1
|
Zhao Z, Zhang X, Sun N, Duan L, Xin J, Li H, Ni X, Wang H, Ma H, Bai Y. Lactobacillus johnsonii HL79 modulates the microbiota-gut-brain axis to protect cognitive function in mice chronically exposed to high altitude. Front Microbiol 2025; 16:1561400. [PMID: 40124891 PMCID: PMC11925889 DOI: 10.3389/fmicb.2025.1561400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 02/19/2025] [Indexed: 03/25/2025] Open
Abstract
Introduction High-altitude environments have significant effects on brain function, particularly a decline in cognitive function, due to insufficient oxygen supply. The microbiome-gut-brain axis (MGBA) plays an important role in regulating cognitive function, but its specific mechanism of action in high-altitude environments is unclear. Therefore, the aim of this study was to investigate whether the probiotic Lactobacillus johnsonii HL79 could alleviate high altitude-induced cognitive dysfunction in mice by modulating the gut microbiota. Methods and results Sixty C57BL/6 mice aged 8 weeks were randomly divided into four groups: control, high altitude exposure (HA), HL79-treated (P), and high altitude exposure plus HL79-treated (HAP). the HA and HAP groups were exposed to a low-pressure oxygen chamber at a simulated altitude of 3,500-4,000 m for 20 weeks, while the Control and P groups were maintained at the normal barometric pressure level. Probiotic HL79 was given daily by gavage in the P and HAP groups, while saline gavage was given daily in the other two groups. The cognitive functions of the mice were assessed by new object recognition test and elevated plus maze test. The results showed that HL79 treatment significantly improved the working memory abilities of high altitude exposed mice. In addition, HL79 treatment improved antioxidant capacity, decreased malondialdehyde (MDA) content, and increased superoxide dismutase (SOD) and catalase (CAT) activities in serum and whole brain tissue. Gut microbiota analysis showed that HL79 was able to modulate the structure of gut microbiota and increase the relative abundance of beneficial flora in high altitude environment. Conclusion Lactobacillus johnsonii HL79 significantly ameliorated cognitive dysfunction in high altitude-exposed mice by modulating the gut microbiota and antioxidant capacity, further confirming the important role of MGBA in high altitude environment.
Collapse
Affiliation(s)
- Zhifang Zhao
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Gastroenterology, National Institution of Drug Clinical Trial, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, China
| | - Xufei Zhang
- Key Laboratory of High Altitudes Brain, Science and Environmental Acclimation, Tibet University, Lhasa, China
- Plateau Brain Science Research Center, Tibet University, Lhasa, China
- Tibet Autonomous Region Psychological Society, Lhasa, China
| | - Ning Sun
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lixiao Duan
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jinge Xin
- Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hao Li
- Key Laboratory of High Altitudes Brain, Science and Environmental Acclimation, Tibet University, Lhasa, China
- Plateau Brain Science Research Center, Tibet University, Lhasa, China
- Tibet Autonomous Region Psychological Society, Lhasa, China
| | - Xueqin Ni
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hesong Wang
- Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hailin Ma
- Key Laboratory of High Altitudes Brain, Science and Environmental Acclimation, Tibet University, Lhasa, China
- Plateau Brain Science Research Center, Tibet University, Lhasa, China
- Tibet Autonomous Region Psychological Society, Lhasa, China
| | - Yang Bai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Sagarin KA, Ouanemalay E, Asante-Nyame H, Hong V, De Palo C, Cohan FM. Phosphorelay changes and plasticity underlie the life history evolution of Bacillus subtilis sporulation and germination in serial batch culture. MICROBIOLOGY (READING, ENGLAND) 2025; 171. [PMID: 40094782 PMCID: PMC11914059 DOI: 10.1099/mic.0.001540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Bacterial endospores facilitate survival in extreme and unpredictably fluctuating environments. However, under abundant nutrient conditions, the production of endospores is quickly reduced or lost. We hypothesized that endospore-forming bacteria exposed to frequent cycling of nutrient availability would evolve reduced sporulation efficiency. We employed replicated batch culture for 11 transfers to test the effects of rapid nutrient cycles on the evolution of the life history traits of sporulation, germination and growth in Bacillus subtilis. We periodically measured total cell and endospore densities during the period between transfers. Replicates evolved in parallel behaviourally and genetically. By the fourth transfer, we saw a reduction in endospore production, which continued to decline throughout the experiment. Our results support a decreased likelihood of sporulation being driven by frequent nutrient renewal. The proportion of endospores germinating after transfer increased significantly by the end of the experiment through the effects of plasticity alone. Every evolved replicate culture displayed colony dimorphism: the dominant morphology being translucent with reduced sporulation ability and the rarer being opaque with accelerated sporulation and highly efficient germination. Colony dimorphism was reflected in the genomes, with all isolates with reduced sporulation having mutations in elements of the sporulation phosphorelay, particularly kinA. Some opaque colonies had no mutations, indicating that those adaptive changes occurred through plasticity. These results suggest that our selection conditions of nutrient cycling resulted in the parallel evolution of communities of ecologically diverse strains, where most reduced sporulation while a smaller proportion accelerated it.
Collapse
Affiliation(s)
| | | | | | - Vera Hong
- Department of Biology, Wesleyan University, Middletown, CT, USA
| | - Chloe De Palo
- Department of Biology, Wesleyan University, Middletown, CT, USA
| | | |
Collapse
|
3
|
Ríos Sosa A, Prado Barragán LA, Ríos Reyes A, Aréchiga Carvajal ET. Genomic analysis and potential polyhydroxybutyrate (PHB) production from Bacillus strains isolated from extreme environments in Mexico. BMC Microbiol 2025; 25:15. [PMID: 39799315 PMCID: PMC11724563 DOI: 10.1186/s12866-024-03713-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/13/2024] [Indexed: 01/15/2025] Open
Abstract
BACKGROUND Plastic pollution is a significant environmental problem caused by its high resistance to degradation. One potential solution is polyhydroxybutyrate (PHB), a microbial biodegradable polymer. Mexico has great uncovered microbial diversity with high potential for biotechnological applications. The best polymer producers tend to be isolated from environments that require survival adaptations from microorganisms, the high-producing Bacillus cereus strain saba.zh comes from refinery wastewater, the costs of production have been a limiting factor for biopolymer production, and one of the focuses of interest has been finding novel strains with better production or singular traits that help in industrial processes. RESULTS The isolates were taxonomically classified as Bacillus cereus MSF4 and Bacillus inaquosorum MSD1 from Mina, Nuevo Leon; B. cereus S07C; and Paenibacillis dendritiformis from the active volcano "El Chichonal" on Chiapas. The strains had growth temperatures ranging from 35 to 50 °C and pH tolerance values ranging from 3 to 9. The best PHB-producing strain, B. cereus MSF4, produced 0.43 g/kg PHB on orange peels, followed by B. inaquosorum MSD1 at 0.40 g/kg, B. cereus S07C at 0.23 g/kg and P. dendritiformis at 0.26 g/kg. CONCLUSIONS The findings of this study affirm the potential of the Mexican isolated strains as PHB-producing organisms, enabling further studies to test their viability as industrial producers. The ability of P. dendritiformis and B. inaquosorum to synthetize PHB was also confirmed by the observations made providing novel evidence to consider these species as potential producers.
Collapse
Affiliation(s)
- Alvaro Ríos Sosa
- Unidad de Manipulación Genética, Facultad de Ciencias Biológicas, Departamento de Microbiología e Inmunología, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
| | - Lilia A Prado Barragán
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Ciencias Biológicas y de la Salud, Ciudad de, México
| | - Alvaro Ríos Reyes
- Facultad de Ciencias Biológicas, Departamento de Biología Vegetal, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
| | - Elva T Aréchiga Carvajal
- Unidad de Manipulación Genética, Facultad de Ciencias Biológicas, Departamento de Microbiología e Inmunología, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México.
| |
Collapse
|
4
|
Uchimiya M, DeRito CM, Sevigny JL, Hay AG. Meta-analysis of ecological and phylogenetic biomass maturity metrics. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 190:548-556. [PMID: 39461190 DOI: 10.1016/j.wasman.2024.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/15/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
Although a wide variety of biomass sources have been subjected to 16S rRNA gene sequencing, ecological and phylogenetic signatures of maturity have not been identified quantitatively. In this meta-analysis we reanalyzed data from the only published study with publicly available 16S and temperature data (Zhou et al., 2018), and then applied the Zhou results to 705 samples from 13 additional studies. Using the Zhou data, we found that Faith's alpha diversity index correlated inversely with compost temperature and positively with maturity. We also noted a dramatic shift in the ratios of Bacilliota to Acidobacteriota, Planctomycetota, and Pseudomonadota, as samples cooled below 44 °C (p < 0.001). A negative correlation between Bacillota and Pseudomonadota was also observed in all 705 samples that included compost, sugarcane mill mud, anerobic digestates, and vermicompost. Even in the absence of temperature data for the majority of samples, our meta-analysis shows that microbiomes of diverse residuals converged on similar communities that resemble those of soil, regardless of the starting material or residual management process. We propose that approximately < 0.4 log(Bacillota:Pseudomonadota) and > 43 Faith's phylogenetic diversity indices are indicative of maturity of diverse biomass materials destined for land application.
Collapse
Affiliation(s)
- Minori Uchimiya
- Southern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, New Orleans, LA, United States.
| | | | - Joseph L Sevigny
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH, United States
| | - Anthony G Hay
- Department of Microbiology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
5
|
Tidimalo C, Maximiliano O, Karen J, Lebre PH, Bernard O, Michelle G, Oagile D, Cowan DA. Microbial diversity in the arid and semi-arid soils of Botswana. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70044. [PMID: 39535358 PMCID: PMC11558117 DOI: 10.1111/1758-2229.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
To date, little research has been conducted on the landscape-scale distribution of soil microbial communities and the factors driving their community structures in the drylands of Africa. We investigated the influence of landscape-scale variables on microbial community structure and diversity across different ecological zones in Botswana. We used amplicon sequencing of bacterial 16S rRNA gene and fungal internal transcribed spacers (ITS) and a suite of environmental parameters to determine drivers of microbial community structure. Bacterial communities were dominated by Actinomycetota (21.1%), Pseudomonadota (15.9%), and Acidobacteriota (10.9%). The dominant fungal communities were Ascomycota (57.3%) and Basidiomycota (7.5%). Soil pH, mean annual precipitation, total organic carbon, and soil ions (calcium and magnesium) were the major predictors of microbial community diversity and structure. The co-occurrence patterns of bacterial and fungal communities were influenced by soil pH, with network-specific fungi-bacteria interactions observed. Potential keystone taxa were identified for communities in the different networks. Most of these interactions were between microbial families potentially involved in carbon cycling, suggesting functional redundancy in these soils. Our findings highlight the significance of soil pH in determining the landscape-scale structure of microbial communities in Botswana's dryland soils.
Collapse
Affiliation(s)
- Coetzee Tidimalo
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaSouth Africa
| | - Ortiz Maximiliano
- Clemson University Genomics & Bioinformatics FacilityClemson UniversitySouth CarolinaUSA
| | - Jordaan Karen
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaSouth Africa
| | - Pedro H. Lebre
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaSouth Africa
| | - Olivier Bernard
- Department of Plant and Soil SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Greve Michelle
- Department of Plant and Soil SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Dikinya Oagile
- Department of Environmental ScienceUniversity of BotswanaGaboroneBotswana
| | - Don A. Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaSouth Africa
| |
Collapse
|
6
|
Pasalari H, Gharibi H, Darvishali S, Farzadkia M. The effects of different pretreatment technologies on microbial community in anaerobic digestion process: A systematic review. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2024; 22:439-453. [PMID: 39464814 PMCID: PMC11499478 DOI: 10.1007/s40201-024-00917-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 07/23/2024] [Indexed: 10/29/2024]
Abstract
Here we comprehensively review the available knowledge on effects of different pretreatment technologies on microbial population and microbial dynamics in anaerobic digestion (AD) fed with different substrates and different operational parameters. To identify peer-reviewed studies published in English-language journals, a comprehensive search was performed across multiple electronic databases. The eligible studies were analyzed to extract data and information pertaining to the configuration of anaerobic reactors, operational parameters, and various pretreatment processes such as chemical, biological, enzymatic, thermal, microaerobic, and ultrasonic. The findings derived from this current review demonstrated that different chemical, biological, and physical pretreatment technologies improve the biomethane potential (BMP) and potentially affect the dominant bacteria and archaea. Moreover, although hydrogenotrophic methanogenesis are more observed due to resistance to extreme conditions, methane production follows both aceticlastic and hydrogenotrophic pathways in AD assisted with different pretreatment process. Firmicutes and Bacteroidetes phyla of bacteria were the dominant hydrolytic bacteria due to synergetic effects of different pretreatment process on solubilization and bioavailability of recalcitrant substrates. In summary, a holistic understanding on bacteria and archaea communities, along with the mechanisms of the dominant microorganisms leads to enhanced stability and overall performance of anaerobic digestion (AD) processes. Supplementary Information The online version contains supplementary material available at 10.1007/s40201-024-00917-x.
