1
|
Chen X, Xie X, Sun N, Liu X, Liu J, Zhang W, Cao Y. Gut microbiota-derived butyrate improved acute leptospirosis in hamster via promoting macrophage ROS mediated by HDAC3 inhibition. mBio 2024; 15:e0190624. [PMID: 39287437 PMCID: PMC11481532 DOI: 10.1128/mbio.01906-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
Leptospirosis is a re-emerging worldwide zoonotic disease. Infected patients and animals often exhibit intestinal symptoms. Mounting evidence suggests that host immune responses to bacterial infection are closely associated with intestinal homeostasis. Our previous research has shown that the gut microbiota can protect the host from acute leptospirosis, while the specific bacterial metabolic mediators participating in the pathogenesis remain to be identified. Short-chain fatty acids (SCFAs) are metabolites produced mainly by the gut microbiota that play a role in immune regulation. However, whether SCFAs are the key to protecting the host against leptospirosis and the underlying regulatory mechanisms are unknown. In this study, our results showed that the SCFA butyrate is involved in ameliorating leptospirosis. The depletion of SCFAs by antibiotic cocktail treatment reduced survival time after Leptospira infection while supplementation with butyrate but not acetate or propionate significantly amelioration of leptospirosis. In vitro experiments showed that butyrate treatment enhanced the intracellular bactericidal activity mediated by reactive oxygen species (ROS) production. Mechanistically, butyrate functions as a histone deacetylase 3 inhibitor (HDAC3i) to promote ROS production via monocarboxylate transporter (MCT). The protection of butyrate against acute leptospirosis mediated by ROS was also proven in vivo. Collectively, our data provide evidence that the butyrate-MCT-HDAC3i-ROS signaling axis is a potential therapeutic target for acute leptospirosis. Our work not only interprets the microbial metabolite signaling involved in transkingdom interactions between the host and gut microbiota but also provides a possible target for developing a prevention strategy for acute leptospirosis. IMPORTANCE Leptospirosis is a worldwide zoonotic disease caused by Leptospira. An estimated 1 million people are infected with leptospirosis each year. Studies have shown that healthy gut microbiota can protect the host against leptospirosis but the mechanism is not clear. This work elucidated the mechanism of gut microbiota protecting the host against acute leptospirosis. Here, we find that butyrate, a metabolite of gut microbiota, can improve the survival rate of hamsters with leptospirosis by promoting the bactericidal activity of macrophages. Mechanistically, butyrate upregulates reactive oxygen species (ROS) levels after macrophage infection with Leptospira by inhibiting HDAC3. This work confirms the therapeutic potential of butyrate in preventing acute leptospirosis and provides evidence for the benefits of the macrophage-HDAC3i-ROS axis.
Collapse
Affiliation(s)
- Xi Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xufeng Xie
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ni Sun
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xin Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jiuxi Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wenlong Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yongguo Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
2
|
Darriaut R, Marzari T, Lailheugue V, Tran J, Martins G, Marguerit E, Masneuf-Pomarède I, Lauvergeat V. Microbial dysbiosis in roots and rhizosphere of grapevines experiencing decline is associated with active metabolic functions. FRONTIERS IN PLANT SCIENCE 2024; 15:1358213. [PMID: 38628369 PMCID: PMC11018932 DOI: 10.3389/fpls.2024.1358213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/11/2024] [Indexed: 04/19/2024]
Abstract
When grapevine decline, characterized by a premature decrease in vigor and yield and sometimes plant death, cannot be explained by pathological or physiological diseases, one may inquire whether the microbiological status of the soil is responsible. Previous studies have shown that the composition and structure of bacterial and fungal microbial communities in inter-row soil are affected in areas displaying vine decline, compared to areas with non-declining vines within the same plot. A more comprehensive analysis was conducted in one such plot. Although soil chemical parameters could not directly explain these differences, the declining vines presented lower vigor, yield, berry quality, and petiole mineral content than those in non-declining vines. The bacterial and fungal microbiome of the root endosphere, rhizosphere, and different horizons of the bulk soil were explored through enzymatic, metabolic diversity, and metabarcoding analysis in both areas. Despite the lower microbial diversity and richness in symptomatic roots and soil, higher microbial activity and enrichment of potentially both beneficial bacteria and pathogenic fungi were found in the declining area. Path modeling analysis linked the root microbial activity to berry quality, suggesting a determinant role of root microbiome in the berry mineral content. Furthermore, certain fungal and bacterial taxa were correlated with predicted metabolic pathways and metabolic processes assessed with Eco-Plates. These results unexpectedly revealed active microbial profiles in the belowground compartments associated with stressed vines, highlighting the interest of exploring the functional microbiota of plants, and more specifically roots and rhizosphere, under stressed conditions.
