1
|
Dai D, Kong F, Wang S, Li C, Shen Y, Dong C, Wang S, Chai S, Wang W, Li S. Effects of rumen-degradable starch on lactation performance, gastrointestinal fermentation, and plasma metabolomic in dairy cows. Int J Biol Macromol 2025; 299:140017. [PMID: 39863231 DOI: 10.1016/j.ijbiomac.2025.140017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/30/2024] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
This study investigated the effects of rumen-degradable starch (RDS) on lactation performance, gastrointestinal fermentation, and plasma metabolomics in dairy cows. Six mid-lactation cows, fitted with rumen, duodenum, and ileum cannulas, were used in a duplicated 3 × 3 Latin square design with 28-day periods. The cows were fed a low RDS (LRDS; 62.18 %), medium-RDS (MRDS; 71.25 %), or high-RDS (HRDS; 80.32 %) diet. The results showed that cows fed HRDS had diet a lower milk fat content by 14.77 % (LRDS) and 11.73 % (MRDS), while increased somatic cell count compared to the LRDS and MRDS groups (34.42 and 29.38 %, respectively). Additionally, rumen fluid pH was decreased in the HRDS group than in the MRDS and LRDS groups (7.81 and 7.08 %, respectively), while microbial protein (MCP) concentration was higher in the MRDS group. The HRDS group had lower concentrations of total volatile fatty acids (TVFA) and acetate in the ileal digesta than the LRDS group. The HRDS diet decreased neutral detergent fibre (NDF) digestibility compared with LRDS and MRDS groups (7.68 and 8.50 %, respectively), and reduced plasma concentrations of superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX), while increasing plasma lipopolysaccharide (LPS) and serum amyloid-A (SAA) levels. Pathway analysis revealed that starch and sucrose metabolism, galactose metabolism, and carbohydrate digestion and absorption were upregulated in the MRDS and HRDS groups. The HRDS diet had a tendency to negatively affect linoleic acid metabolism, glycerophospholipid metabolism, and alpha-linolenic acid metabolism. These findings provide insights into optimising feed efficiency and milk quality by regulating RDS levels in dairy cow diets.
Collapse
Affiliation(s)
- Dongwen Dai
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Centre of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Fangling Kong
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Centre of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shuo Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Centre of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Chen Li
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Centre of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Yanjun Shen
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Centre of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Chunxiao Dong
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Centre of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | | | | | - Wei Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Centre of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Centre of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
2
|
Hao S, Sun W, Wei P, Wu H, Lu W, He Y. Supplementation with Rare Earth-Chitosan Chelate Improves Tibia Quality, Disease Resistance Capacity, and Performance in Nursery Pigs. Int J Mol Sci 2025; 26:2409. [PMID: 40141053 PMCID: PMC11942057 DOI: 10.3390/ijms26062409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/16/2025] [Accepted: 02/18/2025] [Indexed: 03/28/2025] Open
Abstract
The aim of this study was to investigate the effects on the tibia, liver, and gut, and on performance, when supplementing nursery pigs with different levels of rare earth-chitosan chelate (RECC). A total of 80 piglets, weaned at 7.67 ± 0.09 kg, were randomly assigned to groups RECC0 (RECC, 0 mg/kg diet), RECC200 (RECC, 200 mg/kg diet), RECC400 (RECC, 400 mg/kg diet), and RECC600 (RECC, 600 mg/kg diet), with four replicates in each group and five pigs per replicate during a 28 d experiment. Samples of the left hind tibia, serum, and feces were collected for analysis. The results indicated that, compared to pigs from group RECC0, pigs from group RECC200 presented with the following: a longer trabecular perimeter (p < 0.05), a larger trabecular area (p < 0.01), a higher trabecular number (p < 0.05), a smaller degree of trabecular separation (p < 0.01), and a lower number of osteoclasts (p < 0.01) in the tibia; higher abundances of beneficial fecal bacteria such as g_Prevotellaceae_NK3B31_group, g_UCG_005, g_Rikenellaceae_RC9_gut_group, g_Acetitomaculum, g_Glutamicibacter, g_Frisingicoccus, and g_Alistipes; higher (p < 0.01) serum levels of IgM, IgA, IgG, and IL-10; a lower (p < 0.01) serum concentration of TNF-α; a higher (p < 0.05) average daily gain and feed conversion ratio; and a lower (p < 0.01) incidence of diarrhea. The dietary addition of RECC contributes to improvements in tibia quality, gut health, and performance in nursery pigs.
Collapse
Affiliation(s)
- Shaobin Hao
- Jiangxi Province Key Laboratory of Animal Nutrition and Feed, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China; (S.H.); (W.S.); (P.W.); (W.L.)
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Wenchen Sun
- Jiangxi Province Key Laboratory of Animal Nutrition and Feed, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China; (S.H.); (W.S.); (P.W.); (W.L.)
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Panting Wei
- Jiangxi Province Key Laboratory of Animal Nutrition and Feed, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China; (S.H.); (W.S.); (P.W.); (W.L.)
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Huadong Wu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Wei Lu
- Jiangxi Province Key Laboratory of Animal Nutrition and Feed, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China; (S.H.); (W.S.); (P.W.); (W.L.)
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Yuyong He
- Jiangxi Province Key Laboratory of Animal Nutrition and Feed, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China; (S.H.); (W.S.); (P.W.); (W.L.)
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China;
| |
Collapse
|
3
|
Kang L, Li X, Zhao X, Liu T, Jin Y, Duan Y. Effects of L-arginine supplementation on fat deposition and meat quality in growing lambs: Interactions with gut microbiota and metabolic signalling pathways. Food Chem 2025; 479:143677. [PMID: 40081064 DOI: 10.1016/j.foodchem.2025.143677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 02/23/2025] [Accepted: 02/28/2025] [Indexed: 03/15/2025]
Abstract
Arginine (ARG) improves meat quality and fat deposition; however, its effects on gut microbiota-mediated lipid metabolism in lambs remain unclear. Twenty-four lambs were divided into control (fed a basal diet) and ARG groups (with 1 % ARG added). In the ARG group, backfat thickness, shear force in the longissimus thoracis (LT) muscle, and C16:0 and SFA contents in the subcutaneous adipose tissue (SAT) were reduced, whereas the eye muscle area, a* value, and intramuscular fat, C18:2n-6c, C20:4n-6, C20:5n-3, and PUFA contents in the LT were elevated. Moreover, the ARG group exhibited higher levels of Prevotella, Akkermansia, Faecalibacterium, SCFAs, and GLP-1 in the colon, and lower serum triglyceride and glucose levels. Interestingly, ARG differentially regulated lipid metabolism in the SAT and LT via the GLP-1R/AMPK and triglyceride metabolism signalling pathways. Overall, ARG addition may optimise gut microbiota composition, fat deposition, and meat quality, providing application guidance for regulating fat deposition in lambs.
Collapse
Affiliation(s)
- Letian Kang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Xuan Li
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Xin Zhao
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Ting Liu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Ye Jin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Yan Duan
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China.
| |
Collapse
|
4
|
Luan J, Feng X, Du Y, Yang D, Geng C. Medium-chain fatty acid triglycerides improve feed intake and oxidative stress of finishing bulls by regulating ghrelin concentration and gastrointestinal tract microorganisms and rumen metabolites. MICROBIOME 2024; 12:230. [PMID: 39511583 PMCID: PMC11542207 DOI: 10.1186/s40168-024-01946-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND As a feed additive, medium-chain fatty acids (MCFAs)/medium-chain fatty acid triglycerides (MCTs) have been used in ruminant production, but mostly added in the form of mixed esters. Studies have shown that MCTs may have a positive effect on feed intake or oxidative stress in animals, but it is unclear which MCT could play a role, and the mechanism has not been elucidated. In this study, the effects of individual MCT on growth performance, serum intake-related hormones, and oxidative stress indices in finishing bulls were investigated and further studied the effects of MCT supplementation on gastrointestinal tract bacteria and rumen fluid metabolomics. RESULTS Four ruminally fistulated Yanbian cattle (bulls) were selected in 4 × 4 Latin square designs and allocated to four treatment groups: a control group (CON) fed a basal diet (total mixed ration, TMR), three groups fed a basal diet supplemented with 60 g/bull/day glycerol monocaprylin (GMC, C8), glycerol monodecanoate (GMD, C10), and glycerol monolaurate (GML, C12), respectively. Compared with the CON group, GMD tended to increase the dry matter intake (DMI) of finishing bulls (P = 0.069). Compared with the CON group, GMD significantly increased the concentration of ghrelin O-acyl transferase (GOAT), total ghrelin (TG), acylated ghrelin (AG), and orexins (P < 0.05) and significantly decreased the concentrations of hydrogen peroxide (H2O2), malondialdehyde, reactive oxygen species (ROS), and lipopolysaccharides (LPS) in the serum of finishing bulls (P < 0.05). Compared with the CON group, GMD and GML significantly increased the concentrations of total antioxidant capacity (T-AOC), catalase, glutathione peroxidase (GSH-PX), glutathione reductase (GR), and nitric oxide (NO) in the serum of finishing bulls (P < 0.05). Compared with the CON group, there were 5, 14, and 6 significantly different bacteria in the rumen digesta in the C8, C10, and C12 groups, respectively; there were 3, 10, and 5 significantly different bacteria in the rumen fluid in the C8, C10, and C12 groups, respectively; and only one differential bacteria (genus level) in the feces among the four treatment groups. Compared with the CON group, there were 3, 14, and 15 significantly differential metabolites identified under positive ionization mode in the C8, C10, and C12 groups, respectively, while under negative ionization mode were 3, 11 and 14, respectively. Correlation analysis showed that there was a significant correlation between DMI, GOAT, AG, GSH-PX, LPS, gastrointestinal tract bacteria, and rumen fluid metabolites. CONCLUSIONS Our findings revealed that different types of MCTs have different application effects in ruminants. Among them, GMD may improve the feed intake of finishing bulls by stimulating the secretion of AG. GMD and GML may change gastrointestinal tract microorganisms and produce specific rumen metabolites to improve the oxidative stress of finishing bulls, and ghrelin may also be involved. This study enlightens the potential mechanisms by which MCT improves feed intake and oxidative stress in finishing bulls. Video Abstract.
Collapse
Affiliation(s)
- Jiaming Luan
- Agricultural College, Yanbian University, Yanji, 133002, China
| | - Xin Feng
- Agricultural College, Yanbian University, Yanji, 133002, China
| | - Yunlong Du
- Agricultural College, Yanbian University, Yanji, 133002, China
| | - Dongxu Yang
- Agricultural College, Yanbian University, Yanji, 133002, China
| | - Chunyin Geng
- Agricultural College, Yanbian University, Yanji, 133002, China.
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, 133002, China.
| |
Collapse
|
5
|
Jin L, Li K, Li Z, Huang X, Wang L, Wang X, Di S, Cui S, Xu Y. Investigation into Critical Gut Microbes Influencing Intramuscular Fat Deposition in Min Pigs. Animals (Basel) 2024; 14:3123. [PMID: 39518846 PMCID: PMC11545367 DOI: 10.3390/ani14213123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/19/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
To determine the pivotal microorganisms affecting intramuscular fat (IMF) accumulation in Min pigs and to discern the extent of the influence exerted by various intestinal segments on IMF-related traits, we sequenced 16S rRNA from the contents of six intestinal segments from a high IMF group (Group H) and a low IMF group (Group L) of Min pigs weighing 90 ± 1 kg. We then compared their diversity and disparities in bacterial genera. Group H exhibited considerably higher α diversity in the jejunum and colon than Group L (p < 0.05). When 95% confidence levels were considered, the main β diversity components for the ileum, caecum, and colon within Groups H and L exhibited absolute segregation. Accordingly, 31 differentially abundant genera across Group H were pinpointed via LEfSe and the Wilcoxon test (p < 0.05) and subsequently scrutinised based on their distribution and abundance across distinct intestinal segments and their correlation with IMF phenotypes. The abundances of Terrisporobacter, Acetitomaculum, Bacteroides, Fibrobacter, Treponema, Akkermansia, Blautia, Clostridium sensu stricto 1, Turicibacter, Subdoligranulum, the [Eubacterium] siraeum group, and dgA 11 gut groups were positively correlated with IMF content (p < 0.05), whereas those of Bacillus, the Lachnospiraceae NK4A136 group, Streptococcus, Roseburia, Solobacterium, Veillonella, Lactobacillus, the Rikenellaceae RC9 gut group, Anaerovibrio, and the Lachnospiraceae AC2044 group were negatively associated with IMF content (p < 0.05). Employing PICRUSt2 for predicting intergenic metabolic pathways that differ among intestinal microbial communities revealed that within the 95% confidence interval the colonic microbiome was enriched with the most metabolic pathways, including those related to lipid metabolism. The diversity results, bacterial genus distributions, and metabolic pathway disparities revealed the colonic segment as an influential region for IMF deposition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shiquan Cui
- College of Animal Science and Technology, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, China; (L.J.); (K.L.); (Z.L.); (X.H.); (L.W.); (X.W.); (S.D.)
| | - Yuan Xu
- College of Animal Science and Technology, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, China; (L.J.); (K.L.); (Z.L.); (X.H.); (L.W.); (X.W.); (S.D.)
