1
|
Rossi M, Martinengo B, Diamanti E, Salerno A, Rizzardi N, Fato R, Bergamini C, Souza de Oliveira A, de Araújo Marques Ferreira T, Andrade Holanda C, Romeiro LAS, Soeiro MDNC, Nunes K, Ferreira de Almeida Fiuza L, Meuser Batista M, Fraga CAM, E A Alkhalaf H, Elmahallawy EK, Ebiloma GU, De Koning HP, Vittorio S, Vistoli G, Blanquart C, Bertrand P, Bolognesi ML. Benign-by-Design SAHA Analogues for Human and Animal Vector-Borne Parasitic Diseases. ACS Med Chem Lett 2024; 15:1506-1515. [PMID: 39291036 PMCID: PMC11403742 DOI: 10.1021/acsmedchemlett.4c00242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/24/2024] [Accepted: 08/08/2024] [Indexed: 09/19/2024] Open
Abstract
The search for new drugs fulfilling One Health and Green Chemistry requirements is an urgent call. Here, for the first time, we envisaged developing SAHA analogues by starting from the cashew nutshell liquid (CNSL) agro-industrial waste and employing a metathesis approach. This sustainable combination (comprising principles #7 and #9) allowed a straightforward synthesis of compounds 13-20. All of them were found to not be toxic on HepG2, IMR-32, and L929 cell lines. Then, their potential against major human and animal vector-borne parasitic diseases (VBPDs) was assessed. Compound 13 emerged as a green hit against the trypomastigote forms of T. b. brucei. In silico studies showed that the T. b. brucei HDAC (TbDAC) catalytic pocket could be occupied with a similar binding mode by both SAHA and 13, providing a putative explanation for its antiparasitic mechanism of action (13, EC50 = 0.7 ± 0.2 μM).
Collapse
Affiliation(s)
- Michele Rossi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| | - Bianca Martinengo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| | - Eleonora Diamanti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| | - Alessandra Salerno
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| | - Nicola Rizzardi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| | - Romana Fato
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| | - Christian Bergamini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| | - Andressa Souza de Oliveira
- Laboratório de Desenvolvimento de Inovações Terapêuticas, Núcleo de Medicina Tropical, Faculdade de Medicina, Universidade de Brasília, Brasília 70910-900, Brazil
| | - Thais de Araújo Marques Ferreira
- Laboratório de Desenvolvimento de Inovações Terapêuticas, Núcleo de Medicina Tropical, Faculdade de Medicina, Universidade de Brasília, Brasília 70910-900, Brazil
| | - Cleonice Andrade Holanda
- Laboratório de Desenvolvimento de Inovações Terapêuticas, Núcleo de Medicina Tropical, Faculdade de Medicina, Universidade de Brasília, Brasília 70910-900, Brazil
| | - Luiz Antonio Soares Romeiro
- Laboratório de Desenvolvimento de Inovações Terapêuticas, Núcleo de Medicina Tropical, Faculdade de Medicina, Universidade de Brasília, Brasília 70910-900, Brazil
| | - Maria de Nazaré Correia Soeiro
- Laboratório de Biologia Celular do Instituto Oswaldo Cruz, Fiocruz. Avenida Brasil 4365, Manguinhos, Rio de Janeiro CEP 21040360, Brazil
| | - Krislayne Nunes
- Laboratório de Biologia Celular do Instituto Oswaldo Cruz, Fiocruz. Avenida Brasil 4365, Manguinhos, Rio de Janeiro CEP 21040360, Brazil
| | - Ludmila Ferreira de Almeida Fiuza
- Laboratório de Biologia Celular do Instituto Oswaldo Cruz, Fiocruz. Avenida Brasil 4365, Manguinhos, Rio de Janeiro CEP 21040360, Brazil
| | - Marcos Meuser Batista
- Laboratório de Biologia Celular do Instituto Oswaldo Cruz, Fiocruz. Avenida Brasil 4365, Manguinhos, Rio de Janeiro CEP 21040360, Brazil
| | - Carlos A M Fraga
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Hamed E A Alkhalaf
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G43 2DX, United Kingdom
| | - Ehab Kotb Elmahallawy
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Facultad de Veterinaria, Universidad de Córdoba, Córdoba 14014, Spain
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
| | - Godwin U Ebiloma
- School of Science, Engineering & Environment, University of Salford, Manchester M5 4NT, United Kingdom
| | - Harry P De Koning
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G43 2DX, United Kingdom
| | - Serena Vittorio
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, Milan 20133, Italy
| | - Giulio Vistoli
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, Milan 20133, Italy
| | - Christophe Blanquart
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, Nantes CRCI2NA, France
| | - Philippe Bertrand
- University of Poitiers IC2MP UMR CNRS 7285, 4, rue Michel Brunet - TSA 51106. B27, Poitiers cedex 9 86073, France
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| |
Collapse
|
2
|
Fernando L, Echesabal-Chen J, Miller M, Powell RR, Bruce T, Paul A, Poudyal N, Saliutama J, Parman K, Paul KS, Stamatikos A. Cholesterol Efflux Decreases TLR4-Target Gene Expression in Cultured Macrophages Exposed to T. brucei Ghosts. Microorganisms 2024; 12:1730. [PMID: 39203572 PMCID: PMC11357207 DOI: 10.3390/microorganisms12081730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Trypanosoma brucei causes African trypanosomiasis in humans. Infection with T. brucei elicits a potent pro-inflammatory immune response within infected human hosts, and this response is thought to at least be partially due to Toll-like receptor (TLR) activation. In response to stimulation by lipopolysaccharide and other pathogen antigens, TLR4 translocates to lipid rafts, which induces the expression of pro-inflammatory genes. However, cholesterol efflux is acknowledged as anti-inflammatory due to promoting lipid raft disruption. In this study, we wanted to assess the impact of T. brucei "ghosts", which are non-viable T. brucei essentially devoid of intracellular contents, in stimulating macrophage TLR4 translocation to lipid rafts, and whether promoting cholesterol efflux in macrophages incubated with T. brucei ghosts attenuates TLR4-target gene expression. When cultured macrophages were exposed to T. brucei ghosts, we observed an increase in lipid raft TLR4 protein content, which suggests certain surface molecules of T. brucei serve as ligands for TLR4. However, pretreating macrophages with cholesterol acceptors before T. brucei ghost exposure decreased lipid raft TLR4 protein content and the expression of pro-inflammatory TLR4-target genes. Taken together, these results imply that macrophage cholesterol efflux weakens pro-inflammatory responses which occur from T. brucei infection via increasing macrophage lipid raft disruption.
Collapse
Affiliation(s)
- Lawrence Fernando
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (L.F.); (J.E.-C.)
| | - Jing Echesabal-Chen
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (L.F.); (J.E.-C.)
| | - Murphy Miller
- School of Medicine Greenville, University of South Carolina, Greenville, SC 29605, USA;
| | - Rhonda Reigers Powell
- Clemson Light Imaging Facility, Clemson University, Clemson, SC 29634, USA; (R.R.P.); (T.B.)
| | - Terri Bruce
- Clemson Light Imaging Facility, Clemson University, Clemson, SC 29634, USA; (R.R.P.); (T.B.)
| | - Apurba Paul
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA; (N.P.); (K.S.P.)
| | - Nava Poudyal
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA; (N.P.); (K.S.P.)
| | - Joshua Saliutama
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA; (N.P.); (K.S.P.)
| | - Kristina Parman
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA; (N.P.); (K.S.P.)
| | - Kimberly S. Paul
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA; (N.P.); (K.S.P.)
| | - Alexis Stamatikos
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (L.F.); (J.E.-C.)
| |
Collapse
|
3
|
Nakanishi M, Takezaki R, Takeguchi M, Hino M, Nomoto H. Synthetic arrest of Man 5GlcNAc 2-PP-Dol increases procyclin mRNA level and induces cell death in the bloodstream form Trypanosoma brucei brucei. Parasitol Int 2024; 99:102831. [PMID: 38048903 DOI: 10.1016/j.parint.2023.102831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/06/2023]
Abstract
The biosynthesis of N-linked glycan precursors in the endoplasmic reticulum is important for many eukaryotes. In particular, the synthesis of Man5GlcNAc2-PP-dolichol (M5-DLO) at the cytoplasmic face of the endoplasmic reticulum is essential for maintaining cellular functions. In Trypanosoma brucei, the unicellular organism that causes African trypanosomiasis, homologs of the mannosyltransferases ALG2 and ALG11, which are involved in the biosynthesis of M5-DLO, are found, but the effects of their deletion on cells remain unknown. In this study, we generated conditional gene knockout strains of TbALG2 and TbALG11 in the bloodstream form T. brucei. Decreased N-linked glycosylation and cell death were observed in both strains under non-permissive conditions, with TbALG2 having a greater effect than TbALG11. Transcriptomic analysis of cells losing expression of TbALG11 showed decrease in mRNAs for enzymes involved in glucose metabolism and increase in mRNAs for procyclins and variant surface glycoproteins. These results indicate that the M5-DLO biosynthetic pathway is essential for the proliferation of the bloodstream form T. brucei. They also suggest that the failure of this pathway induces the transcriptomic change.
Collapse
Affiliation(s)
- Masayuki Nakanishi
- Laboratory of Biochemistry, School of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan.
| | - Reo Takezaki
- Laboratory of Biochemistry, School of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan
| | - Masaki Takeguchi
- Laboratory of Biochemistry, School of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan
| | - Mami Hino
- Laboratory of Biochemistry, School of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan
| | - Hiroshi Nomoto
- Laboratory of Biochemistry, School of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan
| |
Collapse
|
4
|
Chauhan R, Tiwari M, Chaudhary A, Sharan Thakur R, Pande V, Das J. Chemokines: A key driver for inflammation in protozoan infection. Int Rev Immunol 2023; 43:211-228. [PMID: 37980574 DOI: 10.1080/08830185.2023.2281566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/16/2023] [Indexed: 11/21/2023]
Abstract
Chemokines belong to the group of small proteins within the cytokine family having strong chemo-attractant properties. In most cases, the strong immuno-modulatory role of chemokines is crucial for generating the immune response against pathogens in various protozoan diseases. In this review, we have given a brief update on the classification, characterization, homeostasis, transcellular migration, and immuno-modulatory role of chemokines. Here we will evaluate the potential role of chemokines and their regulation in various protozoan diseases. There is a significant direct relationship between parasitic infection and the recruitment of effector cells of the immune response. Chemokines play an indispensable role in mediating several defense mechanisms against infection, such as leukocyte recruitment and the generation of innate and cell-mediated immunity that aids in controlling/eliminating the pathogen. This process is controlled by the chemotactic movement of chemokines induced as a primary host immune response. We have also addressed that chemokine expressions during infection are time-dependent and orchestrated in a systematic pattern that ultimately assists in generating a protective immune response. Taken together, this review provides a systematic understanding of the complexity of chemokines profiles during protozoan disease conditions and the rationale of targeting chemokines for the development of therapeutic strategies.
Collapse
Affiliation(s)
- Rubika Chauhan
- Parasite-Host Biology, National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Mrinalini Tiwari
- Parasite-Host Biology, National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Amrendra Chaudhary
- Parasite-Host Biology, National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Reva Sharan Thakur
- Parasite-Host Biology, National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Veena Pande
- Biotechnology Department, Kumaun University, Nainital, India
| | - Jyoti Das
- Parasite-Host Biology, National Institute of Malaria Research, Dwarka, New Delhi, India
| |
Collapse
|
5
|
Mitalo NS, Waiganjo NN, Mokua Mose J, Bosire DO, Oula JO, Orina Isaac A, Nyabuga Nyariki J. Coinfection with Schistosoma mansoni Enhances Disease Severity in Human African Trypanosomiasis. J Trop Med 2023; 2023:1063169. [PMID: 37954132 PMCID: PMC10637842 DOI: 10.1155/2023/1063169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/29/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023] Open
Abstract
Introduction Human African trypanosomiasis (HAT) and schistosomiasis are neglected parasitic diseases found in the African continent. This study was conducted to determine how primary infection with Schistosoma mansoni affects HAT disease progression with a secondary infection with Trypanosoma brucei rhodesiense (T.b.r) in a mouse model. Methods Female BALB-c mice (6-8 weeks old) were randomly divided into four groups of 12 mice each. The different groups were infected with Schistosoma mansoni (100 cercariae) and Trypanosoma brucei rhodesiense (5.0 × 104) separately or together. Twenty-one days after infection with T.b.r, mice were sacrificed and samples were collected for analysis. Results The primary infection with S. mansoni significantly enhanced successive infection by the T.b.r; consequently, promoting HAT disease severity and curtailing host survival time. T.b.r-induced impairment of the neurological integrity and breach of the blood-brain barrier were markedly pronounced on coinfection with S. mansoni. Coinfection with S. mansoni and T.b.r resulted in microcytic hypochromic anemia characterized by the suppression of RBCs, hematocrit, hemoglobin, and red cell indices. Moreover, coinfection of the mice with the two parasites resulted in leukocytosis which was accompanied by the elevation of basophils, neutrophils, lymphocytes, monocytes, and eosinophils. More importantly, coinfection resulted in a significant elevation of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), total bilirubin, creatinine, urea, and uric acid, which are the markers of liver and kidney damage. Meanwhile, S. mansoni-driven dyslipidemia was significantly enhanced by the coinfection of mice with T.b.r. Moreover, coinfection with S. mansoni and T.b.r led to a strong immune response characterized by a significant increase in serum TNF-α and IFN-γ. T.b.r infection enhanced S. mansoni-induced depletion of cellular-reduced glutathione (GSH) in the brain and liver tissues, indicative of lethal oxidative damage. Similarly, coinfection resulted in a significant rise in nitric oxide (NO) and malondialdehyde (MDA) levels. Conclusion Primary infection with S. mansoni exacerbates disease severity of secondary infection with T.b.r in a mouse model that is associated with harmful inflammatory response, oxidative stress, and organ injury.