Collapse
Affiliation(s)
- Hasan Pasalari
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, I.R. of Iran
| | - Hamed Gharibi
- Health Sciences Research Institute, University of California, Merced, USA
| | - Siamak Darvishali
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, I.R. of Iran
| | - Mahdi Farzadkia
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, I.R. of Iran
| |
Collapse
|
7
|
Mangoma N, Zhou N, Ncube T. Metagenomic insights into the microbial community of the Buhera soda pans, Zimbabwe. BMC Microbiol 2024; 24:510. [PMID: 39614167 DOI: 10.1186/s12866-024-03655-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 11/15/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Soda pans are unique, natural aquatic environments characterised by elevated salinity and alkalinity, creating a distinctive and often extreme geochemistry. The microbiomes of soda pans are unique, with extremophiles such as halophiles, alkaliphiles and haloalkaliphiles being important. Despite being dominated by mostly unculturable inhabitants, soda pans hold immense biotechnological potential. The application of modern "omics-based" techniques helps us better understand the ecology and true extend of the biotechnological potential of soda pan microbiomes. In this study, we used a shotgun metagenomic approach to determine the microbial diversity and functional profile of previously unexplored soda pans located in Buhera, Eastern Zimbabwe. A combination of titrimetry and inductively coupled plasma optical emission spectroscopy (ICP‒OES) was used to perform physico-chemical analysis of the soda pan water. RESULTS Physicochemical analysis revealed that the Buhera soda pans are highly alkaline, with a pH range of 8.74 to 11.03, moderately saline (2.94 - 7.55 g/L), and have high carbonate (3625 mg/L) and bicarbonate ion (1325 mg/L) alkalinity. High levels of sulphate, phosphate, chloride and fluoride ions were detected. Metagenomic analysis revealed that domain Bacteria dominated the soda pan microbial community, with Pseudomonadota and Bacillota being the dominant phyla. Vibrio was shown to be the predominant genus, followed by Clostridium, Candidatus Brevefilum, Acetoanaerobium, Thioalkalivibrio and Marinilactibacillus. Archaea were also detected, albeit at a low prevalence of 1%. Functional profiling revealed that the Buhera soda pan microbiome is functionally diverse, has hydrolytic-enzyme production potential and is capable of supporting a variety of geochemical cycles. CONCLUSIONS The results of this pioneering study showed that despite their extreme alkalinity and moderate salinity, the Buhera soda pans harbour a taxonomically and functionally diverse microbiome dominated by bacteria. Future work will aim towards establishing the full extent of the soda pan's biotechnological potential, with a particular emphasis on potential enzyme production.
Collapse
Affiliation(s)
- Ngonidzashe Mangoma
- Department of Applied Biology and Biochemistry, Faculty of Applied Science, National University of Science and Technology, Bulawayo, Zimbabwe.
| | - Nerve Zhou
- Biological Sciences and Biotechnology Department, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana
| | - Thembekile Ncube
- Research and Internationalization Office, National University of Science and Technology, Bulawayo, Zimbabwe
| |
Collapse
|
8
|
Obayori OS, Adesina OD, Salam LB, Ashade AO, Nwaokorie FO. Depletion of hydrocarbons and concomitant shift in bacterial community structure of a diesel-spiked tropical agricultural soil. ENVIRONMENTAL TECHNOLOGY 2024; 45:5368-5383. [PMID: 38118139 DOI: 10.1080/09593330.2023.2291421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/26/2023] [Indexed: 12/22/2023]
Abstract
Bacterial community of a diesel-spiked agricultural soil was monitored over a 42-day period using the metagenomic approach in order to gain insight into key phylotypes impacted by diesel contamination and be able to predict end point of bioattenuation. Soil physico-chemical parameters showed significant differences (P < 0.05) between the Polluted Soil (PS) and the Unpolluted control (US)across time points. After 21 days, the diesel content decreased by 27.39%, and at the end of 42 days, by 57.11%. Aromatics such as benzene, anthanthrene, propylbenzene, phenanthrenequinone, anthraquinone, and phenanthridine were degraded to non-detected levels within 42 days, while some medium range alkanes and polyaromatics such as acenaphthylene, naphthalene, and anthracene showed significant levels of degradation. After 21 days (LASTD21), there was a massive enrichment of the phylum Proteobacteria (72.94%), a slight decrease in the abundance of phylum Actinobacteriota (12.74%), and > 500% decrease in the abundance of the phylum Acidobacteriodota (5.26%). Day 42 (LASTD42) saw establishment of the dominance of the Proteobacteria (34.95%), Actinobacteriota, (21.71%), and Firmicutes (32.14%), and decimation of phyla such as Gemmatimonadota, Planctomycetota, and Verrucromicrobiota which play important roles in the cycling of elements and soil health. Principal component analysis showed that in PS moisture contents, phosphorus, nitrogen, organic carbon, had greater impacts on the community structure in LASTD21, while acidity, potassium, sodium, calcium and magnesium impacted the control sample. Recovery time of the soil based on the residual hydrocarbons at Day 42 was estimated to be 229.112 d. Thus, additional biostimulation may be required to achieve cleanup within one growing season.
Collapse
Affiliation(s)
| | | | - Lateef Babatunde Salam
- Microbiology Unit, Department of Biological Sciences, Elizade University, Ilara-Mokin, Nigeria
| | | | | |
Collapse
|
9
|
Li Z, Jing Y, Zhu R, Yu Q, Qiu X. Sustainable soil rehabilitation with multiple network structures of layered double hydroxide beads: Immobilization of heavy metals, fertilizer release, and water retention. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135385. [PMID: 39121733 DOI: 10.1016/j.jhazmat.2024.135385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
The remediation of heavy metal-contaminated soils necessitated a holistic approach that encompassed water and fertilizer conservation alongside soil property restoration. This study introduced the synthesis of (poly)acrylamide-layered double hydroxide gel spheres (PAM-LDH beads), which were designed to simultaneously immobilize heavy metals, control the release of fertilizers, and enhance soil water retention. Laboratory soil experiments under diverse conditions highlighted the superior performance of PAM-LDH beads in the immobilization of hexavalent chromium (Cr(VI)). The layered double hydroxide (LDH) component was identified as the key player in Cr(VI) immobilization, with anion exchange being the predominant mechanism. Notably, the encapsulated urea within the beads was released independently of environmental influences, governed by a concentration gradient across the beads surface. This release process was characterized by an initial phase of absorptive swelling followed by a diffusive phase. The impact on plant growth was assessed, revealing that PAM-LDH beads significantly curtailed Cr(VI) accumulation and alleviated its phytotoxic effects. Changes in the carbon (C) and nitrogen (N) content of the plants suggested that the urea encapsulated within the beads served as a nutrient source, contributing to soil fertility. Moreover, the water-holding capacity and soil-water characteristic curves of PAM-LDH beads suggested that these superabsorbent beads could delay soil water evaporation. The observed shifts in microbial community structure provided evidence for the enhancement of soil carbon and nitrogen cycles, indicative of improved soil properties.
Collapse
Affiliation(s)
- Zhenhui Li
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Yuqi Jing
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Rongjie Zhu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Qianqian Yu
- School of Earth Science, China University of Geosciences, Wuhan 430074, China; Hubei Key Laboratory of Critical Zone Evolution, China University of Geosciences, Wuhan 430074, China
| | - Xinhong Qiu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, China; Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Wuhan 430074, China; Wuhan Institute of Technology Jingmen Research Institute of New Chemical Materials Industry Technology, Wuhan 430070, China; Hubei Three Gorges Laboratory, Yichang 443008, China.
| |
Collapse
|
10
|
You HS, Lee SH, Hyun SH. Longitudinal Analysis of the Microbial Community on the Surface of Bloodstains Under Different Environmental Conditions in Areas with Minimal Human Interference. Curr Microbiol 2024; 81:307. [PMID: 39150477 DOI: 10.1007/s00284-024-03833-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 08/04/2024] [Indexed: 08/17/2024]
Abstract
The association between human metabolites and the environmental microbiome has primarily been investigated in relation to disease. In this study, the associations between environmental conditions and microbial communities on the surface of bloodstains were analyzed from a forensic science approach. The composition of microbial communities can be affected by numerous variables. After exposing bloodstains to two different environments with limited airflow and human interference, the microbial communities of the bloodstain surfaces were subjected to longitudinal analysis. Various microbes showed increasing or decreasing trends at the phylum and species level. The microbes identified in this study are usually found in soil, freshwater, and seawater and are known to exhibit unique properties, such as sporulation. Longitudinal variation in temperature and humidity were associated with various changes and correlations with the blood surface microbial community. Understanding these changes could introduce a new perspective to forensic science and could be used to develop a forensic tool used at crime scenes to analyze blood stains in more detail.
Collapse
Affiliation(s)
- Hee Sang You
- Department of Senior Healthcare, Graduate School, Eulji University, Dongil-ro 712, Uijeongbu-si, 11759, Republic of Korea
| | - Song Hee Lee
- Department of Biomedical Laboratory Science, Graduate School, Eulji University, Dongil-ro 712, Uijeongbu-si, 11759, Republic of Korea
| | - Sung Hee Hyun
- Department of Senior Healthcare, Graduate School, Eulji University, Dongil-ro 712, Uijeongbu-si, 11759, Republic of Korea.
- Department of Biomedical Laboratory Science, Graduate School, Eulji University, Dongil-ro 712, Uijeongbu-si, 11759, Republic of Korea.
- Department of Biomedical Laboratory Science, College of Health Sciences, Eulji University, Dongil-ro 712, Uijeongbu-si, 11759, Korea.
| |
Collapse
|
11
|
Zhu Y, Chen F, Jiang F, Hua Z, Luo Z, Ma J. Enhanced remediation of PFAS-metal co-contaminated soil by ceramsite supported Fe 3O 4-MoS 2 heterojunction as a high-performance piezocatalyst. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121716. [PMID: 38968897 DOI: 10.1016/j.jenvman.2024.121716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/19/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
In this study, a novel piezoremediation system was developed to remediate an actual soil co-polluted by high contents of per- and polyfluoroalkyl substances (PFAS, 5725 μg/kg soil) and heavy metals (6455 mg/kg soil). Two piezocatalysts, MoS2/ceramsite (MC) and Fe3O4-MoS2/ceramsite (FMC), were synthesized using a facile hydrothermal-coprecipitation method. These two materials were employed to treat the co-contaminated soil in soil slurry environment under sonication. FMC exhibited significantly higher piezoremediation performance than MC, wherein 91.6% of PFAS, 97.8% of Cr6+ ions and 81% of total metals (Cr, Cu, Zn and Ni) were removed from the soil after 50 min of the FMC piezoremediation process. FMC also exhibited the advantages of easy separation from the slurry phase and excellent reusability. In comparison with MC, the Fe3O4-MoS2 heterojunction in FMC can stabilize MoS2 particles on the surface of ceramsite granules, promote the separation of electron/hole pairs, accelerate charge transfer, therefore enhancing piezocatalytic performance. The electron spin resonance analysis and free radical quenching tests show that •OH was the dominant oxidative radical responsible for PFAS degradation. The count of bacteria and the bacterial community structure in the treated soil can be basically restored to the initial states after 30 days of incubation under nutrient stimulation. Overall, this study not only provides a deep insight on soil remediation process, but also offers an efficient and reliable technique for simultaneous decontamination of organic and metal pollutants in soil.
Collapse
Affiliation(s)
- Yanfeng Zhu
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221008, China
| | - Fu Chen
- School of Public Administration, Hohai University, Nanjing, 211000, China; Observation Research Station of Land Ecology and Land Use in the Yangtze River Delta, Ministry of Natural Resources, Nanjing, 210009, China.
| | - Feifei Jiang
- School of Public Administration, Hohai University, Nanjing, 211000, China; Observation Research Station of Land Ecology and Land Use in the Yangtze River Delta, Ministry of Natural Resources, Nanjing, 210009, China
| | - Ziyi Hua
- School of Public Administration, Hohai University, Nanjing, 211000, China
| | - Zhanbin Luo
- School of Public Administration, Hohai University, Nanjing, 211000, China
| | - Jing Ma
- School of Public Administration, Hohai University, Nanjing, 211000, China
| |
Collapse
|
12
|
Geng J, Zhang W, Liang S, Xue N, Song W, Yang Y. Diversity and biogeography of bacterial community in the Ili River network varies locally and regionally. WATER RESEARCH 2024; 256:121561. [PMID: 38581986 DOI: 10.1016/j.watres.2024.121561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/08/2024]
Abstract
Microorganisms in rivers indeed play a crucial role in nutrient cycling within aquatic ecosystems. Understanding the assembly mechanisms of bacterial communities in river networks is essential for predicting their special composition and functional characteristics in natural rivers. This study employed 16S rRNA gene amplicon sequence variation (ASVs) to scrutinize the bacterial community within the uniquely topographical Ili River network. The bacterial community composition varied across the three tributaries with distinct sources and the mainstream. The confluence of various sources diminished the diversity of the bacterial community and altered the functionality of within mainstream. We suggest that strong dispersal limitation predominantly shaped the community at the regional scale (46.6 %), underscoring the significant contribution of headwater sites to bacterial community composition. Contrary to expectation, the bacterial resources in the mainstream were not enriched by the higher diversity in three tributaries. Instead, confluence disturbance potentially increased the undominated processes (36.7 %) and alter the bacterial community composition at the local scale of the mainstream. The intricate coalescence at the confluence could potentially be an intriguing causative factor. Our research indicates that the composition of bacterial communities within intricate river networks exhibits biogeographic patterns, simultaneously influenced by river confluence and geographical features, necessitating multi-scale analysis.