| |
Collapse
|
6
|
Weng H, Zeng H, Wang H, Chang H, Zhai Y, Li S, Han Z. Differences in Lactation Performance, Rumen Microbiome, and Metabolome between Montbéliarde × Holstein and Holstein Cows under Heat Stress. Microorganisms 2024; 12:1729. [PMID: 39203571 PMCID: PMC11357101 DOI: 10.3390/microorganisms12081729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/03/2024] Open
Abstract
Heat stress negatively affects lactation performance and rumen microbiota of dairy cows, with different breeds showing varying levels of heat tolerance. This study aimed to compare the lactation performance of Montbéliarde × Holstein (MH, n = 13) and Holstein (H, n = 13) cows under heat stress, and 16S rRNA sequencing and liquid chromatography-mass spectrometry (LC-MS) were used to determine the rumen microbiome and metabolome in experimental cows. The results indicated that during heat stress, milk yield (p = 0.101), milk fat yield, milk protein yield, milk protein, and milk lactose (p < 0.05) in Montbéliarde × Holstein cows were higher than those in Holstein cows, whereas milk yield variation and somatic cell counts (p < 0.05) were lower than those in Holstein cows. The sequencing results indicated that the rumen of Montbéliarde × Holstein cows was significantly enriched with beneficial bacteria, such as Rikenellaceae, Allobaculum, and YRC22 (p < 0.05). In addition, correlations were observed between specific ruminal bacteria and lactation performance. Ruminal metabolites related to antioxidant and anti-inflammatory properties were significantly higher (p < 0.05) in Montbéliarde × Holstein cows than in Holstein cows. Overall, Montbéliarde × Holstein cows showed higher production efficiency under heat stress, which may be related to the different rumen mechanisms of crossbred and Holstein cows in adapting to heat stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhaoyu Han
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
7
|
Mao J, Wang L, Wang Z, Xue B, Peng Q, Hu R, Xiao J. High concentrate diets altered the structure and function of rumen microbiome in goats. Front Microbiol 2024; 15:1416883. [PMID: 39144219 PMCID: PMC11322510 DOI: 10.3389/fmicb.2024.1416883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024] Open
Abstract
This study used metatranscriptomics to investigate the effects of concentrate diet level on rumen microbiome composition and function in goats. A total of 12 healthy 120-day-old Da'er goats were randomly allotted into two treatments: L group (low dietary concentrate level group, concentrate: forage ratio was 25: 75) and H group (high dietary concentrate level group, concentrate: forage ratio was 80: 20). The study included a 10-day pre-feeding period and a 60-day growth experiment. The results showed that compared with the L group, the average daily gain and the slaughter rate in the H group were increased, while the F/G was decreased; the concentration of lactate and ammonia nitrogen, and the proportion of butyrate and valerate in the rumen of the H group were increased, while the proportion of acetate, and the ratio of acetate to propionate were decreased (p < 0.05). Among rumen bacteria, compared with the L group, the H group significantly decreased the relative abundance of Firmicutes and Fibrobacteria at the phylum level, decreased the relative abundance of Bacteroidetes, Fibrobacter, and Sarcina and increased the relative abundance of Clostridium at the genus level, and decreased the relative abundance of Fibrobacter succinogenes, Sarcina sp. DSM 11001, Oscillibacter sp. KLE 1728, and Ruminococcus flavefaciens and increased the relative abundance of Clostridium sp. ND2 and Firmicutes bacteria CAG: 103 at the species level (p < 0.05). Among rumen fungi, the relative abundance of Basidiomycota, Neocallimastigomycota, Mortierella, Mortierella elongata, and Gonapodyna prolifera was lower in the H group than that in the L group (p < 0.05). Functional annotation results showed that the abundance of Glycoside hydrolases genes in rumen microbiome was significantly decreased in the H group compared to the L group (p < 0.05). The result of KEGG DEGs enrichment analysis showed that the gene expression of cellulose 1,4-β-cellobiosidase, acetyl-CoA hydrolase, lactate dehydrogenase, succinate-semialdehyde dehydrogenase, D-malate dehydrogenase and related genes in methane production pathways of rumen microbiome was decreased in the H group. In summary, feeding high concentrate diets improved the production performance of goats, altered the structure and composition of rumen microbiome and changed the function of rumen microbiome.
Collapse
Affiliation(s)
| | - Lizhi Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | | | | | | | | | | |
Collapse
|
8
|
Wu Z, Zhang F, Su Q, Ji Q, Zhu K, Zhang Y, Hou S, Gui L. Integrating 16S rRNA Sequencing and LC-MS-Based Metabolomics to Evaluate the Effects of Dietary Crude Protein on Ruminal Morphology, Fermentation Parameter and Digestive Enzyme Activity in Tibetan Sheep. Animals (Basel) 2024; 14:2149. [PMID: 39123675 PMCID: PMC11310993 DOI: 10.3390/ani14152149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 08/12/2024] Open
Abstract
The dietary crude protein level could affect ruminal fermentation parameters and the microflora of ruminants. The present study's aim was to investigate the effects of different protein level diets on ruminal morphology, fermentation parameters, digestive enzyme activity, microflora and metabolites of Tibetan sheep. Ninety weaned lambs (initial weight of 15.40 ± 0.81 kg, 2 months old) were selected and randomly divided into three groups (six pens/treatment, five rams/pen). Dietary treatments were formulated with 13.03% (high protein, HP), 11.58% (moderate protein, MP) and 10.20% (low protein, LP), respectively. Compared with LP, both papillae length and papillae width were significantly promoted in HP and MP (p < 0.05). The concentrations of ammonia nitrogen, total VFAs, propionic acids and butyric acids in HP were significantly increased compared to those in MP and LP (p < 0.05). The activities of protease and α-amylase in HP were significantly greater than those of LP (p < 0.05). For the ruminal microbial community, higher proportions of phylum Prevotella 1 and Succiniclasticum and genus Rikenellaceae RC9 gut group and Ruminococcus 1 were observed in HP (p < 0.05). A total of 60 differential metabolites (DMs) (28 up, 32 down) between HP and MP; 73 DMs (55 up, 18 down) between HP and LP; and 65 DMs (49 up, 16 down) between MP and LP were identified. Furthermore, four pathways of the biosynthesis of unsaturated fatty acids, tryptophan metabolism, bile secretion and ABC transporters were significantly different (p < 0.05). The abundance of phylum Prevotella 1 was negatively associated with stearic acid and palmitic acid but positively associated with the taurine. The abundance of genus Ruminococcus 1 was negatively associated with stearic acid, oleic acid, erucic acid, Indole-3-acetamide and palmitic acid but positively associated with 6-hydroxymelatonin. In conclusion, a 13.03% CP level improved ruminal morphology, fermentation parameters and digestive enzyme activities through modulating the microbial community and regulating metabolism in Tibetan sheep.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Linsheng Gui
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; (Z.W.); (F.Z.); (Q.S.); (Q.J.); (K.Z.); (Y.Z.); (S.H.)
| |
Collapse
|
9
|
Federiconi A, Ghiaccio F, Mammi L, Cavallini D, Visentin G, Formigoni A, Palmonari A. Changes on the rumen microbial community composition in dairy cows subjected to an acidogenic diet. J Dairy Sci 2024:S0022-0302(24)00846-4. [PMID: 38825118 DOI: 10.3168/jds.2023-24599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/21/2024] [Indexed: 06/04/2024]
Abstract
In modern breeding systems, cows are subjected to many stress factors. Animals fed with a high-grain diet may have a decreased rumen pH, which would lead to subacute ruminal acidosis syndrome. The aim of this study was to investigate the evolution of microbial community composition in cows undergoing a dietary stress challenge. Twelve cows were subjected to a challenge period consisted in a rapid change of ration, from a normal (45.4:54.6 forage: concentrate) to a high-grain content diet (24.8:75.2 forage: concentrate) to induce sub-acute ruminal acidosis. Individual rumen fluid content samples were collected before (T0), and during the challenge (T3, T14, T28). DNA from rumen contents was extracted, purified, and sequenced to evaluate Bacterial populations and sequencing was performed on Illumina MiSeq. The effect of animal conditions on rumen microbial community was quantified through a linear mixed model. The acidogenic diet created 2 main clusters: ruminal hypomotility (RH) and milk fat depression (MFD). The microbial composition did not differ in T0 between the 2 groups, while during the challenge Ruminococcus spp., Treponema spp., Methanobrevibacter spp., and Methanosphaera spp. concentrations increased in RH cows; Succinivibrio spp. and Butyrivibrio spp. concentrations increased in MFD cows. Prevotella spp. and Ruminococcus spp., were negatively correlated, while Christenellaceae family were positively correlated with both Methanobrevibacter spp. and Methanosphaera spp. Moreover, the same diet affected differently cows' microbiota composition, underlying the impact of the host effect. Other studies are necessary to deepen the relationship between microbiota composition and host.
Collapse
Affiliation(s)
- A Federiconi
- DIMEVET, Dipartimento di Scienze Mediche Veterinarie, Università di Bologna, 40064 Ozzano dell'Emilia, Italy.
| | - F Ghiaccio
- DIMEVET, Dipartimento di Scienze Mediche Veterinarie, Università di Bologna, 40064 Ozzano dell'Emilia, Italy
| | - L Mammi
- DIMEVET, Dipartimento di Scienze Mediche Veterinarie, Università di Bologna, 40064 Ozzano dell'Emilia, Italy
| | - D Cavallini
- DIMEVET, Dipartimento di Scienze Mediche Veterinarie, Università di Bologna, 40064 Ozzano dell'Emilia, Italy
| | - G Visentin
- DIMEVET, Dipartimento di Scienze Mediche Veterinarie, Università di Bologna, 40064 Ozzano dell'Emilia, Italy
| | - A Formigoni
- DIMEVET, Dipartimento di Scienze Mediche Veterinarie, Università di Bologna, 40064 Ozzano dell'Emilia, Italy
| | - A Palmonari
- DIMEVET, Dipartimento di Scienze Mediche Veterinarie, Università di Bologna, 40064 Ozzano dell'Emilia, Italy
| |
Collapse
|
10
|
A Ruba Nanthini, C Valli, L Radhakrishnan, D Balasubramanyam, A V Mangalagowri. Lyophilized rumen fluid as a ruminal fermentation modifier in high grain-fed acidotic goats. Trop Anim Health Prod 2024; 56:169. [PMID: 38769230 DOI: 10.1007/s11250-024-04025-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 05/09/2024] [Indexed: 05/22/2024]
Abstract
Rumen cud transfaunation re-establishes rumen micro environment and improves fermentation in recipient animals affected with digestive disorders. Preserving rumen cud or fluid will increase its availability for the treatment of rumen fermentation disorders, without having to maintain donor animals. Rumen fluid collected from healthy goats, fed standard ration having roughage 70% and concentrate 30%, was lyophilized (prefreezing -80 °C, 48 h; lyophilization -45 °C, 32 h) using 5% glycerol as cryoprotectant. The 16 S metagenome analysis of the lyophilized rumen fluid (LRF) revealed an abundance of Prevotella (33.2%). Selenomonas ruminantium (1.87%) and Megasphaera elsdenii (0.23%) were also present. Twenty-four goats having history of high grain feeding and exhibiting clinical symptoms of rumen fermentation disorders were randomly distributed into either one of the two treatment groups viz., T1 = oral administration of LRF 31 g/animal/day and T2 = oral administration of sodium bicarbonate (SB) 15 g/animal/day. Post intervention LRF and SB, improved animal body condition, feed intake, fecal consistency, elevated the ruminal pH at 48 h, reduced propionate and lactate at 48 h, reduced total volatile fatty acids (TVFA) and ammonia nitrogen at 24 h. Significant reduction in serum blood urea nitrogen (BUN) and urea levels were observed even from 24 h post intervention irrespective of the treatments. LRF significantly improved acetate and decreased propionate production compared to SB. LRF at 7.5% (v/v) can thus be used to counteract ruminal fermentation disorders in goats sequel to high grain ration.
Collapse
Affiliation(s)
- A Ruba Nanthini
- Tamil Nadu Veterinary and Animal Sciences University, Chennai, 600 051, India.
| | - C Valli
- Tamil Nadu Veterinary and Animal Sciences University, Chennai, 600 051, India
| | - L Radhakrishnan
- Tamil Nadu Veterinary and Animal Sciences University, Chennai, 600 051, India
| | - D Balasubramanyam
- Tamil Nadu Veterinary and Animal Sciences University, Chennai, 600 051, India
| | - A V Mangalagowri
- Tamil Nadu Veterinary and Animal Sciences University, Chennai, 600 051, India
| |
Collapse
|
11
|
Ma N, Guo J, Li Z, Xu L, Zhang K, Xu T, Chang G, Loor JJ, Shen X. Disturbances of Ruminal Microbiota and Liver Inflammation, Mediated by LPS and Histamine, in Dairy Cows Fed a High-Concentrate Diet. Animals (Basel) 2024; 14:1495. [PMID: 38791713 PMCID: PMC11117260 DOI: 10.3390/ani14101495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
The ecosystem of ruminal microbiota profoundly affects the health and milk production of dairy cows. High-concentrate diets are widely used in dairy farms and evoke a series of metabolic disorders. Several studies have reported the effects of high-concentrate diets on the ruminal microbiome, while the effect of changes in ruminal microbial flora, induced by high-concentrate diet feeding, on the liver of dairy cows has not been studied before. In this study, 12 mid-lactating Holstein Friesian cows (weight of 455 ± 28 kg; parities of 2.5 ± 0.5; starting milk yield of 31.59 ± 3.2 kg/d; DMI of 21.7 ± 1.1 kg/d; and a DIM at the start of the experiment of 135 ± 28 d) were fitted with ruminal fistulas, as well as with portal and hepatic vein catheters. All cows were randomly divided into 2 groups; then, they fed with low-concentrate diets (LC, concentrate: forage = 40:60) and high-concentrate diets (HC, concentrate: forage = 60:40) for 18 weeks. The forage sources were corn silage and alfalfa hay. After the cows of two groups were euthanized over two consecutive days, ruminal microbiota; the concentration of LPS in the rumen content; cecum content; the levels of blood and histamine in rumen fluid, blood, and the liver; the histopathological status of the rumen and cecum; and the inflammatory response of the liver were assessed in dairy cows under conditions of subacute ruminal acidosis (SARA). These conditions were caused by high-concentrate diet feeding. All data were analyzed using the independent t-test in SPSS. The results showed that high-concentrate diet feeding increased the concentration of LPS and histamine in the rumen and plasma of veins (p < 0.05). The abundance of Bacteroidetes at the phylum level, and of both Bacteroidetes and Saccharibacteria at the genus level, was decreased, while the abundance of Firmicutes at the phylum level and Oscillibacter at the genus level was increased by high-concentrate diet feeding. The decreased pH values of ruminal contents (LC = 6.02, HC = 5.90, p < 0.05) and the increased level of LPS in the rumen (LC = 4.921 × 105, HC = 7.855 × 105 EU/mL, p < 0.05) and cecum (LC = 11.960 × 105, HC = 13.115 × 105 EU/mL, p < 0.01) induced the histopathological destruction of the rumen and cecum, combined with the increased mRNA expression of IL-1β (p < 0.05). The histamine receptor H1R and the NF-κB signaling pathway were activated in the liver samples taken from the HC group. In conclusion, the elevated concentrations of LPS and histamine in the gut may be related to changes in the ruminal microbiota. LPS and histamine induced the inflammatory response in the ruminal epithelium, cecum epithelium, and liver. However, the cause-effect mechanism needs to be proved in future research. Our study offers a novel therapeutic strategy by manipulating ruminal microbiota and metabolism to decrease LPS and histamine release and to improve the health of dairy cows.
Collapse
Affiliation(s)
- Nana Ma
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (J.G.); (Z.L.); (L.X.); (K.Z.); (T.X.); (G.C.)
| | - Junfei Guo
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (J.G.); (Z.L.); (L.X.); (K.Z.); (T.X.); (G.C.)
| | - Zhenfu Li
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (J.G.); (Z.L.); (L.X.); (K.Z.); (T.X.); (G.C.)
| | - Lei Xu
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (J.G.); (Z.L.); (L.X.); (K.Z.); (T.X.); (G.C.)
| | - Kai Zhang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (J.G.); (Z.L.); (L.X.); (K.Z.); (T.X.); (G.C.)
| | - Tianle Xu
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (J.G.); (Z.L.); (L.X.); (K.Z.); (T.X.); (G.C.)
| | - Guangjun Chang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (J.G.); (Z.L.); (L.X.); (K.Z.); (T.X.); (G.C.)
| | - Juan J. Loor
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA;
| | - Xiangzhen Shen
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (J.G.); (Z.L.); (L.X.); (K.Z.); (T.X.); (G.C.)
| |
Collapse
|
12
|
Lee H, Kim M, Masaki T, Ikuta K, Iwamoto E, Nishihara K, Nonaka I, Ashihara A, Baek Y, Lee S, Uemoto Y, Haga S, Terada F, Roh S. Assessing the impact of three feeding stages on rumen bacterial community and physiological characteristics of Japanese Black cattle. Sci Rep 2024; 14:4923. [PMID: 38418904 PMCID: PMC10902337 DOI: 10.1038/s41598-024-55539-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/24/2024] [Indexed: 03/02/2024] Open
Abstract
In Japan, Japanese Black cattle, known for their exceptional meat quality owing to their abundant intramuscular fat, undergo a unique three-stage feeding system with varying concentrate ratios. There is limited research on physiological and rumen microbial changes in Japanese Black cattle during these stages. Therefore, this study aimed to examine Japanese Black steers in these three stages: early (T1, 12-14 months), middle (T2, 15-22 months), and late (T3, 23-30 months). The rumen bacteria of 21 cattle per phase was analyzed using 16S rRNA gene sequencing. Rumen bacterial diversity was significantly higher in T1, with a distinct distribution, than in T2 and T3. Specific phyla and genera were exclusive to each stage, reflecting the shifts in feed composition. Certain genera dominated each stage: T1 had Flexilinea, Streptococcus, Butyrivibrio, Selenomonas, and Kandleria; T2 had Bifidobacterium, Shuttleworthia, and Sharpea; and T3 had Acetitomaculum, Mycoplasma, Atopobium, and Howardella. Correlation analysis revealed significant associations between certain microbial populations and physiological parameters. These findings indicate that changes in energy content and feed composition are associated with physiological and ruminal alterations. This study may guide strategies to improve rumen health and productivity in Japanese Black cattle by modifying diets to specific fattening stages.
Collapse
Affiliation(s)
- Huseong Lee
- Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan
| | - Minji Kim
- National Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Ikenodai, Tsukuba, 305-0901, Japan
| | - Tatsunori Masaki
- Hyogo Prefectural Technology Center of Agriculture, Forestry and Fisheries, Kasai, Hyogo, 679-0198, Japan
| | - Kentaro Ikuta
- Hyogo Prefectural Technology Center of Agriculture, Forestry and Fisheries, Kasai, Hyogo, 679-0198, Japan
| | - Eiji Iwamoto
- Hyogo Prefectural Technology Center of Agriculture, Forestry and Fisheries, Kasai, Hyogo, 679-0198, Japan
| | - Koki Nishihara
- Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan
| | - Itoko Nonaka
- National Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Ikenodai, Tsukuba, 305-0901, Japan
| | - Akane Ashihara
- National Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Ikenodai, Tsukuba, 305-0901, Japan
| | - Youlchang Baek
- Animal Nutrition and Physiology Division, National Institute of Animal Science, Wanju, 55365, South Korea
| | - Sungdae Lee
- Animal Nutrition and Physiology Division, National Institute of Animal Science, Wanju, 55365, South Korea
| | - Yoshinobu Uemoto
- Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan
| | - Satoshi Haga
- Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan
| | - Fuminori Terada
- National Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Ikenodai, Tsukuba, 305-0901, Japan
| | - Sanggun Roh
- Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan.
| |
Collapse
|
13
|
Niu X, Xing Y, Wang J, Bai L, Xie Y, Zhu S, Sun M, Yang J, Li D, Liu Y. Effects of Caragana korshinskii tannin on fermentation, methane emission, community of methanogens, and metabolome of rumen in sheep. Front Microbiol 2024; 15:1334045. [PMID: 38426060 PMCID: PMC10902071 DOI: 10.3389/fmicb.2024.1334045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/17/2024] [Indexed: 03/02/2024] Open
Abstract
The purpose of this research was to investigate the impact of dietary supplementation of Caragana korshinskii tannin (CKT) on rumen fermentation, methane emission, methanogen community and metabolome in rumen of sheep. A total of 15 crossbred sheep of the Dumont breed with similar body conditions, were divided into three groups (n = 5), which were fed with CKT addition at 0, 2 and 4%/kg DM. The study spanned a total of 74 days, with a 14-day period dedicated to adaptation and a subsequent 60-day period for conducting treatments. The results indicated that the levels of ammonia nitrogen (NH3-N) and acetate were reduced (p < 0.05) in rumen sheep fed with 2 and 4% CKT; The crude protein (CP) digestibility of sheep in 2 and 4% CKT groups was decreased(p < 0.05); while the neutral detergent fiber (NDF) digestibility was increased (p < 0.05) in 4% CKT group. Furthermore, the supplementation of CKT resulted in a decrease (p < 0.05) in daily CH4 emissions from sheep by reducing the richness and diversity of ruminal methanogens community, meanwhile decreasing (p < 0.05) concentrations of tyramine that contribute to methane synthesis and increasing (p < 0.05) concentrations of N-methy-L-glutamic acid that do not contribute to CH4 synthesis. However, CH4 production of DMI, OMI, NDFI and metabolic weight did not differ significantly across the various treatments. To sum up, the addition of 4% CKT appeared to be a viable approach for reducing CH4 emissions from sheep without no negative effects. These findings suggest that CKT hold promise in mitigating methane emissions of ruminant. Further investigation is required to evaluate it effectiveness in practical feeding strategies for livestock.
Collapse
Affiliation(s)
- Xiaoyu Niu
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yuanyaun Xing
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Jingyao Wang
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Lili Bai
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yongfang Xie
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Shouqian Zhu
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Mei Sun
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Jing Yang
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Dabiao Li
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yuanyuan Liu
- College of Science, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
14
|
Guo Y, Liu S, Li Y, Guo X, Zhao Y, Shi B, Yan S. Intestinal Microbiota Community and Blood Fatty Acid Profiles of Albas Cashmere Goats Fed with Flaxseed Oil and Whole Flaxseed. Animals (Basel) 2023; 13:3531. [PMID: 38003148 PMCID: PMC10668713 DOI: 10.3390/ani13223531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
The present study investigated the effects of flaxseed oil or flaxseed grain on the intestinal microbiota and blood fatty acid profiles of Albas cashmere goats. Sixty kid goats were allocated to three treatments and fed for 90 days with a control treatment, comprising a basal diet (CON, total-mixed ration with flaxseed meal), or experimental treatments, comprising a basal diet with added flaxseed oil (LNO) and a basal diet with added heated flaxseed grain (HLS). On day 90, two goats were randomly selected from each pen (eight goats per treatment) for euthanizing; then, five of the eight goats were randomly selected, and we collected their intestinal (duodenum, jejunum, ileum, cecum, and colon) digesta for analysis of the bacteria community. The results indicated that Firmicutes are the most predominant phylum in different segments of the intestinal digesta. Compared with the CON group, the relative abundance of duodenal Firmicutes, jejunal Saccharibacteria, and Verrucomicrobia significantly decreased in the LNO and HLS groups (p < 0.05), but there was no significant difference between the LNO and HLS groups. Compared with the CON and HLS groups, the RA of duodenal and jejunal Proteobacteria remarkably increased in the LNO group (p < 0.05), and there was no significant difference between the CON and HLS groups. Compared with the CON and LNO groups, the RA of Actinobacteria remarkably increased in the small intestine of the HLS group (p < 0.05), but there was no significant difference between the CON and LNO groups in the duodenum and ileum. The results of linear discriminant analysis (LDA) effect size (LEfSe) analysis showed that the HLS group was characterized by a higher RA of the [Eubacterium]_coprostanoligenes_group in the small intestine and the LNO group was represented by a higher RA of the Lachnospiraceae_NK3A20_group in the cecum and colon, while the CON group was represented by a higher RA of Solobacterium, Pseudoramibacter, and Acetitomaculum in the small intestine and a higher RA of norank_o__Bradymonadales, the Prevotellaceae_Ga6A1_group, and Ruminiclostridium_1 in the cecum and colon. In conclusion, the addition of flaxseed oil and grain rich in c18:3n3 to the diet could reduce the microbial diversity of the small intestinal segments and the microbial diversity and richness of the cecum and colon in Albas cashmere goats. And flaxseed grain is more efficient than flaxseed oil in protecting intestinal health and promoting the absorption of c18:3n3.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sumei Yan
- Key Laboratory of Animal Nutrition and Feed Science at University of Inner Mongolia Autonomous Region, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.G.); (S.L.)
| |
Collapse
|
15
|
Zhang Q, Dong S, Yu H, Li Y, Guo X, Zhao Y, Guo Y, Yan S. Effects of Noni ( Morinda citrifolia L.) Fruit Extract Supplemented in Cashmere Goats with a High-Concentrate Diet on Growth Performance, Ruminal and Colonic Fermentation and SARA. Animals (Basel) 2023; 13:3275. [PMID: 37893999 PMCID: PMC10603706 DOI: 10.3390/ani13203275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
This experiment was conducted to investigate the effects of noni fruit extract (NFE) on growth performance, ruminal and colonic fermentation, nutrient digestion, and subacute rumen acidosis (SARA) of cashmere goats with the high-concentrate diet. Twenty-four cashmere kids (17.9 ± 1.45 kg of BW ± SD) were randomly assigned to three treatments: low-concentrate diet, high-concentrate (HC) diet, or HC diet supplemented with NFE at 1 g per kg DM (0.1%). The results showed that although the HC diet improved the average daily gain (ADG) and feed conversion rate (FCR), it was accompanied by SARA with a decreased pH and an increased lactic acid of both rumen and colon, and decreased digestibility of neutral detergent fiber (NDF)and acid detergent fiber (ADF). The supplementation of 0.10% NFE in the HC diet could not only effectively alleviate SARA symptoms and colon fermentation disorders, such as reversing the decrease of pH and alleviating the increase of lactic acid in rumen and colon, but also mitigate the decline of fiber digestibility caused by long-term feeding in the HC diet, and increase the digestibility of crude protein(CP) and dry matter (DM), which improved the ADG and FCR of cashmere kids. Thus, NFE provides new strategies for alleviating SARA and promoting cashmere goat growth.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sumei Yan
- Key Laboratory of Animal Nutrition and Feed Science at Universities of Inner Mongolia Autonomous Region, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Q.Z.); (S.D.); (H.Y.); (Y.L.); (X.G.); (Y.Z.); (Y.G.)
| |
Collapse
|
16
|
Sha Y, Guo X, He Y, Li W, Liu X, Zhao S, Hu J, Wang J, Li S, Zhao Z, Hao Z. Synergistic Responses of Tibetan Sheep Rumen Microbiota, Metabolites, and the Host to the Plateau Environment. Int J Mol Sci 2023; 24:14856. [PMID: 37834304 PMCID: PMC10573510 DOI: 10.3390/ijms241914856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/30/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023] Open
Abstract
Plateau adaptation in animals involves genetic mechanisms as well as coevolutionary mechanisms of the microbiota and metabolome of the animal. Therefore, the characteristics of the rumen microbiome and metabolome, transcriptome, and serum metabolome of Tibetan sheep at different altitudes (4500 m, 3500 m, and 2500 m) were analyzed. The results showed that the rumen differential metabolites at 3500 m and 4500 m were mainly enriched in amino acid metabolism, lipid metabolism, and carbohydrate metabolism, and there was a significant correlation with microbiota. The differentially expressed genes and metabolites at middle and high altitudes were coenriched in asthma, arachidonic acid metabolism, and butanoate and propanoate metabolism. In addition, the serum differential metabolites at 3500 m and 4500 m were mainly enriched in amino acid metabolism, lipid metabolism, and metabolism of xenobiotics by cytochrome P450, and they were also related to microbiota. Further analysis revealed that rumen metabolites accounted for 7.65% of serum metabolites. These common metabolites were mainly enriched in metabolic pathways and were significantly correlated with host genes (p < 0.05). This study found that microbiota, metabolites, and epithelial genes were coenriched in pathways related to lipid metabolism, energy metabolism, and immune metabolism, which may be involved in the regulation of Tibetan sheep adaptation to plateau environmental changes.
Collapse
Affiliation(s)
- Yuzhu Sha
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (Y.S.); (X.G.); (S.Z.); (J.H.); (J.W.); (S.L.); (Z.Z.); (Z.H.)
| | - Xinyu Guo
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (Y.S.); (X.G.); (S.Z.); (J.H.); (J.W.); (S.L.); (Z.Z.); (Z.H.)
| | - Yanyu He
- School of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand;
| | - Wenhao Li
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China;
| | - Xiu Liu
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (Y.S.); (X.G.); (S.Z.); (J.H.); (J.W.); (S.L.); (Z.Z.); (Z.H.)
| | - Shengguo Zhao
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (Y.S.); (X.G.); (S.Z.); (J.H.); (J.W.); (S.L.); (Z.Z.); (Z.H.)
| | - Jiang Hu
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (Y.S.); (X.G.); (S.Z.); (J.H.); (J.W.); (S.L.); (Z.Z.); (Z.H.)
| | - Jiqing Wang
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (Y.S.); (X.G.); (S.Z.); (J.H.); (J.W.); (S.L.); (Z.Z.); (Z.H.)
| | - Shaobin Li
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (Y.S.); (X.G.); (S.Z.); (J.H.); (J.W.); (S.L.); (Z.Z.); (Z.H.)
| | - Zhidong Zhao
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (Y.S.); (X.G.); (S.Z.); (J.H.); (J.W.); (S.L.); (Z.Z.); (Z.H.)
| | - Zhiyun Hao
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (Y.S.); (X.G.); (S.Z.); (J.H.); (J.W.); (S.L.); (Z.Z.); (Z.H.)
| |
Collapse
|
17
|
Li M, Zi X, Lv R, Zhang L, Ou W, Chen S, Hou G, Zhou H. Cassava Foliage Effects on Antioxidant Capacity, Growth, Immunity, and Ruminal Microbial Metabolism in Hainan Black Goats. Microorganisms 2023; 11:2320. [PMID: 37764163 PMCID: PMC10535588 DOI: 10.3390/microorganisms11092320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/27/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Cassava (Manihot esculenta Crantz) foliage is a byproduct of cassava production characterized by high biomass and nutrient content. In this study, we investigated the effects of cassava foliage on antioxidant capacity, growth performance, and immunity status in goats, as well as rumen fermentation and microbial metabolism. Twenty-five Hainan black goats were randomly divided into five groups (n = 5 per group) and accepted five treatments: 0% (T1), 25% (T2), 50% (T3), 75% (T4), and 100% (T5) of the cassava foliage silage replaced king grass, respectively. The feeding experiment lasted for 70 d (including 10 d adaptation period and 60 d treatment period). Feeding a diet containing 50% cassava foliage resulted in beneficial effects for goat growth and health, as reflected by the higher average daily feed intake (ADFI), average daily gain (ADG) and better feed conversion rate (FCR), as well as by the reduced serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), creatinine (CRE), and triglycerides (TG). Meanwhile, cassava foliage improved antioxidant activity by increasing the level of glutathion peroxidase (GSH-Px), superoxide dismutase (SOD), and total antioxidant capacity (T-AOC) and lowering malondialdehyde (MDA). Moreover, feeding cassava foliage was also beneficial to immunity status by enhancing complement 3 (C3), complement 4 (C4), immunoglobulin A (IgA), immunoglobulin G (IgG), and immunoglobulin M (IgM). Furthermore, the addition of dietary cassava foliage also altered rumen fermentation, rumen bacterial community composition, and metabolism. The abundance of Butyrivibrio_2 and Prevotella_1 was elevated, as were the concentrations of beneficial metabolites such as butyric acid; there was a concomitant decline in metabolites that hindered nutrient metabolism and harmed host health. In summary, goats fed a diet containing 50% cassava foliage silage demonstrated a greater abundance of Butyrivibrio_2, which enhanced the production of butyric acid; these changes led to greater antioxidant capacity, growth performance, and immunity in the goats.
Collapse
Affiliation(s)
- Mao Li
- Key Laboratory of Ministry of Agriculture and Rural Affairs for Germplasm Resources Conservation and Utilization of Cassava, Key Laboratory of Ministry of Agriculture and Rural Affairs for Crop Gene Resources and Germplasm Enhancement in Southern China, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524000, China
| | - Xuejuan Zi
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Key Laboratory of Germplasm Resources of Tropical Special Ornamental Plants of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| | - Renlong Lv
- Key Laboratory of Ministry of Agriculture and Rural Affairs for Germplasm Resources Conservation and Utilization of Cassava, Key Laboratory of Ministry of Agriculture and Rural Affairs for Crop Gene Resources and Germplasm Enhancement in Southern China, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524000, China
| | - Lidong Zhang
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Key Laboratory of Germplasm Resources of Tropical Special Ornamental Plants of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| | - Wenjun Ou
- Key Laboratory of Ministry of Agriculture and Rural Affairs for Germplasm Resources Conservation and Utilization of Cassava, Key Laboratory of Ministry of Agriculture and Rural Affairs for Crop Gene Resources and Germplasm Enhancement in Southern China, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
| | - Songbi Chen
- Key Laboratory of Ministry of Agriculture and Rural Affairs for Germplasm Resources Conservation and Utilization of Cassava, Key Laboratory of Ministry of Agriculture and Rural Affairs for Crop Gene Resources and Germplasm Enhancement in Southern China, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
| | - Guanyu Hou
- Key Laboratory of Ministry of Agriculture and Rural Affairs for Germplasm Resources Conservation and Utilization of Cassava, Key Laboratory of Ministry of Agriculture and Rural Affairs for Crop Gene Resources and Germplasm Enhancement in Southern China, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524000, China
| | - Hanlin Zhou
- Key Laboratory of Ministry of Agriculture and Rural Affairs for Germplasm Resources Conservation and Utilization of Cassava, Key Laboratory of Ministry of Agriculture and Rural Affairs for Crop Gene Resources and Germplasm Enhancement in Southern China, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524000, China
| |
Collapse
|
18
|
Hartinger T, Kröger I, Neubauer V, Faas J, Doupovec B, Schatzmayr D, Zebeli Q. Zearalenone and Its Emerging Metabolites Promptly Affect the Rumen Microbiota in Holstein Cows Fed a Forage-Rich Diet. Toxins (Basel) 2023; 15:185. [PMID: 36977076 PMCID: PMC10053043 DOI: 10.3390/toxins15030185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/13/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
The study investigated the short-term effects of a single oral bolus of zearalenone (ZEN) on the rumen microbiota and fermentation patterns in four rumen-cannulated Holstein cows fed a forage diet with daily 2 kg/cow concentrate. During the baseline day, cows received uncontaminated concentrate, followed by ZEN-contaminated concentrate on the second day, and again the uncontaminated concentrate on day three. Free rumen liquid (FRL) and particle-associated rumen liquid (PARL) were collected at different hours post-feeding on all days to analyze the prokaryotic community composition, absolute abundances of bacteria, archaea, protozoa, and anaerobic fungi, as well as short-chain fatty acid (SCFA) profiles. The ZEN reduced the microbial diversity in FRL but not in the PARL fraction. The abundance of protozoa was higher after ZEN exposure in PARL, which may be related to their strong biodegradation capacity that, therefore, promoted protozoal growth. In contrast, α-zearalenol might compromise anaerobic fungi as indicated by reduced abundances in FRL and fairly negative correlations in both fractions. Total SCFA significantly increased in both fractions after ZEN exposure, while the SCFA profile only changed marginally. Concluding, a single ZEN challenge caused changes in the rumen ecosystem soon after intake, including ruminal eukaryotes, that should be the subject of future studies.
Collapse
Affiliation(s)
- Thomas Hartinger
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Iris Kröger
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Viktoria Neubauer
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Johannes Faas
- Biomin Research Center, Biomin Holding GmbH, 3430 Tulln, Austria
| | - Barbara Doupovec
- Biomin Research Center, Biomin Holding GmbH, 3430 Tulln, Austria
| | - Dian Schatzmayr
- Biomin Research Center, Biomin Holding GmbH, 3430 Tulln, Austria
| | - Qendrim Zebeli
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, 1210 Vienna, Austria
| |
Collapse
|
19
|
High-Grain Diet Feeding Altered Blood Metabolites, Rumen Microbiome, and Metabolomics of Yaks. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Currently, information available on the comprehensive changes in the rumen bacteria and metabolites of yaks fed high-grain diets is limited. This study aimed to investigate the effects of high-grain diet feeding on the blood metabolites, rumen microbiome, and metabolomics of yaks by using 16S rDNA gene sequencing and liquid chromatography–mass spectrometry (LC/MS). Here, fourteen healthy male yaks (body weight, 249.61 ± 8.13 kg) were randomly assigned to two different diets: a hay diet (0% grain, CON, n = 7), or a high-grain diet (70% grain, HG, n = 7). At the 74th day of treatment, blood and ruminal fluid samples were collected for the blood metabolites, rumen microbiome, and metabolomics analyses. The HG diet increased lipopolysaccharides (LPS), aspartate aminotransferase (AST), gamma-glutamyltransferase (GGT), haptoglobin (HPT), serum amyloid-A (SAA), interleukin-1β (IL1-β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) serum concentrations (p < 0.05). Compared with the CON diet, the HG diet decreased rumen pH (p < 0.05), and increased total volatile fatty acids concentration, and proportion of butyrate (p < 0.05). The relative abundance of Firmicutes and Saccharibacteria were higher (p < 0.05), while Bacteroidetes was lower (p < 0.05) in the HG group than those in the CON group. At the genus level, the relative abundance of Christensenelaceae_R-7_group, Ruminococcaceae_NK4A214_group, Lachnospiraceae_NK3A20_group, and Acetitomaculum were higher than in those in the HG diet (p < 0.05). Compared with the CON group, the HG diet increased the concentrations of biogenic amines (histamine, tyramine, and putrescine), common amino acids (phenylalanine, threonine, serine, etc.), and arachidonic acid (prostaglandin H2, prostaglandin E2, 12(S)-HPETE, etc.). Collectively, these findings demonstrate that the HG diet altered the microbiota and metabolites, as well as potentially damaged their rumen health and induced inflammation in yaks.
Collapse
|
20
|
Guo Y, Wang F, Mao Y, Kong W, Wang J, Zhang G. Influence of Parturition on Rumen Bacteria and SCFAs in Holstein Cows Based on 16S rRNA Sequencing and Targeted Metabolomics. Animals (Basel) 2023; 13:782. [PMID: 36899639 PMCID: PMC10000066 DOI: 10.3390/ani13050782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/06/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
The rumen fluids from ten cows at Day 3~5 before calving and Day 0 after calving were collected to analyze the composition and quantity of bacterial communities and concentrations of SCFAs. The results showed that the relative abundances of unidentified Lachnospiraceae, Acetitomaculum, Methanobrevibacter, Olsenella, Syntrophococcus, Lachnospira, and Lactobacillus genera were significant increased (p < 0.05), while that of unidentified-Prevotellaceae was notably decreased after calving (p < 0.05). In addition, the concentrations of acetic acid, propionic acid, butyric acid, and caproic acid obviously decreased after calving (p < 0.01). Our findings show that parturition altered the rumen microbiota and their fermentation ability in dairy cows. This study defines a rumen bacteria and metabolic profile of SCFAs associated with parturition in dairy cows.
Collapse
Affiliation(s)
- Yansheng Guo
- College of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Feifei Wang
- College of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Yongxia Mao
- College of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Weiyi Kong
- College of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Jiandong Wang
- Institute of Animal Sciences, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan 750002, China
| | - Guijie Zhang
- College of Agriculture, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
21
|
Gao K, Geng C. Alterations in the rumen bacterial communities and metabolites of finishing bulls fed high-concentrate diets supplemented with active dry yeast and yeast culture. Front Microbiol 2022; 13:908244. [PMID: 36605509 PMCID: PMC9810264 DOI: 10.3389/fmicb.2022.908244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
This study investigated the effects of active dry yeast (ADY) and yeast culture (YC) supplementation on rumen bacteria and metabolites in finishing bulls fed high-concentrate diets using the full-length 16S rDNA gene sequencing and liquid chromatography-mass spectrometry. Supplementation with ADY improved the alpha diversity and relative abundance of rumen bacteria, while YC only affected relative abundance of rumen bacteria at the genus level. Sixty-three differential metabolites were identified in rumen fluid after ADY supplementation, and 17 after YC. PICRUSt2 functional prediction showed that ADY supplementation improved the capacity of amino acid metabolism, lipid metabolism, carbohydrate metabolism, metabolism of terpenoids and polyketides, and energy metabolism in rumen bacteria (all P < 0.05). Correlation analysis showed that the rumen differential metabolites following ADY supplementation were mainly related to Oligosphaera, Verruc, Mycoplasma, and Anaeroplasma. Supplementation with ADY was more effective than YC in remodeling the rumen bacterial flora structure and metabolite composition under high-concentrate diets.
Collapse
Affiliation(s)
- Kai Gao
- College of Agriculture, Yanbian University, Yanji, China
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, China
| | - Chunyin Geng
- College of Agriculture, Yanbian University, Yanji, China
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, China
| |
Collapse
|
22
|
Wang YL, Wang WK, Wu QC, Zhang F, Li WJ, Li SL, Wang W, Cao ZJ, Yang HJ. In Situ Rumen Degradation Characteristics and Bacterial Colonization of Corn Silages Differing in Ferulic and p-Coumaric Acid Contents. Microorganisms 2022; 10:2269. [PMID: 36422339 PMCID: PMC9695934 DOI: 10.3390/microorganisms10112269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/05/2022] [Accepted: 11/05/2022] [Indexed: 03/05/2024] Open
Abstract
In plant cell wall, ferulic acid (FA) and p-coumaric acid (pCA) are commonly linked with arabinoxylans and lignin through ester and ether bonds. These linkages were deemed to hinder the access of rumen microbes to cell wall polysaccharides. The attachment of rumen microbes to plant cell wall was believed to have profound effects on the rate and the extent of forage digestion in rumen. The objective of this study was to evaluate the effect of bound phenolic acid content and their composition in corn silages on the nutrient degradability, and the composition of the attached bacteria. Following an in situ rumen degradation method, eight representative corn silages with different FA and pCA contents were placed into nylon bags and incubated in the rumens of three matured lactating Holstein cows for 0, 6, 12, 24, 36, 48, and 72 h, respectively. Corn silage digestibility was assessed by in situ degradation methods. As a result, the effective degradability of dry matter, neutral detergent fibre, and acid detergent fibre were negatively related to the ether-linked FA and pCA, and their ratio in corn silages, suggesting that not only the content and but also the composition of phenolic acids significantly affected the degradation characteristics of corn silages. After 24 h rumen fermentation, Firmicutes, Actinobacteria, and Bacteroidota were observed as the dominant phyla in the bacterial communities attached to the corn silages. After 72 h rumen fermentation, the rumen degradation of ester-linked FA was much greater than that of ester-linked pCA. The correlation analysis noted that Erysipelotrichaceae_UCG-002, Olsenella, Ruminococcus_gauvreauii_group, Acetitomaculum, and Bifidobacterium were negatively related to the initial ether-linked FA content while Prevotella was positively related to the ether-linked FA content and the ratio of pCA to FA. In summary, the present results suggested that the content of ether-linked phenolic acids in plant cell walls exhibited a more profound effect on the pattern of microbial colonization than the fibre content.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hong-Jian Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
23
|
Shah T, Malhi M, Kachiwal AB, Bhutto B, Shah QA, Lei Y, Soomro SA, Soomro J, Kalhoro NH, Gui H. Ameliorative effects of supranutritional selenium on TLR-4-NF-kB-TNF-α-mediated hepatic oxidative injury and inflammation in goats fed high concentrate diet. Food Sci Nutr 2022; 10:3842-3854. [PMID: 36348775 PMCID: PMC9632208 DOI: 10.1002/fsn3.2980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 11/10/2022] Open
Abstract
We examined whether surplus dietary selenium (Se) supply could alleviate high concentrate (HC) diet-induced hepatic oxidative stress (OS) and inflammation. Eighteen young goats were distributed into three groups; were fed low (LC, concentrate: forage; 35: 65), high concentrate (HC, 65: 35), or Se-supplemented HC (HCSe, 65: 35 + 0.5 mg Se kg-1 diet) diets for 10 weeks. Short chain fatty acids, OS markers and immunoinflammatory genes expressions were assessed through gas chromatograph, kits, and RT-qPCR, respectively. Compared with LC, HC diet increased (p < .05) colonic and serum lipopolysaccharide (LPS) levels and induced hepatic oxidative injury by increasing (p < .05) malondialdehyde (MDA) levels and decreasing (p < .05) activities of glutathione peroxidase, superoxide dismutase, and catalase. HC diet altered hepatic mRNA expressions of toll-like receptor-4 (TLR-4), cluster of differentiation-14 (CD-14), tumor necrosis factor-α (TNF-α), TNF receptor-associated factor-6 (TRAF-6), nuclear factor kappa B (NF-κB), interleukin-1β (IL-1β), IL-10, IL-13, LPS-binding protein (LBP), serum amyloid A (SAA), α-acid glycoprotein (AGP), and albumin (ALB). Conversely, extra-Se supply lowered LPS and attenuated antioxidant status and inflammation in liver. In conclusion, HC diet induced oxidative lesions and TLR-4 pathway-mediated inflammation, whereas supranutritional Se alleviated oxidative and inflammatory lesions through TLR-4 pathway regulation in goat liver.
Collapse
Affiliation(s)
- Tahmina Shah
- Department Veterinary Physiology and BiochemistrySindh Agricultural UniversityTandojamPakistan
| | - Moolchand Malhi
- Department Veterinary Physiology and BiochemistrySindh Agricultural UniversityTandojamPakistan
| | - Allah Bux Kachiwal
- Department Veterinary Physiology and BiochemistrySindh Agricultural UniversityTandojamPakistan
| | - Bachal Bhutto
- Department of Veterinary ParasitologySindh Agricultural UniversityTandojamPakistan
| | - Qurban Ali Shah
- Department Veterinary PathologyLasbela University of Agriculture, Water and Marine ScienceUthalBalochistanPakistan
| | - Yan Lei
- Dairy Herd Improvement CenterHenan Animal Husbandry BureauZhengzhouChina
| | - Saeed Ahmed Soomro
- Department Veterinary Physiology and BiochemistrySindh Agricultural UniversityTandojamPakistan
| | - Jamila Soomro
- Department Veterinary Physiology and BiochemistrySindh Agricultural UniversityTandojamPakistan
| | | | - Hongbing Gui
- Institute of Animal SciencesJiangsu Academy of Agriculture ScienceNanjingChina
| |
Collapse
|
24
|
Pang K, Dai D, Yang Y, Wang X, Liu S, Huang W, Xue B, Chai S, Wang S. Effects of high concentrate rations on ruminal fermentation and microbiota of yaks. Front Microbiol 2022; 13:957152. [PMID: 36246255 PMCID: PMC9558216 DOI: 10.3389/fmicb.2022.957152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Ruminal microflora is closely correlated with the ruminant’s diet. However, information regarding the effect of high concentrate diets on rumen microflora in yaks is lacking. In the current study, 24 healthy male yaks were randomly assigned to two groups, each fed with different diets: less concentrate (LC; concentrate: coarse = 40: 60) and high concentrate (HC; concentrate: coarse = 80: 20) diets. Subsequently, a 21-day feeding trial was performed with the yaks, and rumen fluid samples were collected and compared using 16 s rRNA sequencing. The results showed that NH3-N, total VFA, acetate, butyrate, isobutyrate, and isovalerate were significantly higher in the HC group than that in the LC group (p < 0.05), while microbial diversity and richness were significantly lower in the HC group (p < 0.05). Principal coordinate analysis indicated that rumen microflora was significantly different in LC and HC groups (p < 0.05). In the rumen, phyla Firmicutes and Bacteroidota were the most abundant bacteria, with Firmicutes being more abundant, and Bacteroidota being less abundant in the HC group than those found in the LC group. Christensenellaceae_R-7_group and Prevotella are the highest abundant ones at the genus level. The relative abundance of Acetitomaculum, Ruminococcus, and Candidatus_Saccharimonas were significantly higher in the HC group than that in the LC group (p < 0.05), while the relative abundance of Olsenella was significantly lower in the HC group than in the LC group (p < 0.05). Compared to the LC group, the relative abundance of Prevotella, Ruminococcus, and Candidatus_Saccharimonas was significantly higher in the HC group. The relative abundances of Prevotella, Prevotellaceae_UCG-003, Olsenella, Ruminococcus, Acetitomaculum, Candidatus_Saccharimonas, and NK4A214_group were correlated with ruminal fermentation parameters (p < 0.05). Furthermore, PICRUSt 2 estimation indicated that microbial genes associated with valine, leucine, and isoleucine biosynthesis were overexpressed in the rumen microflora of yaks in the HC group (p < 0.05). Conclusively, our results suggest that high concentrate diets affect the microflora composition and fermentation function in yak rumen. The present findings would provide new insights into the health of yaks under high concentrate feeding conditions and serve as a potent reference for the short-term fattening processes of yaks.
Collapse
Affiliation(s)
- Kaiyue Pang
- Qinghai Academy of Animal Husbandry and Veterinary Sciences in Qinghai University, Xining, Qinghai, China
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xining, Qinghai, China
- Yak Engineering Technology Research Center of Qinghai Province, Xining, Qinghai, China
| | - Dongwen Dai
- Qinghai Academy of Animal Husbandry and Veterinary Sciences in Qinghai University, Xining, Qinghai, China
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xining, Qinghai, China
- Yak Engineering Technology Research Center of Qinghai Province, Xining, Qinghai, China
| | - Yingkui Yang
- Qinghai Academy of Animal Husbandry and Veterinary Sciences in Qinghai University, Xining, Qinghai, China
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xining, Qinghai, China
- Yak Engineering Technology Research Center of Qinghai Province, Xining, Qinghai, China
| | - Xun Wang
- Qinghai Academy of Animal Husbandry and Veterinary Sciences in Qinghai University, Xining, Qinghai, China
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xining, Qinghai, China
- Yak Engineering Technology Research Center of Qinghai Province, Xining, Qinghai, China
| | - Shujie Liu
- Qinghai Academy of Animal Husbandry and Veterinary Sciences in Qinghai University, Xining, Qinghai, China
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xining, Qinghai, China
- Yak Engineering Technology Research Center of Qinghai Province, Xining, Qinghai, China
| | - Weihua Huang
- Qinghai Academy of Animal Husbandry and Veterinary Sciences in Qinghai University, Xining, Qinghai, China
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xining, Qinghai, China
- Yak Engineering Technology Research Center of Qinghai Province, Xining, Qinghai, China
| | - Bin Xue
- Qinghai Academy of Animal Husbandry and Veterinary Sciences in Qinghai University, Xining, Qinghai, China
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xining, Qinghai, China
- Yak Engineering Technology Research Center of Qinghai Province, Xining, Qinghai, China
| | - Shatuo Chai
- Qinghai Academy of Animal Husbandry and Veterinary Sciences in Qinghai University, Xining, Qinghai, China
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xining, Qinghai, China
- Yak Engineering Technology Research Center of Qinghai Province, Xining, Qinghai, China
- *Correspondence: Shatuo Chai,
| | - ShuXiang Wang
- Qinghai Academy of Animal Husbandry and Veterinary Sciences in Qinghai University, Xining, Qinghai, China
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xining, Qinghai, China
- Yak Engineering Technology Research Center of Qinghai Province, Xining, Qinghai, China
- ShuXiang Wang,
| |
Collapse
|
25
|
Active Dry Yeast and Thiamine in Synergistic Mode Can Mitigate Adverse Effects of In Vitro Ruminal Acidosis Model of Goats. Animals (Basel) 2022; 12:ani12182333. [PMID: 36139193 PMCID: PMC9495026 DOI: 10.3390/ani12182333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Ruminal acidosis is a type of metabolic disorder of high-yielding ruminants which is associated with the consumption of a high-grain diet. It not only harms the productive efficiency, health and wellbeing of the animals but also has detrimental effects on the economy of the farmers. Various strategies have been adapted to control ruminal acidosis. However, none of them have produced the desired results. This research was carried out to investigate the potential of active dry yeast (ADY) and thiamine in a synergistic mode to mitigate in vitro-induced ruminal acidosis. The purpose of this study was to determine how active dry yeast alone and in combination with thiamine affected the ruminal pH, lactate, volatile fatty acids, lipopolysaccharides (LPS) and microbial community in in vitro-induced ruminal acidosis. The experiment comprises three treatment groups, (1) SARA/control, (2) ADY and (3) ADYT (ADY + thiamine). In vitro batch fermentation was conducted for 24 h. The results indicated that ruminal induced successfully and both additives improved the final pH (p < 0.01) and decreased the LPS and lactate (p < 0.01) level as compared to the SARA group. However, the ADYT group decreased the level of lactate below 0.5 mmol/L. Concomitant to fermentation indicators, both the treatment groups decreased (p < 0.05) the abundance of lactate-producing bacteria while enhancing (p < 0.01) the abundance of lactate-utilizing bacteria. However, ADYT also increased (p < 0.05) the abundance of protozoa compared to the SARA and ADY group. Therefore, it can be concluded that ADY and thiamine in synergistic mode could be a better strategy in combating the adverse effects of subacute ruminal acidosis.
Collapse
|
26
|
Enteric Methane Emission, Rumen Fermentation and Microbial Profiles of Meat-Master Lambs Supplemented with Barley Fodder Sprouts. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8090434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study evaluated the effects of barley sprout on the ruminal fermentation characteristics, enteric methane emission and microbiome profiles of meat-master lambs. Twelve uncastrated lambs aged 3 months were used. They were randomly assigned to three dietary treatments: Eragrostis curvula hay as a control diet (T1), grass hay plus 25% barley sprouts (T2) and grass hay plus 50% barley sprouts (T3). Animals were fed the diet for 61 days, including 10 days of adaptation. Four animals per treatment were used to collect methane and rumen fluid. Methane emission was recorded for nine consecutive days, from day 52 to 60, using a hand-held laser detector. Rumen fluid was collected on day 61 using an esophageal stomach tube for volatile fatty acid and DNA sequencing. The sprout supplementation had significant (p < 0.05) effects on methane emission and ruminal fermentation. Significant effects on rumen fermentation were observed with regards to ammonia–nitrogen (NH3-N), acetic acid and a tendency (p < 0.0536) to increase propionic acid. Barley sprouts reduced methane gas emission, ammonia–nitrogen and the enhanced body weight of the animals. The bacteria Bacteroidota and Firmicutes were predominant among the identified phyla. In addition, there was a shift in the relative abundance of phylum among the treatments. The principal coordinate analysis showed a clear difference in microbiome among animals in T1 and those in T2 and T3. The sprout supplementation improves feed utilization efficiency by the animals. In conclusion, barley sprouts may be strategically used as a climate-smart feed resource for ruminants.
Collapse
|
27
|
Elmhadi ME, Ali DK, Khogali MK, Wang H. Subacute ruminal acidosis in dairy herds: Microbiological and nutritional causes, consequences, and prevention strategies. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 10:148-155. [PMID: 35702144 PMCID: PMC9168481 DOI: 10.1016/j.aninu.2021.12.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/25/2021] [Accepted: 12/13/2021] [Indexed: 11/29/2022]
Abstract
Dairy cattle are frequently fed high-concentrate (HC) diets in modern intensive feeding systems, especially in the transition period. During this period, cows face many alterations that include hormonal changes and shifting to a lactating state. Switching to a HC diet that may disrupt the ruminal microbiota balance can lead to subacute ruminal acidosis (SARA). Moreover, the main factor shaping the rumen microbiota is dietary composition, especially the ratio of starch to fibrous carbohydrates. Feeding highly fermentable carbohydrate diets after adaptation to forage diets leads to a rumen fermentation rate that exceeds rumen absorption and buffering rates, resulting in a reduction in ruminal pH. As a result of Gram-negative bacterial cell lysis, an increase in harmful ruminal bacterial metabolites, including lipopolysaccharide, lactic acid, and histamine, is observed. The interactions between the host immune system and the ruminal microbiota play an essential role in many physiological processes and the development of the disorder. Progress in DNA sequencing and bioinformatics platforms provides new opportunities to investigate the composition of ruminal microbes and yields unique advances in understanding ecology of the rumen. Subacute ruminal acidosis is linked with a change in the ruminal microbiota structure and richness and with other metabolic disorders; such as rumenitis, milk fat depression, laminitis, and liver abscesses. Therefore, this review aims to explore a better understanding of the crosstalk between diet and microbiota in the prevalence of rumen acidosis and its consequences, which is crucial for control strategies such as feeding management, and supplementation with thiamine, prebiotics, and probiotics.
Collapse
Affiliation(s)
- Mawda E. Elmhadi
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Darien K. Ali
- Department of Veterinary Preventive Medicine and Public Health, Faculty of Veterinary Medicine, University of Khartoum, Khartoum North, Sudan
| | - Mawahib K. Khogali
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Hongrong Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
28
|
Preliminary Investigation of the Effects of Rosemary Extract Supplementation on Milk Production and Rumen Fermentation in High-Producing Dairy Cows. Antioxidants (Basel) 2022; 11:antiox11091715. [PMID: 36139788 PMCID: PMC9495500 DOI: 10.3390/antiox11091715] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022] Open
Abstract
Rosemary extract (RE) has been used as an antioxidant in cosmetics and food additives, indicating its potential as a feed additive to improve adaptation in high-producing dairy cows. Here, we investigated the effects of RE supplementation on lactation performance and rumen fermentation in high-producing dairy cows. Thirty multiparous cows were blocked into 15 groups based on milk production and were randomly assigned to one of two treatments: 0 or 28 g/d of RE supplementation to the basic diet per cow. The experiment was conducted over a 74-day period, which included an initial two-week adaptation period. We observed significant increases in milk and milk lactose yields following RE supplementation. Somatic cell count tended to decrease by treatment. Additionally, superoxide dismutase concentration significantly increased and malonaldehyde level decreased after RE supplementation. Sequencing of 16S rRNA revealed that RE supplementation significantly affected the microbial composition and decreased the richness of the microbiota. Specifically, the abundance of the genus Prevotella was significantly decreased by RE supplementation and was correlated with volatile fatty acids in the Mantel test, whereas no significant correlation was found for other genera. Our findings provide fundamental information on the potential for RE as a feed additive for dairy cows to improve antioxidant status and enhance propionate generation.
Collapse
|
29
|
Mahayri TM, Fliegerová KO, Mattiello S, Celozzi S, Mrázek J, Mekadim C, Sechovcová H, Kvasnová S, Atallah E, Moniello G. Host Species Affects Bacterial Evenness, but Not Diversity: Comparison of Fecal Bacteria of Cows and Goats Offered the Same Diet. Animals (Basel) 2022; 12:ani12162011. [PMID: 36009603 PMCID: PMC9404439 DOI: 10.3390/ani12162011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/29/2022] [Accepted: 08/05/2022] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Comparison of bacterial diversity and composition of feces from cows and goats offered the same pasture-based diet revealed that the animal species had no effect on bacterial species richness and diversity, but significantly affected species evenness. Both diet and host species influence the gut microbiome. Abstract The aim of this study was to compare the diversity and composition of fecal bacteria in goats and cows offered the same diet and to evaluate the influence of animal species on the gut microbiome. A total of 17 female goats (Blond Adamellan) and 16 female cows (Brown Swiss) kept on an organic farm were fed pasture and hay. Bacterial structure in feces was examined by high-throughput sequencing using the V4–V5 region of the 16S rRNA gene. The Alpha diversity measurements of the bacterial community showed no statistical differences in species richness and diversity between the two groups of ruminants. However, the Pielou evenness index revealed a significant difference and showed higher species evenness in cows compared to goats. Beta diversity measurements showed statistical dissimilarities and significant clustering of bacterial composition between goats and cows. Firmicutes were the dominant phylum in both goats and cows, followed by Bacteroidetes, Proteobacteria, and Spirochaetes. Linear discriminant analysis with effect size (LEfSe) showed a total of 36 significantly different taxa between goats and cows. Notably, the relative abundance of Ruminococcaceae UCG-005, Christensenellaceae R-7 group, Ruminococcaceae UCG-010, Ruminococcaceae UCG-009, Ruminococcaceae UCG-013, Ruminococcaceae UCG-014, Ruminococcus 1, Ruminococcaceae UCG-002, Lachnospiraceae NK4A136 group, Treponema 2, Lachnospiraceae AC2044 group, and Bacillus was higher in goats compared to cows. In contrast, the relative abundance of Turicibacter, Solibacillus, Alloprevotella, Prevotellaceae UCG-001, Negativibacillus, Lachnospiraceae UCG-006, and Eubacterium hallii group was higher in cows compared with goats. Our results suggest that diet shapes the bacterial community in feces, but the host species has a significant impact on community structure, as reflected primarily in the relative abundance of certain taxa.
Collapse
Affiliation(s)
- Tiziana Maria Mahayri
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, Czech Academy of Science, 14220 Prague, Czech Republic
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| | - Kateřina Olša Fliegerová
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, Czech Academy of Science, 14220 Prague, Czech Republic
- Correspondence: ; Tel.: +420-267-090-504
| | - Silvana Mattiello
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, University of Milan, 20133 Milan, Italy
| | - Stefania Celozzi
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, University of Milan, 20133 Milan, Italy
| | - Jakub Mrázek
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, Czech Academy of Science, 14220 Prague, Czech Republic
| | - Chahrazed Mekadim
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, Czech Academy of Science, 14220 Prague, Czech Republic
| | - Hana Sechovcová
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, Czech Academy of Science, 14220 Prague, Czech Republic
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences in Prague, 16500 Prague, Czech Republic
| | - Simona Kvasnová
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, Czech Academy of Science, 14220 Prague, Czech Republic
| | - Elie Atallah
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| | - Giuseppe Moniello
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
30
|
Effects of Barley Starch Level in Diet on Fermentation and Microflora in Rumen of Hu Sheep. Animals (Basel) 2022; 12:ani12151941. [PMID: 35953930 PMCID: PMC9367498 DOI: 10.3390/ani12151941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 01/19/2023] Open
Abstract
This study aimed to explore the effects of different levels of barley starch instead of corn starch on the rumen fermentation and microflora when feeding a corn-based diet to Hu sheep. Thirty-two male Hu sheep equipped with permanent rumen fistulas were selected and fed in individual metabolic cages. All sheep were randomly divided into four groups (eight sheep in each group) and fed with four diets containing a similar starch content, but from different starch sources, including 100% of starch derived from corn (CS), 33% of starch derived from barley + 67% of starch derived from corn (33 BS), 67% of starch derived from barley + 33% of starch derived from corn (67 BS) and 100% of starch derived from barley (100 BS). The experimental period included a 14 d adaptation period and a 2 d continuous data collection period. The results showed that the molar proportions of acetate, isobutyrate, butyrate and isovalerate and the ratio of acetate to propionate in the 67 BS and 100 BS groups decreased compared with the CS and 33 BS groups (p < 0.001), while the molar proportions of propionate and valerate increased (p < 0.001). The combination of 33% barley starch and 67% corn starch in the diet improved the production of TVFAs (p = 0.007). The OTUs and Shannon indexes of the CS and 33 BS groups were higher than the 67 BS and 100 BS groups (p < 0.001), and the Chao1 and Ace indexes were higher than the 100 BS group (p < 0.05). In addition, the 33 BS group had increased the relative abundances of Bacteroidetes, Prevotella and Ruminococcus and the abundances of Fibrobacter succinogenes, Ruminococcus flavefaciens, Streptococcus bovis, Selenomonas ruminantium and Prevotella brevis relative to the CS group (p < 0.05). These results indicate that the substitution of 33% of the CS with BS did not change the rumen fermentation pattern relative to the CS group, and increased the richness and diversity of the rumen microbes in Hu sheep compared with other two starch substitute groups.
Collapse
|
31
|
Fu Y, He Y, Xiang K, Zhao C, He Z, Qiu M, Hu X, Zhang N. The Role of Rumen Microbiota and Its Metabolites in Subacute Ruminal Acidosis (SARA)-Induced Inflammatory Diseases of Ruminants. Microorganisms 2022; 10:1495. [PMID: 35893553 PMCID: PMC9332062 DOI: 10.3390/microorganisms10081495] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 12/23/2022] Open
Abstract
Subacute ruminal acidosis (SARA) is a common metabolic disease in ruminants. In the early stage of SARA, ruminants do not exhibit obvious clinical symptoms. However, SARA often leads to local inflammatory diseases such as laminitis, mastitis, endometritis and hepatitis. The mechanism by which SARA leads to inflammatory diseases is largely unknown. The gut microbiota is the totality of bacteria, viruses and fungi inhabiting the gastrointestinal tract. Studies have found that the gut microbiota is not only crucial to gastrointestinal health but also involved in a variety of disease processes, including metabolic diseases, autoimmune diseases, tumors and inflammatory diseases. Studies have shown that intestinal bacteria and their metabolites can migrate to extraintestinal distal organs, such as the lung, liver and brain, through endogenous pathways, leading to related diseases. Combined with the literature, we believe that the dysbiosis of the rumen microbiota, the destruction of the rumen barrier and the dysbiosis of liver function in the pathogenesis of SARA lead to the entry of rumen bacteria and/or metabolites into the body through blood or lymphatic circulation and place the body in the "chronic low-grade" inflammatory state. Meanwhile, rumen bacteria and/or their metabolites can also migrate to the mammary gland, uterus and other organs, leading to the occurrence of related inflammatory diseases. The aim of this review is to describe the mechanism by which SARA causes inflammatory diseases to obtain a more comprehensive and profound understanding of SARA and its related inflammatory diseases. Meanwhile, it is also of great significance for the joint prevention and control of diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (Y.F.); (Y.H.); (K.X.); (C.Z.); (Z.H.); (M.Q.)
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (Y.F.); (Y.H.); (K.X.); (C.Z.); (Z.H.); (M.Q.)
| |
Collapse
|
32
|
Zhong Z, Zhang Y, Li X, Li L, Zhang R, Zhang S. Differential Responses of Digesta- and Mucosa-Associated Jejunal Microbiota of Hu Sheep to Pelleted and Non-Pelleted High-Grain Diets. Animals (Basel) 2022; 12:ani12131695. [PMID: 35804593 PMCID: PMC9264909 DOI: 10.3390/ani12131695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/13/2022] [Accepted: 06/27/2022] [Indexed: 11/28/2022] Open
Abstract
In the present study, we utilized 16S rRNA sequencing to uncover the impacts of non-pelleted (HG) or high-grain pelleted (HP) diets on the microbial structure and potential functions of digesta- and mucosa-associated microbiota in the jejunum of Hu sheep. Here, we randomly assigned 15 healthy male Hu sheep into three groups and fed the control diets (CON), HG, and HP diets, respectively. The experiment period was 60 days. The HP diets had the same nutritional ingredients as the HG diets but in pelleted form. At the finish of the experiment, the jejunal digesta and mucosa were gathered for microbial sequencing. The results of PCoA and PERMANOVA showed that different dietary treatments had significant impact (p < 0.05) on digesta- and mucosa-associated microbiota in the jejunum of Hu sheep. For specific differences, HG diets significantly increased (p < 0.05) the abundance of some acid-producing bacteria in both jejunal digesta (Bifidobacterium, OTU151, and OTU16) and mucosa (Rikenellaceae RC9 gut group, and Bifidobacterium) of Hu sheep compared with the CON diets. Besides the similar effects of the HG diets (increased the acid-producing bacteria such as Olsenella, Pseudoramibacter, and Shuttleworthia), our results also showed that the HP diets significantly decreased (p < 0.05) the abundance of some pro-inflammatory bacteria in the jejunal digesta (Mogibacterium, and Marvinbryantia) and mucosa (Chitinophaga, and Candidatus Saccharimonas) of Hu sheep compared with the HG diets. Collectively, these findings contributed to enriching the knowledge about the effects of HG diets on the structure and function of intestinal microbiota in ruminants.
Collapse
|
33
|
Effects of Concentrate Supplementation on Growth Performance, Rumen Fermentation, and Bacterial Community Composition in Grazing Yaks during the Warm Season. Animals (Basel) 2022; 12:ani12111398. [PMID: 35681862 PMCID: PMC9179552 DOI: 10.3390/ani12111398] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022] Open
Abstract
This study aimed to evaluate the effects of concentrate supplementation on the growth performance, serum biochemical parameters, rumen fermentation, and bacterial community composition of grazing yaks during the warm season. Eight male yaks (body weight, 123.96 ± 7.43 kg; 3-years) were randomly allocated to two treatments groups: grazing (n = 4, GY) and concentrate supplement group (n = 4, GYS). Concentrate supplementation increased the average daily gain (ADG) (p < 0.05). Glucose (GLU), total protein (TP), and aspartate aminotransferase (AST) serum concentrations were significantly higher in the GYS group than in the GY group (p < 0.05). Ammonia-N, MCP: microbial protein, and total volatile fatty acid concentrations were significantly higher in the GYS group than in the GY group (p < 0.01), whereas the pH and acetate: propionate values were significantly decreased (p < 0.01). The relative abundance of Firmicutes in the rumen fluid was significantly higher in the GYS group than in the GY group (p < 0.01). At the genus level, the relative abundances of Succiniclasticum, Prevotellaceae_UCG_003, Prevotellaceae_UCG_005, and Ruminococcus_1 were significantly greater in the GY group than in the GYS group (p < 0.01). In conclusion, concentrate supplementation improved yaks’ growth potential during the warm season, improved ruminal fermentation, and altered core bacteria abundance.
Collapse
|
34
|
Zhu W, Liu T, Deng J, Wei CC, Zhang ZJ, Wang DM, Chen XY. Microbiome-metabolomics analysis of the effects of decreasing dietary crude protein content on goat rumen mictobiota and metabolites. Anim Biosci 2022; 35:1535-1544. [PMID: 35240019 PMCID: PMC9449381 DOI: 10.5713/ab.21.0411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/18/2022] [Indexed: 11/30/2022] Open
Abstract
Objective The objective of this study was to investigate the effects of decreasing dietary crude protein content on rumen fermentation, mictobiota, and metabolites in goats. Methods In an 84-day feeding trial, a total of twelve male Anhui white goat kids with initial body weight 15.9±1.13 kg were selected and randomly classified into two groups, feeding a normal crude protein diet (14.8% CP, NCP) or a low crude protein diet (12.0% CP, LCP). At the end of the experimental trial (on day 84), six animals were randomly selected from each group and were slaughtered to collect rumen fluid samples for the analysis of rumen fermentation parameters, microbiome, and metabolome. Results The concentrations of ammonia-nitrogen, total volatile fatty acid, acetate, and propionate were decreased (p<0.05) in the LCP group in comparison with those in the NCP group. The abundances of genera Prevotella, Campylobacter, Synergistetes, and TG5, which were associated with nitrogen metabolism, were lower (p<0.05) in the LCP group compared with those in the NCP group. The levels of 78 metabolites (74 decreased, 4 increased) in the rumen fluid were altered (p<0.05) by the treatment. Most of the ruminal metabolites that showed decreased levels in the LCP group were substrates for microbial protein synthesis. Metabolic pathway analysis showed that vitamin B6 metabolism was significantly different (p<0.05) in rumen fluid between the two treatments. Conclusion Decreased dietary protein level inhibited rumen fermentation through microbiome and metabolome shifts in goat kids. These results enhance our understanding of ruminal bacteria and metabolites of goat fed a low protein diet.
Collapse
Affiliation(s)
- Wen Zhu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Tianwei Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jian Deng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Cong Cong Wei
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zi Jun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Di Ming Wang
- Key Laboratory of Molecular Animal Nutirtion, Ministry of Education, Zhejiang university, Hangzhou, 310058, China
| | - Xing Yong Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
35
|
Ma X, Zhou W, Guo T, Li F, Li F, Ran T, Zhang Z, Guo L. Effects of Dietary Barley Starch Contents on the Performance, Nutrient Digestion, Rumen Fermentation, and Bacterial Community of Fattening Hu Sheep. Front Nutr 2022; 8:797801. [PMID: 35155519 PMCID: PMC8828545 DOI: 10.3389/fnut.2021.797801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
The objective of this experiment was to investigate the effects of substituting corn starch (CS) with barley starch (BS) on the growth performance, nutrient digestion, rumen fermentation, and bacterial community of fattening Hu sheep. Seventy-two Hu lambs with similar initial body weight (BW, 29.70 ± 1.70 kg) were randomly assigned to four treatments, with 18 lambs per group. The four experimental diets have identical starch contents but with different starch sources as 100% starch from corn (BS-0), 33% starch from barley and 67% starch from corn (BS-33), 67% starch form barley and 33% starch from corn (BS-67), and 100% starch from barley (BS-100). All lambs were reared in individual units and fed high-concentrate diets (85% concentrate in diets based on dry matter [DM]). The experimental period included 7 days for adaptation and 63 days for data collection. Sixteen ruminal cannulated Hu sheep were divided into 4 groups and received the four experimental diets to determine the dynamics of ruminal pH. The average daily gain (ADG), and BW gain of lambs linearly decreased (p < 0.05), whereas the feed to gain ratio linearly increased (p < 0.05) with increasing dietary proportions of BS. Digestibility of DM, organic matter, neutral detergent fiber, acid detergent fiber, starch, and gross energy (GE) decreased (p < 0.05) with increasing dietary BS contents. Ruminal mean pH decreased (p < 0.05) with increasing proportions of dietary BS, accompanied with linearly increased (p < 0.05) time and area of ruminal pH below 5.80 or 5.60. Increasing dietary proportions of BS linearly decreased (p < 0.05) the molar proportion of acetate, but linearly increased (p < 0.05) the molar proportion of propionate. Sheep of the BS-0 and BS-33 treatments had a less (p < 0.05) relative abundance of Selenomonas ruminantium than that of sheep of the BS-67 treatment, but a greater (p < 0.05) relative abundance of Ruminococcus albus than that of sheep of the BS-100 treatment (p < 0.05). In conclusion, feeding a high-concentrate corn-based diet for fattening Hu sheep improved the performance and rumen fermentation parameters when compared to the barley-based diet.
Collapse
|
36
|
Greenwood EC, Torok VA, Hynd PI. Breed and diet influence the ruminal bacterial community of sheep. ANIMAL PRODUCTION SCIENCE 2022. [DOI: 10.1071/an21429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Changed Rumen Fermentation, Blood Parameters, and Microbial Population in Fattening Steers Receiving a High Concentrate Diet with Saccharomyces cerevisiae Improve Growth Performance. Vet Sci 2021; 8:vetsci8120294. [PMID: 34941821 PMCID: PMC8707694 DOI: 10.3390/vetsci8120294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 11/18/2022] Open
Abstract
The effect of dry yeast (DY) (Saccharomyces cerevisiae) supplementation in a high-concentrate diet was evaluated for rumen fermentation, blood parameters, microbial populations, and growth performance in fattening steers. Sixteen crossbred steers (Charolais x American Brahman) at 375 ± 25 kg live weight were divided into four groups that received DY supplementation at 0, 5, 10, and 15 g/hd/d using a completely randomized block design. Basal diets were fed as a total mixed ration (roughage to concentrate ratio of 30:70). Results showed that supplementation with DY improved dry matter (DM) intake and digestibility of organic matter (OM), neutral detergent fiber (NDF), and acid detergent fiber (ADF) (p < 0.05), but DM and crude protein (CP) were similar among treatments (p > 0.05). Ruminal pH (>6.0) of fattening steer remained stable (p > 0.05), and pH was maintained at or above 6.0 with DY. The concentration of propionic acid (C3) increased (p < 0.05) with 10 and 15 g/hd/d DY supplementation, while acetic acid (C2) and butyric acid (C4) decreased. Methane (CH4) production in the rumen decreased as DY increased (p < 0.05). Fibrobacter succinogenes and Ruminococcus flavefaciens populations increased (p < 0.05), whereas protozoal and methanogen populations decreased with DY addition at 10 and 15 g/hd/d, while Ruminococcus albus did not change (p > 0.05) among the treatments. Adding DY at 10 and 15 g/hd/d improved growth performance. Thus, the addition of DY to fattening steers with a high concentrate diet improved feed intake, nutrient digestibility, rumen ecology, and growth performance, while mitigating ruminal methane production.
Collapse
|
38
|
Li Y, Lv J, Wang J, Zhou S, Zhang G, Wei B, Sun Y, Lan Y, Dou X, Zhang Y. Changes in Carbohydrate Composition in Fermented Total Mixed Ration and Its Effects on in vitro Methane Production and Microbiome. Front Microbiol 2021; 12:738334. [PMID: 34803954 PMCID: PMC8602888 DOI: 10.3389/fmicb.2021.738334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
The purpose of this experiment was to investigate the changes of carbohydrate composition in fermented total mixed diet and its effects on rumen fermentation, methane production, and rumen microbiome in vitro. The concentrate-to-forage ratio of the total mixed ration (TMR) was 4:6, and TMR was ensiled with lactic acid bacteria and fibrolytic enzymes. The results showed that different TMRs had different carbohydrate compositions and subfractions, fermentation characteristics, and bacterial community diversity. After fermentation, the fermented total mixed ration (FTMR) group had lower contents of neutral detergent fiber, acid detergent fiber, starch, non-fibrous carbohydrates, and carbohydrates. In addition, lactic acid content and relative abundance of Lactobacillus in the FTMR group were higher. Compared with the TMR group, the in vitro ammonia nitrogen and total volatile fatty acid concentrations and the molar proportion of propionate and butyrate were increased in the FTMR group. However, the ruminal pH, molar proportion of acetate, and methane production were significantly decreased in the FTMR group. Notably, we found that the relative abundance of ruminal bacteria was higher in FTMR than in TMR samples, including Prevotella, Coprococcus, and Oscillospira. At the same time, we found that the diversity of methanogens in the FTMR group was lower than that in the TMR group. The relative abundance of Methanobrevibacter significantly decreased, while the relative abundances of Methanoplanus and vadinCA11 increased. The relative abundances of Entodinium and Pichia significantly decreased in the FTMR group compared with the TMR group. These results suggest that FTMR can be used as an environmentally cleaner technology in animal farming due to its ability to improve ruminal fermentation, modulate the rumen microbiome, and reduce methane emissions.
Collapse
Affiliation(s)
- Yang Li
- College of Animal Sciences and Technology, Northeast Agriculture University, Harbin, China
| | - Jingyi Lv
- College of Animal Sciences and Technology, Northeast Agriculture University, Harbin, China
| | - Jihong Wang
- College of Animal Sciences and Technology, Northeast Agriculture University, Harbin, China
| | - Shuang Zhou
- College of Animal Sciences and Technology, Northeast Agriculture University, Harbin, China
| | - Guangning Zhang
- College of Animal Sciences and Technology, Northeast Agriculture University, Harbin, China
| | - Bingdong Wei
- Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yukun Sun
- College of Animal Sciences and Technology, Northeast Agriculture University, Harbin, China
| | - Yaxue Lan
- College of Animal Sciences and Technology, Northeast Agriculture University, Harbin, China
| | - Xiujing Dou
- College of Animal Sciences and Technology, Northeast Agriculture University, Harbin, China
| | - Yonggen Zhang
- College of Animal Sciences and Technology, Northeast Agriculture University, Harbin, China
| |
Collapse
|
39
|
Gleason CB, Settlage RE, Beckett LM, White RR. Characterizing Effects of Ingredients Differing in Ruminally Degradable Protein and Fiber Supplies on the Ovine Rumen Microbiome Using Next-Generation Sequencing. FRONTIERS IN ANIMAL SCIENCE 2021. [DOI: 10.3389/fanim.2021.745848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The ratio of concentrate to forage within diets is known to alter rumen microbial profiles, but comparatively less information is available on the effect of differing sources of individual nutrients on the microbiome. The objective of this study was to investigate rumen microbial responses to diets composed of protein and fiber sources expected to vary in nutrient degradability. The responses of interest included relative abundances of bacterial taxa as well as estimations of community richness and diversity. Ten ruminally cannulated wethers (Suffolk, Dorset, or Suffolk × Dorset) received four diet treatments consisting of either beet pulp or timothy hay and soybean meal (SBM) or heat-treated soybean meal (HSBM) in a partially replicated 4 × 4 Latin square experiment for 21 days. Timothy hay and beet pulp were expected to provide differing rumen degradabilities of neutral detergent fiber (NDF) while the soybean meals were expected to provide differing rumen degradabilities of crude protein (CP). Solid and liquid samples of rumen contents were collected for microbial DNA isolation and Next-Generation sequencing. Numerous rumen bacterial population shifts were observed due to change in fiber source, with increased abundances (P < 0.05) of fibrolytic populations associated with timothy hay diets compared with beet pulp diets. Conversely, populations of the pectin-degrading genera, Treponema and Lachnospira, increased on the beet pulp treatment (P = 0.015 and P = 0.0049, respectively). Limited impact on bacterial taxa was observed between diets differing in protein source. The Paraprevotellaceae genus YRC22 was observed to increase in abundance on HSBM diets (P = 0.023) and the phylum Spirochaetes tended to be more abundant on SBM than HSBM diets (P = 0.071). Beet pulp decreased rumen bacterial diversity (P = 0.0027) and tended to decrease bacterial species richness (P = 0.051) compared to timothy hay. Our results serve to further underscore the sensitivity of rumen microbes to changes in their preferred substrates, particularly of those associated with fiber degradation.
Collapse
|
40
|
Characteristics of faecal bacterial flora and volatile fatty acids in Min pig, Landrace pig, and Yorkshire pig. ELECTRON J BIOTECHN 2021. [DOI: 10.1016/j.ejbt.2021.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
41
|
Chen H, Wang C, Huasai S, Chen A. Effects of dietary forage to concentrate ratio on nutrient digestibility, ruminal fermentation and rumen bacterial composition in Angus cows. Sci Rep 2021; 11:17023. [PMID: 34426627 PMCID: PMC8382751 DOI: 10.1038/s41598-021-96580-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
This study evaluated effects of dietary forage to concentrate ratio (F:C) on the body weight, digestibility, ruminal fermentation and rumen bacterial composition in Angus cows. Three diets with different F:C (LCD: 65:35, MCD:50:50, and HCD: 35:65) were fed to ninety Angus cows (3.2 ± 0.18 years old, 387.2 ± 22.6 kg). The average daily gain (ADG) and ammonia nitrogen concentration increased (P = 0.039 and P = 0.026, respectively), whereas the acetate to propionate ratio (P = 0.027) and the neutral detergent fiber (NDF) digestibility decreased with increasing concentrate level. The acetate concentration and ruminal pH (P = 0.033 and P = 0.029, respectively) decreased by feeding HCD diet. Serum amyloid A (SAA), C-reactive protein (CRP), haptoglobin (Hp) and lipopolysaccharide binding protein (LBP) increased under the HCD. The relative abundances of Bacteroidetes, Fibrobacterota, Prevotella and Prevotellaceae UCG-003 decreased, whereas the relative abundances of Ruminococcaceae NK4A214 group, Saccharofermentans and Spirochaetota increased with increasing dietary concentrate level. Our study provides a better understanding of rumen fermentation parameters and microbiota under a wide range of dietary F:C ratios, supporting the potential dietary manipulation of microbes, which could enhance feed digestibility associated with cow rearing.
Collapse
Affiliation(s)
- Hao Chen
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Chunjie Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Simujide Huasai
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Aorigele Chen
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China.
| |
Collapse
|
42
|
Kim H, Park T, Kwon I, Seo J. Specific inhibition of Streptococcus bovis by endolysin LyJH307 supplementation shifts the rumen microbiota and metabolic pathways related to carbohydrate metabolism. J Anim Sci Biotechnol 2021; 12:93. [PMID: 34344466 PMCID: PMC8335910 DOI: 10.1186/s40104-021-00614-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
Background Endolysins, the bacteriophage-originated peptidoglycan hydrolases, are a promising replacement for antibiotics due to immediate lytic activity and no antibiotic resistance. The objectives of this study were to investigate the lytic activity of endolysin LyJH307 against S. bovis and to explore changes in rumen fermentation and microbiota in an in vitro system. Two treatments were used: 1) control, corn grain without LyJH307; and 2) LyJH307, corn grain with LyJH307 (4 U/mL). An in vitro fermentation experiment was performed using mixture of rumen fluid collected from two cannulated Holstein steers (450 ± 30 kg) and artificial saliva buffer mixed as 1:3 ratio for 12 h incubation time. In vitro dry matter digestibility, pH, volatile fatty acids, and lactate concentration were estimated at 12 h, and the gas production was measured at 6, 9, and 12 h. The rumen bacterial community was analyzed using 16S rRNA amplicon sequencing. Results LyJH307 supplementation at 6 h incubation markedly decreased the absolute abundance of S. bovis (approximately 70% compared to control, P = 0.0289) and increased ruminal pH (P = 0.0335) at the 12 h incubation. The acetate proportion (P = 0.0362) was significantly increased after LyJH307 addition, whereas propionate (P = 0.0379) was decreased. LyJH307 supplementation increased D-lactate (P = 0.0340) without any change in L-lactate concentration (P > 0.10). There were no significant differences in Shannon’s index, Simpson’s index, Chao1 estimates, and evenness (P > 0.10). Based on Bray-Curtis dissimilarity matrices, the LyJH307 affected the overall shift in microbiota (P = 0.097). LyJH307 supplementation induced an increase of 11 genera containing Lachnoclostridium, WCHB1–41, unclassified genus Selenomonadaceae, Paraprevotella, vadinBE97, Ruminococcus gauvreauii group, Lactobacillus, Anaerorhabdus furcosa group, Victivallaceae, Desulfuromonadaceae, and Sediminispirochaeta. The predicted functional features represented by the Kyoto Encyclopedia of Genes and Genomes pathways were changed by LyJH307 toward a decrease of carbohydrate metabolism. Conclusions LyJH307 caused a reduction of S. bovis and an increase of pH with shifts in minor microbiota and its metabolic pathways related to carbohydrate metabolism. This study provides the first insight into the availability of endolysin as a specific modulator for rumen and shows the possibility of endolysin degradation by rumen microbiota. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-021-00614-x.
Collapse
Affiliation(s)
- Hanbeen Kim
- Department of Animal Science, Life and Industry Convergence Research Institute, Pusan National University, 1268-50 Samrangjin-ro, Miryang, 50463, Republic of Korea
| | - Tansol Park
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| | | | - Jakyeom Seo
- Department of Animal Science, Life and Industry Convergence Research Institute, Pusan National University, 1268-50 Samrangjin-ro, Miryang, 50463, Republic of Korea.
| |
Collapse
|
43
|
Effects of rumen-protected methionine and lysine supplementation on milk yields and components, rumen fermentation, and the rumen microbiome in lactating yaks (Bos grunniens). Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.114972] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
44
|
Ahmad AA, Zhang JB, Liang Z, Yang C, Kalwar Q, Shah T, Du M, Muhammad I, Zheng J, Yan P, Ding XZ, Long R. Dynamics of rumen bacterial composition of yak ( Bos grunniens) in response to dietary supplements during the cold season. PeerJ 2021; 9:e11520. [PMID: 34178446 PMCID: PMC8216167 DOI: 10.7717/peerj.11520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 05/05/2021] [Indexed: 11/20/2022] Open
Abstract
This study aimed to explore the rumen bacterial community of yak in response to dietary supplements during the cold season. In addition, the rumen fermentation products were also analyzed. Twenty-one female domestic yaks were randomly divided into three groups i.e., pure grazing (GG) group, grazing plus oats hay supplement (OG) group, and grazing plus concentrate supplement group (CG). Rumen contents were collected after 90 days to assess rumen fermentation parameters and bacterial community. The GC group presented higher concentrations of ammonia nitrogen (P < 0.001), and total volatile fatty acids (TVFA) (P < 0.001), and lower rumen pH (P < 0.001) compared to other experimental groups. The CG group displayed higher proportions of propionate, butyrate, isobutyrate, and isovalerate while lower A/P ratio compared to other experimental groups. Shannon, Chao1, and ACE values were significantly lower in the OG group compared to GG and CG groups. Anosim test showed significant differences in bacterial community structure between groups but the PCA plot was not very informative to see these differences. Bacteroidetes, Proteobacteria, and Firmicutes were the three dominant phyla in all groups. The genera Oscillospira was more abundant in GG and OG groups. Higher relative abundance of Ruminococcus and Clostridium was observed in the GG group, while Ruminobacter, Corynebacterium, and Selenomonas were more abundant in the CG group. These findings will help in improving our understanding of rumen bacteria in yaks in response to changes in diet.
Collapse
Affiliation(s)
- Anum Ali Ahmad
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China.,Key Laboratory of yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jian Bo Zhang
- Key Laboratory of yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zeyi Liang
- Key Laboratory of yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chao Yang
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan, Provincial Engineering Research Center for Healthy Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Qudratullah Kalwar
- Key Laboratory of yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Tariq Shah
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Mei Du
- Key Laboratory of yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ishaq Muhammad
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Juanshan Zheng
- Key Laboratory of yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ping Yan
- Key Laboratory of yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xue-Zhi Ding
- Key Laboratory of yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ruijun Long
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
45
|
Islam M, Kim SH, Son AR, Ramos SC, Jeong CD, Yu Z, Kang SH, Cho YI, Lee SS, Cho KK, Lee SS. Seasonal Influence on Rumen Microbiota, Rumen Fermentation, and Enteric Methane Emissions of Holstein and Jersey Steers under the Same Total Mixed Ration. Animals (Basel) 2021; 11:1184. [PMID: 33924248 PMCID: PMC8074768 DOI: 10.3390/ani11041184] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 01/16/2023] Open
Abstract
Seasonal effects on rumen microbiome and enteric methane (CH4) emissions are poorly documented. In this study, 6 Holstein and 6 Jersey steers were fed the same total mixed ration diet during winter, spring, and summer seasons under a 2 × 3 factorial arrangement for 30 days per season. The dry matter intake (DMI), rumen fermentation characteristics, enteric CH4 emissions and rumen microbiota were analyzed. Holstein had higher total DMI than Jersey steers regardless of season. However, Holstein steers had the lowest metabolic DMI during summer, while Jersey steers had the lowest total DMI during winter. Jersey steers had higher CH4 yields and intensities than Holstein steers regardless of season. The pH was decreased, while ammonia nitrogen concentration was increased in summer regardless of breed. Total volatile fatty acids concentration and propionate proportions were the highest in winter, while acetate and butyrate proportion were the highest in spring and in summer, respectively, regardless of breed. Moreover, Holstein steers produced a higher proportion of propionate, while Jersey steers produced a higher proportion of butyrate regardless of season. Metataxonomic analysis of rumen microbiota showed that operational taxonomic units and Chao 1 estimates were lower and highly unstable during summer, while winter had the lowest Shannon diversity. Beta diversity analysis suggested that the overall rumen microbiota was shifted according to seasonal changes in both breeds. In winter, the rumen microbiota was dominated by Carnobacterium jeotgali and Ruminococcus bromii, while in summer, Paludibacter propionicigenes was predominant. In Jersey steers, Capnocytophaga cynodegmi, Barnesiella viscericola and Flintibacter butyricus were predominant, whereas in Holstein steers, Succinivibrio dextrinosolvens and Gilliamella bombicola were predominant. Overall results suggest that seasonal changes alter rumen microbiota and fermentation characteristics of both breeds; however, CH4 emissions from steers were significantly influenced by breeds, not by seasons.
Collapse
Affiliation(s)
- Mahfuzul Islam
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea; (M.I.); (S.-H.K.); (A-R.S.); (S.C.R.); (C.-D.J.)
- Department of Microbiology and Parasitology, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Seon-Ho Kim
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea; (M.I.); (S.-H.K.); (A-R.S.); (S.C.R.); (C.-D.J.)
| | - A-Rang Son
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea; (M.I.); (S.-H.K.); (A-R.S.); (S.C.R.); (C.-D.J.)
| | - Sonny C. Ramos
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea; (M.I.); (S.-H.K.); (A-R.S.); (S.C.R.); (C.-D.J.)
| | - Chang-Dae Jeong
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea; (M.I.); (S.-H.K.); (A-R.S.); (S.C.R.); (C.-D.J.)
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA;
| | - Seung Ha Kang
- Faculty of Medicine, Diamantina Institute, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Yong-Il Cho
- Animal Disease and Diagnostic Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea;
| | - Sung-Sill Lee
- Institute of Agriculture and Life Science and University-Centered Labs, Gyeongsang National University, Jinju 52828, Korea;
| | - Kwang-Keun Cho
- Department of Animal Resources Technology, Gyeongnam National University of Science and Technology, Jinju 52725, Korea;
| | - Sang-Suk Lee
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea; (M.I.); (S.-H.K.); (A-R.S.); (S.C.R.); (C.-D.J.)
| |
Collapse
|
46
|
Ma Y, Wang C, Zhang H, Yu L, Dong L, Gong D, Yao J, Wang H. Illumina Sequencing and Metabolomics Analysis Reveal Thiamine Modulation of Ruminal Microbiota and Metabolome Characteristics in Goats Fed a High-Concentrate Diet. Front Microbiol 2021; 12:653283. [PMID: 33897666 PMCID: PMC8058204 DOI: 10.3389/fmicb.2021.653283] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/05/2021] [Indexed: 11/13/2022] Open
Abstract
Long-term supplementation of a high-concentrate diet enhances the accumulation of lactate and decrease in pH in goat rumen, thereby disrupting the composition of microbial community. Studies have shown that incorporation of thiamine in high-concentrate diet increases ruminal pH and decreases rumen lactate concentration. To explore the effects of thiamine supplementation with a high-concentrate diet on alteration of the whole ruminal microbiota and their metabolites, 18 mid-lactating Saanen goats were randomly fed with one of three diets: (1) control diet (CON; n = 6; concentrate:forage 30:70), (2) high-concentrate diet (HG; n = 6; concentrate:forage 70:30), and (3) high-concentrate diet with 200 mg of thiamine/kg of DMI (HGT; n = 6; concentrate:forage 70:30). The goats received experimental diets for 8 weeks. Ruminal samples were collected on the last day of the 8 weeks for 16S rRNA gene sequencing and the liquid chromatograph–mass spectrometer (LC-MS) analysis. The results revealed significant alterations of the ruminal bacterial community structure and diversity in HGT groups compared to HG groups, with an overall dominance of Bacteroidetes at the phylum level and Oribacterium (P < 0.05), Anaerobiospirillum (P < 0.01), and Fibrobacter (P < 0.01) at genus level in the HGT group. The LC-MS analysis revealed that thiamine supplementation resulted in lower levels of propionate (P < 0.05), pyruvate (P < 0.01), lactate (P < 0.05), putrescine (P < 0.05), tyramine (P < 0.05), and histamine (P < 0.01) and higher levels of acetate (P < 0.05), succinates (P < 0.01), oxaloacetic acid (P < 0.01), leucine (P < 0.01), valine (P < 0.05), linoleic acid (P < 0.05), docosahexaenoic acid (P < 0.05), and 4-phenylbutyric acid (P < 0.05) in the HGT group than in the HG group. The decrease in these compounds enhanced homeostasis in the rumen environment and suppressed epithelial inflammation. Correlation analysis revealed the potential relationships between ruminal metabolites and microbial community. These findings demonstrate that thiamine supplementation can alleviate subacute ruminal acidosis (SARA) by stabilizing the microbial community and reducing toxic unnatural compounds.
Collapse
Affiliation(s)
- Yi Ma
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Chao Wang
- School of Biomedical Sciences, The University of Western Australia, M Block, Queen Elizabeth II Medical Centre, Nedlands, WA, Australia
| | - Hao Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Lihuai Yu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Li Dong
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Daoqing Gong
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A & F University, Yanglin, China
| | - Hongrong Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
47
|
Billenkamp F, Schnabel K, Hüther L, Frahm J, von Soosten D, Meyer U, Höper D, Beer M, Seyboldt C, Neubauer H, Dänicke S. No hints at glyphosate-induced ruminal dysbiosis in cows. NPJ Biofilms Microbiomes 2021; 7:30. [PMID: 33767196 PMCID: PMC7994389 DOI: 10.1038/s41522-021-00198-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/12/2021] [Indexed: 01/31/2023] Open
Abstract
Glyphosate-based herbicides are among the most used non-selective herbicides worldwide and inhibit synthesis of aromatic amino acids in plants, bacteria, and fungi. Given the broad usage, controversies concerning potential effects of glyphosate on health and especially on gut microbiomes arose. For cattle, it has been proposed based on in vitro data that glyphosate has detrimental effects on the ruminal microbiome, which manifest as a specific inhibition of bacteria involved in fiber degradation and as an enrichment of specific pathogens. In the present study, glyphosate effects on the ruminal microbiome were analyzed in vivo using glyphosate contaminated feedstuffs with strong differences in dietary fiber and dietary energy content in order to reproduce the proposed detrimental glyphosate effects on the rumen microbiome. While significant impact of dietary factors on the ruminal microbiome and its products are pointed out, no adverse glyphosate effects on ruminal microbiome composition, diversity, and microbial metabolites are observed.
Collapse
Affiliation(s)
- Fabian Billenkamp
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institute, Brunswick, Germany.
| | - Karina Schnabel
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institute, Brunswick, Germany
| | - Liane Hüther
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institute, Brunswick, Germany
| | - Jana Frahm
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institute, Brunswick, Germany
| | - Dirk von Soosten
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institute, Brunswick, Germany
| | - Ulrich Meyer
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institute, Brunswick, Germany
| | - Dirk Höper
- Institute of Diagnostic Virology, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institute, Greifswald-Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institute, Greifswald-Riems, Germany
| | - Christian Seyboldt
- Institute of Bacterial Infections and Zoonoses, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institute, Jena, Germany
| | - Heinrich Neubauer
- Institute of Bacterial Infections and Zoonoses, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institute, Jena, Germany
| | - Sven Dänicke
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institute, Brunswick, Germany
| |
Collapse
|
48
|
Wang B, Luo Y, Wang Y, Wang D, Hou Y, Yao D, Tian J, Jin Y. Rumen bacteria and meat fatty acid composition of Sunit sheep reared under different feeding regimens in China. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1100-1110. [PMID: 32767556 DOI: 10.1002/jsfa.10720] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 07/20/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Rumen bacteria play a critical role in feed degradation and productivity. This study evaluated the impact of feeding regimen on the rumen microbial populations and fatty acid composition of the meat of sheep. Twenty-four Sunit sheep were raised on a grass pasture from birth to 9 months of age, at which time they were randomly divided into two feeding groups: pasture feeding (PF) and barn feeding (BF). Sheep in the PF group were allowed to graze freely on wild grassland for 3 months. Sheep in the BF group were confined for 3 months to a dry barn, in which they roamed freely with corn straw and corn. RESULTS Sheep in the PF group had greater rumen bacteria diversity. The relative abundances of the genera Butyrivibrio_2, Saccharofermentans and Succiniclasticum were increased, and that of the genus RC9_gut_group was decreased, in the PF compared to the BF sheep. The n-3 polyunsaturated fatty acid contents were greater in meat from PF sheep than from BF sheep. In addition, the α-linolenic acid (C18:3 n-3, ALA) and conjugated linoleic acid (CLA) contents were positively correlated with the abundance of Butyrivibrio_2. CONCLUSION Grazing may improve the diversity of rumen bacteria and increase the proportion of ALA and CLA in sheep meat. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bohui Wang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
- Ordos City Food Inspection and Testing Center, Ordos, China
| | - Yulong Luo
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Yu Wang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Debao Wang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Yanru Hou
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Duo Yao
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Jianjun Tian
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Ye Jin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
49
|
The Effect of a High-Grain Diet on the Rumen Microbiome of Goats with a Special Focus on Anaerobic Fungi. Microorganisms 2021; 9:microorganisms9010157. [PMID: 33445538 PMCID: PMC7827659 DOI: 10.3390/microorganisms9010157] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 12/17/2022] Open
Abstract
This work investigated the changes of the rumen microbiome of goats switched from a forage to a concentrate diet with special attention to anaerobic fungi (AF). Female goats were fed an alfalfa hay (AH) diet (0% grain; n = 4) for 20 days and were then abruptly shifted to a high-grain (HG) diet (40% corn grain, 60% AH; n = 4) and treated for another 10 days. Rumen content samples were collected from the cannulated animals at the end of each diet period (day 20 and 30). The microbiome structure was studied using high-throughput sequencing for bacteria, archaea (16S rRNA gene) and fungi (ITS2), accompanied by qPCR for each group. To further elucidate unclassified AF, clone library analyses were performed on the ITS1 spacer region. Rumen pH was significantly lower in HG diet fed goats, but did not induce subacute ruminal acidosis. HG diet altered prokaryotic communities, with a significant increase of Bacteroidetes and a decrease of Firmicutes. On the genus level Prevotella 1 was significantly boosted. Methanobrevibacter and Methanosphaera were the most abundant archaea regardless of the diet and HG induced a significant augmentation of unclassified Thermoplasmatales. For anaerobic fungi, HG triggered a considerable rise in Feramyces observed with both ITS markers, while a decline of Tahromyces was detected by ITS2 and decrease of Joblinomyces by ITS1 only. The uncultured BlackRhino group revealed by ITS1 and further elucidated in one sample by LSU analysis, formed a considerable part of the AF community of goats fed both diets. Results strongly indicate that the rumen ecosystem still acts as a source for novel microorganisms and unexplored microbial interactions and that initial rumen microbiota of the host animal considerably influences the reaction pattern upon diet change.
Collapse
|
50
|
Effects of king grass and sugarcane top in the absence or presence of exogenous enzymes on the growth performance and rumen microbiota diversity of goats. Trop Anim Health Prod 2021; 53:106. [PMID: 33417104 DOI: 10.1007/s11250-020-02544-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 12/22/2020] [Indexed: 02/01/2023]
Abstract
In the present study, the feasibility of sugarcane top (ST) application in the goat's diet was evaluated. A total of 20 goats were randomly divided into four groups. The dietary treatments were set as follows: animals were fed with king grass (KG), KG with exogenous enzymes (KGE), ST, and ST with exogenous enzymes (STE). The animals were given free access to feed and water. After 15 days of adaptation and 60 days of the experiment, the growth performance, plasma parameters, and rumen microbiota of goats were assessed. The results showed that the KG, ST, and exogenous enzyme supplement had no significant effects on the growth performance and plasma parameters. The diet affected the rumen microbiota diversity and structure, and the alpha and beta diversity in the animals fed with ST were dramatically greater compared with the animals fed with KG. The abundances of Proteobacteria, Cyanobacteria, and Elusimicrobia were significantly decreased in the animals fed with KG or KGE, while the abundances of Firmicutes and Euryarchaeota were significantly higher in the animals fed with KG or KGE. Furthermore, the microbial communities were also different at the genus level. Moreover, the exogenous enzymes had a slight effect on rumen microbiota. Linear discriminant analysis effect size (LEfSe) analysis showed that the greatest differences were found in bacterial taxa, and these specific taxa could be used as biomarkers to distinguish rumen microbiota. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) functional profile prediction indicated that the dietary treatments of ST and KG could also alter the gene expression pattern in nutrient and energy metabolism, as well as replication and repair of genetic information pathways. Collectively, the dietary treatments of KG and ST in the absence or presence of exogenous enzymes had similar effects on the growth performance and plasma parameters of goats. Besides, the KG and ST diets could affect the rumen microbiota community and function of goats. Therefore, ST could be used as a promising alternative feed resource for ruminants without the addition of exogenous enzymes in tropical regions.
Collapse
|