Collapse
Affiliation(s)
- Nancy S. Mitalo
- Department of Biomedical Science & Technology, Technical University of Kenya, P.O. Box 52428, Nairobi 00200, Kenya
| | - Naomi N. Waiganjo
- Department of Biomedical Science & Technology, Technical University of Kenya, P.O. Box 52428, Nairobi 00200, Kenya
| | - John Mokua Mose
- Department of Biomedical Science & Technology, Technical University of Kenya, P.O. Box 52428, Nairobi 00200, Kenya
| | - David O. Bosire
- Department of Biochemistry and Biotechnology, Technical University of Kenya, P.O. Box 52428, Nairobi 00200, Kenya
| | - James O. Oula
- Department of Biomedical Science & Technology, Technical University of Kenya, P.O. Box 52428, Nairobi 00200, Kenya
| | - Alfred Orina Isaac
- Department of Pharmaceutical Sciences and Technology, Technical University of Kenya, P.O. Box 52428, Nairobi 00200, Kenya
| | - James Nyabuga Nyariki
- Department of Biochemistry and Biotechnology, Technical University of Kenya, P.O. Box 52428, Nairobi 00200, Kenya
| |
Collapse
|
6
|
Redford SE, Varanasi SK, Sanchez KK, Thorup NR, Ayres JS. CD4+ T cells regulate sickness-induced anorexia and fat wasting during a chronic parasitic infection. Cell Rep 2023; 42:112814. [PMID: 37490905 DOI: 10.1016/j.celrep.2023.112814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 05/14/2023] [Accepted: 06/28/2023] [Indexed: 07/27/2023] Open
Abstract
Infections cause catabolism of fat and muscle stores. Traditionally, studies have focused on understanding how the innate immune system contributes to energy stores wasting, while the role of the adaptive immune system remains elusive. In the present study, we examine the role of the adaptive immune response in adipose tissue wasting and cachexia using a murine model of the chronic parasitic infection Trypanosoma brucei, the causative agent of sleeping sickness. We find that the wasting response occurs in two phases, with the first stage involving fat wasting caused by CD4+ T cell-induced anorexia and a second anorexia-independent cachectic stage that is dependent on CD8+ T cells. Fat wasting has no impact on host antibody-mediated resistance defenses or survival, while later-stage muscle wasting contributes to disease-tolerance defenses. Our work reveals a decoupling of adaptive immune-mediated resistance from the catabolic response during infection.
Collapse
Affiliation(s)
- Samuel E Redford
- Molecular and Systems Physiology Lab, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA; Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92037, USA; NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA; Gene Expression Lab, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Siva Karthik Varanasi
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Karina K Sanchez
- Molecular and Systems Physiology Lab, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA; NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA; Gene Expression Lab, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Natalia R Thorup
- Molecular and Systems Physiology Lab, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA; NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA; Gene Expression Lab, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Janelle S Ayres
- Molecular and Systems Physiology Lab, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA; NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA; Gene Expression Lab, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
7
|
Gowda V, Dinesh S, Sharma S. Manipulative neuroparasites: uncovering the intricacies of neurological host control. Arch Microbiol 2023; 205:314. [PMID: 37603130 DOI: 10.1007/s00203-023-03637-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 08/22/2023]
Abstract
Manipulative neuroparasites are a fascinating group of organisms that possess the ability to hijack the nervous systems of their hosts, manipulating their behavior in order to enhance their own survival and reproductive success. This review provides an overview of the different strategies employed by manipulative neuroparasites, ranging from viruses to parasitic worms and fungi. By examining specific examples, such as Toxoplasma gondii, Leucochloridium paradoxum, and Ophiocordyceps unilateralis, we highlight the complex mechanisms employed by these parasites to manipulate their hosts' behavior. We explore the mechanisms through which these parasites alter the neural processes and behavior of their hosts, including the modulation of neurotransmitters, hormonal pathways, and neural circuits. This review focuses less on the diseases that neuroparasites induce and more on the process of their neurological manipulation. We also investigate the fundamental mechanisms of host manipulation in the developing field of neuroparasitology, which blends neuroscience and parasitology. Finally, understanding the complex interaction between manipulative neuroparasites and their hosts may help us to better understand the fundamentals of behavior, neurology, and host-parasite relationships.
Collapse
Affiliation(s)
- Vishvas Gowda
- Department of Bioinformatics, BioNome, Bangalore, 560043, India
| | - Susha Dinesh
- Department of Bioinformatics, BioNome, Bangalore, 560043, India
| | - Sameer Sharma
- Department of Bioinformatics, BioNome, Bangalore, 560043, India.
| |
Collapse
|
8
|
Lemos JM, Brito da Silva MF, Dos Santos Carvalho AM, Vicente Gil HP, Fiaia Costa VA, Andrade CH, Braga RC, Grellier P, Muratov EN, Charneau S, Moreira-Filho JT, Dourado Bastos IM, Neves BJ. Multitask learning-driven identification of novel antitrypanosomal compounds. Future Med Chem 2023; 15:1449-1467. [PMID: 37701989 DOI: 10.4155/fmc-2023-0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Background: Chagas disease and human African trypanosomiasis cause substantial death and morbidity, particularly in low- and middle-income countries, making the need for novel drugs urgent. Methodology & results: Therefore, an explainable multitask pipeline to profile the activity of compounds against three trypanosomes (Trypanosoma brucei brucei, Trypanosoma brucei rhodesiense and Trypanosoma cruzi) were created. These models successfully discovered four new experimental hits (LC-3, LC-4, LC-6 and LC-15). Among them, LC-6 showed promising results, with IC50 values ranging 0.01-0.072 μM and selectivity indices >10,000. Conclusion: These results demonstrate that the multitask protocol offers predictivity and interpretability in the virtual screening of new antitrypanosomal compounds and has the potential to improve hit rates in Chagas and human African trypanosomiasis projects.
Collapse
Affiliation(s)
- Jade Milhomem Lemos
- LabChem - Laboratory of Cheminformatics, Faculty of Pharmacy, Federal University of Goiás, Goiânia,74605-170, GO, Brazil
| | - Meryck Felipe Brito da Silva
- LabChem - Laboratory of Cheminformatics, Faculty of Pharmacy, Federal University of Goiás, Goiânia,74605-170, GO, Brazil
| | - Alexandra Maria Dos Santos Carvalho
- Pathogen-Host Interface Laboratory, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, 70910-900, DF, Brazil
| | - Henric Pietro Vicente Gil
- LabChem - Laboratory of Cheminformatics, Faculty of Pharmacy, Federal University of Goiás, Goiânia,74605-170, GO, Brazil
| | - Vinícius Alexandre Fiaia Costa
- LabChem - Laboratory of Cheminformatics, Faculty of Pharmacy, Federal University of Goiás, Goiânia,74605-170, GO, Brazil
| | - Carolina Horta Andrade
- LabMol - Laboratory for Molecular Modeling & Drug Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, 74605-170, GO, Brazil
| | - Rodolpho Campos Braga
- InsilicAll Ltda, Av. Eng. Luis Carlos Berrini,1748 - Itaim Bibi, 04571-010, Sao Paulo, SP, Brazil
| | - Philippe Grellier
- UMR 7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, Équipe Parasites et Protistes Libres, Paris, 0575231, France
| | - Eugene N Muratov
- Laboratory for Molecular Modeling, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, 27599, NC, USA
- Department of Pharmaceutical Sciences, Federal University of Paraiba, Joao Pessoa, 58059-900, PB, Brazil
| | - Sébastien Charneau
- Department of Cell Biology, Laboratory of Biochemistry & Protein Chemistry, Institute of Biological Sciences, University of Brasilia, Brasilia, 70910-900, DF, Brazil
| | - José Teófilo Moreira-Filho
- LabMol - Laboratory for Molecular Modeling & Drug Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, 74605-170, GO, Brazil
| | - Izabela Marques Dourado Bastos
- Pathogen-Host Interface Laboratory, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, 70910-900, DF, Brazil
| | - Bruno Junior Neves
- LabChem - Laboratory of Cheminformatics, Faculty of Pharmacy, Federal University of Goiás, Goiânia,74605-170, GO, Brazil
| |
Collapse
|
9
|
Phongphaew W, Wongsali C, Boonyakong T, Samritwatchasai T, Chimnoi W, Kamyingkird K. Histopathology and virulence of an in vitro-adapted Trypanosoma evansi TEDC 953 strain (Thailand isolate) in mice. Vet World 2023; 16:1008-1017. [PMID: 37576763 PMCID: PMC10420718 DOI: 10.14202/vetworld.2023.1008-1017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/19/2023] [Indexed: 08/15/2023] Open
Abstract
Background and Aim Trypanosoma evansi is a blood and tissue protozoan parasite affecting domestic and wild animals. The T. evansi Thai strain, namely, T. evansi from dairy cattle number 953 (TEDC 953) strain, has been successfully isolated from dairy cattle and cultivated in vitro. The in vitro-cultivated parasite is useful for biological studies, evaluation of novel chemotherapeutic agents, and production of antigens for diagnostic tests. This study aimed to observe the histopathology and virulence of an in vitro-adapted T. evansi TEDC 953 strain in vivo. Materials and Methods The histopathology and virulence of the TEDC 953 strain were clarified in mice. Six mice were infected with 1 × 105 trypomastigotes of TEDC 953 strain intraperitoneally, and four mice were in the negative control. Parasitemia was monitored daily, and the mice were euthanized on 30 days post-infection (DPI). Internal organs were collected for histopathological examination using hematoxylin and eosin staining. Results Histopathological lesions were found in the liver, lung, heart, kidney, spleen, and brain of the inoculated mice. The main histopathological feature was lymphoplasmacytic inflammation in parenchyma and perivascular areas of multiple organs, and the severity of histopathological changes was related to the presence of trypomastigotes in the regional vessels. Granulomatous inflammation was seen in meninges, pleura, renal capsule, renal pelvis, and spleen of some infected mice. Four mice died at 17, 24, 26, and 27 DPI with an average parasitemia of 4.05 × 1011 trypomastigotes/mL. The average survival time was 23.5 DPI (mice = 4). Conclusion This study confirmed that the TEDC 953 strain is infectious and pathogenic in mice after the continuously cultivated in vitro. To replace the use of experimental animals, the in vitro-cultivated parasite can be used instead in further studies.
Collapse
Affiliation(s)
- Wallaya Phongphaew
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Lad Yao, Chatuchak, Bangkok 10900, Thailand
| | - Charuwan Wongsali
- Veterinary Diagnostic Center, Faculty of Veterinary Medicine, Kasetsart University, Lad Yao, Chatuchak, Bangkok 10900, Thailand
| | - Thanisorn Boonyakong
- Laboratory Animal Unit, Research Support Center, Faculty of Veterinary Medicine, Kasetsart University, Lad Yao, Chatuchak, Bangkok 10900, Thailand
| | - Theerawat Samritwatchasai
- Laboratory Animal Unit, Research Support Center, Faculty of Veterinary Medicine, Kasetsart University, Lad Yao, Chatuchak, Bangkok 10900, Thailand
| | - Wissanuwat Chimnoi
- Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University, Lad Yao, Chatuchak, Bangkok 10900, Thailand
| | - Ketsarin Kamyingkird
- Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University, Lad Yao, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
10
|
Francisco KR, Monti L, Yang W, Park H, Liu LJ, Watkins K, Amarasinghe DK, Nalli M, Roberto Polaquini C, Regasini LO, Eduardo Miller Crotti A, Silvestri R, Guidi Magalhães L, Caffrey CR. Structure-activity relationship of dibenzylideneacetone analogs against the neglected disease pathogen, Trypanosoma brucei. Bioorg Med Chem Lett 2023; 81:129123. [PMID: 36608774 PMCID: PMC10072319 DOI: 10.1016/j.bmcl.2023.129123] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/20/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
Trypanosoma brucei is a protozoan parasite that causes Human African Trypanosomiasis (HAT), a neglected tropical disease (NTD) that is endemic in 36 countries in sub-Saharan Africa. Only a handful drugs are available for treatment, and these have limitations, including toxicity and drug resistance. Using the natural product, curcumin, as a starting point, several curcuminoids and related analogs were evaluated against bloodstream forms of T. b. brucei. A particular subset of dibenzylideneacetone (DBA) compounds exhibited potent in vitro antitrypanosomal activity with sub-micromolar EC50 values. A structure-activity relationship study including 26 DBA analogs was initiated, and several compounds exhibited EC50 values as low as 200 nM. Cytotoxicity counter screens in HEK293 cells identified several compounds having selectivity indices above 10. These data suggest that DBAs offer starting points for a new small molecule therapy of HAT.
