted: 09/27/2016] [Indexed: 01/09/2023]
|