Collapse
Affiliation(s)
- Jun Geng
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Lake and Watershed Science for Water Security, Chinese Academy of Sciences, China
| | - Weihong Zhang
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Lake and Watershed Science for Water Security, Chinese Academy of Sciences, China
| | - Shuxin Liang
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Nana Xue
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China
| | - Wenjuan Song
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China; Xinjiang Laboratory of Environmental Pollution and Ecological Remediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China.
| | - Yuyi Yang
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Lake and Watershed Science for Water Security, Chinese Academy of Sciences, China.
| |
Collapse
|
13
|
Gou Y, Song Y, Li P, Wei W, Luo N, Wang H. Study on the accelerated biodegradation of PAHs in subsurface soil via coupled low-temperature thermally treatment and electron acceptor stimulation based on metagenomic sequencing. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133265. [PMID: 38113745 DOI: 10.1016/j.jhazmat.2023.133265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
In situ anoxic bioremediation is a sustainable technology to remediate PAHs contaminated soils. However, the limited degradation rate of PAHs under anoxic conditions has become the primary bottleneck hindering the application of this technology. In this study, coupled low-temperature thermally treatment (<50 °C) and EA biostimulation was used to enhance PAH removal. Anoxic biodegradation of PAHs in soil was explored in microcosms in the absence and presence of added EAs at 3 temperatures (15 °C, 30 °C, and 45 °C). The influence of temperature, EA, and their interaction on the removal of PAHs were identified. A PAH degradation model based on PLSR analysis identified the importance and the positive/negative role of parameters on PAH removal. Soil archaeal and bacterial communities showed similar succession patterns, the impact of temperature was greater than that of EA. Soil microbial community and function were more influenced by temperature than EAs. Close and frequent interactions were observed among soil bacteria, archaea, PAH-degrading genes and methanogenic genes. A total of 15 bacterial OTUs, 1 PAH-degrading gene and 2 methanogenic genes were identified as keystones in the network. Coupled low-temperature thermally treatment and EA stimulation resulted in higher PAH removal efficiencies than EA stimulation alone and low-temperature thermally treatment alone.
Collapse
Affiliation(s)
- Yaling Gou
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing 100089, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Yun Song
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing 100089, China
| | - Peizhong Li
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing 100089, China
| | - Wenxia Wei
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing 100089, China
| | - Nan Luo
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing 100089, China
| | - Hongqi Wang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
14
|
Qi Y, Zeng J, Tao J, Liu R, Fu R, Yan C, Liu X, Liu N, Hao Y. Unraveling the mechanisms behind sodium persulphate-induced changes in petroleum-contaminated aquifers' biogeochemical parameters and microbial communities. CHEMOSPHERE 2024; 351:141174. [PMID: 38218242 DOI: 10.1016/j.chemosphere.2024.141174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 12/04/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Sodium persulphate (PS) is a highly effective oxidising agent widely used in groundwater remediation and wastewater treatment. Although numerous studies have examined the impact of PS with respect to the removal efficiency of organic pollutants, the residual effects of PS exposure on the biogeochemical parameters and microbial ecosystems of contaminated aquifers are not well understood. This study investigates the effects of exposure to different concentrations of PS on the biogeochemical parameters of petroleum-contaminated aquifers using microcosm batch experiments. The results demonstrate that PS exposure increases the oxidation-reduction potential (ORP) and electrical conductivity (EC), while decreasing total organic carbon (TOC), dehydrogenase (DE), and polyphenol oxidase (PO) in the aquifer. Three-dimensional excitation-emission matrix (3D-EEM) analysis indicates PS is effective at reducing fulvic acid-like and humic acid-like substances and promoting microbial metabolic activity. In addition, PS exposure reduces the abundance of bacterial community species and the diversity index of evolutionary distance, with a more pronounced effect at high PS concentrations (31.25 mmol/L). Long-term (90 d) PS exposure results in an increase in the abundance of microorganisms with environmental resistance, organic matter degradation, and the ability to promote functional genes related to biological processes such as basal metabolism, transmission of genetic information, and cell motility of microorganisms. Structural equation modeling (SEM) further confirms that ORP and TOC are important drivers of change in the abundance of dominant phyla and functional genes. These results suggest exposure to different concentrations of PS has both direct and indirect effects on the dominant phyla and functional genes by influencing the geochemical parameters and enzymatic activity of the aquifer. This study provides a valuable reference for the application of PS in ecological engineering.
Collapse
Affiliation(s)
- Yuqi Qi
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, 511443, Guangdong, China
| | - Jun Zeng
- School of Environment, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Junshi Tao
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Guangzhou, 510655, Guangdong, China
| | - Rentao Liu
- School of Environment, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Renchuan Fu
- School of Environment, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Chao Yan
- School of Environment, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Xiao Liu
- Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Na Liu
- Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China.
| | - Yanru Hao
- Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
15
|
Hou J, Yang M, Wu X, Chen Q, Lu Y, Zhang J, Lin D. Epidermal microorganisms contributed to the toxic mechanism of nZVI and TCEP in earthworms by robbing metal elements and nutrients. ECO-ENVIRONMENT & HEALTH (ONLINE) 2024; 3:80-88. [PMID: 38323088 PMCID: PMC10844675 DOI: 10.1016/j.eehl.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Indexed: 02/08/2024]
Abstract
Disrupting effects of pollutants on symbiotic microbiota have been regarded as an important mechanism of host toxicity, with most current research focusing on the intestinal microbiota. In fact, the epidermal microbiota, which participates in the nutrient exchange between hosts and environments, could play a crucial role in host toxicity via community changes. To compare the contributions of intestinal and epidermal symbiotic microorganisms to host toxicity, this study designed single and combined scenarios of soil contamination [nano zero-valent iron (nZVI) and tris (2-chloroethyl) phosphate (TCEP)], and revealed the coupling mechanisms between intestinal/epidermal symbiotic bacterial communities and earthworm toxicological endpoints. Microbiome analysis showed that 15% of intestinal microbes were highly correlated with host endpoints, compared to 45% of epidermal microbes showing a similar correlation. Functional comparisons revealed that key species on the epidermis were mainly heterotrophic microbes with genetic abilities to utilize metal elements and carbohydrate nutrients. Further verifications demonstrated that when facing the co-contamination of nZVI and TCEP, certain symbiotic microorganisms became dominant and consumed zinc, copper, and manganese along with saccharides and amino acids, which may be responsible for the nutritional deficiencies in the host earthworms. The findings can enrich the understanding of the coupling relationship between symbiotic microorganisms and host toxicity, highlighting the importance of epidermal microorganisms in host resistance to environmental pollution.
Collapse
Affiliation(s)
- Jie Hou
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Meirui Yang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Xinyue Wu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Qiqi Chen
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Yuqi Lu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Jianying Zhang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- National Demonstration Center for Experimental Environment and Resources Education (Zhejiang University), Hangzhou 310058, China
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Zhejiang Ecological Civilization Academy, Anji 313300, China
| |
Collapse
|
16
|
Ali M, Song X, Wang Q, Zhang Z, Zhang M, Ma M, Che J, Li R, Chen X, Tang Z, Tang B, Huang X. Effects of short and long-term thermal exposure on microbial compositions in soils contaminated with mixed benzene and benzo[a]pyrene: A short communication. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168862. [PMID: 38016555 DOI: 10.1016/j.scitotenv.2023.168862] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/30/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and benzene, toluene, ethylbenzene, and xylene (BTEX) are the most persistent and toxic organic contaminants often found co-contaminated in anthropogenic and petrochemical industrial sites. Therefore, an experiment was performed for the safe biodegradation of benzene and benzo[a]pyrene (BaP) through thermally-enhanced biodegradation, and to explore the influence of elevated thermal treatments on microbial diversity and composition. The results revealed that elevated thermal treatments (15 to 45 °C) significantly enhanced the diversity of both bacteria and fungi. The composition analysis revealed that short-term and long-term elevated temperature conditions can directly enhance the specificity of microorganisms that play a crucial role in the biodegradation of benzene and BaP co-contaminated soil. Moreover, the indirect role of elevated temperature conditions on microbial compositions was through the fluctuations of soil properties, especially soil pH, moisture, TOC, potassium, phosphorous, total Fe, Fe(II), and Fe(III). In addition, the correlation analyses revealed that thermal exposure enhances the synergistic association (fungal-fungal, fungal-bacterial, bacterial-bacterial) of microbes to degrade the toxic contaminants and to cope with harsh environmental conditions. These results concluded that the biodegradation of benzene and BaP co-contamination was efficiently enhanced under the thermally-enhanced biodegradation approach and the elevation of temperature can affect the microbial compositions directly via microbial specificity or indirectly by influencing the soil properties.
Collapse
Affiliation(s)
- Mukhtiar Ali
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; Advanced Water Technology Laboratory, National University of Singapore (Suzhou) Research Institute, Suzhou, 215123, China
| | - Xin Song
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qing Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhuanxia Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Min Ma
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jilu Che
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Rui Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing Chen
- China Construction 8(th) Engineering Division Corp., LTD, Shanghai 200122, China
| | - Zhiwen Tang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Biao Tang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiangfeng Huang
- China Construction 8(th) Engineering Division Corp., LTD, Shanghai 200122, China
| |
Collapse
|
17
|
Ge M, Wang B, Chen B, Xie H, Sun H, Sun K, Feng Y. Hydrochar and Its Dissolved Organic Matter Aged in a 30-Month Rice-Wheat Rotation System: Do Primary Aging Factors Alter at Different Stages? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:3019-3030. [PMID: 38308619 DOI: 10.1021/acs.est.3c08044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2024]
Abstract
Hydrochar, recognized as a green and sustainable soil amendment, has garnered significant attention. However, information on the aging process in soil and the temporal variability of hydrochar remains limited. This study delves deeper into the interaction between hydrochar and soil, focusing on primary factors influencing hydrochar aging during a 30-month rice-wheat rotation system. The results showed that the initial aging of hydrochar (0-16 months) is accompanied by the development of specific surface area and leaching of hydrochar-derived dissolved organic matter (HDOM), resulting in a smaller particle size and reduced carbon content. The initial aging also features a mineral shield, while the later aging (16 to 30 months) involves surface oxidation. These processes collectively alter the surface charge, hydrophilicity, and composition of aged hydrochar. Furthermore, this study reveals a dynamic interaction between the HDOM and DOM derived from soil, plants, and microbes at different aging stages. Initially, there is a preference for decomposing labile carbon, whereas later stages involve the formation of components with higher aromaticity and molecular weight. These insights are crucial for understanding the soil aging effects on hydrochar and HDOM as well as evaluating the interfacial behavior of hydrochar as a sustainable soil amendment.
Collapse
Affiliation(s)
- Mengting Ge
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Bingyu Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Bingfa Chen
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Huifang Xie
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Haijun Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Ke Sun
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
18
|
Ren H, Deng Y, Zhao D, Jin W, Xie G, Peng B, Dai H, Wang B. Structures and diversities of bacterial communities in oil-contaminated soil at shale gas well site assessed by high-throughput sequencing. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:10766-10784. [PMID: 38200199 DOI: 10.1007/s11356-023-31344-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/30/2023] [Indexed: 01/12/2024]
Abstract
Currently, there is limited understanding of the structures and variabilities of bacterial communities in oil-contaminated soil within shale gas development. The Changning shale gas well site in Sichuan province was focused, and high-throughput sequencing was used to investigate the structures of bacterial communities and functions of bacteria in soil with different degrees of oil pollution. Furthermore, the influences of the environmental factors including pH, moisture content, organic matter, total nitrogen, total phosphorus, oil, and the biological toxicity of the soil on the structures of bacterial communities were analyzed. The results revealed that Proteobacteria and Firmicutes predominated in the oil-contaminated soil. α-Proteobacteria and γ-Proteobacteria were the main classes under the Proteobacteria phylum. Bacilli was the main class in the Firmicutes phylum. Notably, more bacteria were only found in CN-5 which was the soil near the storage pond for abandoned drilling mud, including Marinobacter, Balneola, Novispirillum, Castellaniella, and Alishewanella. These bacteria exhibited resilience to higher toxicity and demonstrated proficiency in oil degradation. The functions including carbohydrate transport and metabolism, energy metabolism, replication, recombination and repair replication, signal transduction mechanisms, and amino acid transport and metabolism responded differently to varying concentrations of oil. The disparities in bacterial genus composition across samples stemmed from a complex play of pH, moisture content, organic matter, total nitrogen, total phosphorus, oil concentration, and biological toxicity. Notably, bacterial richness correlated positively with moisture content, while bacterial diversity showed a significant positive correlation with pH. Acidobacteria exhibited a significant positive correlation with moisture content. Litorivivens and Luteimonas displayed a significant negative correlation with pH, while Rhizobium exhibited a significant negative correlation with moisture content. Pseudomonas, Proteiniphilum, and Halomonas exhibited positive correlations not only with organic matter but also with oil concentration. Total nitrogen exhibited a significant positive correlation with Taonella and Sideroxydans. On the other hand, total phosphorus showed a significant negative correlation with Sphingomonas. Furthermore, Sphingomonas, Gp6, and Ramlibacter displayed significant negative correlations with biological toxicity. The differential functions exhibited no significant correlation with environmental factors but displayed a significant positive correlation with the Proteobacteria phylum. Aridibacter demonstrated a significant positive correlation with cell motility and cellular processes and signaling. Conversely, Pseudomonas, Proteiniphilum, and Halomonas were negatively correlated with differential functions, particularly in amino acid metabolism, carbohydrate metabolism, and membrane transport. Compared with previous research, more factors were considered in this research when studying structural changes in bacterial communities, such as physicochemical properties and biological toxicity of soil. In addition, the correlations of differential functions of communities with environmental factors, bacterial phyla, and genera were investigated.