Collapse
Affiliation(s)
- Karol R Francisco
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Ludovica Monti
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wenqian Yang
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hayoung Park
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lawrence J Liu
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kaitlyn Watkins
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Dilini K Amarasinghe
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Marianna Nalli
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy
| | - Carlos Roberto Polaquini
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto, SP 15054-000, Brazil
| | - Luis O Regasini
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto, SP 15054-000, Brazil
| | - Antônio Eduardo Miller Crotti
- Faculty of Philosophy, Sciences, and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-900, Brazil
| | - Romano Silvestri
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy
| | - Lizandra Guidi Magalhães
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Franca, SP 14404-600, Brazil
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
11
|
Chandra M, Đaković S, Foti K, Zeelen JP, van Straaten M, Aresta-Branco F, Tihon E, Lübbehusen N, Ruppert T, Glover L, Papavasiliou FN, Stebbins CE. Structural similarities between the metacyclic and bloodstream form variant surface glycoproteins of the African trypanosome. PLoS Negl Trop Dis 2023; 17:e0011093. [PMID: 36780870 PMCID: PMC9956791 DOI: 10.1371/journal.pntd.0011093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/24/2023] [Accepted: 01/12/2023] [Indexed: 02/15/2023] Open
Abstract
During infection of mammalian hosts, African trypanosomes thwart immunity using antigenic variation of the dense Variant Surface Glycoprotein (VSG) coat, accessing a large repertoire of several thousand genes and pseudogenes, and switching to antigenically distinct copies. The parasite is transferred to mammalian hosts by the tsetse fly. In the salivary glands of the fly, the pathogen adopts the metacyclic form and expresses a limited repertoire of VSG genes specific to that developmental stage. It has remained unknown whether the metacyclic VSGs possess distinct properties associated with this particular and discrete phase of the parasite life cycle. We present here three novel metacyclic form VSG N-terminal domain crystal structures (mVSG397, mVSG531, and mVSG1954) and show that they mirror closely in architecture, oligomerization, and surface diversity the known classes of bloodstream form VSGs. These data suggest that the mVSGs are unlikely to be a specialized subclass of VSG proteins, and thus could be poor candidates as the major components of prophylactic vaccines against trypanosomiasis.
Collapse
Affiliation(s)
- Monica Chandra
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg, Germany
- Division of Immune Diversity, German Cancer Research Center, Heidelberg, Germany
| | - Sara Đaković
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg, Germany
| | - Konstantina Foti
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg, Germany
| | - Johan P. Zeelen
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg, Germany
| | - Monique van Straaten
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg, Germany
| | - Francisco Aresta-Branco
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg, Germany
- Division of Immune Diversity, German Cancer Research Center, Heidelberg, Germany
| | - Eliane Tihon
- Institut Pasteur, Université Paris Cité, Trypanosome Molecular Biology, Department of Parasites and Insect Vectors, Paris, France
| | - Nicole Lübbehusen
- Centre for Molecular Biology at the University of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Thomas Ruppert
- Centre for Molecular Biology at the University of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Lucy Glover
- Institut Pasteur, Université Paris Cité, Trypanosome Molecular Biology, Department of Parasites and Insect Vectors, Paris, France
| | - F. Nina Papavasiliou
- Division of Immune Diversity, German Cancer Research Center, Heidelberg, Germany
| | - C. Erec Stebbins
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
12
|
Aguado ME, Izquierdo M, González-Matos M, Varela AC, Méndez Y, Del Rivero MA, Rivera DG, González-Bacerio J. Parasite Metalo-aminopeptidases as Targets in Human Infectious Diseases. Curr Drug Targets 2023; 24:416-461. [PMID: 36825701 DOI: 10.2174/1389450124666230224140724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/25/2022] [Accepted: 01/02/2023] [Indexed: 02/25/2023]
Abstract
BACKGROUND Parasitic human infectious diseases are a worldwide health problem due to the increased resistance to conventional drugs. For this reason, the identification of novel molecular targets and the discovery of new chemotherapeutic agents are urgently required. Metalo- aminopeptidases are promising targets in parasitic infections. They participate in crucial processes for parasite growth and pathogenesis. OBJECTIVE In this review, we describe the structural, functional and kinetic properties, and inhibitors, of several parasite metalo-aminopeptidases, for their use as targets in parasitic diseases. CONCLUSION Plasmodium falciparum M1 and M17 aminopeptidases are essential enzymes for parasite development, and M18 aminopeptidase could be involved in hemoglobin digestion and erythrocyte invasion and egression. Trypanosoma cruzi, T. brucei and Leishmania major acidic M17 aminopeptidases can play a nutritional role. T. brucei basic M17 aminopeptidase down-regulation delays the cytokinesis. The inhibition of Leishmania basic M17 aminopeptidase could affect parasite viability. L. donovani methionyl aminopeptidase inhibition prevents apoptosis but not the parasite death. Decrease in Acanthamoeba castellanii M17 aminopeptidase activity produces cell wall structural modifications and encystation inhibition. Inhibition of Babesia bovis growth is probably related to the inhibition of the parasite M17 aminopeptidase, probably involved in host hemoglobin degradation. Schistosoma mansoni M17 aminopeptidases inhibition may affect parasite development, since they could participate in hemoglobin degradation, surface membrane remodeling and eggs hatching. Toxoplasma gondii M17 aminopeptidase inhibition could attenuate parasite virulence, since it is apparently involved in the hydrolysis of cathepsin Cs- or proteasome-produced dipeptides and/or cell attachment/invasion processes. These data are relevant to validate these enzymes as targets.
Collapse
Affiliation(s)
- Mirtha E Aguado
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Maikel Izquierdo
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Maikel González-Matos
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Ana C Varela
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Yanira Méndez
- Center for Natural Products Research, Faculty of Chemistry, University of Havana, Zapata y G, 10400, La Habana, Cuba
| | - Maday A Del Rivero
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Daniel G Rivera
- Center for Natural Products Research, Faculty of Chemistry, University of Havana, Zapata y G, 10400, La Habana, Cuba
| | - Jorge González-Bacerio
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
- Department of Biochemistry, Faculty of Biology, University of Havana, calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba
| |
Collapse
|
13
|
Abstract
Leishmaniasis (visceral and cutaneous), Chagas disease and human African trypanosomiasis cause substantial death and morbidity, particularly in low- and middle-income countries. Although the situation has improved for human African trypanosomiasis, there remains an urgent need for new medicines to treat leishmaniasis and Chagas disease; the clinical development pipeline is particularly sparse for Chagas disease. In this Review, we describe recent advances in our understanding of the biology of the causative pathogens, particularly from the drug discovery perspective, and we explore the progress that has been made in the development of new drug candidates and the identification of promising molecular targets. We also explore the challenges in developing new clinical candidates and discuss potential solutions to overcome such hurdles.
Collapse
|
14
|
Linhart P, Bandouchova H, Zukal J, Votýpka J, Baláž V, Heger T, Kalocsanyiova V, Kubickova A, Nemcova M, Sedlackova J, Seidlova V, Veitova L, Vlaschenko A, Divinova R, Pikula J. Blood Parasites and Health Status of Hibernating and Non-Hibernating Noctule Bats (Nyctalus noctula). Microorganisms 2022; 10:microorganisms10051028. [PMID: 35630470 PMCID: PMC9143927 DOI: 10.3390/microorganisms10051028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 11/16/2022] Open
Abstract
Co-existence of bats with a wide range of infectious agents relates to their co-evolutionary history and specific physiology. Here, we examined blood samples collected during hibernation and the post-hibernation period to assess the influence of trypanosomes and babesias on the health status of 50 Noctule bats (Nyctalus noctula) using nested PCR. The impact of blood parasites on health was assessed by analysis of haematology and blood chemistry parameters in 21 bats. Prevalence of trypanosomes (Trypanosoma dionisii and T. vespertilionis) and babesia (Babesia vesperuginis) was 44% and 8%, respectively. Analysis of blood parameters indicated impact of babesia on acid–base balance. Blood chemistry parameters showed a significant decrease in total dissolved carbon dioxide and bicarbonate, increased anion gap, and no change in blood pH, suggesting compensated metabolic acidosis. Adverse effects of babesia were only apparent in hibernating bats. Our results suggest differences in the pathogenicity of trypanosomes and babesia in bats. While trypanosomes in general had no significant impact on the health status, we observed alterations in the blood acid–base balance in Babesia-infected bats during hibernation. Despite being infected, Babesia-positive bats survived hibernation without showing any clinical signs.
Collapse
Affiliation(s)
- Petr Linhart
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences, 61242 Brno, Czech Republic; (P.L.); (V.B.); (T.H.); (V.K.); (A.K.); (M.N.); (J.S.); (V.S.); (L.V.); (J.P.)
- Department of Animal Protection and Welfare and Veterinary Public Health, University of Veterinary Sciences, 61242 Brno, Czech Republic
| | - Hana Bandouchova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences, 61242 Brno, Czech Republic; (P.L.); (V.B.); (T.H.); (V.K.); (A.K.); (M.N.); (J.S.); (V.S.); (L.V.); (J.P.)
- Correspondence: ; Tel.: +420-541-562-653
| | - Jan Zukal
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, 60365 Brno, Czech Republic;
- Department of Botany and Zoology, Masaryk University, 61137 Brno, Czech Republic;
| | - Jan Votýpka
- Department of Parasitology, Faculty of Science, Charles University, 12800 Prague, Czech Republic;
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic
| | - Vojtech Baláž
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences, 61242 Brno, Czech Republic; (P.L.); (V.B.); (T.H.); (V.K.); (A.K.); (M.N.); (J.S.); (V.S.); (L.V.); (J.P.)
| | - Tomas Heger
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences, 61242 Brno, Czech Republic; (P.L.); (V.B.); (T.H.); (V.K.); (A.K.); (M.N.); (J.S.); (V.S.); (L.V.); (J.P.)
| | - Vendula Kalocsanyiova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences, 61242 Brno, Czech Republic; (P.L.); (V.B.); (T.H.); (V.K.); (A.K.); (M.N.); (J.S.); (V.S.); (L.V.); (J.P.)
| | - Aneta Kubickova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences, 61242 Brno, Czech Republic; (P.L.); (V.B.); (T.H.); (V.K.); (A.K.); (M.N.); (J.S.); (V.S.); (L.V.); (J.P.)
| | - Monika Nemcova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences, 61242 Brno, Czech Republic; (P.L.); (V.B.); (T.H.); (V.K.); (A.K.); (M.N.); (J.S.); (V.S.); (L.V.); (J.P.)
| | - Jana Sedlackova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences, 61242 Brno, Czech Republic; (P.L.); (V.B.); (T.H.); (V.K.); (A.K.); (M.N.); (J.S.); (V.S.); (L.V.); (J.P.)
| | - Veronika Seidlova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences, 61242 Brno, Czech Republic; (P.L.); (V.B.); (T.H.); (V.K.); (A.K.); (M.N.); (J.S.); (V.S.); (L.V.); (J.P.)
| | - Lucie Veitova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences, 61242 Brno, Czech Republic; (P.L.); (V.B.); (T.H.); (V.K.); (A.K.); (M.N.); (J.S.); (V.S.); (L.V.); (J.P.)
| | - Anton Vlaschenko
- Bat Rehabilitation Center of Feldman Ecopark, Lisne, 62340 Kharkiv, Ukraine;
| | - Renata Divinova
- Department of Botany and Zoology, Masaryk University, 61137 Brno, Czech Republic;
| | - Jiri Pikula
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences, 61242 Brno, Czech Republic; (P.L.); (V.B.); (T.H.); (V.K.); (A.K.); (M.N.); (J.S.); (V.S.); (L.V.); (J.P.)
| |
Collapse
|
15
|
de Castro Neto AL, da Silveira JF, Mortara RA. Role of Virulence Factors of Trypanosomatids in the Insect Vector and Putative Genetic Events Involved in Surface Protein Diversity. Front Cell Infect Microbiol 2022; 12:807172. [PMID: 35573777 PMCID: PMC9097677 DOI: 10.3389/fcimb.2022.807172] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Trypanosomatids are flagellate protozoans that can infect several invertebrate and vertebrate hosts, including insects and humans. The three most studied species are the human pathogens Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp. which are the causative agents of Human African Trypanosomiasis (HAT), Chagas disease and different clinical forms of leishmaniasis, respectively. These parasites possess complex dixenous life cycles, with zoonotic and anthroponotic stages, and are transmitted by hematophagous insects. To colonize this myriad of hosts, they developed mechanisms, mediated by virulence factors, to infect, propagate and survive in different environments. In insects, surface proteins play roles in parasite attachment and survival in the insect gut, whilst in the mammalian host, the parasites have a whole group of proteins and mechanisms that aid them invading the host cells and evading its immune system components. Many studies have been done on the impact of these molecules in the vertebrate host, however it is also essential to notice the importance of these virulence factors in the insect vector during the parasite life cycle. When inside the insect, the parasites, like in humans, also need to survive defense mechanisms components that can inhibit parasite colonization or survival, e.g., midgut peritrophic membrane barrier, digestive enzymes, evasion of excretion alongside the digested blood meal, anatomic structures and physiological mechanisms of the anterior gut. This protection inside the insect is often implemented by the same group of virulence factors that perform roles of immune evasion in the mammalian host with just a few exceptions, in which a specific protein is expressed specifically for the insect vector form of the parasite. This review aims to discuss the roles of the virulence molecules in the insect vectors, showing the differences and similarities of modes of action of the same group of molecules in insect and humans, exclusive insect molecules and discuss possible genetic events that may have generated this protein diversity.
Collapse
|
16
|
Riana E, Arnuphapprasert A, Narapakdeesakul D, Ngamprasertwong T, Wangthongchaicharoen M, Soisook P, Bhodhibundit P, Kaewthamasorn M. Molecular detection of Trypanosoma (Trypanosomatidae) in bats from Thailand, with their phylogenetic relationships. Parasitology 2022; 149:654-666. [PMID: 35115070 PMCID: PMC11010503 DOI: 10.1017/s0031182022000117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 11/06/2022]
Abstract
The vast majority of trypanosome species is vector-borne parasites, with some of them being medically and veterinary important (such as Trypanosoma cruzi and Trypanosoma brucei) and capable of causing serious illness in vertebrate hosts. The discovery of trypanosomes in bats emphasizes the importance of bats as an important reservoir. Interestingly, there is a hypothesis that bats are ancestral hosts of T. cruzi. Trypanosome diversity has never been investigated in bats in Thailand, despite being in a biodiversity hot spot. To gain a better understanding of the diversity and evolutionary relationship of trypanosomes, polymerase chain reaction-based surveys were carried out from 2018 to 2020 in 17 sites. A total of 576 bats were captured, representing 23 species. A total of 38 (6.6%) positive samples was detected in ten bat species. Trypanosoma dionisii and Trypanosoma noyesi were identified from Myotis siligorensis and Megaderma spasma, respectively. The remaining 18S rRNA sequences of trypanosomes were related to other trypanosomes previously reported elsewhere. The sequences in the current study showed nucleotide identity as low as 90.74% compared to those of trypanosomes in the GenBank database, indicating the possibility of new species. All bat trypanosomes identified in the current study fall within the T. cruzi clade. The current study adds to evidence linking T. noyesi to a bat trypanosome and further supports the bat host origin of the T. cruzi clade. To the best of authors' knowledge, this is the first study on bat trypanosomes in Thailand and their phylogenetic relationships with global isolates.