Collapse
Affiliation(s)
- Romain Darriaut
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| | - Tania Marzari
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| | - Vincent Lailheugue
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| | - Joseph Tran
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| | - Guilherme Martins
- Université de Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, UMR Œnologie 1366, ISVV, Villenave d’Ornon, France
- Bordeaux Sciences Agro, 1 cours du Général de Gaulle, Gradignan, France
| | - Elisa Marguerit
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| | - Isabelle Masneuf-Pomarède
- Université de Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, UMR Œnologie 1366, ISVV, Villenave d’Ornon, France
- Bordeaux Sciences Agro, 1 cours du Général de Gaulle, Gradignan, France
| | - Virginie Lauvergeat
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| |
Collapse
|
3
|
Putz EJ, Fernandes LGV, Sarlo Davila KM, Whitelegge J, Lippolis JD, Nally JE. Proteomic profiles of Leptospira borgpetersenii serovar Hardjo strains JB197 and HB203 cultured at different temperatures. J Proteomics 2024; 295:105106. [PMID: 38320623 DOI: 10.1016/j.jprot.2024.105106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/04/2024] [Accepted: 01/19/2024] [Indexed: 02/08/2024]
Abstract
Leptospirosis is a global zoonotic disease affecting humans, domestic, and wild animals. Leptospira are typically shed in the urine of reservoir hosts which persist in suitable environments where incidental host transmission occurs after direct contact with infected urine or contaminated environments. Interestingly, serologically identical L. borgpetersenii serovar Hardjo strains JB197 and HB203 show divergent disease severity in the hamster model; JB197 causes severe acute infection while HB203 causes persistent chronic infection. Historically, serovar Hardjo was limited to culture at 29 °C, but utilization of HAN media allows propagation from host tissues at 37 °C. Here, the proteome of strains JB197 and HB203 were characterized after culture from experimentally challenged hamsters at 29 °C and 37 °C. Comparative analyses of JB197 and HB203 samples cultured at 29 °C yielded 425 significantly differentially expressed (DE) proteins, while strains at 37 °C yielded 613 DE proteins including prominent outer membrane proteins and known virulence factors. In agreement, membrane protein GO terms were identified by STRING network analyses along with numerous metabolic KEGG pathways consistent with condition differences. Within strain, JB197 cultured at 29 °C vs 37 °C identified 529 DE proteins, while HB203 identified 524 DE proteins. Investigating differential protein profiles provide insights into strain specific behaviors with implications for better understanding host-pathogen interactions, disease transmission, and response to environmental conditions which can contribute to vaccine development, diagnostic improvement, and ultimately leptospirosis control. SIGNIFICANCE: Leptospirosis is a devastating zoonotic disease affecting humans, wild and domestic animals around the globe. Different species and serovars of Leptospira can affect various animal host species differently; for instance, a serovar that is asymptomatic in the rat may cause severe disease in a dog or human. These differences in host response are not only found at the species and serovar level for Leptospira, but also at the strain level. A prime example comes from strains JB197 and HB203, both species L. borgpetersenii, both serovar Hardjo. Interestingly, JB197 causes a severe acute infection in the hamster while HB203 causes an asymptomatic chronic infection. Understanding these unique relationships between pathogen and host species is important, especially in the context of prevention technologies such as vaccine design, where the strain of Leptospira used as a bacterin might have different efficiencies in different hosts. In this study, proteomic profiles of strains JB197 and HB203 were analyzed, and results revealed diverse protein expression profiles of outer membrane proteins, as well as proteins functioning in motility and growth.