Collapse
Affiliation(s)
- Hongyang Ren
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu, 610500, China
| | - Yuanpeng Deng
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Dan Zhao
- Exploration Division, China National Petroleum Tarim Oilfield Branch, Korla, People's Republic of China
| | - Wenhui Jin
- Sichuan Energy Investment Group Co., Ltd., Chengdu, 610041, People's Republic of China
| | - Guilin Xie
- Sichuan Changning Natural Gas Development Co., Ltd, Yibin, 644005, People's Republic of China
| | - Baoliang Peng
- Research Institute of Petroleum Exploration & Development, Beijing, 100083, China
| | - Huayan Dai
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Bing Wang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China.
| |
Collapse
|
19
|
Mugnai G, Borruso L, Wu YL, Gallinaro M, Cappitelli F, Zerboni A, Villa F. Ecological strategies of bacterial communities in prehistoric stone wall paintings across weathering gradients: A case study from the Borana zone in southern Ethiopia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168026. [PMID: 37907101 DOI: 10.1016/j.scitotenv.2023.168026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/18/2023] [Accepted: 10/20/2023] [Indexed: 11/02/2023]
Abstract
Rock art paintings represent fragile ecosystems supporting complex microbial communities tuned to the lithic substrate and climatic conditions. The composition and activity of these microbial communities associated with different weathering patterns affecting rock art sites remain unexplored. This study aimed to explore how bacterial communities adapt their ecological strategies based on substrate weathering, while also examining the role of their metabolic pathways in either biodeterioration or bioprotection of the underlying stone. SEM-EDS investigations coupled with 16S rRNA gene sequencing and PICRUSt2 analysis were applied on different weathered surfaces that affect southern Ethiopian rock paintings to investigate the relationships between the current stone microbiome and weathering patterns. The findings revealed that samples experiencing low and high weathering reached a climax stage characterized by stable microenvironments and limited resources. This condition favored K-strategist microorganisms, leading to reduced α-biodiversity and a community with a positive or neutral impact on the substrate. In contrast, moderately-weathered samples displayed diverse microhabitats, resulting in the prevalence of r-strategist bacteria, increased α-biodiversity, and the presence of specialist microorganisms. Moreover, the bacterial communities in moderately-weathered samples demonstrated the highest potential for carbon fixation, stress responses, and complete nitrogen and sulfur cycles. This bacterial community also showed the potential to negatively impact the underlying substrate. This research provided valuable insights into the little-understood ecology of bacterial communities inhabiting deteriorated surfaces, shedding light on the potential role of these microorganisms in the sustainable conservation of rock art.
Collapse
Affiliation(s)
- Gianmarco Mugnai
- Department of Agriculture, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, I-06121 Perugia (PG), IT, Italy.
| | - Luigimaria Borruso
- Free University of Bolzano, Faculty of Agricultural, Environmental and Food Sciences, Piazza Universitá 5, 39100 Bolzano, Italy.
| | - Ying-Li Wu
- Dipartimento di Scienze della Terra "A. Desio", Università degli Studi di Milano, 20133 Milan, Italy.
| | - Marina Gallinaro
- Dipartimento di Scienze dell'Antichità, Università di Roma La Sapienza, 00185 Rome, Italy.
| | - Francesca Cappitelli
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, 20133 Milan, Italy.
| | - Andrea Zerboni
- Dipartimento di Scienze della Terra "A. Desio", Università degli Studi di Milano, 20133 Milan, Italy.
| | - Federica Villa
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, 20133 Milan, Italy.
| |
Collapse
|
20
|
Kracmarova-Farren M, Papik J, Uhlik O, Freeman J, Foster A, Leewis MC, Creamer C. Compost, plants and endophytes versus metal contamination: choice of a restoration strategy steers the microbiome in polymetallic mine waste. ENVIRONMENTAL MICROBIOME 2023; 18:74. [PMID: 37805609 PMCID: PMC10559404 DOI: 10.1186/s40793-023-00528-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/14/2023] [Indexed: 10/09/2023]
Abstract
Finding solutions for the remediation and restoration of abandoned mining areas is of great environmental importance as they pose a risk to ecosystem health. In this study, our aim was to determine how remediation strategies with (i) compost amendment, (ii) planting a metal-tolerant grass Bouteloua curtipendula, and (iii) its inoculation with beneficial endophytes influenced the microbiome of metal-contaminated tailings originating from the abandoned Blue Nose Mine, SE Arizona, near Patagonia (USA). We conducted an indoor microcosm experiment followed by a metataxonomic analysis of the mine tailings, compost, and root samples. Our results showed that each remediation strategy promoted a distinct pattern of microbial community structure in the mine tailings, which correlated with changes in their chemical properties. The combination of compost amendment and endophyte inoculation led to the highest prokaryotic diversity and total nitrogen and organic carbon, but also induced shifts in microbial community structure that significantly correlated with an enhanced potential for mobilization of Cu and Sb. Our findings show that soil health metrics (total nitrogen, organic carbon and pH) improved, and microbial community changed, due to organic matter input and endophyte inoculation, which enhanced metal leaching from the mine waste and potentially increased environmental risks posed by Cu and Sb. We further emphasize that because the initial choice of remediation strategy can significantly impact trace element mobility via modulation of both soil chemistry and microbial communities, site specific, bench-scale preliminary tests, as reported here, can help determine the potential risk of a chosen strategy.
Collapse
Affiliation(s)
- Martina Kracmarova-Farren
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28, Prague 6, Czech Republic
| | - Jakub Papik
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28, Prague 6, Czech Republic.
| | - Ondrej Uhlik
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28, Prague 6, Czech Republic
| | - John Freeman
- Intrinsyx Environmental, Sunnyvale, CA, 94085, USA
| | | | - Mary-Cathrine Leewis
- U.S. Geological Survey, Menlo Park, CA, USA
- Agriculture and Agri-Food Canada, Quebec Research and Development Centre, Quebec, QC, Canada
| | | |
Collapse
|
21
|
Han L, Qin H, Wang J, Yao D, Zhang L, Guo J, Zhu B. Immediate response of paddy soil microbial community and structure to moisture changes and nitrogen fertilizer application. Front Microbiol 2023; 14:1130298. [PMID: 37547687 PMCID: PMC10400893 DOI: 10.3389/fmicb.2023.1130298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 06/23/2023] [Indexed: 08/08/2023] Open
Abstract
Water and fertilizer managements are the most common practices to maximize crop yields, and their long-term impact on soil microbial communities has been extensively studied. However, the initial response of microbes to fertilization and soil moisture changes remains unclear. In this study, the immediate effects of nitrogen (N)-fertilizer application and moisture levels on microbial community of paddy soils were investigated through controlled incubation experiments. Amplicon sequencing results revealed that moisture had a stronger influence on the abundance and community composition of total soil bacteria, as well as ammonia oxidizing-archaea (AOA) and -bacteria (AOB). Conversely, fertilizer application noticeably reduced the connectivity and complexity of the total bacteria network, and increasing moisture slightly exacerbated these effects. NH4+-N content emerged as a significant driving force for changes in the structure of the total bacteria and AOB communities, while NO3--N content played more important role in driving shifts in AOA composition. These findings indicate that the initial responses of microbial communities, including abundance and composition, and network differ under water and fertilizer managements. By providing a snapshot of microbial community structure following short-term N-fertilizer and water treatments, this study contributes to a better understanding of how soil microbes respond to long-term agriculture managements.
Collapse
Affiliation(s)
- Linrong Han
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi’an, China
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Hongling Qin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Jingyuan Wang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- College of Resources and Environment, Hunan Agricultural University, Changsha, China
| | - Dongliang Yao
- College of Resources and Environment, Hunan Agricultural University, Changsha, China
- College of Biodiversity, Conservation Southwest Forestry University, Kunming, China
| | - Leyan Zhang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- College of Resources and Environment, Hunan Agricultural University, Changsha, China
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi’an, China
| | - Baoli Zhu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
22
|
Zhang H, Zhang M, Hou X, Li Y, Zhang W, Wang L, Niu L. Responses of bacterial community and N-cycling functions stability to different wetting-drying alternation frequencies in a riparian zone. ENVIRONMENTAL RESEARCH 2023; 228:115778. [PMID: 36997041 DOI: 10.1016/j.envres.2023.115778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 05/16/2023]
Abstract
Wetting-drying alternation (WD) of the soil is one of the key characteristics of riparian zones shaped by dam construction, profoundly impacting the soil microenvironment that determines the bacterial community. Knowledge concerning the stability of bacterial community and N-cycling functions in response to different frequencies of WD remains unclear. In this study, samples were taken from a riparian zone in the Three Gorges Reservoir (TGR) and an incubation experiment was conducted including four treatments: constant flooding (W), varied wetting-drying alternation frequencies (WD1 and WD2), and constant drying (D) (simulating water level of 145 m, 155 m, 165 m, and 175 m in the riparian zone respectively). The results revealed that there was no significant difference in the diversity among the four treatments. Following the WD1 and WD2 treatments, the relative abundances of Proteobacteria increased, while those of Chloroflexi and Acidobacteriota decreased compared to the W treatment. However, the stability of bacterial community was not affected by WD. Relative to the W treatment, the stability of N-cycling functions estimated by resistance, which refers to the ability of functional genes to adapt to changes in the environment, decreased following the WD1 treatment, but showed no significant change following the WD2 treatment. Random forest analysis showed that the resistances of the nirS and hzo genes were core contributors to the stability of N-cycling functions. This study provides a new perspective for investigating the impacts of wetting-drying alternation on soil microbes.
Collapse
Affiliation(s)
- Huanjun Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Mengzhu Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Xing Hou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| |
Collapse
|
23
|
Scheffer G, Gieg LM. The Mystery of Piezophiles: Understudied Microorganisms from the Deep, Dark Subsurface. Microorganisms 2023; 11:1629. [PMID: 37512802 PMCID: PMC10384521 DOI: 10.3390/microorganisms11071629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Microorganisms that can withstand high pressure within an environment are termed piezophiles. These organisms are considered extremophiles and inhabit the deep marine or terrestrial subsurface. Because these microorganisms are not easily accessed and require expensive sampling methods and laboratory instruments, advancements in this field have been limited compared to other extremophiles. This review summarizes the current knowledge on piezophiles, notably the cellular and physiological adaptations that such microorganisms possess to withstand and grow in high-pressure environments. Based on existing studies, organisms from both the deep marine and terrestrial subsurface show similar adaptations to high pressure, including increased motility, an increase of unsaturated bonds within the cell membrane lipids, upregulation of heat shock proteins, and differential gene-regulation systems. Notably, more adaptations have been identified within the deep marine subsurface organisms due to the relative paucity of studies performed on deep terrestrial subsurface environments. Nevertheless, similar adaptations have been found within piezophiles from both systems, and therefore the microbial biogeography concepts used to assess microbial dispersal and explore if similar organisms can be found throughout deep terrestrial environments are also briefly discussed.
Collapse
Affiliation(s)
- Gabrielle Scheffer
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Lisa M Gieg
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
24
|
Tang Y, Fan D, Guo W, Kong W. Controls on diversity of core and indicative microbial subcommunities in Tibetan Plateau grassland soils. FEMS Microbiol Ecol 2023; 99:fiad059. [PMID: 37237437 DOI: 10.1093/femsec/fiad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 05/10/2023] [Accepted: 05/25/2023] [Indexed: 05/28/2023] Open
Abstract
Core subcommunity represents the less diversity but high abundance, while indicative subcommunity is highly diverse but low abundance in soils. The core subcommunity fundamentally maintains ecosystem stability, while the indicative plays important roles in vital ecosystem functions and is more sensitive to environmental change. However, their environmental driving factors and responses to human disturbances remain less defined. Herein, we explored the patterns of core and indicative soil microbes and their responses to animal grazing in dry grasslands across the Tibetan Plateau, using the Illumina sequencing of 16S rRNA gene. The results revealed that the core subcommunity diversity and richness were lower than the indicative in soils. The indicative subcommunity diversity exhibited substantially stronger correlations with nutrient-associated factors than the core diversity, including soil organic carbon, nitrogen, and plant biomass. The core and indicative microbial subcommunities both strongly varied with grassland ecosystems, while the latter was also significantly influenced by grazing. The variation partitioning analysis revealed that indicative microbial subcommunity was explained less by environmental factors than core subcommunity (34.5% vs 73.0%), but more influenced by grazing (2.6% vs 0.1%). Our findings demonstrated that the indicative microbes were particularly sensitive to soil nutrient-associated factors and human disturbances in alpine dry grasslands.
Collapse
Affiliation(s)
- Yazhou Tang
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Dandan Fan
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Wei Guo
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Weidong Kong
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
25
|
Billet L, Pesce S, Martin-Laurent F, Devers-Lamrani M. Experimental Evidence for Manure-Borne Bacteria Invasion in Soil During a Coalescent Event: Influence of the Antibiotic Sulfamethazine. MICROBIAL ECOLOGY 2023; 85:1463-1472. [PMID: 35556154 PMCID: PMC10167166 DOI: 10.1007/s00248-022-02020-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/19/2022] [Indexed: 05/10/2023]
Abstract
The fertilization of agricultural soil by organic amendment that may contain antibiotics, like manure, can transfer bacterial pathogens and antibiotic-resistant bacteria to soil communities. However, the invasion by manure-borne bacteria in amended soil remains poorly understood. We hypothesized that this kind of process is both influenced by the soil properties (and those of its microbial communities) and by the presence of contaminants such as antibiotics used in veterinary care. To test that, we performed a microcosm experiment in which four different soils were amended or not with manure at an agronomical dose and exposed or not to the antibiotic sulfamethazine (SMZ). After 1 month of incubation, the diversity, structure, and composition of bacterial communities of the soils were assessed by 16S rDNA sequencing. The invasion of manure-borne bacteria was still perceptible 1 month after the soil amendment. The results obtained with the soil already amended in situ with manure 6 months prior to the experiment suggest that some of the bacterial invaders were established in the community over the long term. Even if differences were observed between soils, the invasion was mainly attributable to some of the most abundant OTUs of manure (mainly Firmicutes). SMZ exposure had a limited influence on soil microorganisms but our results suggest that this kind of contaminant can enhance the invasion ability of some manure-borne invaders.