Collapse
Affiliation(s)
- Elizabeth Riana
- Veterinary Parasitology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- The International Graduate Program of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Apinya Arnuphapprasert
- Veterinary Parasitology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Pathobiology Graduate Program, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Duriyang Narapakdeesakul
- Veterinary Parasitology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Pathobiology Graduate Program, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | | | | | - Pipat Soisook
- Princess Maha Chakri Sirindhorn Natural History Museum, Prince of Songkla University, Songkhla, Thailand
- Harrison Institute, Bowerwood House, No. 15, St Botolph's Road, Sevenoaks, KentTN13 3AQ, UK
| | - Phanaschakorn Bhodhibundit
- Sai Yok National Park, Department of National Parks, Wildlife and Plant Conservation, Kanchanaburi, Thailand
| | - Morakot Kaewthamasorn
- Veterinary Parasitology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
17
|
OUP accepted manuscript. Brief Funct Genomics 2022; 21:243-269. [DOI: 10.1093/bfgp/elac007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/14/2022] Open
|
18
|
Temporão A, Sanches-Vaz M, Luís R, Nunes-Cabaço H, Smith TK, Prudêncio M, Figueiredo LM. Excreted Trypanosoma brucei proteins inhibit Plasmodium hepatic infection. PLoS Negl Trop Dis 2021; 15:e0009912. [PMID: 34714824 PMCID: PMC8580256 DOI: 10.1371/journal.pntd.0009912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/10/2021] [Accepted: 10/15/2021] [Indexed: 11/25/2022] Open
Abstract
Malaria, a disease caused by Plasmodium parasites, remains a major threat to public health globally. It is the most common disease in patients with sleeping sickness, another parasitic illness, caused by Trypanosoma brucei. We have previously shown that a T. brucei infection impairs a secondary P. berghei liver infection and decreases malaria severity in mice. However, whether this effect requires an active trypanosome infection remained unknown. Here, we show that Plasmodium liver infection can also be inhibited by the serum of a mouse previously infected by T. brucei and by total protein lysates of this kinetoplastid. Biochemical characterisation showed that the anti-Plasmodium activity of the total T. brucei lysates depends on its protein fraction, but is independent of the abundant variant surface glycoprotein. Finally, we found that the protein(s) responsible for the inhibition of Plasmodium infection is/are present within a fraction of ~350 proteins that are excreted to the bloodstream of the host. We conclude that the defence mechanism developed by trypanosomes against Plasmodium relies on protein excretion. This study opens the door to the identification of novel antiplasmodial intervention strategies.
Collapse
Affiliation(s)
- Adriana Temporão
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Margarida Sanches-Vaz
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Rafael Luís
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Helena Nunes-Cabaço
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Terry K. Smith
- Schools of Biology and Chemistry Biomedical Sciences Research Complex, The North Haugh, The University, St. Andrews, Scotland, United Kingdom
| | - Miguel Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Luisa M. Figueiredo
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
19
|
Gupta SK, Ponte-Sucre A, Bencurova E, Dandekar T. An Ebola, Neisseria and Trypanosoma human protein interaction census reveals a conserved human protein cluster targeted by various human pathogens. Comput Struct Biotechnol J 2021; 19:5292-5308. [PMID: 34745452 PMCID: PMC8531761 DOI: 10.1016/j.csbj.2021.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/28/2022] Open
Abstract
Filovirus ebolavirus (ZE; Zaire ebolavirus, Bundibugyo ebolavirus), Neisseria meningitidis (NM), and Trypanosoma brucei (Tb) are serious infectious pathogens, spanning viruses, bacteria and protists and all may target the blood and central nervous system during their life cycle. NM and Tb are extracellular pathogens while ZE is obligatory intracellular, targetting immune privileged sites. By using interactomics and comparative evolutionary analysis we studied whether conserved human proteins are targeted by these pathogens. We examined 2797 unique pathogen-targeted human proteins. The information derived from orthology searches of experimentally validated protein-protein interactions (PPIs) resulted both in unique and shared PPIs for each pathogen. Comparing and analyzing conserved and pathogen-specific infection pathways for NM, TB and ZE, we identified human proteins predicted to be targeted in at least two of the compared host-pathogen networks. However, four proteins were common to all three host-pathogen interactomes: the elongation factor 1-alpha 1 (EEF1A1), the SWI/SNF complex subunit SMARCC2 (matrix-associated actin-dependent regulator of chromatin subfamily C), the dolichyl-diphosphooligosaccharide--protein glycosyltransferase subunit 1 (RPN1), and the tubulin beta-5 chain (TUBB). These four human proteins all are also involved in cytoskeleton and its regulation and are often addressed by various human pathogens. Specifically, we found (i) 56 human pathogenic bacteria and viruses that target these four proteins, (ii) the well researched new pandemic pathogen SARS-CoV-2 targets two of these four human proteins and (iii) nine human pathogenic fungi (yet another evolutionary distant organism group) target three of the conserved proteins by 130 high confidence interactions.
Collapse
Affiliation(s)
- Shishir K Gupta
- Functional Genomics & Systems Biology Group, Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, 97074 Würzburg, Germany
- Evolutionary Genomics Group, Center for Computational and Theoretical Biology, University of Würzburg, 97078 Würzburg, Germany
| | - Alicia Ponte-Sucre
- Laboratorio de Fisiología Molecular, Instituto de Medicina Experimental, Escuela Luis Razetti, Universidad Central de Venezuela, Caracas, Venezuela
- Medical Mission Institute, Hermann-Schell-Str. 7, 97074 Würzburg, Germany
| | - Elena Bencurova
- Functional Genomics & Systems Biology Group, Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, 97074 Würzburg, Germany
| | - Thomas Dandekar
- Functional Genomics & Systems Biology Group, Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, 97074 Würzburg, Germany
- EMBL Heidelberg, BioComputing Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany
| |
Collapse
|
20
|
Abstract
Infections caused by protozoans remain a public health issue, especially in tropical countries. Serious adverse events, lack of efficacy at the different stages of the infection and routes of administration that have a negative impact on treatment adherence are some of the problems with currently available therapy against these diseases. Here we describe an epigenetic target, sirtuin 2 and its related proteins, that is promising given the results in phenotypic assays and in vivo models against Sir2 of Plasmodium falciparum, Leishmania donovani, Leishmania infantum, Schistosoma mansoni, Trypanosoma brucei and Trypanosoma cruzi parasites. The results we present highlight how this target can be extensively explored and how its inhibitors might be employed in the clinic.
Collapse
|
21
|
de Castro Neto AL, da Silveira JF, Mortara RA. Comparative Analysis of Virulence Mechanisms of Trypanosomatids Pathogenic to Humans. Front Cell Infect Microbiol 2021; 11:669079. [PMID: 33937106 PMCID: PMC8085324 DOI: 10.3389/fcimb.2021.669079] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/30/2021] [Indexed: 11/23/2022] Open
Abstract
Trypanosoma brucei, Leishmania spp., and T. cruzi are flagellate protozoans of the family Trypanosomatidae and the causative agents of human African trypanosomiasis, leishmaniasis, and Chagas disease, respectively. These diseases affect humans worldwide and exert a significant impact on public health. Over the course of evolution, the parasites associated with these pathologies have developed mechanisms to circumvent the immune response system throughout the infection cycle. In cases of human infection, this function is undertaken by a group of proteins and processes that allow the parasites to propagate and survive during host invasion. In T. brucei, antigenic variation is promoted by variant surface glycoproteins and other proteins involved in evasion from the humoral immune response, which helps the parasite sustain itself in the extracellular milieu during infection. Conversely, Leishmania spp. and T. cruzi possess a more complex infection cycle, with specific intracellular stages. In addition to mechanisms for evading humoral immunity, the pathogens have also developed mechanisms for facilitating their adhesion and incorporation into host cells. In this review, the different immune evasion strategies at cellular and molecular levels developed by these human-pathogenic trypanosomatids have been discussed, with a focus on the key molecules responsible for mediating the invasion and evasion mechanisms and the effects of these molecules on virulence.
Collapse
Affiliation(s)
- Artur Leonel de Castro Neto
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - José Franco da Silveira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Renato Arruda Mortara
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
22
|
Structure of trypanosome coat protein VSGsur and function in suramin resistance. Nat Microbiol 2021; 6:392-400. [PMID: 33462435 PMCID: PMC7116837 DOI: 10.1038/s41564-020-00844-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/30/2020] [Indexed: 01/28/2023]
Abstract
Suramin has been a primary early-stage treatment for African trypanosomiasis for nearly 100 yr. Recent studies revealed that trypanosome strains that express the variant surface glycoprotein (VSG) VSGsur possess heightened resistance to suramin. Here, we show that VSGsur binds tightly to suramin but other VSGs do not. By solving high-resolution crystal structures of VSGsur and VSG13, we also demonstrate that these VSGs define a structurally divergent subgroup of the coat proteins. The co-crystal structure of VSGsur with suramin reveals that the chemically symmetric drug binds within a large cavity in the VSG homodimer asymmetrically, primarily through contacts of its central benzene rings. Structure-based, loss-of-contact mutations in VSGsur significantly decrease the affinity to suramin and lead to a loss of the resistance phenotype. Altogether, these data show that the resistance phenotype is dependent on the binding of suramin to VSGsur, establishing that the VSG proteins can possess functionality beyond their role in antigenic variation.
Collapse
|
23
|
Park J, Pandya VR, Ezekiel SJ, Berghuis AM. Phosphonate and Bisphosphonate Inhibitors of Farnesyl Pyrophosphate Synthases: A Structure-Guided Perspective. Front Chem 2021; 8:612728. [PMID: 33490038 PMCID: PMC7815940 DOI: 10.3389/fchem.2020.612728] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
Phosphonates and bisphosphonates have proven their pharmacological utility as inhibitors of enzymes that metabolize phosphate and pyrophosphate substrates. The blockbuster class of drugs nitrogen-containing bisphosphonates represent one of the best-known examples. Widely used to treat bone-resorption disorders, these drugs work by inhibiting the enzyme farnesyl pyrophosphate synthase. Playing a key role in the isoprenoid biosynthetic pathway, this enzyme is also a potential anticancer target. Here, we provide a comprehensive overview of the research efforts to identify new inhibitors of farnesyl pyrophosphate synthase for various therapeutic applications. While the majority of these efforts have been directed against the human enzyme, some have been targeted on its homologs from other organisms, such as protozoan parasites and insects. Our particular focus is on the structures of the target enzymes and how the structural information has guided the drug discovery efforts.
Collapse
Affiliation(s)
- Jaeok Park
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Vishal R Pandya
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Sean J Ezekiel
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| | | |
Collapse
|
24
|
Muthusami S, Vidya B, Shankar EM, Vadivelu J, Ramachandran I, Stanley JA, Selvamurugan N. The Functional Significance of Endocrine-immune Interactions in Health and Disease. Curr Protein Pept Sci 2021; 21:52-65. [PMID: 31702489 DOI: 10.2174/1389203720666191106113435] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023]
Abstract
Hormones are known to influence various body systems that include skeletal, cardiac, digestive, excretory, and immune systems. Emerging investigations suggest the key role played by secretions of endocrine glands in immune cell differentiation, proliferation, activation, and memory attributes of the immune system. The link between steroid hormones such as glucocorticoids and inflammation is widely known. However, the role of peptide hormones and amino acid derivatives such as growth and thyroid hormones, prolactin, dopamine, and thymopoietin in regulating the functioning of the immune system remains unclear. Here, we reviewed the findings pertinent to the functional role of hormone-immune interactions in health and disease and proposed perspective directions for translational research in the field.
Collapse
Affiliation(s)
- Sridhar Muthusami
- Department of Biochemistry, Karpagam Academy of Higher Education, Eachanari, Coimbatore 641021, Tamil Nadu, India
| | - Balasubramanian Vidya
- Department of Biochemistry, Karpagam Academy of Higher Education, Eachanari, Coimbatore 641021, Tamil Nadu, India
| | - Esaki M Shankar
- Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur 610005, India
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur 50603, Malaysia
| | - Ilangovan Ramachandran
- Department of Endocrinology, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai 600 113, Tamil Nadu, India
| | - Jone A Stanley
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| |
Collapse
|
25
|
Torrecilhas AC, Soares RP, Schenkman S, Fernández-Prada C, Olivier M. Extracellular Vesicles in Trypanosomatids: Host Cell Communication. Front Cell Infect Microbiol 2020; 10:602502. [PMID: 33381465 PMCID: PMC7767885 DOI: 10.3389/fcimb.2020.602502] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
Trypanosoma cruzi, Trypanosoma brucei and Leishmania (Trypanosomatidae: Kinetoplastida) are parasitic protozoan causing Chagas disease, African Trypanosomiasis and Leishmaniases worldwide. They are vector borne diseases transmitted by triatomine bugs, Tsetse fly, and sand flies, respectively. Those diseases cause enormous economic losses and morbidity affecting not only rural and poverty areas but are also spreading to urban areas. During the parasite-host interaction, those organisms release extracellular vesicles (EVs) that are crucial for the immunomodulatory events triggered by the parasites. EVs are involved in cell-cell communication and can act as important pro-inflammatory mediators. Therefore, interface between EVs and host immune responses are crucial for the immunopathological events that those diseases exhibit. Additionally, EVs from these organisms have a role in the invertebrate hosts digestive tracts prior to parasite transmission. This review summarizes the available data on how EVs from those medically important trypanosomatids affect their interaction with vertebrate and invertebrate hosts.