Collapse
Affiliation(s)
- Ellie J Putz
- Infectious Bacterial Disease Research Unit, USDA Agriculture Research Service, National Animal Disease Center, Ames, IA, USA.
| | - Luis G V Fernandes
- Infectious Bacterial Disease Research Unit, USDA Agriculture Research Service, National Animal Disease Center, Ames, IA, USA
| | - Kaitlyn M Sarlo Davila
- Infectious Bacterial Disease Research Unit, USDA Agriculture Research Service, National Animal Disease Center, Ames, IA, USA
| | - Julian Whitelegge
- The Pasarow Mass Spectrometry Laboratory, David Geffen School of Medicine, NPI-Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| | - John D Lippolis
- Ruminant Diseases and Immunology Research Unit, USDA Agriculture Research Service, National Animal Disease Center, Ames, IA, USA
| | - Jarlath E Nally
- Infectious Bacterial Disease Research Unit, USDA Agriculture Research Service, National Animal Disease Center, Ames, IA, USA
| |
Collapse
|
4
|
Gharakhani M, Faezi Ghasemi M, Khaki P, Esmaelizad M, Tebianian M. Improvement the expression and purification of Loa22: a lipoprotein with OmpA domain from pathogenic Leptospira serovars. IRANIAN JOURNAL OF MICROBIOLOGY 2023; 15:674-684. [PMID: 37941886 PMCID: PMC10628081 DOI: 10.18502/ijm.v15i5.13873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Background and Objectives One of the highly conserved outer membrane proteins expressed only by pathogenic Leptospires is Loa22. The study aims is to achieve the optimum conditions for high expression of recombinant Loa22 (rLoa22) protein. Materials and Methods Complete coding sequence of loa22 gene sub-cloned into a pET32a (+) expression vector. BL21 competent E. coli (pLysS) used as expression host for transformation. The recombinant clones selected on ampicillin plates and subjected to PCR by using pET T7 primers. Then expression conditions optimized by adjusting parameters such as culture media, induction time, temperature, and IPTG concentration. Results SDS-PAGE analysis showed that high production of rLoa22 protein obtained when post induction incubation, IPTG concentration, and duration of induction were 37°C, 0.1 M and 5 h in 2×TY medium respectively. The purification of rLoa22 protein under native conditions using Ni-NTA pull-down was optimum in one hour binding at 37°C, five times washing process and elution buffer with a pH 7.4 and a 0.3 M imidazole concentration. Conclusion The findings of the study led to high production of pure Loa22 protein, which can form the basis for future investigation on the design of rapid diagnostic tests and more effective vaccine candidates for leptospirosis.
Collapse
Affiliation(s)
- Mehdi Gharakhani
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University, Lahijan, Iran
| | - Mohammad Faezi Ghasemi
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University, Lahijan, Iran
| | - Pejvak Khaki
- Department of Microbiology, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Majid Esmaelizad
- Department of Research and Development, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Majid Tebianian
- Department of Immunology, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
5
|
Yu M, Jiang C, Meng Y, Wang F, Qian J, Fei F, Yin Z, Zhao W, Zhao Y, Liu H. Effect of low temperature on the resistance of Listeria monocytogenes and Escherichia coli O157:H7 to acid electrolyzed water. Food Res Int 2023; 168:112776. [PMID: 37120223 DOI: 10.1016/j.foodres.2023.112776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/13/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
Low temperature can affect the resistance of pathogenic bacteria to other external stress. The present study was envisaged to assess the tolerance of L. monocytogenes and E. coli O157:H7 to acidic electrolyzed water (AEW) under low temperature stress. AEW treatment caused a damage to cell membrane of the pathogenic bacteria, which led to protein leakage and DNA damage. Compared with the pathogenic bacteria cultured at 37 °C (pure culture), the L. monocytogenes and E. coli O157:H7 cells cultivated at low temperature presented a less damage and had a higher survival rate when exposed to AEW. Therefore, 4 °C or 10 °C grown bacteria were less susceptible to AEW than those cultured at 37 °C. And this phenomenon was verified when AEW was used to treat the pathogenic bacteria inoculated in salmon. In addition, transcriptomic sequencing technology (RNA-seq) was used to reveal the mechanism of AEW tolerance of L. monocytogenes under low temperature stress. Transcriptomic analysis showed the expression of the cold shock protein, regulation of DNA-templated transcription, ribosome pathway, phosphotransferase system (PTS), bacteria chemotaxis, SOS response and DNA repair were involved in the resistance of L. monocytogenes to AEW. We speculated that the direct modulation of the expression of cold shock protein CspD, the indirect effect on the expression of cspD by inhibiting the expression of Crp/Fnr family transcriptional regulator or enhancing the level of cAMP by regulating PTS could reduce the resistance of L. monocytogenes cultivated at 4 °C to AEW. Our study contributes to solving the problem of the reduced bacteriostatic effect in cold storage environment.