Collapse
Affiliation(s)
- Loren Billet
- INRAE, UR RiverLy, Villeurbanne, France.
- Agroécologie, INRAE, Institut Agro, Université de Bourgogne Franche-Comté, Dijon, France.
| | | | - Fabrice Martin-Laurent
- Agroécologie, INRAE, Institut Agro, Université de Bourgogne Franche-Comté, Dijon, France
| | - Marion Devers-Lamrani
- Agroécologie, INRAE, Institut Agro, Université de Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
26
|
Lamprea Pineda PA, Demeestere K, Toledo M, Boon N, Van Langenhove H, Walgraeve C. Long-term biofiltration of gaseous N,N-dimethylformamide: Operational performance and microbial diversity analysis at different conditions. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130767. [PMID: 36640506 DOI: 10.1016/j.jhazmat.2023.130767] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/15/2022] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
N,N-Dimethylformamide (DMF) is an organic solvent produced in large quantities worldwide. It is considered as a hazardous air pollutant and its emission should be controlled. However, only a limited number of studies have been performed on the removal of gaseous DMF by biological technologies. In this paper, we evaluate the removal of DMF under mesophilic and thermophilic conditions in a lab-scale biofilter for 472 days. The results show that, at ambient temperature, the biofilter achieved an average removal efficiency (RE) of 99.7 ± 0.3 % at Inlet Loads (ILs) up to 297 ± 52 g DFM m-3 h-1 (Empty Bed Residence Time (EBRTs) of 10.7 s). However, a decrease in EBRT (6.4 s) led to an unstable outlet concentration and, thus, to a drop in the biofilter performance (average RE: 90 ± 9 %). Moreover, an increase in temperature up to 65 °C led to a gradual decrease in RE (till 91 ± 7 %). Microbial analysis indicates that once the microorganisms encountered DMF, Rhizobiaceae dominated followed by Alcaligenaceae. Afterwards, a strong decrease in Rhizobiaceae was observed at every increase in temperature, and at 65 °C, the taxa were more heterogeneous. Overall, our experimental results indicate that biofiltration is a promising technique to remove DMF from waste gas streams.
Collapse
Affiliation(s)
- Paula Alejandra Lamprea Pineda
- Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Kristof Demeestere
- Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Manuel Toledo
- Chemical Engineering Department, University of Córdoba, Campus Universitario de Rabanales, Ctra. N-IV, Km 396, 14071, Córdoba, Spain.
| | - Nico Boon
- Center for Microbial Ecology and Technology - CMET, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Herman Van Langenhove
- Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Christophe Walgraeve
- Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| |
Collapse
|
27
|
Marcus E, Dagan T, Asli W, Ben-Ami F. Out of the 'host' box: extreme off-host conditions alter the infectivity and virulence of a parasitic bacterium. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220015. [PMID: 36744562 PMCID: PMC9900709 DOI: 10.1098/rstb.2022.0015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 12/24/2022] [Indexed: 02/07/2023] Open
Abstract
Disease agents play an important role in the ecology and life history of wild and cultivated populations and communities. While most studies focus on the adaptation of parasites to their hosts, the adaptation of free-living parasite stages to their external (off-host) environment may tell us a lot about the factors that shape the distribution of parasites. Pasteuria ramosa is an endoparasitic bacterium of the water flea Daphnia with a wide geographical distribution. Its transmission stages rest outside of the host and thus experience varying environmental regimes. We examined the life history of P. ramosa populations from four environmental conditions (i.e. groups of habitats): the factorial combinations of summer-dry water bodies or not, and winter-freeze water bodies or not. Our goal was to examine how the combination of winter temperature and summer dryness affects the parasite's ability to attach to its host and to infect it. We subjected samples of the four groups of habitats to temperatures of 20, 33, 46 and 60°C in dry and wet conditions, and exposed a susceptible clone of Daphnia magna to the treated spores. We found that spores which had undergone desiccation endured higher temperatures better than spores kept wet, both regarding attachment and subsequent infection. Furthermore, spores treated with heightened temperatures were much less infective and virulent. Even under high temperatures (60°C), exposed spores from all populations were able to attach to the host cuticle, albeit they were unable to establish infection. Our work highlights the sensitivity of a host-free resting stage of a bacterial parasite to the external environment. Long heatwaves and harsh summers, which are becoming more frequent owing to recent climate changes, may therefore pose a problem for parasite survival. This article is part of the theme issue 'Infectious disease ecology and evolution in a changing world'.
Collapse
Affiliation(s)
- Enav Marcus
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tal Dagan
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Weaam Asli
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Frida Ben-Ami
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
28
|
Couvillion SP, Danczak RE, Naylor D, Smith ML, Stratton KG, Paurus VL, Bloodsworth KJ, Farris Y, Schmidt DJ, Richardson RE, Bramer LM, Fansler SJ, Nakayasu ES, McDermott JE, Metz TO, Lipton MS, Jansson JK, Hofmockel KS. Rapid remodeling of the soil lipidome in response to a drying-rewetting event. MICROBIOME 2023; 11:34. [PMID: 36849975 PMCID: PMC9969633 DOI: 10.1186/s40168-022-01427-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 11/15/2022] [Indexed: 06/18/2023]
Abstract
BACKGROUND Microbiomes contribute to multiple ecosystem services by transforming organic matter in the soil. Extreme shifts in the environment, such as drying-rewetting cycles during drought, can impact the microbial metabolism of organic matter by altering microbial physiology and function. These physiological responses are mediated in part by lipids that are responsible for regulating interactions between cells and the environment. Despite this critical role in regulating the microbial response to stress, little is known about microbial lipids and metabolites in the soil or how they influence phenotypes that are expressed under drying-rewetting cycles. To address this knowledge gap, we conducted a soil incubation experiment to simulate soil drying during a summer drought of an arid grassland, then measured the response of the soil lipidome and metabolome during the first 3 h after wet-up. RESULTS Reduced nutrient access during soil drying incurred a replacement of membrane phospholipids, resulting in a diminished abundance of multiple phosphorus-rich membrane lipids. The hot and dry conditions increased the prevalence of sphingolipids and lipids containing long-chain polyunsaturated fatty acids, both of which are associated with heat and osmotic stress-mitigating properties in fungi. This novel finding suggests that lipids commonly present in eukaryotes such as fungi may play a significant role in supporting community resilience displayed by arid land soil microbiomes during drought. As early as 10 min after rewetting dry soil, distinct changes were observed in several lipids that had bacterial signatures including a rapid increase in the abundance of glycerophospholipids with saturated and short fatty acid chains, prototypical of bacterial membrane lipids. Polar metabolites including disaccharides, nucleic acids, organic acids, inositols, and amino acids also increased in abundance upon rewetting. This rapid metabolic reactivation and growth after rewetting coincided with an increase in the relative abundance of firmicutes, suggesting that members of this phylum were positively impacted by rewetting. CONCLUSIONS Our study revealed specific changes in lipids and metabolites that are indicative of stress adaptation, substrate use, and cellular recovery during soil drying and subsequent rewetting. The drought-induced nutrient limitation was reflected in the lipidome and polar metabolome, both of which rapidly shifted (within hours) upon rewet. Reduced nutrient access in dry soil caused the replacement of glycerophospholipids with phosphorus-free lipids and impeded resource-expensive osmolyte accumulation. Elevated levels of ceramides and lipids with long-chain polyunsaturated fatty acids in dry soil suggest that lipids likely play an important role in the drought tolerance of microbial taxa capable of synthesizing these lipids. An increasing abundance of bacterial glycerophospholipids and triacylglycerols with fatty acids typical of bacteria and polar metabolites suggest a metabolic recovery in representative bacteria once the environmental conditions are conducive for growth. These results underscore the importance of the soil lipidome as a robust indicator of microbial community responses, especially at the short time scales of cell-environment reactions. Video Abstract.
Collapse
Affiliation(s)
- Sneha P Couvillion
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Robert E Danczak
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Dan Naylor
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Montana L Smith
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Kelly G Stratton
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Vanessa L Paurus
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Kent J Bloodsworth
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Yuliya Farris
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Darren J Schmidt
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Rachel E Richardson
- National Security Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Lisa M Bramer
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Sarah J Fansler
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ernesto S Nakayasu
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jason E McDermott
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Thomas O Metz
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Mary S Lipton
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Janet K Jansson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Kirsten S Hofmockel
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.
- Department of Agronomy, Iowa State University, Ames, IA, USA.
| |
Collapse
|
29
|
DePoy AN, King GM. Distribution and diversity of anaerobic thermophiles and putative anaerobic nickel-dependent carbon monoxide-oxidizing thermophiles in mesothermal soils and sediments. Front Microbiol 2023; 13:1096186. [PMID: 36699584 PMCID: PMC9868602 DOI: 10.3389/fmicb.2022.1096186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
Even though thermophiles are best known from geothermal and other heated systems, numerous studies have demonstrated that they occur ubiquitously in mesothermal and permanently cold soils and sediments. Cultivation based studies of the latter have revealed that the thermophiles within them are mostly spore-forming members of the Firmicutes. Since the geographic distribution of spores is presumably unconstrained by transport through the atmosphere, similar communities (composition and diversity) of thermophiles might be expected to emerge in mesothermal habitats after they are heated. Alternatively, thermophiles might experience environmental selection before or after heating leading to divergent communities. After demonstrating the ubiquity of anaerobic thermophiles and CO uptake in a variety of mesothermal habitats and two hot springs, we used high throughput sequencing of 16S rRNA genes to assess the composition and diversity of populations that emerged after incubation at 60°C with or without headspace CO concentrations of 25%. Anaerobic Firmicutes dominated relative abundances at most sites but anaerobic thermophilic members of the Acidobacteria and Proteobacteria were also common. Nonetheless, compositions at the amplicon sequence variant (ASV) level varied among the sites with no convergence resulting from heating or CO addition as indicated by beta diversity analyses. The distinctions among thermophilic communities paralleled patterns observed for unheated "time zero" mesothermal soils and sediments. Occupancy analyses showed that the number of ASVs occupying each of n sites decreased unimodally with increasing n; no ASV occupied all 14 sites and only one each occupied 11 and 12 sites, while 69.3% of 1873 ASVs occupied just one site. Nonetheless, considerations of distances among the sites occupied by individual ASVs along with details of their distributions indicated that taxa were not dispersal limited but rather were constrained by environmental selection. This conclusion was supported by βMNTD and βNTI analyses, which showed dispersal limitation was only a minor contributor to taxon distributions.
Collapse
|
30
|
Fatton M, Filippidou S, Junier T, Cailleau G, Berge M, Poppleton D, Blum TB, Kaminek M, Odriozola A, Blom J, Johnson SL, Abrahams JP, Chain PS, Gribaldo S, Tocheva EI, Zuber B, Viollier PH, Junier P. Cryptosporulation in Kurthia spp. forces a rethinking of asporogenesis in Firmicutes. Environ Microbiol 2022; 24:6320-6335. [PMID: 36530021 PMCID: PMC10086788 DOI: 10.1111/1462-2920.16145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/20/2022] [Indexed: 01/12/2023]
Abstract
Endosporulation is a complex morphophysiological process resulting in a more resistant cellular structure that is produced within the mother cell and is called endospore. Endosporulation evolved in the common ancestor of Firmicutes, but it is lost in descendant lineages classified as asporogenic. While Kurthia spp. is considered to comprise only asporogenic species, we show here that strain 11kri321, which was isolated from an oligotrophic geothermal reservoir, produces phase-bright spore-like structures. Phylogenomics of strain 11kri321 and other Kurthia strains reveals little similarity to genetic determinants of sporulation known from endosporulating Bacilli. However, morphological hallmarks of endosporulation were observed in two of the four Kurthia strains tested, resulting in spore-like structures (cryptospores). In contrast to classic endospores, these cryptospores did not protect against heat or UV damage and successive sub-culturing led to the loss of the cryptosporulating phenotype. Our findings imply that a cryptosporulation phenotype may have been prevalent and subsequently lost by laboratory culturing in other Firmicutes currently considered as asporogenic. Cryptosporulation might thus represent an ancestral but unstable and adaptive developmental state in Firmicutes that is under selection under harsh environmental conditions.
Collapse
Affiliation(s)
- Mathilda Fatton
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Sevasti Filippidou
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.,AstrobiologyOU, The Open University, Milton Keynes, UK
| | - Thomas Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.,Vital-IT group, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Guillaume Cailleau
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Matthieu Berge
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Daniel Poppleton
- Unité de Biologie Moléculaire du Gène chez les Extrémophiles, Département de Microbiologie, Institut Pasteur, France
| | - Thorsten B Blum
- Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute (PSI), Villigen, Switzerland
| | - Marek Kaminek
- Institute for Anatomy, University of Bern, Bern, Switzerland
| | | | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Shannon L Johnson
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Jan Pieter Abrahams
- Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute (PSI), Villigen, Switzerland.,Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Basel, Switzerland.,Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Patrick S Chain
- Institute for Anatomy, University of Bern, Bern, Switzerland
| | - Simonetta Gribaldo
- Unité de Biologie Moléculaire du Gène chez les Extrémophiles, Département de Microbiologie, Institut Pasteur, France
| | - Elitza I Tocheva
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Benoît Zuber
- Institute for Anatomy, University of Bern, Bern, Switzerland
| | - Patrick H Viollier
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pilar Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
31
|
Effects of Dietary Quinoa Seeds on Cecal Microorganisms and Muscle Fatty Acids of Female Luhua Chickens. Animals (Basel) 2022; 12:ani12233334. [PMID: 36496855 PMCID: PMC9739921 DOI: 10.3390/ani12233334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
Abstract
To study the effects of adding quinoa seed (raw grain) to the diet of the Luhua chicken on the cecal microorganism abundance and fatty acid composition of muscle, 120 49-day-old healthy female dewormed Luhua chickens (body weight 1476.21 ± 101.39 g) were randomly divided into 4 groups, with 3 replicates in each group and 10 chickens in each repetition. The control group (CK group) was fed a basal diet and the experimental groups were fed with 4% (Q4), 8% (Q8), and 12% (Q12) quinoa seed (raw grain) added to the basal diet for 75 days. After 121 days of age, the animals were slaughtered and the 16S rRNA characteristics of cecal flora, as well as composition and content of fatty acids in muscle, were determined and analyzed. The content of unsaturated fatty acids (UFAs), docosahexaenoic acid (C22:6n3; DHA) and n-3 polyunsaturated fatty acids (n-3 PUFAs) in the breast and leg muscles significantly increased in the experimental groups supplemented with quinoa seeds (p < 0.05). However, the content of saturated fatty acids (SAFs) and ratio of n-6/n-3 in breast muscle and leg muscle significantly decreased (p < 0.05). In addition, adding a certain percentage of quinoa seeds in the diet can also affect the community composition and content of microorganisms in the ceca of Luhua chickens. At the phylum level, the Proteobacteria, Actinobacteria, Synergistetes and Melainabacteria in experimental groups (Q4, Q8 and Q12) were significantly lower than those in the CK group (p < 0.05). At the genus level, Desulfovibrio, Synergistes, Olsenella, Parabacteroides, Mailhella, Sutterella and Ruminiclostridiu in group Q4 were significantly lower than those in group CK (p < 0.05) while Faecalibacterium in Q8 group, and Lawsonia and Faecalibacterium in Q12 group were significantly higher than those in the CK group (p < 0.05). Enrichment analysis of the microbial function showed that compared with the CK group, Metabolism and Enzyme Families were significantly enriched in the Q4 group (p < 0.05). Cellular Processes and Signaling were significantly enriched in the Q8 group (p < 0.05). The association analysis of fatty acids with microorganisms showed that the abundance of Faecalibacterium, Lawsonia and Meagmonas was significantly correlated with partial SFAs and UFAs (p < 0.05). In conclusion, adding quinoa seeds to diets significantly increased the content of muscle DHA, UFAs and n-3 PUFAs. The content of SAFs and the n-6/n-3 ratio were significantly reduced. Taken together, quinoa can effectively improve the cecal microbiota structure, inhibit the number of harmful bacteria and increase the number of beneficial bacteria, regulating the intestinal environment and promoting the body health of female Luhua chickens.
Collapse
|
32
|
Effects of Dietary Oregano Essential Oil on Cecal Microorganisms and Muscle Fatty Acids of Luhua Chickens. Animals (Basel) 2022; 12:ani12223215. [PMID: 36428443 PMCID: PMC9686890 DOI: 10.3390/ani12223215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
This experiment was conducted to investigate the effects of oregano essential oil on the cecal microorganisms and muscle fatty acids of Luhua chickens. One hundred and twenty 49-day-old healthy dewormed Luhua chickens were randomly divided into four groups with three replicates per group and ten chickens per replicate. The corn−quinoa and soybean meal diets were supplemented with 0 (Q8 group), 50 (QO50 group), 100 (QO100 group) and 150 mg·kg−1 (QO150 group) of oregano essential oil, respectively, and the experiment lasted for 75 days. The composition of intestinal flora was detected by Illumina sequencing of the 16S rRNA V4 region, and the composition and content of fatty acids in the muscles were analyzed by gas chromatography. The results showed that dietary oregano essential oil can effectively increase the contents of elaidic acid (C18:ln9t), polyunsaturated fatty acids (PUFAs) and n-3 polyunsaturated fatty acids (n-3 PUFAs) in breast muscle tissues. However, the fatty acid composition and PUFA content in leg muscle tissues were not significantly improved. According to a 16S rRNA high-throughput sequencing analysis, dietary oregano essential oil supplementation with a certain concentration can change the cecal microbial community composition of broilers. At the phylum level, Elusimicrobia in the QO150 group was significantly lower than that in Q8 group (p < 0.05). At the genus level, Phascolarctobacterium, Parasutterella and Bilophila in the experimental groups (QO50, QO100 and QO150) were significantly lower than those in the Q8 group (p < 0.05). An enrichment analysis of the microbial function found that the amino acid metabolism, energy metabolism, metabolism, signal transduction and genetic information processing were mainly enriched in the experimental groups, which promoted the digestion and absorption of nutrients and enhanced intestinal barrier functioning. An analysis of the association between fatty acids and microbes found that the abundance of microbiota was significantly correlated with partially saturated fatty acids (SFAs) and unsaturated fatty acids (UFAs) (p < 0.05). In conclusion, the dietary addition of oregano essential oil can effectively improve cecal microbial community composition, promote the digestion and absorption of nutrients, and enhance intestinal barrier functioning. It can significantly improve the content of some fatty acids, and there was a certain correlation between caecum microorganisms and fatty acid deposition in muscles.
Collapse
|
33
|
Malard LA, Avila-Jimenez ML, Schmale J, Cuthbertson L, Cockerton L, Pearce DA. Aerobiology over the Southern Ocean - Implications for bacterial colonization of Antarctica. ENVIRONMENT INTERNATIONAL 2022; 169:107492. [PMID: 36174481 DOI: 10.1016/j.envint.2022.107492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/27/2022] [Accepted: 08/27/2022] [Indexed: 06/16/2023]
Abstract
Parts of the Antarctic are experiencing dramatic ecosystem change due to rapid and record warming, which may weaken biogeographic boundaries and modify dispersal barriers, increasing the risk of biological invasions. In this study, we collected air samples from 100 locations around the Southern Ocean to analyze bacterial biodiversity in the circumpolar air around the Antarctic continent, as understanding dispersal processes is paramount to assessing the risks of microbiological invasions. We also compared the Southern Ocean air bacterial biodiversity to non-polar ecosystems to identify the potential origin of these Southern Ocean air microorganisms. The bacterial diversity in the air had both local and global origins and presented low richness overall but high heterogeneity, compatible with a scenario whereby samples are composed of a suite of different species in very low relative abundances. Only 4% of Amplicon Sequence Variants (ASVs) were identified in both polar and non-polar air masses, suggesting that the polar air mass over the Southern Ocean can act as a selective dispersal filter. Furthermore, both microbial diversity and community structure both varied significantly with meteorological data, suggesting that regional bacterial biodiversity could be sensitive to changes in weather conditions, potentially altering the existing pattern of microbial deposition in the Antarctic.
Collapse
Affiliation(s)
- Lucie A Malard
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.
| | | | - Julia Schmale
- Extreme Environments Research Laboratory, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Lewis Cuthbertson
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, NEwcastle-upon-Tyne NE1 8ST, United Kingdom
| | - Luke Cockerton
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, NEwcastle-upon-Tyne NE1 8ST, United Kingdom
| | - David A Pearce
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, NEwcastle-upon-Tyne NE1 8ST, United Kingdom; British Antarctic Survey, Natural Environemnt Research Council, High Cross, Madingley Road, Cambridge BCB3 0ET, United Kingdom.
| |
Collapse
|
34
|
Ruiz‐González C, Rodríguez‐Pie L, Maister O, Rodellas V, Alorda‐Keinglass A, Diego‐Feliu M, Folch A, Garcia‐Orellana J, Gasol JM. High spatial heterogeneity and low connectivity of bacterial communities along a Mediterranean subterranean estuary. Mol Ecol 2022; 31:5745-5764. [PMID: 36112071 PMCID: PMC9827943 DOI: 10.1111/mec.16695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 01/13/2023]
Abstract
Subterranean estuaries are biogeochemically active coastal sites resulting from the underground mixing of fresh aquifer groundwater and seawater. In these systems, microbial activity can largely transform the chemical elements that may reach the sea through submarine groundwater discharge (SGD), but little is known about the microorganisms thriving in these land-sea transition zones. We present the first spatially-resolved characterization of the bacterial assemblages along a coastal aquifer in the NW Mediterranean, considering the entire subsurface salinity gradient. Combining bulk heterotrophic activity measurements, flow cytometry, microscopy and 16S rRNA gene sequencing we find large variations in prokaryotic abundances, cell size, activity and diversity at both the horizontal and vertical scales that reflect the pronounced physicochemical gradients. The parts of the transect most influenced by freshwater were characterized by smaller cells and lower prokaryotic abundances and heterotrophic production, but some activity hotspots were found at deep low-oxygen saline groundwater sites enriched in nitrite and ammonium. Diverse, heterogeneous and highly endemic communities dominated by Proteobacteria, Patescibacteria, Desulfobacterota and Bacteroidota were observed throughout the aquifer, pointing to clearly differentiated prokaryotic niches across these transition zones and little microbial connectivity between groundwater and Mediterranean seawater habitats. Finally, experimental manipulations unveiled large increases in community heterotrophic activity driven by fast growth of some rare and site-specific groundwater Proteobacteria. Our results indicate that prokaryotic communities within subterranean estuaries are highly heterogeneous in terms of biomass, activity and diversity, suggesting that their role in transforming nutrients will also vary spatially within these terrestrial-marine transition zones.
Collapse
Affiliation(s)
| | | | - Olena Maister
- Institut de Ciències del Mar (ICM‐CSIC)BarcelonaSpain
| | - Valentí Rodellas
- Institut de Ciència i Tecnologia Ambientals (ICTA‐UAB)Universitat Autònoma de BarcelonaBellaterraSpain
| | - Aaron Alorda‐Keinglass
- Institut de Ciència i Tecnologia Ambientals (ICTA‐UAB)Universitat Autònoma de BarcelonaBellaterraSpain
| | - Marc Diego‐Feliu
- Institut de Ciència i Tecnologia Ambientals (ICTA‐UAB)Universitat Autònoma de BarcelonaBellaterraSpain,Departament de FísicaUniversitat Autònoma de BarcelonaBellaterraSpain
| | - Albert Folch
- Department of Civil and Environmental EngineeringUniversitat Politècnica de CatalunyaBarcelonaSpain,Associated Unit: Hydrogeology Group (UPC‐CSIC)BarcelonaSpain
| | - Jordi Garcia‐Orellana
- Institut de Ciència i Tecnologia Ambientals (ICTA‐UAB)Universitat Autònoma de BarcelonaBellaterraSpain,Departament de FísicaUniversitat Autònoma de BarcelonaBellaterraSpain
| | | |
Collapse
|
35
|
Zhu D, Ge C, Sun H, Wang J, He L. Bioremediation of tetramethyl thiuram disulfide and resource utilization of natural rubber wastewater by WR-2 Bacillus-dominated microbial community. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:63182-63192. [PMID: 35449336 DOI: 10.1007/s11356-022-20267-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Tetramethyl thiuram disulfide (TMTD), an emerging pollutant with ecotoxicity and accumulation in rubber wastewater, is directly discharged by factories into the surrounding soil to save costs, and this disrupts the nearby ecosystem. In this study, an efficient bioremediation microbial community (WR-2) dominated by Bacillus was acclimatized and isolated from soil contaminated by rubber wastewater. After passing through the metabolic process of WR-2, the ecotoxic TMTD decomposes within 14 days. In the pot experiment, WR-2 not only completed the bioremediation of contaminated soil but also significantly improved the crop growth conditions and the product quality. These results show that WR-2 has broad application prospects in the bioremediation of soil contaminated by rubber wastewater. It also provides a theoretical framework for the resource utilization of the effluent at the end of the initial rubber processing.
Collapse
Affiliation(s)
- Dayu Zhu
- College of Ecology and Environment, Hainan University, Haikou, 570228, China
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China
| | - Chengjun Ge
- College of Ecology and Environment, Hainan University, Haikou, 570228, China
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China
| | - Hongfei Sun
- College of Ecology and Environment, Hainan University, Haikou, 570228, China.
| | - Jun Wang
- College of Ecology and Environment, Hainan University, Haikou, 570228, China
| | - Liujing He
- College of Ecology and Environment, Hainan University, Haikou, 570228, China
| |
Collapse
|
36
|
Mudgil D, Paul D, Baskar S, Baskar R, Shouche YS. Cultivable microbial diversity in speleothems using MALDI-TOF spectrometry and DNA sequencing from Krem Soitan, Krem Lawbah, Krem Mawpun, Khasi Hills, Meghalaya, India. Arch Microbiol 2022; 204:495. [PMID: 35842875 PMCID: PMC9288962 DOI: 10.1007/s00203-022-02916-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 03/17/2022] [Accepted: 04/13/2022] [Indexed: 11/02/2022]
Abstract
AbstractThe microbial diversity in the Indian caves is inadequately characterized. This study reports on the culturable microbial communities in caves from the Indian sub-continent. This study aims to expand the current understanding of bacterial diversity in the speleothems and wall deposits from Krem Soitan, Krem Lawbah, Krem Mawpun in Khasi Hills, Meghalaya, India. A culture-dependent approach was employed for elucidating the community structure in the caves using MALDI-TOF spectrometry and 16S rRNA gene sequencing. A high bacterial diversity and a greater bacterial taxonomic diversity is reported using MALDI-TOF spectrometry and 16S rRNA gene sequencing. High microbial enumerations were observed on dilute nutrient agar (5.3 × 103 to 8.8 × 105) followed by M9 minimal medium (4 × 104 to 1.7 × 105) and R2A medium (1.0 × 104 to 5.7 × 105). A total of 826 bacterial isolates were selected and preserved for the study. 295 bacterial isolates were identified using MALDI-TOF spectrometry and the isolates which showed no reliable peaks were further identified by 16S rRNA gene sequencing. A total 91% of the bacterial diversity was dominated by Proteobacteria (61%) and Actinobacteria (30%). In addition, bacterial phyla include Firmicutes (7.45%), Deinococcus-Thermus (0.33%) and Bacteroidetes (0.67%) were found in the samples. At the genus level, Pseudomonas (55%) and Arthrobacter (23%) were ubiquitous followed by Acinetobacter, Bacillus, Brevundimonas, Deinococcus, Flavobacterium, Paenibacillus, Pseudarthrobacter. Multivariate statistical analysis indicated that the bacterial genera formed separate clusters depending on the geochemical constituents in the spring waters suitable for their growth and metabolism. To the best of our knowledge, there are no previous geomicrobiological investigations in these caves and this study is a pioneering culture dependent study of the microbial community with many cultured isolates.
Collapse
|
37
|
Urban Aerobiome and Effects on Human Health: A Systematic Review and Missing Evidence. ATMOSPHERE 2022. [DOI: 10.3390/atmos13071148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Urban air pollutants are a major public health concern and include biological matters which composes about 25% of the atmospheric aerosol particles. Airborne microorganisms were traditionally characterized by culture-based methods recognizing just 1.5–15.3% of the total bacterial diversity that was evaluable by genome signature in the air environment (aerobiome). Despite the large number of exposed people, urban aerobiomes are still weakly described even if recently advanced literature has been published. This paper aims to systematically review the state of knowledge on the urban aerobiome and human health effects. A total of 24 papers that used next generation sequencing (NGS) techniques for characterization and comprised a seasonal analysis have been included. A core of Proteobacteria, Actinobacteria, Firmicutes, and Bacteroides and various factors that influenced the community structure were detected. Heterogenic methods and results were reported, for both sampling and aerobiome diversity analysis, highlighting the necessity of in-depth and homogenized assessment thus reducing the risk of bias. The aerobiome can include threats for human health, such as pathogens and resistome spreading; however, its diversity seems to be protective for human health and reduced by high levels of air pollution. Evidence of the urban aerobiome effects on human health need to be filled up quickly for urban public health purposes.
Collapse
|
38
|
Zhang M, Tashiro Y, Ishida N, Sakai K. Application of autothermal thermophilic aerobic digestion as a sustainable recycling process of organic liquid waste: Recent advances and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154187. [PMID: 35240167 DOI: 10.1016/j.scitotenv.2022.154187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Autothermal thermophilic aerobic digestion (ATAD) has been used to stabilize organic waste since the 1960s and is considered sustainable technology. ATAD has several advantages, including high biodegradation efficiency, pathogen inactivation, and ease of operation. Although ATAD research has a long history, the number of studies on ATAD is much lower than those on similar aerobic processes, particularly composting. Previous review articles addressed the origin, design, operational experiences, metabolism, and the microorganisms at the thermophilic stage of ATAD. This article reviews the digestion systems, applications, and characteristics of ATAD; compares system performance and microbial community structure of ATAD with those of other biological processes such as composting, activated sludge, and anaerobic digestion; and discusses the physicochemical properties and factors of ATAD. The challenges, opportunities, and prospects for the application of ATAD are also discussed. This review suggests that ATAD is feasible for treating organic liquid waste (1-6% total solid content) in small-sized towns and can help establish a sustainable society.
Collapse
Affiliation(s)
- Min Zhang
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Yukihiro Tashiro
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan; Laboratory of Microbial Environmental Protection, Tropical Microbiology Unit, Center for International Education and Research of Agriculture, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan.
| | - Natsumi Ishida
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Kenji Sakai
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan; Laboratory of Microbial Environmental Protection, Tropical Microbiology Unit, Center for International Education and Research of Agriculture, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
39
|
Wang Z, Tang Y, Long L, Zhang H. Effects of Dietary L-Theanine on Growth Performance, Antioxidation, Meat Quality, and Intestinal Microflora in White Feather Broilers With Acute Oxidative Stress. Front Vet Sci 2022; 9:889485. [PMID: 35812843 PMCID: PMC9267357 DOI: 10.3389/fvets.2022.889485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
In order to reduce the negative effects caused by oxidative stress on broilers, it is particularly important to find ways to alleviate oxidative stress. As a natural plant extract, L-theanine has a variety of biological effects, such as improving antioxidant capacity, promoting growth, and enhancing immunity and antitumor. This trial evaluated the effects of dietary supplementation of L-theanine on growth performance, antioxidation, meat quality, and intestinal microflora in 817 White Feather Broilers. A total of 108 21-day-old 817 broilers with similar body weight (BW) were randomly divided into three groups with six replicates per group and six chickens within each replicate. The three groups were corn-soybean-based diet (NC group); basal diet plus drinking water with 30 mg hydrocortisone/kg (PC group); and basal diet supplemented with 400 mg L-theanine/kg plus drinking water with 30 mg hydrocortisone/kg (LT group). Compared with the NC group, from 21 to 24 days of age, the PC and LT groups had decreased BW, average daily gain (ADG), and average daily feed intake (ADFI), and increased feed to gain ratio (F/G; p < 0.05). At 24 days of age, the LT group had improved superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities in serum as compared to the NC group (p < 0.05). The LT group broilers also had significantly higher concentrations of malondialdehyde (MDA) in serum and liver (p < 0.05). On the 42nd days, the PC group had lower PH45min (p < 0.05) than the NC and LT groups and higher cooking loss and shear force (p < 0.05). Moreover, the villi height of the PC group was significantly lower in jejunum than the NC group (p < 0.05). The LT group had a higher ZO-1 content in duodenum than the NC and PC groups (p < 0.05). The activity of GSH-Px in the liver of the LT group was increased than in the PC group (p < 0.05). The relative abundance of Firmicutes in the LT group was significantly higher than in the NC and PC groups (p < 0.05). These results suggested that the effects of acute oxidative stress on growth performance and meat quality of broilers are continuous, and dietary supplementation of L-theanine could improve the growth performance and meat quality, enhance the intestinal mucosal barrier and antioxidant capacity, and improve the composition of the intestinal flora of broilers caused by acute oxidative stress.
Collapse
|
40
|
Corona Ramírez A, Cailleau G, Fatton M, Dorador C, Junier P. Diversity of Lysis-Resistant Bacteria and Archaea in the Polyextreme Environment of Salar de Huasco. Front Microbiol 2022; 13:826117. [PMID: 36687602 PMCID: PMC9847572 DOI: 10.3389/fmicb.2022.826117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/07/2022] [Indexed: 01/25/2023] Open
Abstract
The production of specialized resting cells is a remarkable strategy developed by several organisms to survive unfavorable environmental conditions. Spores are specialized resting cells that are characterized by low to absent metabolic activity and higher resistance. Spore-like cells are known from multiple groups of bacteria, which can form spores under suboptimal growth conditions (e.g., starvation). In contrast, little is known about the production of specialized resting cells in archaea. In this study, we applied a culture-independent method that uses physical and chemical lysis, to assess the diversity of lysis-resistant bacteria and archaea and compare it to the overall prokaryotic diversity (direct DNA extraction). The diversity of lysis-resistant cells was studied in the polyextreme environment of the Salar de Huasco. The Salar de Huasco is a high-altitude athalassohaline wetland in the Chilean Altiplano. Previous studies have shown a high diversity of bacteria and archaea in the Salar de Huasco, but the diversity of lysis-resistant microorganisms has never been investigated. The underlying hypothesis was that the combination of extreme abiotic conditions might favor the production of specialized resting cells. Samples were collected from sediment cores along a saline gradient and microbial mats were collected in small surrounding ponds. A significantly different diversity and composition were found in the sediment cores or microbial mats. Furthermore, our results show a high diversity of lysis-resistant cells not only in bacteria but also in archaea. The bacterial lysis-resistant fraction was distinct in comparison to the overall community. Also, the ability to survive the lysis-resistant treatment was restricted to a few groups, including known spore-forming phyla such as Firmicutes and Actinobacteria. In contrast to bacteria, lysis resistance was widely spread in archaea, hinting at a generalized resistance to lysis, which is at least comparable to the resistance of dormant cells in bacteria. The enrichment of Natrinema and Halarchaeum in the lysis-resistant fraction could hint at the production of cyst-like cells or other resistant cells. These results can guide future studies aiming to isolate and broaden the characterization of lysis-resistant archaea.
Collapse
Affiliation(s)
- Andrea Corona Ramírez
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Guillaume Cailleau
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Mathilda Fatton
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Cristina Dorador
- Department of Biotechnology, University of Antofagasta, Antofagasta, Chile
| | - Pilar Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland,*Correspondence: Pilar Junier,
| |
Collapse
|
41
|
Nwachukwu BC, Ayangbenro AS, Babalola OO. Effects of soil properties and carbon substrates on bacterial diversity of two sunflower farms. AMB Express 2022; 12:47. [PMID: 35460382 PMCID: PMC9035202 DOI: 10.1186/s13568-022-01388-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/09/2022] [Indexed: 11/24/2022] Open
Abstract
The sustainable production of sunflower (Helianthus annuus) is crucial and one way to accomplish this feat is to have an understanding of the beneficial bacteria of sunflower rhizosphere. Similarly, the respiratory response of these bacteria needs to be studied to understand their roles in the ecosystem. This study was therefore conceptualized to gain insights into the effects of soil properties and carbon substrate utilization on bacterial community diversity of sunflower rhizosphere grown in Ditsobottla and Kraaipan, North West Province, South Africa. Extracted DNA from sunflower rhizosphere and bulk soils was subjected to 16S amplicon sequencing. Significant differences were observed in the alpha and beta diversities of the soil bacterial communities (p < 0.05). At the order level, among all the bacterial taxa captured in the farms, Bacillales were the most dominant. The abundance of Lactobacillales, Bacillales, Rhizobiales, Enterobacteriales, Burkholderiales, Flavobacteriales, Sphingomonadales, Myxococcales, and Nitrosomonadales obtained from Ditsobottla rhizosphere soil (R1) was positively influenced by organic matter (OM), while the abundance of Planctomycetales, Cytophagales, Gemmatimonadales, Nitrospirales and Caulobacteriales from Kraaipan rhizosphere soil (R2) was positively influenced by total N and pH. Bacterial communities of all the soil samples utilized the different carbon substrates (three amino acids, six carbohydrates, and three carboxylic acids) as an energy source. Significant differences (p < 0.05) were only observed in tryptophan and methionine amended soils. Unclassified bacteria were also captured in this study, such bacteria can further be harnessed for sustainable production of sunflower and other agricultural crops.
Collapse
|
42
|
Enright DJ, Frangioso KM, Isobe K, Rizzo DM, Glassman SI. Mega‐fire in Redwood Tanoak Forest Reduces Bacterial and Fungal Richness and Selects for Pyrophilous Taxa that are Phylogenetically Conserved. Mol Ecol 2022; 31:2475-2493. [DOI: 10.1111/mec.16399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 01/19/2022] [Accepted: 02/03/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Dylan J. Enright
- Department of Microbiology and Plant Pathology University of California 3401 Watkins Drive Riverside CA 92521 USA
| | - Kerri M. Frangioso
- Department of Plant Pathology University of California 1 Shields Ave Davis CA 95616 USA
| | - Kazuo Isobe
- Department of Applied Biological Chemistry Graduate School of Agricultural and Life Sciences The University of Tokyo 1‐1‐1 Yayoi, Bunkyo‐ku Tokyo 113‐8657
| | - David M. Rizzo
- Department of Plant Pathology University of California 1 Shields Ave Davis CA 95616 USA
| | - Sydney I. Glassman
- Department of Microbiology and Plant Pathology University of California 3401 Watkins Drive Riverside CA 92521 USA
| |
Collapse
|
43
|
Velázquez-Ríos IO, Rincón-Rosales R, Gutiérrez-Miceli FA, Alcántara-Hernández RJ, Ruíz-Valdiviezo VM. Prokaryotic diversity across a pH gradient in the “El Chichón” crater-lake: a naturally thermo-acidic environment. Extremophiles 2022; 26:8. [DOI: 10.1007/s00792-022-01257-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/04/2022] [Indexed: 12/17/2022]
|
44
|
Vipindas PV, Jabir T, Rahiman KMM, Rehitha TV, Sudheesh V, Jesmi Y, Hatha AAM. Impact of anthropogenic organic matter on bacterial community distribution in the continental shelf sediments of southeastern Arabian Sea. MARINE POLLUTION BULLETIN 2022; 174:113227. [PMID: 34883441 DOI: 10.1016/j.marpolbul.2021.113227] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
The objective of this study was to understand the influence of anthropogenic organic matter on the spatial distribution microbial community in the continental shelf sediments of the Southeastern Arabian Sea (SEAS). The sediment samples were taken from the inner shelf (30 m depths) and outer shelf (100-200 m). The C:Nmolar ratio of the sediment displayed a significant variation between the inner and outer shelf and a higher terrestrial organic input in the inner shelf. Microbial community composition also showed a significant variation between the inner and outer shelf (p ≤ 0.05). Proteobacteria was the dominant phylum in the outer shelf sediments (42.5%), whereas Desulfobacterota (21.9%) was the dominant phylum in the inner shelf. Complex terrestrial organic matter degrading bacteria dominated the inner shelf, whereas oligophilic microbial community and autochthonous organic matter utilizing bacteria dominated the outer shelf. Thus the source of organic matter controlled the microbial distribution in the SEAS.
Collapse
Affiliation(s)
- P V Vipindas
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala 682016, India.
| | - T Jabir
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala 682016, India
| | - K M Mujeeb Rahiman
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala 682016, India
| | - T V Rehitha
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala 682016, India
| | - V Sudheesh
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala 682016, India
| | - Y Jesmi
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala 682016, India
| | - A A Mohamed Hatha
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala 682016, India.
| |
Collapse
|
45
|
Ren J, Liu X, Yang W, Yang X, Li W, Xia Q, Li J, Gao Z, Yang Z. Rhizosphere soil properties, microbial community, and enzyme activities: Short-term responses to partial substitution of chemical fertilizer with organic manure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 299:113650. [PMID: 34481370 DOI: 10.1016/j.jenvman.2021.113650] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 05/20/2023]
Abstract
The partial substitution of chemical fertilizers with organic manure has positive effects on crop productivity and sustainable development. Nevertheless, few studies have focused on major grain crops. Herein, we report the short-term effects of the partial substitution of chemical fertilizers with organic manure on the physicochemical properties, microbial community, and enzyme activities in the rhizosphere soil of a maize (Zea mays L.) field. A decrease in soil bulk density, pH, and electrical conductivity, concomitant with an increase in soil urease, invertase, and alkaline phosphatase activities, and a high level of nutrients were observed in organic manure-treated soil. The influence of the organic substitution treatment on bacterial diversity was greater than that on fungal diversity, particularly on alpha diversity. Among dominant bacterial phyla, Actinobacteria abundance changed the most, with significantly increase under organic manure treatment. In turn, among fungi, only Ascomycota responded substantially to organic substitution. Binding spatial ordination analysis revealed that relative soil water content and soil organic carbon, and nitrate and total nitrogen contents had a stronger effect on bacteria and fungi, respectively, than any other soil physicochemical property. Additionally, the changes in bacterial and fungal communities influenced soil enzymatic activities. Moreover, partial least squares path model revealed that soil physicochemical properties indirectly affected soil enzymatic activities by their direct effects on microbial (both bacteria and fungi) community. Overall, our results indicate that the substitution of chemical fertilizers by organic manure changed the composition of the soil microbial community, and that the effects of the substitution were more significant on bacteria than on fungi.
Collapse
Affiliation(s)
- Jianhong Ren
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030800, China; College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoli Liu
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030800, China
| | - Wenping Yang
- College of Life Sciences, North China University of Science and Technology, Caofeidian, 063210, China
| | - Xiaoxiao Yang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030800, China; College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wenguang Li
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030800, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qing Xia
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030800, China
| | - Junhui Li
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030800, China
| | - Zhiqiang Gao
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030800, China
| | - Zhenping Yang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030800, China.
| |
Collapse
|
46
|
DeCastro ME, Escuder-Rodríguez JJ, Becerra M, Rodríguez-Belmonte E, González-Siso MI. Comparative Metagenomic Analysis of Two Hot Springs From Ourense (Northwestern Spain) and Others Worldwide. Front Microbiol 2021; 12:769065. [PMID: 34899652 PMCID: PMC8661477 DOI: 10.3389/fmicb.2021.769065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/26/2021] [Indexed: 01/12/2023] Open
Abstract
With their circumneutral pH and their moderate temperature (66 and 68°C, respectively), As Burgas and Muiño da Veiga are two important human-use hot springs, previously studied with traditional culture methods, but never explored with a metagenomic approach. In the present study, we have performed metagenomic sequence-based analyses to compare the taxonomic composition and functional potential of these hot springs. Proteobacteria, Deinococcus-Thermus, Firmicutes, Nitrospirae, and Aquificae are the dominant phyla in both geothermal springs, but there is a significant difference in the abundance of these phyla between As Burgas and Muiño da Veiga. Phylum Proteobacteria dominates As Burgas ecosystem while Aquificae is the most abundant phylum in Muiño da Veiga. Taxonomic and functional analyses reveal that the variability in water geochemistry might be shaping the differences in the microbial communities inhabiting these geothermal springs. The content in organic compounds of As Burgas water promotes the presence of heterotrophic populations of the genera Acidovorax and Thermus, whereas the sulfate-rich water of Muiño da Veiga favors the co-dominance of genera Sulfurihydrogenibium and Thermodesulfovibrio. Differences in ammonia concentration exert a selective pressure toward the growth of nitrogen-fixing bacteria such as Thermodesulfovibrio in Muiño da Veiga. Temperature and pH are two important factors shaping hot springs microbial communities as was determined by comparative analysis with other thermal springs.
Collapse
Affiliation(s)
| | | | | | | | - María-Isabel González-Siso
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía, Facultade de Ciencias, Universidade da Coruña, A Coruña, Spain
| |
Collapse
|
47
|
Pilch HE, Steinberger AJ, Sockett DC, Aulik N, Suen G, Czuprynski CJ. Assessing the microbiota of recycled bedding sand on a Wisconsin dairy farm. J Anim Sci Biotechnol 2021; 12:114. [PMID: 34758888 PMCID: PMC8582206 DOI: 10.1186/s40104-021-00635-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/05/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Sand is often considered the preferred bedding material for dairy cows as it is thought to have lower bacterial counts than organic bedding materials and cows bedded on sand experience fewer cases of lameness and disease. Sand can also be efficiently recycled and reused, making it cost-effective. However, some studies have suggested that the residual organic material present in recycled sand can serve as a reservoir for commensal and pathogenic bacteria, although no studies have yet characterized the total bacterial community composition. Here we sought to characterize the bacterial community composition of a Wisconsin dairy farm bedding sand recycling system and its dynamics across several stages of the recycling process during both summer and winter using 16S rRNA gene amplicon sequencing. RESULTS Bacterial community compositions of the sand recycling system differed by both seasons and stage. Summer samples had higher richness and distinct community compositions, relative to winter samples. In both summer and winter samples, the diversity of recycled sand decreased with time drying in the recycling room. Compositionally, summer sand 14 d post-recycling was enriched in operational taxonomic units (OTUs) belonging to the genera Acinetobacter and Pseudomonas, relative to freshly washed sand and sand from cow pens. In contrast, no OTUs were found to be enriched in winter sand. The sand recycling system contained an overall core microbiota of 141 OTUs representing 68.45% ± 10.33% SD of the total bacterial relative abundance at each sampled stage. The 4 most abundant genera in this core microbiota included Acinetobacter, Psychrobacter, Corynebacterium, and Pseudomonas. Acinetobacter was present in greater abundance in summer samples, whereas Psychrobacter and Corynebacterium had higher relative abundances in winter samples. Pseudomonas had consistent relative abundances across both seasons. CONCLUSIONS These findings highlight the potential of recycled bedding sand as a bacterial reservoir that warrants further study.
Collapse
Affiliation(s)
- Hannah E. Pilch
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, 53706 USA
| | - Andrew J. Steinberger
- Department of Bacteriology, University of Wisconsin-Madison, Madison, 53706 USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, 53706 USA
| | - Donald C. Sockett
- Wisconsin Veterinary Diagnostic Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, 53706 USA
| | - Nicole Aulik
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, 53706 USA
- Wisconsin Veterinary Diagnostic Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, 53706 USA
| | - Garret Suen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, 53706 USA
| | - Charles J. Czuprynski
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, 53706 USA
| |
Collapse
|
48
|
Metaplasmidome-encoded functions of Siberian low-centered polygonal tundra soils. THE ISME JOURNAL 2021; 15:3258-3270. [PMID: 34012103 PMCID: PMC8528913 DOI: 10.1038/s41396-021-01003-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 02/04/2023]
Abstract
Plasmids have the potential to transfer genetic traits within bacterial communities and thereby serve as a crucial tool for the rapid adaptation of bacteria in response to changing environmental conditions. Our knowledge of the environmental pool of plasmids (the metaplasmidome) and encoded functions is still limited due to a lack of sufficient extraction methods and tools for identifying and assembling plasmids from metagenomic datasets. Here, we present the first insights into the functional potential of the metaplasmidome of permafrost-affected active-layer soil-an environment with a relatively low biomass and seasonal freeze-thaw cycles that is strongly affected by global warming. The obtained results were compared with plasmid-derived sequences extracted from polar metagenomes. Metaplasmidomes from the Siberian active layer were enriched via cultivation, which resulted in a longer contig length as compared with plasmids that had been directly retrieved from the metagenomes of polar environments. The predicted hosts of plasmids belonged to Moraxellaceae, Pseudomonadaceae, Enterobacteriaceae, Pectobacteriaceae, Burkholderiaceae, and Firmicutes. Analysis of their genetic content revealed the presence of stress-response genes, including antibiotic and metal resistance determinants, as well as genes encoding protectants against the cold.
Collapse
|
49
|
Xu Y, Che T, Li Y, Fang C, Dai Z, Li H, Xu L, Hu F. Remediation of polycyclic aromatic hydrocarbons by sulfate radical advanced oxidation: Evaluation of efficiency and ecological impact. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112594. [PMID: 34371456 DOI: 10.1016/j.ecoenv.2021.112594] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
Remediation of polycyclic aromatic hydrocarbon (PAH) contamination in soil remains expensive and difficult. Sulfate radical advanced oxidation processes (SR-AOPs) can be used for in situ PAH oxidation but their efficiency and ecological impacts require evaluation. Here, we tested the remediation efficiency and ecological impacts of an SR-AOP combining sodium persulfate and ferrous sulfate (FS), the FS SR-AOP with the chelating agent citric acid (FS+CA), and the FS SR-AOP with chelating agent and the surfactant IGEPALCA-720 (FS+CA+IG) compared with natural attenuation (control, CK). We measured PAH, soil physicochemical properties (pH, soil organic matter [SOM]), and soil biological properties (polyphenol oxidase [PPO] activity, peroxidase [POD] activity, soil microbes) in contaminated soil samples after incubation with FS, FS+CA, FA+CA+IG, or CK for 1, 15, and 30 d. Compared with CK, all SR-AOPs significantly decreased PAH after 1 d, with FS+CA+IG showing the highest efficiency (80.8%) and PAH removal peaking at 15 d. FS+CA+IG treatment reduced SOM the least and soil pH the most; after 30 d, SOM recovered to ~80% of the level observed in CK, but soil pH decreased further. PPO and POD activities were highest after 15 and 30 d of FS+CA+IG treatment. Real-time quantitative PCR demonstrated that SR-AOPs significantly decreased quantities of PAH-degrading bacteria, soil bacteria, fungi, and actinobacteria at 1 d, but after 30 d, the microbes recovered to levels similar to those observed in CK, with no significant differences among SR-AOPs. SR-AOPs reduced bacterial diversity and changed the dominant phylum from Acidobacteria to Firmicutes. In summary, SR-AOP treatment with both the chelating agent and the surfactant produced the best PAH removal and least SOM destruction but the largest pH decrease, although some factors recovered with longer incubation. This study provides key information for improving PAH remediation and evaluating its ecological impact.
Collapse
Affiliation(s)
- Yuanzhou Xu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Weigang No. 1, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Ting Che
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Weigang No. 1, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Yajuan Li
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Weigang No. 1, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Cheng Fang
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Weigang No. 1, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Ziwen Dai
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Weigang No. 1, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Huixin Li
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Weigang No. 1, Nanjing 210095, Jiangsu Province, People's Republic of China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, People's Republic of China
| | - Li Xu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Weigang No. 1, Nanjing 210095, Jiangsu Province, People's Republic of China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, People's Republic of China.
| | - Feng Hu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Weigang No. 1, Nanjing 210095, Jiangsu Province, People's Republic of China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, People's Republic of China.
| |
Collapse
|
50
|
Li Q, Song A, Yang H, Müller WEG. Impact of Rocky Desertification Control on Soil Bacterial Community in Karst Graben Basin, Southwestern China. Front Microbiol 2021; 12:636405. [PMID: 33790877 PMCID: PMC8006366 DOI: 10.3389/fmicb.2021.636405] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/15/2021] [Indexed: 11/13/2022] Open
Abstract
Microorganisms play critical roles in belowground ecosystems, and karst rocky desertification (KRD) control affects edaphic properties and vegetation coverage. However, the relationship between KRD control and soil bacterial communities remains unclear. 16S rRNA gene next-generation sequencing was used to investigate soil bacterial community structure, composition, diversity, and co-occurrence network from five ecological types in KRD control area. Moreover, soil physical-chemical properties and soil stoichiometry characteristics of carbon, nitrogen and phosphorus were analyzed. Soil N and P co-limitation decreased in the contribution of the promotion of KRD control on edaphic properties. Though soil bacterial communities appeared strongly associated with soil pH, soil calcium, soil phosphorus and plant richness, the key factor to determine their compositions was the latter via changed edaphic properties. The co-occurrence network analysis indicated that soil bacterial network complexity in natural ecosystem was higher than that in additional management ecosystem. Candidatus Udaeobacter, Chthoniobacterales, and Pedosphaeraceae were recognized as the key taxa maintaining karst soil ecosystems in KRD control area. Our results indicate that natural recovery is the suitable way for restoration and rehabilitation of degraded ecosystems, and thus contribute to the ongoing endeavor to appraise the interactions among soil-plant ecological networks.
Collapse
Affiliation(s)
- Qiang Li
- Key Laboratory of Karst Dynamics, MNR and GZAR, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin, China.,International Research Center on Karst Under the Auspices of UNESCO, Guilin, China
| | - Ang Song
- Key Laboratory of Karst Dynamics, MNR and GZAR, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin, China.,International Research Center on Karst Under the Auspices of UNESCO, Guilin, China
| | - Hui Yang
- Key Laboratory of Karst Dynamics, MNR and GZAR, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin, China.,International Research Center on Karst Under the Auspices of UNESCO, Guilin, China
| | - Werner E G Müller
- ERC Advanced Investigator Grant Research Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|