Collapse
Affiliation(s)
- Ana Claudia Torrecilhas
- Departamento de Ciências Farmacêuticas, Federal University of Sao Paulo (UNIFESP), Diadema, Brazil
| | | | - Sergio Schenkman
- Departamento de Microbiologia, Imunologia e Parasitologia, UNIFESP, São Paulo, Brazil
| | | | - Martin Olivier
- The Research Institute of the McGill University Health Centre, McGill University, Montréal, QC, Canada
| |
Collapse
|
26
|
Grob D, Conejeros I, Velásquez ZD, Preußer C, Gärtner U, Alarcón P, Burgos RA, Hermosilla C, Taubert A. Trypanosoma brucei brucei Induces Polymorphonuclear Neutrophil Activation and Neutrophil Extracellular Traps Release. Front Immunol 2020; 11:559561. [PMID: 33193328 PMCID: PMC7649812 DOI: 10.3389/fimmu.2020.559561] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022] Open
Abstract
Trypanosoma brucei brucei trypomastigotes are classical blood parasites of cattle, these stages might become potential targets for circulating polymorphonuclear neutrophils (PMN). We here investigated NETs extrusion and related oxygen consumption in bovine PMN exposed to motile T. b. brucei trypomastigotes in vitro. Parasite exposure induced PMN activation as detected by enhanced oxygen consumption rates (OCR), extracellular acidification rates (ECAR), and production of total and extracellular reactive oxygen species (ROS). Scanning electron microscopy (SEM) showed that co-cultivation of bovine PMN with motile trypomastigotes resulted in NETs formation within 120 min of exposure. T. b. brucei-induced NETs were confirmed by confocal microscopy demonstrating co-localization of extruded DNA with neutrophil elastase (NE) and nuclear histones. Immunofluorescence analyses demonstrated that trypomastigotes induced different phenotypes of NETs in bovine PMN, such as aggregated NETs (aggNETs), spread NETs (sprNETs), and diffuse NETs (diffNETs) with aggNETs being the most abundant ones. Furthermore, live cell 3D-holotomographic microscopy unveiled detailed morphological changes during the NETotic process. Quantification of T. b. brucei-induced NETs formation was estimated by DNA and nuclear area analysis (DANA) and confirmed enhanced NETs formation in response to trypomastigote stages. Formation of NETs does not result in a decrease of T. b. brucei viability, but a decrease of 26% in the number of motile parasites. Referring the involved signaling pathways, trypomastigote-induced NETs formation seems to be purinergic-dependent, since inhibition via NF449 treatment resulted in a significant reduction of T. b. brucei-triggered DNA extrusion. Overall, future studies will have to analyze whether the formation of aggNETs indeed plays a role in the outcome of clinical disease and bovine African trypanosomiasis-related immunopathological disorders, such as increased intravascular coagulopathy and vascular permeability, often reported to occur in this disease.
Collapse
Affiliation(s)
- Daniela Grob
- Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Giessen, Germany
| | - Iván Conejeros
- Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Giessen, Germany
| | - Zahady D Velásquez
- Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Giessen, Germany
| | - Christian Preußer
- Institute of Biochemistry, Department of Biology and Chemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Ulrich Gärtner
- Institute of Anatomy and Cell Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Pablo Alarcón
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Rafael A Burgos
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Carlos Hermosilla
- Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Giessen, Germany
| | - Anja Taubert
- Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
27
|
Alfituri OA, Quintana JF, MacLeod A, Garside P, Benson RA, Brewer JM, Mabbott NA, Morrison LJ, Capewell P. To the Skin and Beyond: The Immune Response to African Trypanosomes as They Enter and Exit the Vertebrate Host. Front Immunol 2020; 11:1250. [PMID: 32595652 PMCID: PMC7304505 DOI: 10.3389/fimmu.2020.01250] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/18/2020] [Indexed: 12/14/2022] Open
Abstract
African trypanosomes are single-celled extracellular protozoan parasites transmitted by tsetse fly vectors across sub-Saharan Africa, causing serious disease in both humans and animals. Mammalian infections begin when the tsetse fly penetrates the skin in order to take a blood meal, depositing trypanosomes into the dermal layer. Similarly, onward transmission occurs when differentiated and insect pre-adapted forms are ingested by the fly during a blood meal. Between these transmission steps, trypanosomes access the systemic circulation of the vertebrate host via the skin-draining lymph nodes, disseminating into multiple tissues and organs, and establishing chronic, and long-lasting infections. However, most studies of the immunobiology of African trypanosomes have been conducted under experimental conditions that bypass the skin as a route for systemic dissemination (typically via intraperitoneal or intravenous routes). Therefore, the importance of these initial interactions between trypanosomes and the skin at the site of initial infection, and the implications for these processes in infection establishment, have largely been overlooked. Recent studies have also demonstrated active and complex interactions between the mammalian host and trypanosomes in the skin during initial infection and revealed the skin as an overlooked anatomical reservoir for transmission. This highlights the importance of this organ when investigating the biology of trypanosome infections and the associated immune responses at the initial site of infection. Here, we review the mechanisms involved in establishing African trypanosome infections and potential of the skin as a reservoir, the role of innate immune cells in the skin during initial infection, and the subsequent immune interactions as the parasites migrate from the skin. We suggest that a thorough identification of the mechanisms involved in establishing African trypanosome infections in the skin and their progression through the host is essential for the development of novel approaches to interrupt disease transmission and control these important diseases.
Collapse
Affiliation(s)
- Omar A. Alfituri
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Juan F. Quintana
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Annette MacLeod
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Paul Garside
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Robert A. Benson
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - James M. Brewer
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Neil A. Mabbott
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Liam J. Morrison
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Paul Capewell
- College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
28
|
Abstract
Parasitic diseases, such as sleeping sickness, Chagas disease and malaria, remain a major cause of morbidity and mortality worldwide, but particularly in tropical, developing countries. Controlling these diseases requires a better understanding of host-parasite interactions, including a deep appreciation of parasite distribution in the host. The preferred accumulation of parasites in some tissues of the host has been known for many years, but recent technical advances have allowed a more systematic analysis and quantifications of such tissue tropisms. The functional consequences of tissue tropism remain poorly studied, although it has been associated with important aspects of disease, including transmission enhancement, treatment failure, relapse and clinical outcome. Here, we discuss current knowledge of tissue tropism in Trypanosoma infections in mammals, describe potential mechanisms of tissue entry, comparatively discuss relevant findings from other parasitology fields where tissue tropism has been extensively investigated, and reflect on new questions raised by recent discoveries and their potential impact on clinical treatment and disease control strategies.
Collapse
Affiliation(s)
- Sara Silva Pereira
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa , Lisbon , Portugal
| | - Sandra Trindade
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa , Lisbon , Portugal
| | - Mariana De Niz
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa , Lisbon , Portugal
| | - Luisa M Figueiredo
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa , Lisbon , Portugal
| |
Collapse
|
29
|
Pardali V, Giannakopoulou E, Balourdas DI, Myrianthopoulos V, Taylor MC, Šekutor M, Mlinarić-Majerski K, Kelly JM, Zoidis G. Lipophilic Guanylhydrazone Analogues as Promising Trypanocidal Agents: An Extended SAR Study. Curr Pharm Des 2020; 26:838-866. [DOI: 10.2174/1381612826666200210150127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/19/2019] [Indexed: 12/18/2022]
Abstract
In this report, we extend the SAR analysis of a number of lipophilic guanylhydrazone analogues with
respect to in vitro growth inhibition of Trypanosoma brucei and Trypanosoma cruzi. Sleeping sickness and Chagas
disease, caused by the tropical parasites T. brucei and T. cruzi, constitute a significant socioeconomic burden
in low-income countries of sub-Saharan Africa and Latin America, respectively. Drug development is underfunded.
Moreover, current treatments are outdated and difficult to administer, while drug resistance is an emerging
concern. The synthesis of adamantane-based compounds that have potential as antitrypanosomal agents is
extensively reviewed. The critical role of the adamantane ring was further investigated by synthesizing and testing
a number of novel lipophilic guanylhydrazones. The introduction of hydrophobic bulky substituents onto the
adamantane ring generated the most active analogues, illustrating the synergistic effect of the lipophilic character
of the C1 side chain and guanylhydrazone moiety on trypanocidal activity. The n-decyl C1-substituted compound
G8 proved to be the most potent adamantane derivative against T. brucei with activity in the nanomolar range
(EC50=90 nM). Molecular simulations were also performed to better understand the structure-activity relationships
between the studied guanylhydrazone analogues and their potential enzyme target.
Collapse
Affiliation(s)
- Vasiliki Pardali
- School of Health Sciences, Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, GR-15771 Athens, Greece
| | - Erofili Giannakopoulou
- School of Health Sciences, Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, GR-15771 Athens, Greece
| | - Dimitrios-Ilias Balourdas
- School of Health Sciences, Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, GR-15771 Athens, Greece
| | - Vassilios Myrianthopoulos
- School of Health Sciences, Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, GR-15771 Athens, Greece
| | - Martin C. Taylor
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Marina Šekutor
- Department of Organic Chemistry and Biochemistry, Ruder Boskovic Institute, Bijenicka cesta 54, 10 000 Zagreb, Croatia
| | - Kata Mlinarić-Majerski
- Department of Organic Chemistry and Biochemistry, Ruder Boskovic Institute, Bijenicka cesta 54, 10 000 Zagreb, Croatia
| | - John M. Kelly
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Grigoris Zoidis
- School of Health Sciences, Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, GR-15771 Athens, Greece
| |
Collapse
|
30
|
Abstract
Bats are presumed primary hosts of trypanosomes of the subgenus Schizotrypanum, including the human pathogen Trypanosoma cruzi. As such, research on bat trypanosomes has been focused on South America, where Chagas disease is a serious issue. While the majority of European studies have been performed in the United Kingdom, there is virtually no data available for Eastern and Central parts of Europe. To address this, the present study aims to identify and assess the prevalence and pathogenicity of trypanosomes in bats sampled in the Czech Republic, Bulgaria, and Poland. Blood collected from 381 adult bats of eight species was tested for presence of trypanosomes using nested polymerase chain reactions. To assess possible impacts of trypanosome parasites on the health status of their hosts, haematological and biochemical analyses were performed for 56 greater mouse-eared bats (Myotis myotis) emerging from hibernacula and 36 females of the same species from summer colonies. The overall prevalence of the two trypanosome species detected (T. dionisii and T. vespertilionis) was 27%, with a significantly higher prevalence in the Czech Republic compared to the other countries studied. Significant differences in bat trypanosome prevalence in different European countries appear to be connected with presence or absence of possible vectors in summer roosts. No impact of trypanosomes on haematology and blood chemistry parameters was detected in Trypanosoma-positive greater mouse-eared bats. Though T. dionisii infection in bats appears asymptomatic, long-term health consequences still need to be studied in greater detail.
Collapse
|
31
|
Macleod OJS, Bart JM, MacGregor P, Peacock L, Savill NJ, Hester S, Ravel S, Sunter JD, Trevor C, Rust S, Vaughan TJ, Minter R, Mohammed S, Gibson W, Taylor MC, Higgins MK, Carrington M. A receptor for the complement regulator factor H increases transmission of trypanosomes to tsetse flies. Nat Commun 2020; 11:1326. [PMID: 32165615 PMCID: PMC7067766 DOI: 10.1038/s41467-020-15125-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 02/15/2020] [Indexed: 11/09/2022] Open
Abstract
Persistent pathogens have evolved to avoid elimination by the mammalian immune system including mechanisms to evade complement. Infections with African trypanosomes can persist for years and cause human and animal disease throughout sub-Saharan Africa. It is not known how trypanosomes limit the action of the alternative complement pathway. Here we identify an African trypanosome receptor for mammalian factor H, a negative regulator of the alternative pathway. Structural studies show how the receptor binds ligand, leaving inhibitory domains of factor H free to inactivate complement C3b deposited on the trypanosome surface. Receptor expression is highest in developmental stages transmitted to the tsetse fly vector and those exposed to blood meals in the tsetse gut. Receptor gene deletion reduced tsetse infection, identifying this receptor as a virulence factor for transmission. This demonstrates how a pathogen evolved a molecular mechanism to increase transmission to an insect vector by exploitation of a mammalian complement regulator.