Collapse
|
6
|
Rex DAB, Chanderasekaran J, Rai AB, Phukan H, Sarma A, Prasad TSK, Madanan MG. Leptospira and Leptospirosis: New Systems Science Insights on Proteome, Posttranslational Modifications, and Pathogen-Host Interaction. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2022; 26:280-289. [PMID: 35446144 DOI: 10.1089/omi.2022.0007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Leptospirosis is one of the most important zoonotic diseases for planetary health. It is caused by Leptospira spp., which poses a formidable challenge in both rural and urban geographies. Discovery of molecular targets is crucial for developing interventions, including vaccines, against leptospirosis. We report here novel systems science insights on Leptospira proteome, posttranslational modifications (PTMs), and pathogen-host interactions, with an eye to bacterial pathophysiology from a functional standpoint. A systematic reanalysis of unassigned spectra from our previous total proteome identification was used for a multi-PTM search. Notably, we identified 3693 unique high-confidence PTM sites corresponding to 1266 proteins (PTM-profiling probability cutoff value ≥75%). The majority of the phosphorylated peptides were found to be GroEL molecular chaperones. Notably, the molecular docking of PTM-GroEL with STAT3, an important signaling protein in cytokine production, resulted in the prediction of druggable "hotspots." These energetically significant smaller subsets of amino acids (hotspot residues) offer promise for practical applications in planetary health, rational drug design, and peptide engineering. Furthermore, the prediction strategies described here could serve as a starting point for narrowing down the more extensive interface in protein-protein interactions that currently exist. Going forward, systems science approaches and the new insights reported here offer veritable prospects for innovation in preventing and treating leptospirosis.
Collapse
Affiliation(s)
- Devasahayam Arokia Balaya Rex
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Jaikanth Chanderasekaran
- Department of Pharmacology, School of Pharmacy and Technology Management, SVKM'S NMIMS University, Hyderabad, India
| | - Akhila Balakrishna Rai
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Homen Phukan
- Department of Biochemistry, ICMR-Regional Medical Research Centre, Port Blair, India
| | - Abhijit Sarma
- Department of Biochemistry, ICMR-Regional Medical Research Centre, Port Blair, India
| | | | | |
Collapse
|
7
|
Grassmann AA, Zavala-Alvarado C, Bettin EB, Picardeau M, Benaroudj N, Caimano MJ. The FUR-like regulators PerRA and PerRB integrate a complex regulatory network that promotes mammalian host-adaptation and virulence of Leptospira interrogans. PLoS Pathog 2021; 17:e1009078. [PMID: 34855918 PMCID: PMC8638967 DOI: 10.1371/journal.ppat.1009078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/18/2021] [Indexed: 11/18/2022] Open
Abstract
Leptospira interrogans, the causative agent of most cases of human leptospirosis, must respond to myriad environmental signals during its free-living and pathogenic lifestyles. Previously, we compared L. interrogans cultivated in vitro and in vivo using a dialysis membrane chamber (DMC) peritoneal implant model. From these studies emerged the importance of genes encoding the Peroxide responsive regulators PerRA and PerRB. First described in in Bacillus subtilis, PerRs are widespread in Gram-negative and -positive bacteria, where regulate the expression of gene products involved in detoxification of reactive oxygen species and virulence. Using perRA and perRB single and double mutants, we establish that L. interrogans requires at least one functional PerR for infectivity and renal colonization in a reservoir host. Our finding that the perRA/B double mutant survives at wild-type levels in DMCs is noteworthy as it demonstrates that the loss of virulence is not due to a metabolic lesion (i.e., metal starvation) but instead reflects dysregulation of virulence-related gene products. Comparative RNA-Seq analyses of perRA, perRB and perRA/B mutants cultivated within DMCs identified 106 genes that are dysregulated in the double mutant, including ligA, ligB and lvrA/B sensory histidine kinases. Decreased expression of LigA and LigB in the perRA/B mutant was not due to loss of LvrAB signaling. The majority of genes in the perRA and perRB single and double mutant DMC regulons were differentially expressed only in vivo, highlighting the importance of host signals for regulating gene expression in L. interrogans. Importantly, the PerRA, PerRB and PerRA/B DMC regulons each contain multiple genes related to environmental sensing and/or transcriptional regulation. Collectively, our data suggest that PerRA and PerRB are part of a complex regulatory network that promotes host adaptation by L. interrogans within mammals.
Collapse
Affiliation(s)
- André A. Grassmann
- Department of Medicine, University of Connecticut Health, Farmington, Connecticut, United States of America
| | - Crispin Zavala-Alvarado
- Unité de Biologie des Spirochètes, Department of Microbiology, Institut Pasteur, Paris, France
- Université de Paris, Sorbonne Paris Cité, Communauté d’universités et d’établissements (COMUE), Bio Sorbonne Paris Cité (BioSPC), Paris, France
| | - Everton B. Bettin
- Department of Medicine, University of Connecticut Health, Farmington, Connecticut, United States of America
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sol, Brazil
| | - Mathieu Picardeau
- Unité de Biologie des Spirochètes, Department of Microbiology, Institut Pasteur, Paris, France
| | - Nadia Benaroudj
- Unité de Biologie des Spirochètes, Department of Microbiology, Institut Pasteur, Paris, France
| | - Melissa J. Caimano
- Department of Medicine, University of Connecticut Health, Farmington, Connecticut, United States of America
- Department of Pediatrics, University of Connecticut Health, Farmington, Connecticut, United States of America
- Department of Molecular Biology and Biophysics, University of Connecticut Health, Farmington, Connecticut, United States of America
| |
Collapse
|
8
|
Philip N, Jani J, Azhari NN, Sekawi Z, Neela VK. In vivo and in silico Virulence Analysis of Leptospira Species Isolated From Environments and Rodents in Leptospirosis Outbreak Areas in Malaysia. Front Microbiol 2021; 12:753328. [PMID: 34803975 PMCID: PMC8602918 DOI: 10.3389/fmicb.2021.753328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/08/2021] [Indexed: 12/22/2022] Open
Abstract
The zoonotic disease leptospirosis is caused by pathogenic species of the genus Leptospira. With the advancement of studies in leptospirosis, several new species are being reported. It has always been a query, whether Leptospira species, serovars, and strains isolated from different geographical locations contribute to the difference in the disease presentations and severity. In an epidemiological surveillance study performed in Malaysia, we isolated seven novel intermediate and saprophytic species (Leptospira semungkisensis, Leptospira fletcheri, Leptospira langatensis, Leptospira selangorensis, Leptospira jelokensis, Leptospira perdikensis, Leptospira congkakensis) from environments and three pathogenic species from rodents (Leptospira borgpetersenii strain HP364, Leptospira weilii strain SC295, Leptospira interrogans strain HP358) trapped in human leptospirosis outbreak premises. To evaluate the pathogenic potential of these isolates, we performed an in vivo and in silico virulence analysis. Environmental isolates and strain HP364 did not induce any clinical manifestations in hamsters. Strain SC295 caused inactivity and weight loss with histopathological changes in kidneys, however, all hamsters survived until the end of the experiment. Strain HP358 showed a high virulent phenotype as all infected hamsters died or were moribund within 7 days postinfection. Lungs, liver, and kidneys showed pathological changes with hemorrhage as the main presentation. In silico analysis elucidated the genome size of strain HP358 to be larger than strains HP364 and SC295 and containing virulence genes reported in Leptospira species and a high number of specific putative virulence factors. In conclusion, L. interrogans strain HP358 was highly pathogenic with fatal outcome. The constituent of Leptospira genomes may determine the level of disease severity and that needs further investigations.
Collapse
Affiliation(s)
- Noraini Philip
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Jaeyres Jani
- Borneo Medical and Health Research Center, Universiti Malaysia Sabah, Sabah, Malaysia
| | - Nurul Natasya Azhari
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Zamberi Sekawi
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Vasantha Kumari Neela
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
9
|
Grassmann AA, Caimano MJ. Cultivation of Leptospira interrogans Within Rat Peritoneal Dialysis Membrane Chambers. Methods Mol Biol 2021; 2134:229-242. [PMID: 32632874 DOI: 10.1007/978-1-0716-0459-5_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
In order to sustain its zoonotic lifecycle, leptospires must adapt to growth within the host milieu. Signals encountered within the mammal also trigger regulatory programs required by Leptospira for the expression of virulence-related gene products. The complex transcriptional, antigenic, and physiological changes leptospires undergo within the mammal are collectively referred to as "host adaptation." In this chapter, we describe the procedures for the generation of host-adapted Leptospira spp. by cultivation within dialysis membrane chambers (DMCs) implanted in rat peritoneal cavities. In this model, Leptospira spp. diluted in EMJH medium are sequestered within sterile dialysis membrane tubing closed at both ends. The chamber then is surgically implanted within the peritoneal cavity of a rat and incubated for 7-10 days. During this period, leptospires are exposed to many, if not all, of the physiological and nutritional cues required for host adaptation while at the same time protected from clearance by host innate and adaptive immune defenses.
Collapse
Affiliation(s)
| | - Melissa J Caimano
- Departments of Medicine, Pediatrics, and Molecular Biology and Biophysics, University of Connecticut Health, Farmington, CT, USA.
| |
Collapse
|
10
|
Chadsuthi S, Chalvet-Monfray K, Wiratsudakul A, Modchang C. The effects of flooding and weather conditions on leptospirosis transmission in Thailand. Sci Rep 2021; 11:1486. [PMID: 33452273 PMCID: PMC7810882 DOI: 10.1038/s41598-020-79546-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 12/04/2020] [Indexed: 01/12/2023] Open
Abstract
The epidemic of leptospirosis in humans occurs annually in Thailand. In this study, we have developed mathematical models to investigate transmission dynamics between humans, animals, and a contaminated environment. We compared different leptospire transmission models involving flooding and weather conditions, shedding and multiplication rate in a contaminated environment. We found that the model in which the transmission rate depends on both flooding and temperature, best-fits the reported human data on leptospirosis in Thailand. Our results indicate that flooding strongly contributes to disease transmission, where a high degree of flooding leads to a higher number of infected individuals. Sensitivity analysis showed that the transmission rate of leptospires from a contaminated environment was the most important parameter for the total number of human cases. Our results suggest that public education should target people who work in contaminated environments to prevent Leptospira infections.
Collapse
Affiliation(s)
- Sudarat Chadsuthi
- Department of Physics, Research Center for Academic Excellence in Applied Physics, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand.
| | - Karine Chalvet-Monfray
- INRAE, VetAgro Sup, UMR EPIA, Université Clermont Auvergne, 63122, Saint Genès Champanelle, France
- INRAE, VetAgro Sup, UMR EPIA, Université de Lyon, 69210, