1
|
Yang F, Dong D, Wu D, Zhu L, Liu F, Yao H, Wu N, Ye C, Wu H. A multiplex real-time RT-PCR method for detecting H5, H7 and H9 subtype avian influenza viruses in field and clinical samples. Virus Res 2021; 309:198669. [PMID: 34954007 DOI: 10.1016/j.virusres.2021.198669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022]
Abstract
In recent years, H5 and H7 subtypes of highly pathogenic avian influenza viruses (HPAIVs) have been identified in poultry worldwide, resulting in large economic losses to poultry production. Furthermore, H9N2 low pathogenic AIVs are reported to provide internal genes for generating novel reassortant AIVs, leading to potential pandemic risks. To establish an accurate, sensitive and convenient diagnostic method for H5, H7 and H9 subtype AIVs in Eurasian lineage, four groups of specific primers and probes were designed based on the conserved fragments of M, H5, H7 and H9 genes, and a multiplex real-time RT-PCR (RRT-PCR) method was established. High sensitivity was achieved for the multiplex RRT-PCR approach, with a detection limit of 1-10 copies (plasmid DNA) per reaction. The specificity of the method was evaluated using diverse subtypes of AIVs and other avian respiratory viruses isolated in eastern China over the last 9 years. Compared with virus isolation, a higher consistency was achieved when assessing 135 field samples and 126 clinical samples. The results showed that the multiplex RRT-PCR method is a fast, convenient and practical method for AIV clinical detection and epidemiological analysis.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Dalu Dong
- Hangzhou Biotest Biotech Co.,Ltd., 17 Futai Road, Zhongtai Street, Yuhang District, Hangzhou 311121, Zhejiang, China
| | - Danna Wu
- Hangzhou Biotest Biotech Co.,Ltd., 17 Futai Road, Zhongtai Street, Yuhang District, Hangzhou 311121, Zhejiang, China
| | - Linwei Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Fumin Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Nanping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Chunsheng Ye
- Hangzhou Biotest Biotech Co.,Ltd., 17 Futai Road, Zhongtai Street, Yuhang District, Hangzhou 311121, Zhejiang, China.
| | - Haibo Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
2
|
Nguyen ATV, Hoang VT, Sung HW, Yeo SJ, Park H. Genetic Characterization and Pathogenesis of Three Novel Reassortant H5N2 Viruses in South Korea, 2018. Viruses 2021; 13:v13112192. [PMID: 34834997 PMCID: PMC8619638 DOI: 10.3390/v13112192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 12/03/2022] Open
Abstract
The outbreaks of H5N2 avian influenza viruses have occasionally caused the death of thousands of birds in poultry farms. Surveillance during the 2018 winter season in South Korea revealed three H5N2 isolates in feces samples collected from wild birds (KNU18-28: A/Wild duck/South Korea/KNU18-28/2018, KNU18-86: A/Bean Goose/South Korea/KNU18-86/2018, and KNU18-93: A/Wild duck/South Korea/KNU18-93/2018). Phylogenetic tree analysis revealed that these viruses arose from reassortment events among various virus subtypes circulating in South Korea and other countries in the East Asia–Australasian Flyway. The NS gene of the KNU18-28 and KNU18-86 isolates was closely related to that of China’s H10N3 strain, whereas the KNU18-93 strain originated from the H12N2 strain in Japan, showing two different reassortment events and different from a low pathogenic H5N3 (KNU18-91) virus which was isolated at the same day and same place with KNU18-86 and KNU18-93. These H5N2 isolates were characterized as low pathogenic avian influenza viruses. However, many amino acid changes in eight gene segments were identified to enhance polymerase activity and increase adaptation and virulence in mice and mammals. Experiments reveal that viral replication in MDCK cells was quite high after 12 hpi, showing the ability to replicate in mouse lungs. The hematoxylin and eosin-stained (H&E) lung sections indicated different degrees of pathogenicity of the three H5N2 isolates in mice compared with that of the control H1N1 strain. The continuing circulation of these H5N2 viruses may represent a potential threat to mammals and humans. Our findings highlight the need for intensive surveillance of avian influenza virus circulation in South Korea to prevent the risks posed by these reassortment viruses to animal and public health.
Collapse
Affiliation(s)
- Anh Thi Viet Nguyen
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 54538, Korea; (A.T.V.N.); (V.T.H.)
| | - Vui Thi Hoang
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 54538, Korea; (A.T.V.N.); (V.T.H.)
| | - Haan Woo Sung
- College of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Korea;
| | - Seon-Ju Yeo
- Department of Tropical Medicine and Parasitology, College of Medicine, Seoul National University, Seoul 03080, Korea
- Correspondence: (S.-J.Y.); (H.P.)
| | - Hyun Park
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 54538, Korea; (A.T.V.N.); (V.T.H.)
- Correspondence: (S.-J.Y.); (H.P.)
| |
Collapse
|
3
|
Xiao Y, Yang F, Liu F, Yao H, Wu N, Wu H. Antigen-capture ELISA and immunochromatographic test strip to detect the H9N2 subtype avian influenza virus rapidly based on monoclonal antibodies. Virol J 2021; 18:198. [PMID: 34600550 PMCID: PMC8487345 DOI: 10.1186/s12985-021-01671-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/23/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The H9N2 subtype of avian influenza virus (AIV) has become the most widespread subtype of AIV among birds in Asia, which threatens the poultry industry and human health. Therefore, it is important to establish methods for the rapid diagnosis and continuous surveillance of H9N2 subtype AIV. METHODS In this study, an antigen-capture enzyme-linked immunosorbent assay (AC-ELISA) and a colloidal gold immunochromatographic test (ICT) strip using monoclonal antibodies (MAbs) 3G4 and 2G7 were established to detect H9N2 subtype AIV. RESULTS The AC-ELISA method and ICT strip can detect H9N2 subtype AIV quickly, and do not cross-react with other subtype AIVs or other viruses. The detection limit of AC-ELISA was a hemagglutinin (HA) titer of 4 for H9N2 subtype AIV per 100 μl sample, and the limit of detection of the HA protein of AIV H9N2 was 31.5 ng/ml. The ICT strip detection limit was an HA titer of 4 for H9N2 subtype AIV per 100 μl sample. Moreover, both detection methods exhibited good reproducibility and repeatability, with coefficients of variation < 5%. For detection in 200 actual poultry samples, the sensitivities and specificities of AC-ELISA were determined as 93.2% and 98.1%, respectively. The sensitivities and specificities of the ICT strips were determined as 90.9% and 97.4%, respectively. CONCLUSIONS The developed AC-ELISA and ICT strips displayed high specificity, sensitivity, and stability, making them suitable for rapid diagnosis and field investigation of H9N2 subtype AIV.
Collapse
Affiliation(s)
- Yixin Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Fan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Fumin Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Nanping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Haibo Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
4
|
Yang F, Xiao Y, Liu F, Cheng L, Yao H, Wu N, Wu H. Genetic analysis and biological characteristics of novel clade 2.3.4.4 reassortment H5N6 avian influenza viruses from poultry in eastern China in 2016. Int J Infect Dis 2021; 110:436-448. [PMID: 34364995 DOI: 10.1016/j.ijid.2021.07.074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES The continuous evolution of highly pathogenic H5N6 avian influenza viruses (AIVs) causes outbreaks in wildfowl and poultry, and occasional human infections. The aim of this study was to better understand the genetic relationships between these H5N6 AIVs from eastern China and other AIVs. METHODS In 2016, 1623 cloacal swabs were sampled from poultry in 18 LPMs in eastern China, and subsequently characterized systematically using gene sequencing, phylogenetic studies, and antigenic analysis. In addition, their pathogenicity in mammals was studied in BALB/c mice, which were inoculated with viruses, with survival rate and body weight recorded daily for 14 days. RESULTS In total, 56 H5N6 AIVs were isolated in eastern China and five representative isolates were selected for further study. In our study, the H5N6 AIVs clustered into clade 2.3.4.4, Group C, and their six internal segments were derived from H6N6 and H9N2 viruses, or both, suggesting extensive reassortant among H5N6 AIVs with other subtypes. These H5N6 viruses could replicate in the lungs without prior adaptation, and exhibited slight-to-moderate virulence in mice. CONCLUSIONS The continuous circulation of these novel H5N6 viruses suggests the importance of persistent surveillance of H5N6 AIVs in poultry.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yixin Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Fumin Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Linfang Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Nanping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Haibo Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
5
|
Isolation and characterization of two novel reassortant H5N6 avian influenza viruses from waterfowl in eastern China. Arch Virol 2021; 166:1197-1201. [PMID: 33598814 DOI: 10.1007/s00705-021-04995-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/28/2020] [Indexed: 10/22/2022]
Abstract
Waterfowl are considered to be the natural hosts of avian influenza virus. In 2017, two reassortant highly pathogenic H5N6 avian influenza viruses of clade 2.3.4.4, subclade II, were identified in wild birds in eastern China. Genome sequencing and phylogenetic and antigenicity analysis showed that the viruses originated from multiple reassortments. To evaluate their pathogenicity in mammals, 15 BALB/c mice were infected with these viruses, and survival and weight loss were monitored for 14 days. Infection was associated with moderate pathogenicity in the mice, and the viruses could replicate in the lungs without prior adaptation. Thus, the existence of these viruses poses a continuous threat to both birds and humans.
Collapse
|
6
|
Yang F, Xiao Y, Lu R, Chen B, Liu F, Wang L, Yao H, Wu N, Wu H. Generation of neutralizing and non-neutralizing monoclonal antibodies against H7N9 influenza virus. Emerg Microbes Infect 2020; 9:664-675. [PMID: 32193996 PMCID: PMC7144216 DOI: 10.1080/22221751.2020.1742076] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 02/08/2023]
Abstract
The H7N9 viruses have been circulating for six years. The insertion of a polybasic cleavage site in the haemagglutinin (HA) protein of H7N9 has resulted in the emergence of a highly pathogenic (HP) avian influenza virus. Currently, there are limited studies on neutralizing monoclonal antibodies(mAbs) against HP H7N9 AIVs. In this study, mice were immunized with inactivated H7N9 vaccine of A/ZJU01/PR8/2013 to produce murine mAbs. Finally, two murine mAbs against the HA of low pathogenic (LP) virus were produced and characterized. Characterization included determining mAbs binding breadth and affinity, in vitro neutralization capacity, and potential in vivo protection. Two of these mAbs, 1H10 and 2D1, have been identified to have therapeutic and prophylactic efficacy against the HP strain in mouse passive transfer-viral challenge experiments. The mAb 1H10 was most efficacious, even if the treatment-time was as late as 72 h post-infection, or the therapeutic dose was as low as 1 mg/kg; and it was confirmed to have haemagglutination inhibition and neutralizing activity on both LP-and HP-H7N9 strains. Further study indicated that the protection provided by 2D1 was mediated by antibody-dependent cellular cytotoxicity. The mAbs described here provide promising results and merit further development into potential antiviral therapeutics for H7N9 infection.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/immunology
- Antibodies, Neutralizing/administration & dosage
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/administration & dosage
- Antibodies, Viral/immunology
- Antibody-Dependent Cell Cytotoxicity
- Broadly Neutralizing Antibodies/immunology
- Cell Line
- Epitope Mapping
- Female
- Hemagglutination Tests
- Hemagglutinin Glycoproteins, Influenza Virus
- Immunization, Passive
- Influenza A Virus, H7N9 Subtype/immunology
- Influenza A Virus, H7N9 Subtype/metabolism
- Influenza A Virus, H7N9 Subtype/pathogenicity
- Mice
- Mice, Inbred BALB C
- Mutation
- Neutralization Tests
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/therapy
- Phylogeny
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yixin Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Rufeng Lu
- Department of Emergency, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Bin Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Fumin Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Liyan Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Nanping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Haibo Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| |
Collapse
|
7
|
Nuñez IA, Ross TM. A review of H5Nx avian influenza viruses. Ther Adv Vaccines Immunother 2019; 7:2515135518821625. [PMID: 30834359 PMCID: PMC6391539 DOI: 10.1177/2515135518821625] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 11/09/2018] [Indexed: 12/12/2022] Open
Abstract
Highly pathogenic avian influenza viruses (HPAIVs), originating from the A/goose/Guangdong/1/1996 H5 subtype, naturally circulate in wild-bird populations, particularly waterfowl, and often spill over to infect domestic poultry. Occasionally, humans are infected with HPAVI H5N1 resulting in high mortality, but no sustained human-to-human transmission. In this review, the replication cycle, pathogenicity, evolution, spread, and transmission of HPAIVs of H5Nx subtypes, along with the host immune responses to Highly Pathogenic Avian Influenza Virus (HPAIV) infection and potential vaccination, are discussed. In addition, the potential mechanisms for Highly Pathogenic Avian Influenza Virus (HPAIV) H5 Reassorted Viruses H5N1, H5N2, H5N6, H5N8 (H5Nx) viruses to transmit, infect, and adapt to the human host are reviewed.
Collapse
Affiliation(s)
- Ivette A. Nuñez
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, 501 D.W. Brooks Drive, CVI Room 1504, Athens, GA 30602, USA
| |
Collapse
|
8
|
Wu H, Yang F, Liu F, Lu R, Peng X, Chen B, Yao H, Wu N. Isolation and characterization of novel reassortant H6N1 avian influenza viruses from chickens in Eastern China. Virol J 2018; 15:164. [PMID: 30355336 PMCID: PMC6201551 DOI: 10.1186/s12985-018-1063-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 09/25/2018] [Indexed: 11/24/2022] Open
Abstract
Background The H6N1 subtype of avian influenza viruses (AIVs) can infect people with an influenza-like illness; the H6N1 viruses possess the ability for zoonotic transmission from avians into mammals, and possibly pose a threat to human health. Methods In 2017, live poultry markets (LPMs) in Zhejiang Province were surveyed for AIVs. To better understand the genetic relationships between these strains from Eastern China and other AIVs, all gene segments of these strains were sequenced and compared with sequences available in GenBank. In this study, we analyzed the receptor-binding specificity, antigenic characteristics, and pathogenicity of these two H6N1 viruses. Results In 2017, two H6N1 AIVs were isolated from chickens during surveillance for AIVs in LPMs in Eastern China. Phylogenetic analysis showed that these strains shared genetic characteristics from H6, H10, H1, and H4 AIVs found in ducks and wild birds in East Asia. These AIV strains were able to replicate in mice without prior adaptation. Conclusions In this study, we report the discovery of new strains of H6N1 viruses from chickens with novel gene reassortments. Our results suggest that these chickens play an important role generating novel reassortments in AIVs, and emphasize the need for continued surveillance of AIV strains circulating in poultry. Electronic supplementary material The online version of this article (10.1186/s12985-018-1063-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Haibo Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Zhejiang, 310003, Hangzhou, China
| | - Fan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Zhejiang, 310003, Hangzhou, China
| | - Fumin Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Zhejiang, 310003, Hangzhou, China
| | - Rufeng Lu
- Department of Emergency, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiuming Peng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Zhejiang, 310003, Hangzhou, China
| | - Bin Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Zhejiang, 310003, Hangzhou, China
| | - Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Zhejiang, 310003, Hangzhou, China
| | - Nanping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Zhejiang, 310003, Hangzhou, China.
| |
Collapse
|
9
|
Wu H, Yang F, Liu F, Peng X, Chen B, Cheng L, Lu X, Yao H, Wu N. Molecular characterization of H10 subtype avian influenza viruses isolated from poultry in Eastern China. Arch Virol 2018; 164:159-179. [PMID: 30302582 DOI: 10.1007/s00705-018-4019-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 07/25/2018] [Indexed: 02/06/2023]
Abstract
In recent years, avian-origin H10 influenza viruses have proved capable of infecting human beings, and they pose a potential public health threat. Seven H10 avian influenza viruses (AIVs), H10N3 (n = 2), H10N7 (n = 1), and H10N8 (n = 4), were isolated from chickens in Zhejiang Province, Eastern China, during surveillance of AIVs in live poultry markets in 2016 and 2017. Phylogenetic analysis indicated that Zhejiang H10 strains received gene segments from H10, H3, and H7 viruses from birds in East Asia. Animal inoculation tests showed that these isolates have low pathogenicity in mice and can replicate in this species. Our findings suggest these H10 AIVs have the ability to adapt to chicken or other poultry, and highlight the need of long-term surveillance.
Collapse
Affiliation(s)
- Haibo Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital School of Medicine, Zhejiang University, Hangzhou, China.
| | - Fan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital School of Medicine, Zhejiang University, Hangzhou, China
| | - Fumin Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiuming Peng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital School of Medicine, Zhejiang University, Hangzhou, China
| | - Bin Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital School of Medicine, Zhejiang University, Hangzhou, China
| | - Linfang Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiangyun Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital School of Medicine, Zhejiang University, Hangzhou, China
| | - Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital School of Medicine, Zhejiang University, Hangzhou, China
| | - Nanping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
10
|
Isolation and characterization of H5Nx highly pathogenic avian influenza viruses of clade 2.3.4.4 in Russia. Virology 2018; 525:216-223. [PMID: 30296682 DOI: 10.1016/j.virol.2018.09.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/28/2018] [Accepted: 09/28/2018] [Indexed: 11/23/2022]
Abstract
In 2016-2017, several subtypes of the highly pathogenic avian influenza (HPAI) virus were isolated on the territory of Russia. In the autumn of 2016, during the avian influenza virus surveillance in the territory of the Kamchatka region of Russia the HPAI A(H5N5) influenza virus was isolated. Then, during 2016-2017, multiple outbreaks among wild birds and poultry caused by HPAI A(H5N8) avian influenza virus were recorded in European part of Russia. At the end of 2017, an outbreak among poultry caused by HPAI A(H5N2) influenza virus was recorded in the European part of Russia. Phylogenetic analysis of HA of the A(H5N5), A(H5N8), A(H5N2) showed the strains belong to the clade 2.3.4.4 b. All isolated strains were antigenically closely related to candidate vaccine viruses of clade 2.3.4.4 and showed high virulence in mice. Genetic analysis revealed presence of genetic markers potentially related to high virulence in mice in all studied viruses.
Collapse
|
11
|
Development of a TaqMan MGB RT-PCR assay for the detection of type A and subtype H10 avian influenza viruses. Arch Virol 2018; 163:2497-2501. [PMID: 29796926 DOI: 10.1007/s00705-018-3889-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 05/18/2018] [Indexed: 12/11/2022]
Abstract
H10 subtype avian influenza viruses have caused several epidemics in poultry and mammals, and specific, rapid and sensitive methods for detection are urgently needed. Herein, TaqMan minor groove binder (MGB) probes and multiplex real-time RT-PCR primers were designed based on gene regions encoding conserved domains of the nucleoprotein and H10 hemagglutinin. The developed multiplex real-time RT-PCR assay displayed high specificity, repeatability, and a detection limit of 10 copies per reaction. This diagnostic method could prove valuable for the rapid detection of H10 subtype AIVs in China.
Collapse
|
12
|
Evolution of Influenza A Virus by Mutation and Re-Assortment. Int J Mol Sci 2017; 18:ijms18081650. [PMID: 28783091 PMCID: PMC5578040 DOI: 10.3390/ijms18081650] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 12/13/2022] Open
Abstract
Influenza A virus (IAV), a highly infectious respiratory pathogen, has continued to be a significant threat to global public health. To complete their life cycle, influenza viruses have evolved multiple strategies to interact with a host. A large number of studies have revealed that the evolution of influenza A virus is mainly mediated through the mutation of the virus itself and the re-assortment of viral genomes derived from various strains. The evolution of influenza A virus through these mechanisms causes worldwide annual epidemics and occasional pandemics. Importantly, influenza A virus can evolve from an animal infected pathogen to a human infected pathogen. The highly pathogenic influenza virus has resulted in stupendous economic losses due to its morbidity and mortality both in human and animals. Influenza viruses fall into a category of viruses that can cause zoonotic infection with stable adaptation to human, leading to sustained horizontal transmission. The rapid mutations of influenza A virus result in the loss of vaccine optimal efficacy, and challenge the complete eradication of the virus. In this review, we highlight the current understanding of influenza A virus evolution caused by the mutation and re-assortment of viral genomes. In addition, we discuss the specific mechanisms by which the virus evolves.
Collapse
|
13
|
Cao X, Yang F, Wu H, Xu L. Genetic characterization of novel reassortant H5N6-subtype influenza viruses isolated from cats in eastern China. Arch Virol 2017; 162:3501-3505. [PMID: 28730524 DOI: 10.1007/s00705-017-3490-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/06/2017] [Indexed: 12/01/2022]
Abstract
Cats are susceptible to influenza A viruses and therefore may act as transmission vectors within households, posing a potential public health concern. Two novel reassortant H5N6 influenza viruses were isolated from cats in Zhejiang Province, Eastern China, in 2016. Both viruses were characterized by whole-genome sequencing with subsequent phylogenetic analysis and genetic comparison. Phylogenetic analysis showed that these viruses received their genes from H5N6, H9N2, and H7N9 influenza viruses isolated from China. These H5N6 viruses were able to replicate in mice without prior adaptation. Our results show that continued circulation of these viruses could endanger humans.
Collapse
Affiliation(s)
- Xueliang Cao
- Animal Husbandry and Veterinary Institute, Zhejiang Academy of Agricultural Science, 198 Shiqiao Road, Hangzhou, 310021, Zhejiang, China.,Dezhou College, Dezhou, 253023, Shandong, China
| | - Fan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, The First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Haibo Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, The First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| | - Lihua Xu
- Animal Husbandry and Veterinary Institute, Zhejiang Academy of Agricultural Science, 198 Shiqiao Road, Hangzhou, 310021, Zhejiang, China.
| |
Collapse
|