Collapse
Affiliation(s)
- Olivia J S Macleod
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Jean-Mathieu Bart
- Intertryp, IRD, Cirad, University of Montpellier, Montpellier, France
| | - Paula MacGregor
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Lori Peacock
- School of Biological Sciences, University of Bristol, Bristol, BS8 1UG, UK
| | - Nicholas J Savill
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh, EH9 3JT, UK
| | - Svenja Hester
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Sophie Ravel
- Intertryp, IRD, Cirad, University of Montpellier, Montpellier, France
| | - Jack D Sunter
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Camilla Trevor
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
- Department of Antibody Discovery and Protein Engineering, AstraZeneca R&D, Granta Park, Cambridge, CB21 6GH, UK
| | - Steven Rust
- Department of Antibody Discovery and Protein Engineering, AstraZeneca R&D, Granta Park, Cambridge, CB21 6GH, UK
| | - Tristan J Vaughan
- Department of Antibody Discovery and Protein Engineering, AstraZeneca R&D, Granta Park, Cambridge, CB21 6GH, UK
| | - Ralph Minter
- Department of Antibody Discovery and Protein Engineering, AstraZeneca R&D, Granta Park, Cambridge, CB21 6GH, UK
| | - Shabaz Mohammed
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Wendy Gibson
- School of Biological Sciences, University of Bristol, Bristol, BS8 1UG, UK
| | - Martin C Taylor
- Faculty of Infectious and Tropical diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Matthew K Higgins
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK.
| |
Collapse
|
32
|
Magez S, Pinto Torres JE, Obishakin E, Radwanska M. Infections With Extracellular Trypanosomes Require Control by Efficient Innate Immune Mechanisms and Can Result in the Destruction of the Mammalian Humoral Immune System. Front Immunol 2020; 11:382. [PMID: 32218784 PMCID: PMC7078162 DOI: 10.3389/fimmu.2020.00382] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/18/2020] [Indexed: 12/17/2022] Open
Abstract
Salivarian trypanosomes are extracellular parasites that affect humans, livestock, and game animals around the world. Through co-evolution with the mammalian immune system, trypanosomes have developed defense mechanisms that allow them to thrive in blood, lymphoid vessels, and tissue environments such as the brain, the fat tissue, and testes. Trypanosomes have developed ways to circumvent antibody-mediated killing and block the activation of the lytic arm of the complement pathway. Hence, this makes the innate immune control of the infection a crucial part of the host-parasite interaction, determining infection susceptibility, and parasitemia control. Indeed, trypanosomes use a combination of several independent mechanisms to avoid clearance by the humoral immune system. First, perpetuated antigenic variation of the surface coat allows to escape antibody-mediated elimination. Secondly, when antibodies bind to the coat, they are efficiently transported toward the endocytosis pathway, where they are removed from the coat proteins. Finally, trypanosomes engage in the active destruction of the mammalian humoral immune response. This provides them with a rescue solution in case antigenic variation does not confer total immunological invisibility. Both antigenic variation and B cell destruction pose significant hurdles for the development of anti-trypanosome vaccine strategies. However, developing total immune escape capacity and unlimited growth capabilities within a mammalian host is not beneficial for any parasite, as it will result in the accelerated death of the host itself. Hence, trypanosomes have acquired a system of quorum sensing that results in density-dependent population growth arrest in order to prevent overpopulating the host. The same system could possibly sense the infection-associated host tissue damage resulting from inflammatory innate immune responses, in which case the quorum sensing serves to prevent excessive immunopathology and as such also promotes host survival. In order to put these concepts together, this review summarizes current knowledge on the interaction between trypanosomes and the mammalian innate immune system, the mechanisms involved in population growth regulation, antigenic variation and the immuno-destructive effect of trypanosomes on the humoral immune system. Vaccine trials and a discussion on the role of innate immune modulation in these trials are discussed at the end.
Collapse
Affiliation(s)
- Stefan Magez
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.,Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Emmanuel Obishakin
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea.,Biotechnology Division, National Veterinary Research Institute, Vom, Nigeria
| | - Magdalena Radwanska
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
33
|
Chandan K, Gupta M, Sarwat M. Role of Host and Pathogen-Derived MicroRNAs in Immune Regulation During Infectious and Inflammatory Diseases. Front Immunol 2020; 10:3081. [PMID: 32038627 PMCID: PMC6992578 DOI: 10.3389/fimmu.2019.03081] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/17/2019] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs, miRs) are short, endogenously initiated, non-coding RNAs that bind to target mRNAs, leading to the degradation or translational suppression of respective mRNAs. They have been reported as key players in physiological processes like differentiation, cellular proliferation, development, and apoptosis. They have gained importance as gene expression regulators in the immune system. They control antibody production and release various inflammatory mediators. Abnormal expression and functioning of miRNA in the immune system is linked to various diseases like inflammatory disorders, allergic diseases, cancers etc. As compared to the average human genome, miRNA targets the genes of immune system quite differently. miRNA appeared to regulate the responses related to both acquired and innate immunity of the humans. Several miRNAs importantly regulate the transcription and even, dysregulation of inflammation-related mediators. Many miRNAs are either upregulated or downregulated in various inflammatory and infectious diseases. Hence, modifying or targeting the expression of miRNAs might serve as a novel strategy for the diagnosis, prevention, and treatment of various inflammatory and infectious conditions.
Collapse
Affiliation(s)
| | | | - Maryam Sarwat
- Amity Institute of Pharmacy, Amity University, Noida, India
| |
Collapse
|
34
|
Neopterin and CXCL-13 in Diagnosis and Follow-Up of Trypanosoma brucei gambiense Sleeping Sickness: Lessons from the Field in Angola. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6070176. [PMID: 31886231 PMCID: PMC6914994 DOI: 10.1155/2019/6070176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/10/2019] [Accepted: 10/08/2019] [Indexed: 11/26/2022]
Abstract
Human African Trypanosomiasis may become manageable in the next decade with fexinidazole. However, currently stage diagnosis remains difficult to implement in the field and requires a lumbar puncture. Our study of an Angolan cohort of T. b. gambiense-infected patients used other staging criteria than those recommended by the WHO. We compared WHO criteria (cell count and parasite identification in the CSF) with two biomarkers (neopterin and CXCL-13) which have proven potential to diagnose disease stage or relapse. Biological, clinical, and neurological data were analysed from a cohort of 83 patients. A neopterin concentration below 15.5 nmol/L in the CSF denoted patients with stage 1 disease, and a concentration above 60.31 nmol/L characterized patients with advanced stage 2 (trypanosomes in CSF and/or cytorachia higher than 20 cells) disease. CXCL-13 levels below 91.208 pg/mL denoted patients with stage 1 disease, and levels of CXCL-13 above 395.45 pg/mL denoted patients with advanced stage 2 disease. Values between these cut-offs may represent patients with intermediate stage disease. Our work supports the existence of an intermediate stage in HAT, and CXCL-13 and neopterin levels may help to characterize it.
Collapse
|
35
|
Sanches-Vaz M, Temporão A, Luis R, Nunes-Cabaço H, Mendes AM, Goellner S, Carvalho T, Figueiredo LM, Prudêncio M. Trypanosoma brucei infection protects mice against malaria. PLoS Pathog 2019; 15:e1008145. [PMID: 31703103 PMCID: PMC6867654 DOI: 10.1371/journal.ppat.1008145] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 11/20/2019] [Accepted: 10/11/2019] [Indexed: 12/22/2022] Open
Abstract
Sleeping sickness and malaria are parasitic diseases with overlapping geographical distributions in sub-Saharan Africa. We hypothesized that the immune response elicited by an infection with Trypanosoma brucei, the etiological agent of sleeping sickness, would inhibit a subsequent infection by Plasmodium, the malaria parasite, decreasing the severity of its associated pathology. To investigate this, we established a new co-infection model in which mice were initially infected with T. brucei, followed by administration of P. berghei sporozoites. We observed that a primary infection by T. brucei significantly attenuates a subsequent infection by the malaria parasite, protecting mice from experimental cerebral malaria and prolonging host survival. We further observed that an ongoing T. brucei infection leads to an accumulation of lymphocyte-derived IFN-γ in the liver, limiting the establishment of a subsequent hepatic infection by P. berghei sporozoites. Thus, we identified a novel host-mediated interaction between two parasitic infections, which may be epidemiologically relevant in regions of Trypanosoma/Plasmodium co-endemicity. Despite the geographical overlap between the parasites that cause sleeping sickness and malaria, the reciprocal impact of a co-infection by T. brucei and Plasmodium had hitherto not been assessed. We hypothesized that the strong immune response elicited by a T. brucei infection could potentially limit the ability of Plasmodium parasites to infect the same host. In this study, we showed that a primary infection by T. brucei significantly attenuates a subsequent infection by the malaria parasite. Importantly, a significant proportion of the co-infected mice do not develop Plasmodium parasitemia, and those few that do, do not display symptoms of severe malaria and survive longer than their singly infected counterparts. We further showed that the prevention or delay in appearance of malaria parasites in the blood results from a dramatic impairment of the preceding liver infection by Plasmodium, which is mediated by the strong immune response mounted against the primary T. brucei infection. Our study provides new insights for a novel inter-pathogen interaction that may bear great epidemiological significance in regions of Trypanosoma/Plasmodium co-endemicity.
Collapse
Affiliation(s)
- Margarida Sanches-Vaz
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Adriana Temporão
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Rafael Luis
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Helena Nunes-Cabaço
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - António M. Mendes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sarah Goellner
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Tânia Carvalho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Luisa M. Figueiredo
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- * E-mail: (LMF); (MP)
| | - Miguel Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- * E-mail: (LMF); (MP)
| |
Collapse
|
36
|
Ghalehnoei H, Bagheri A, Fakhar M, Mishan MA. Circulatory microRNAs: promising non-invasive prognostic and diagnostic biomarkers for parasitic infections. Eur J Clin Microbiol Infect Dis 2019; 39:395-402. [PMID: 31617024 DOI: 10.1007/s10096-019-03715-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are a non-coding subclass of endogenous small regulatory RNAs, with about 18-25 nucleotides length which play a critical role in the regulation of gene expression at the post-transcriptional level in eukaryotes. Aberrant expression of miRNAs has the potential to become powerful non-invasive biomarkers in pathological diagnosis and prognosis of different disorders including infectious diseases. Parasite's life cycle may require the ability to respond to environmental and developmental signals through miRNA-mediated gene expressions. Over the last years, thousands of miRNAs have been identified in the helminthic and protozoan parasites and many pieces of evidence have demonstrated the functional role of miRNAs in the parasites' life cycle. Detection of these miRNAs in biofluids of infected hosts as prognostic and diagnostic biomarkers in infectious diseases is growing rapidly. In this review, we have highlighted altered expressions of host miRNAs, detected parasitic miRNAs in the infected hosts, and suggested some perspectives for future studies.
Collapse
Affiliation(s)
- Hossein Ghalehnoei
- Department of Medical Biotechnology, Toxoplasmosis Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abouzar Bagheri
- Department of Clinical Biochemistry-Biophysics and Genetics, Toxoplasmosis Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mahdi Fakhar
- Department of Parasitology, Toxoplasmosis Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mohammad Amir Mishan
- Ocular Tissue Engineering Research Center, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Variable Surface Glycoprotein from Trypanosoma brucei Undergoes Cleavage by Matrix Metalloproteinases: An in silico Approach. Pathogens 2019; 8:pathogens8040178. [PMID: 31597256 PMCID: PMC6963732 DOI: 10.3390/pathogens8040178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 12/13/2022] Open
Abstract
In order to survive as extracellular parasites in the mammalian host environment, Trypanosoma brucei has developed efficient mechanisms of immune system evasion, which include the abundant expression of a variable surface glycoprotein (VSG) coat. VSGs are anchored in the parasite membrane by covalent C-terminal binding to glycosylphosphatidylinositol and may be periodically removed by a phospholipase C (PLC) and a major surface protein (TbMSP). VSG molecules show extraordinary antigenic diversity and a comparative analysis of protein sequences suggests that conserved elements may be a suitable target against African trypanosomiasis. However, the cleavage mechanisms of these molecules remain unclear. Moreover, in protozoan infections, including those caused by Trypanosoma brucei, it is possible to observe an increased expression of the matrix metalloproteinases (MMPs). To address the cleavage mechanism of VSGs, the PROSPER server was used for the identification of VSG sequence cleavage sites. After data compilation, it was observed that 64 VSG consensus sequences showed a high conservation of hydrophobic residues, such as valine (V), methionine (M), leucine (L) and isoleucine (I) in the fifth position—the exact location of the cleavage site. In addition, the PROSPER server identified conserved cleavage site portions of VSG proteins recognized by three matrix metalloproteases (gelatinases: MMP-2, MMP-3 and MMP-9). However, further biological studies are needed in order to analyze and confirm this prediction.
Collapse
|
38
|
Kasozi KI, Namayanja M, Gaithuma AK, Mahero M, Matovu E, Yamagishi J, Sugimoto C, MacLeod E. Prevalence of hemoprotozoan parasites in small ruminants along a human-livestock-wildlife interface in western Uganda. VETERINARY PARASITOLOGY- REGIONAL STUDIES AND REPORTS 2019; 17:100309. [PMID: 31303220 DOI: 10.1016/j.vprsr.2019.100309] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 05/16/2019] [Accepted: 05/30/2019] [Indexed: 10/26/2022]
Abstract
Small ruminants are important to community livelihood in developing countries; however information on the role of hemoprotozoan parasites is scanty. The objective of the study was to determine hemoprotozoan parasitic prevalence in western Uganda and identify major areas associated with these infections. This was a cross sectional study conducted at the edge of Budongo Conservation Forest in Masindi district of western Uganda in which 712 small ruminants were sampled. Blood from the jugular vein was collected from caprines and ovines and placed in an EDTA tube, and transported to the laboratory for examination. Thin and thick smears were prepared and examined by microscopy for hemoprotozoan parasites, and DNA was extracted and examined by PCR for Trypanosoma spp. A total of 13 villages in Budongo sub-county were surveyed and the study showed that caprines were the major small ruminants of importance to the community. Prevalence of hemoprotozoan parasites was as follows; anaplasmosis (3.65%) > theileriosis (0.45%) > trypanosomiasis (0.15%) and babesiosis (0%) by microscopy. Infections were found in the young with the exception of Anaplasma spp. while coinfections of anaplasmosis and theileriosis were high. Molecular analysis showed an overall trypanosome prevalence of 9.27% (PCR), mainly due to Trypanosoma brucei and T. congolense forest. Villages with trypanosomiasis were found in lowlands and swamps. The current trypanosomiasis prevalence in small ruminants of Uganda was 10 times greater than that previously reported showing that the disease burden has increased overtime within Uganda. A prevalence of 0.14% (95% CI: 0.00, 0.78) for the SRA gene showed that small ruminants would be important reservoirs of infection to humans. Hemoprotozoan parasites are a threat to community livelihood in developing countries and the role of molecular diagnostic techniques in disease monitoring was re-emphasized by this study. Information on primary hosts involved in the propagation of hemoprotozoan parasites in Uganda would help streamline prospective disease surveillance and control efforts.
Collapse
Affiliation(s)
- Keneth Iceland Kasozi
- Infection Medicine, Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, United Kingdom; Faculty of Biomedical Sciences, Kampala International University Western Campus, Bushenyi, Uganda; College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University Kampala, Uganda.
| | - Monica Namayanja
- Faculty of Biomedical Sciences, Kampala International University Western Campus, Bushenyi, Uganda; College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University Kampala, Uganda
| | - Alex Kiarie Gaithuma
- Graduate School of Veterinary Medicine, Research Center for Zoonosis Control, Hokkaido University, Hokkaido prefecture, Japan
| | - Michael Mahero
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, USA
| | - Enock Matovu
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University Kampala, Uganda
| | - Junya Yamagishi
- Graduate School of Veterinary Medicine, Research Center for Zoonosis Control, Hokkaido University, Hokkaido prefecture, Japan
| | - Chihiro Sugimoto
- Graduate School of Veterinary Medicine, Research Center for Zoonosis Control, Hokkaido University, Hokkaido prefecture, Japan
| | - Ewan MacLeod
- Infection Medicine, Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, United Kingdom
| |
Collapse
|
39
|
Moreno CJG, Temporão A, Torres T, Sousa Silva M. Trypanosoma brucei Interaction with Host: Mechanism of VSG Release as Target for Drug Discovery for African Trypanosomiasis. Int J Mol Sci 2019; 20:ijms20061484. [PMID: 30934540 PMCID: PMC6471236 DOI: 10.3390/ijms20061484] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 01/18/2023] Open
Abstract
The protozoan Trypanosoma brucei, responsible for animal and human trypanosomiasis, has a family of major surface proteases (MSPs) and phospholipase-C (PLC), both involved in some mechanisms of virulence during mammalian infections. During parasitism in the mammalian host, this protozoan is exclusively extracellular and presents a robust mechanism of antigenic variation that allows the persistence of infection. There has been incredible progress in our understanding of how variable surface glycoproteins (VSGs) are organised and expressed, and how expression is switched, particularly through recombination. The objective of this manuscript is to create a reflection about the mechanisms of antigenic variation in T. brucei, more specifically, in the process of variable surface glycoprotein (VSG) release. We firstly explore the mechanism of VSG release as a potential pathway and target for the development of anti-T. brucei drugs.
Collapse
Affiliation(s)
- Cláudia Jassica Gonçalves Moreno
- Programa de Pós-graduação em Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal 59064-741, Brazil.
| | - Adriana Temporão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2775-412 Oeiras, Portugal.
| | - Taffarel Torres
- Centro de Ciências Biológicas e da Saúde, Universidade Federal Rural de Semi-árido, Mossoró 59625-900, Brazil.
| | - Marcelo Sousa Silva
- Programa de Pós-graduação em Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal 59064-741, Brazil.
- Departamento de Análises Clínicas e Toxicológicas, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal 59012-570, Brazil.
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, 1349-008 Lisbon, Portugal.
| |
Collapse
|
40
|
Bocquet L, Sahpaz S, Bonneau N, Beaufay C, Mahieux S, Samaillie J, Roumy V, Jacquin J, Bordage S, Hennebelle T, Chai F, Quetin-Leclercq J, Neut C, Rivière C. Phenolic Compounds from Humulus lupulus as Natural Antimicrobial Products: New Weapons in the Fight against Methicillin Resistant Staphylococcus aureus, Leishmania mexicana and Trypanosoma brucei Strains. Molecules 2019; 24:molecules24061024. [PMID: 30875854 PMCID: PMC6472001 DOI: 10.3390/molecules24061024] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/09/2019] [Accepted: 03/10/2019] [Indexed: 12/23/2022] Open
Abstract
New anti-infective agents are urgently needed to fight microbial resistance. Methicillin-resistant Staphylococcus aureus (MRSA) strains are particularly responsible for complicated pathologies that are difficult to treat due to their virulence and the formation of persistent biofilms forming a complex protecting shell. Parasitic infections caused by Trypanosoma brucei and Leishmania mexicana are also of global concern, because of the mortality due to the low number of safe and effective treatments. Female inflorescences of hop produce specialized metabolites known for their antimicrobial effects but underexploited to fight against drug-resistant microorganisms. In this study, we assessed the antimicrobial potential of phenolic compounds against MRSA clinical isolates, T. brucei and L. mexicana. By fractionation process, we purified the major prenylated chalcones and acylphloroglucinols, which were quantified by UHPLC-UV in different plant parts, showing their higher content in the active flowers extract. Their potent antibacterial action (MIC < 1 µg/mL for the most active compound) was demonstrated against MRSA strains, through kill curves, post-antibiotic effects, anti-biofilm assays and synergy studies with antibiotics. An antiparasitic activity was also shown for some purified compounds, particularly on T. brucei (IC50 < 1 to 11 µg/mL). Their cytotoxic activity was assessed both on cancer and non-cancer human cell lines.
Collapse
Affiliation(s)
- Laetitia Bocquet
- EA 7394-ICV, Charles Viollette Research Institute, SFR Condorcet FR CNRS 3417, Univ. Lille, INRA, ISA-Yncréa, Univ. Artois, University Littoral Côte d'Opale, 3 rue du Professeur Laguesse, 59000 Lille, France.
| | - Sevser Sahpaz
- EA 7394-ICV, Charles Viollette Research Institute, SFR Condorcet FR CNRS 3417, Univ. Lille, INRA, ISA-Yncréa, Univ. Artois, University Littoral Côte d'Opale, 3 rue du Professeur Laguesse, 59000 Lille, France.
| | - Natacha Bonneau
- EA 7394-ICV, Charles Viollette Research Institute, SFR Condorcet FR CNRS 3417, Univ. Lille, INRA, ISA-Yncréa, Univ. Artois, University Littoral Côte d'Opale, 3 rue du Professeur Laguesse, 59000 Lille, France.
| | - Claire Beaufay
- Pharmacognosy Research group, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Brussels, Belgium.
| | - Séverine Mahieux
- U995-LIRIC, Lille Inflammation Research International Center, University Lille, Inserm, CHU Lille, 59000 Lille, France.
| | - Jennifer Samaillie
- EA 7394-ICV, Charles Viollette Research Institute, SFR Condorcet FR CNRS 3417, Univ. Lille, INRA, ISA-Yncréa, Univ. Artois, University Littoral Côte d'Opale, 3 rue du Professeur Laguesse, 59000 Lille, France.
| | - Vincent Roumy
- EA 7394-ICV, Charles Viollette Research Institute, SFR Condorcet FR CNRS 3417, Univ. Lille, INRA, ISA-Yncréa, Univ. Artois, University Littoral Côte d'Opale, 3 rue du Professeur Laguesse, 59000 Lille, France.
| | - Justine Jacquin
- EA 7394-ICV, Charles Viollette Research Institute, SFR Condorcet FR CNRS 3417, Univ. Lille, INRA, ISA-Yncréa, Univ. Artois, University Littoral Côte d'Opale, 3 rue du Professeur Laguesse, 59000 Lille, France.
| | - Simon Bordage
- EA 7394-ICV, Charles Viollette Research Institute, SFR Condorcet FR CNRS 3417, Univ. Lille, INRA, ISA-Yncréa, Univ. Artois, University Littoral Côte d'Opale, 3 rue du Professeur Laguesse, 59000 Lille, France.
| | - Thierry Hennebelle
- EA 7394-ICV, Charles Viollette Research Institute, SFR Condorcet FR CNRS 3417, Univ. Lille, INRA, ISA-Yncréa, Univ. Artois, University Littoral Côte d'Opale, 3 rue du Professeur Laguesse, 59000 Lille, France.
| | - Feng Chai
- U1008-Controlled Drug Delivery Systems and Biomaterials, University Lille, Inserm, CHU Lille, 59000 Lille, France.
| | - Joëlle Quetin-Leclercq
- Pharmacognosy Research group, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Brussels, Belgium.
| | - Christel Neut
- U995-LIRIC, Lille Inflammation Research International Center, University Lille, Inserm, CHU Lille, 59000 Lille, France.
| | - Céline Rivière
- EA 7394-ICV, Charles Viollette Research Institute, SFR Condorcet FR CNRS 3417, Univ. Lille, INRA, ISA-Yncréa, Univ. Artois, University Littoral Côte d'Opale, 3 rue du Professeur Laguesse, 59000 Lille, France.
| |
Collapse
|
41
|
Teixeira AF, Pereira JG, Pestana-Ascensão S, Silva MS. Trans-sialidase Protein as a Potential Serological Marker for African Trypanosomiasis. Protein J 2019; 38:50-57. [PMID: 30604107 DOI: 10.1007/s10930-018-09808-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Trypanosoma brucei is the etiological agent of African trypanosomiasis responsible for human and animal infections. T. brucei is transmitted by infected tsetse flies. There is no vaccine for the disease and drugs available for treatment are inefficient and high toxicity. In this context, it is a priority to find antigenic targets suitable for the development of new diagnostic tools, drugs and vaccines. In this work, we report that mice infected with T. b. brucei produce antibodies against trans-sialidase recombinant protein (TS). In addition, we also demonstrate that bloodstream T. b. brucei express messenger RNA related to the TS gene. Collectively, our data strongly suggest that bloodstream forms of T. b. brucei also express the TS gene, that to date was described only in the procyclic forms of the T. b. brucei. In conclusion, these results highlight the importance of TS protein as a possible antigen target during infection caused by T. b. brucei.
Collapse
Affiliation(s)
- Ana Filipa Teixeira
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, Universidade Nova de Lisboa, Lisbon, Portugal
| | - João Gomes Pereira
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Sónia Pestana-Ascensão
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Marcelo Sousa Silva
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, Universidade Nova de Lisboa, Lisbon, Portugal. .,Immunoparasitology Laboratory, Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Natal, Brazil. .,Programa de Pós-graduação em Bioquímica, Centro de Biociências, Federal University of Rio Grande do Norte, Natal, Brazil. .,Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Federal University of Rio Grande do Norte, Natal, Brazil.
| |
Collapse
|
42
|
Druggable Targets in Cyclic Nucleotide Signaling Pathways in Apicomplexan Parasites and Kinetoplastids against Disabling Protozoan Diseases in Humans. Int J Mol Sci 2019; 20:ijms20010138. [PMID: 30609697 PMCID: PMC6337498 DOI: 10.3390/ijms20010138] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 12/19/2018] [Accepted: 12/24/2018] [Indexed: 12/20/2022] Open
Abstract
Cell signaling in eukaryotes is an evolutionarily conserved mechanism to respond and adapt to various environmental changes. In general, signal sensation is mediated by a receptor which transfers the signal to a cascade of effector proteins. The cyclic nucleotides 3′,5′-cyclic adenosine monophosphate (cAMP) and 3′,5′-cyclic guanosine monophosphate (cGMP) are intracellular messengers mediating an extracellular stimulus to cyclic nucleotide-dependent kinases driving a change in cell function. In apicomplexan parasites and kinetoplastids, which are responsible for a variety of neglected, tropical diseases, unique mechanisms of cyclic nucleotide signaling are currently identified. Collectively, cyclic nucleotides seem to be essential for parasitic proliferation and differentiation. However, there is no a genomic evidence for canonical G-proteins in these parasites while small GTPases and secondary effector proteins with structural differences to host orthologues occur. Database entries encoding G-protein-coupled receptors (GPCRs) are still without functional proof. Instead, signals from the parasite trigger GPCR-mediated signaling in the host during parasite invasion and egress. The role of cyclic nucleotide signaling in the absence of G-proteins and GPCRs, with a particular focus on small GTPases in pathogenesis, is reviewed here. Due to the absence of G-proteins, apicomplexan parasites and kinetoplastids may use small GTPases or their secondary effector proteins and host canonical G-proteins during infection. Thus, the feasibility of targeting cyclic nucleotide signaling pathways in these parasites, will be an enormous challenge for the identification of selective, pharmacological inhibitors since canonical host proteins also contribute to pathogenesis.
Collapse
|
43
|
da Silva MS, Marin PA, Repolês BM, Elias MC, Machado CR. Analysis of DNA Exchange Using Thymidine Analogs (ADExTA) in Trypanosoma cruzi. Bio Protoc 2018; 8:e3125. [PMID: 34532563 PMCID: PMC8342059 DOI: 10.21769/bioprotoc.3125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 10/20/2018] [Indexed: 11/02/2022] Open
Abstract
Trypanosoma cruzi is a protozoan parasite belonging to the Trypanosomatidae family. Although the trypanosomatids multiply predominantly by clonal generation, the presence of DNA exchange in some of them has been puzzling researchers over the years, mainly because it may represent a novel form that these organisms use to gain variability. Analysis of DNA Exchange using Thymidine Analogs (ADExTA) is a method that allows the in vitro detection and measurement of rates of DNA exchange, particularly in trypanosomatid cells, in a rapid and simple manner by indirect immunofluorescence assay (IFA). The method can be used to detect DNA exchange within one trypanosomatid lineage or among different lineages by paired analysis. The principle of this assay is based on the incorporation of two distinguishable halogenated thymidine analogs called 5'-chloro-2'-deoxyuridine (CldU) and 5'-iodo-2'-deoxyuridine (IdU) during DNA replication. After mixing the two cell cultures that had been previously incorporated with CldU and IdU separately, the presence of these unusual deoxynucleosides in the genome can be detected by specific antibodies. For this, a DNA denaturation step is required to expose the sites of thymidine analogs incorporated. Subsequently, a secondary reaction using fluorochrome-labeled antibodies will generate distinct signals under fluorescence analysis. By using this method, DNA exchange verification (i.e., the presence of both CldU and IdU in the same cell) is possible using a standard fluorescence microscope. It typically takes 2-3 days from the thymidine analogs incorporation to results. Of note, ADExTA is relatively cheap and does not require transfections or harsh genetic manipulation. These features represent an advantage when compared to other time-consuming protocols that demand DNA manipulation to introduce distinct drug-resistance markers in different cells for posterior selection.
Collapse
Affiliation(s)
- Marcelo S. da Silva
- Laboratório Especial de Ciclo Celular (LECC), Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Paula A. Marin
- Laboratório Especial de Ciclo Celular (LECC), Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Bruno M. Repolês
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maria C. Elias
- Laboratório Especial de Ciclo Celular (LECC), Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Carlos R. Machado
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
44
|
Ong YC, Roy S, Andrews PC, Gasser G. Metal Compounds against Neglected Tropical Diseases. Chem Rev 2018; 119:730-796. [DOI: 10.1021/acs.chemrev.8b00338] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yih Ching Ong
- Laboratory for Inorganic Chemical Biology, Chimie ParisTech, PSL University, 11 rue Pierre et Marie Curie, F-75005 Paris, France
| | - Saonli Roy
- Department of Chemistry, University of Zurich, Wintherthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Philip C. Andrews
- School of Chemistry, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Gilles Gasser
- Laboratory for Inorganic Chemical Biology, Chimie ParisTech, PSL University, 11 rue Pierre et Marie Curie, F-75005 Paris, France
| |
Collapse
|
45
|
López-Muñoz RA, Molina-Berríos A, Campos-Estrada C, Abarca-Sanhueza P, Urrutia-Llancaqueo L, Peña-Espinoza M, Maya JD. Inflammatory and Pro-resolving Lipids in Trypanosomatid Infections: A Key to Understanding Parasite Control. Front Microbiol 2018; 9:1961. [PMID: 30186271 PMCID: PMC6113562 DOI: 10.3389/fmicb.2018.01961] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/02/2018] [Indexed: 12/30/2022] Open
Abstract
Pathogenic trypanosomatids (Trypanosoma cruzi, Trypanosoma brucei, and Leishmania spp.) are protozoan parasites that cause neglected diseases affecting millions of people in Africa, Asia, and the Americas. In the process of infection, trypanosomatids evade and survive the immune system attack, which can lead to a chronic inflammatory state that induces cumulative damage, often killing the host in the long term. The immune mediators involved in this process are not entirely understood. Most of the research on the immunologic control of protozoan infections has been focused on acute inflammation. Nevertheless, when this process is not terminated adequately, permanent damage to the inflamed tissue may ensue. Recently, a second process, called resolution of inflammation, has been proposed to be a pivotal process in the control of parasite burden and establishment of chronic infection. Resolution of inflammation is an active process that promotes the normal function of injured or infected tissues. Several mediators are involved in this process, including eicosanoid-derived lipids, cytokines such as transforming growth factor (TGF)-β and interleukin (IL)-10, and other proteins such as Annexin-V. For example, during T. cruzi infection, pro-resolving lipids such as 15-epi-lipoxin-A4 and Resolvin D1 have been associated with a decrease in the inflammatory changes observed in experimental chronic heart disease, reducing inflammation and fibrosis, and increasing host survival. Furthermore, Resolvin D1 modulates the immune response in cells of patients with Chagas disease. In Leishmania spp. infections, pro-resolving mediators such as Annexin-V, lipoxins, and Resolvin D1 are related to the modulation of cutaneous manifestation of the disease. However, these mediators seem to have different roles in visceral or cutaneous leishmaniasis. Finally, although T. brucei infections are less well studied in terms of their relationship with inflammation, it has been found that arachidonic acid-derived lipids act as key regulators of the host immune response and parasite burden. Also, cytokines such as IL-10 and TGF-β may be related to increased infection. Knowledge about the inflammation resolution process is necessary to understand the host–parasite interplay, but it also offers an interesting opportunity to improve the current therapies, aiming to reduce the detrimental state induced by chronic protozoan infections.
Collapse
Affiliation(s)
- Rodrigo A López-Muñoz
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Alfredo Molina-Berríos
- Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Carolina Campos-Estrada
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso, Chile.,Centro de Investigación Farmacopea Chilena, Universidad de Valparaíso, Valparaíso, Chile
| | - Patricio Abarca-Sanhueza
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Luis Urrutia-Llancaqueo
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Miguel Peña-Espinoza
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Juan D Maya
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
46
|
Krafsur ES, Maudlin I. Tsetse fly evolution, genetics and the trypanosomiases - A review. INFECTION GENETICS AND EVOLUTION 2018; 64:185-206. [PMID: 29885477 DOI: 10.1016/j.meegid.2018.05.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 01/27/2023]
Abstract
This reviews work published since 2007. Relative efforts devoted to the agents of African trypanosomiasis and their tsetse fly vectors are given by the numbers of PubMed accessions. In the last 10 years PubMed citations number 3457 for Trypanosoma brucei and 769 for Glossina. The development of simple sequence repeats and single nucleotide polymorphisms afford much higher resolution of Glossina and Trypanosoma population structures than heretofore. Even greater resolution is offered by partial and whole genome sequencing. Reproduction in T. brucei sensu lato is principally clonal although genetic recombination in tsetse salivary glands has been demonstrated in T. b. brucei and T. b. rhodesiense but not in T. b. gambiense. In the past decade most genetic attention was given to the chief human African trypanosomiasis vectors in subgenus Nemorhina e.g., Glossina f. fuscipes, G. p. palpalis, and G. p. gambiense. The chief interest in Nemorhina population genetics seemed to be finding vector populations sufficiently isolated to enable efficient and long-lasting suppression. To this end estimates were made of gene flow, derived from FST and its analogues, and Ne, the size of a hypothetical population equivalent to that under study. Genetic drift was greater, gene flow and Ne typically lesser in savannah inhabiting tsetse (subgenus Glossina) than in riverine forms (Nemorhina). Population stabilities were examined by sequential sampling and genotypic analysis of nuclear and mitochondrial genomes in both groups and found to be stable. Gene frequencies estimated in sequential samplings differed by drift and allowed estimates of effective population numbers that were greater for Nemorhina spp than Glossina spp. Prospects are examined of genetic methods of vector control. The tsetse long generation time (c. 50 d) is a major contraindication to any suggested genetic method of tsetse population manipulation. Ecological and modelling research convincingly show that conventional methods of targeted insecticide applications and traps/targets can achieve cost-effective reduction in tsetse densities.
Collapse
Affiliation(s)
- E S Krafsur
- Department of Entomology, Iowa State University, Ames, IA 50011, USA.
| | - Ian Maudlin
- School of Biomedical Sciences, The University of Edinburgh, Scotland, UK
| |
Collapse
|
47
|
The Uptake and Metabolism of Amino Acids, and Their Unique Role in the Biology of Pathogenic Trypanosomatids. Pathogens 2018; 7:pathogens7020036. [PMID: 29614775 PMCID: PMC6027508 DOI: 10.3390/pathogens7020036] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 01/24/2023] Open
Abstract
Trypanosoma brucei, as well as Trypanosoma cruzi and more than 20 species of the genus Leishmania, form a group of flagellated protists that threaten human health. These organisms are transmitted by insects that, together with mammals, are their natural hosts. This implies that during their life cycles each of them faces environments with different physical, chemical, biochemical, and biological characteristics. In this work we review how amino acids are obtained from such environments, how they are metabolized, and how they and some of their intermediate metabolites are used as a survival toolbox to cope with the different conditions in which these parasites should establish the infections in the insects and mammalian hosts.
Collapse
|
48
|
Zhang N, Zoltner M, Leung KF, Scullion P, Hutchinson S, del Pino RC, Vincent IM, Zhang YK, Freund YR, Alley MRK, Jacobs RT, Read KD, Barrett MP, Horn D, Field MC. Host-parasite co-metabolic activation of antitrypanosomal aminomethyl-benzoxaboroles. PLoS Pathog 2018; 14:e1006850. [PMID: 29425238 PMCID: PMC5823473 DOI: 10.1371/journal.ppat.1006850] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/22/2018] [Accepted: 01/03/2018] [Indexed: 12/22/2022] Open
Abstract
Recent development of benzoxaborole-based chemistry gave rise to a collection of compounds with great potential in targeting diverse infectious diseases, including human African Trypanosomiasis (HAT), a devastating neglected tropical disease. However, further medicinal development is largely restricted by a lack of insight into mechanism of action (MoA) in pathogenic kinetoplastids. We adopted a multidisciplinary approach, combining a high-throughput forward genetic screen with functional group focused chemical biological, structural biology and biochemical analyses, to tackle the complex MoAs of benzoxaboroles in Trypanosoma brucei. We describe an oxidative enzymatic pathway composed of host semicarbazide-sensitive amine oxidase and a trypanosomal aldehyde dehydrogenase TbALDH3. Two sequential reactions through this pathway serve as the key underlying mechanism for activating a series of 4-aminomethylphenoxy-benzoxaboroles as potent trypanocides; the methylamine parental compounds as pro-drugs are transformed first into intermediate aldehyde metabolites, and further into the carboxylate metabolites as effective forms. Moreover, comparative biochemical and crystallographic analyses elucidated the catalytic specificity of TbALDH3 towards the benzaldehyde benzoxaborole metabolites as xenogeneic substrates. Overall, this work proposes a novel drug activation mechanism dependent on both host and parasite metabolism of primary amine containing molecules, which contributes a new perspective to our understanding of the benzoxaborole MoA, and could be further exploited to improve the therapeutic index of antimicrobial compounds. Human African Trypanomiasis (HAT) is among a list of Neglected Tropical Diseases (NTDs) that impose devastating burdens on both public health and economy of some of the most unprivileged societies across the world. To secure the long-term global control of the disease, it is critical to understand the mechanisms underlying the interactions of drugs and drug candidates with the causative agents as well as resistance potentially arising from use of the compounds. We demonstrated here a metabolic enzymatic cascade dependent on a host-pathogen interaction that determines potency against T. brucei of a series of benzoxaborole compounds. More importantly, this pathway represents a metabolic interaction network between host and pathogen, illuminating an important perspective on understanding mechanism of action.
Collapse
Affiliation(s)
- Ning Zhang
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Martin Zoltner
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Ka-Fai Leung
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Paul Scullion
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Sebastian Hutchinson
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Ricardo C. del Pino
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Isabel M. Vincent
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Yong-Kang Zhang
- Anacor Pharmaceuticals, Inc., Palo Alto, California, United States of America
| | - Yvonne R. Freund
- Anacor Pharmaceuticals, Inc., Palo Alto, California, United States of America
| | - Michael R. K. Alley
- Anacor Pharmaceuticals, Inc., Palo Alto, California, United States of America
| | - Robert T. Jacobs
- Anacor Pharmaceuticals, Inc., Palo Alto, California, United States of America
| | - Kevin D. Read
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Michael P. Barrett
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - David Horn
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Mark C. Field
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
- * E-mail:
| |
Collapse
|
49
|
Lee S, Cheung-See-Kit M, Williams TA, Yamout N, Zufferey R. The glycosomal alkyl-dihydroxyacetonephosphate synthase TbADS is essential for the synthesis of ether glycerophospholipids in procyclic trypanosomes. Exp Parasitol 2018; 185:71-78. [PMID: 29355496 DOI: 10.1016/j.exppara.2018.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 12/30/2017] [Accepted: 01/14/2018] [Indexed: 01/15/2023]
Abstract
Glycerophospholipids are the main constituents of the biological membranes in Trypanosoma brucei, which causes sleeping sickness in humans. The present work reports the characterization of the alkyl-dihydroxyacetonephosphate synthase TbADS that catalyzes the committed step in ether glycerophospholipid biosynthesis. TbADS localizes to the glycosomal lumen. TbADS complemented a null mutant of Leishmania major lacking alkyl-dihydroxyacetonephosphate synthase activity and restored the formation of normal form of the ether lipid based virulence factor lipophosphoglycan. Despite lacking alkyl-dihydroxyacetonephosphate synthase activity, a null mutant of TbADS in procyclic trypanosomes remained viable and exhibited normal growth. Comprehensive analysis of cellular glycerophospholipids showed that TbADS was involved in the biosynthesis of all ether glycerophospholipid species, primarily found in the PE and PC classes.
Collapse
Affiliation(s)
- Sungsu Lee
- Department of Biological Sciences, St John's University, 8000 Utopia Parkway, Jamaica, NY 11439, USA
| | - Melanie Cheung-See-Kit
- Department of Biological Sciences, St John's University, 8000 Utopia Parkway, Jamaica, NY 11439, USA
| | - Tyler A Williams
- Department of Biological Sciences, St John's University, 8000 Utopia Parkway, Jamaica, NY 11439, USA
| | - Nader Yamout
- Department of Biological Sciences, St John's University, 8000 Utopia Parkway, Jamaica, NY 11439, USA
| | - Rachel Zufferey
- Department of Biological Sciences, St John's University, 8000 Utopia Parkway, Jamaica, NY 11439, USA.
| |
Collapse
|
50
|
The Deadly Dance of B Cells with Trypanosomatids. Trends Parasitol 2017; 34:155-171. [PMID: 29089182 DOI: 10.1016/j.pt.2017.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/29/2017] [Accepted: 10/06/2017] [Indexed: 01/18/2023]
Abstract
B cells are notorious actors for the host's protection against several infectious diseases. So much so that early vaccinology seated its principles upon their long-term protective antibody secretion capabilities. Indeed, there are many examples of acute infectious diseases that are combated by functional humoral responses. However, some chronic infectious diseases actively induce immune deregulations that often lead to defective, if not deleterious, humoral immune responses. In this review we summarize how Leishmania and Trypanosoma spp. directly manipulate B cell responses to induce polyclonal B cell activation, hypergammaglobulinemia, low-specificity antibodies, limited B cell survival, and regulatory B cells, contributing therefore to immunopathology and the establishment of persistent infections.
Collapse
|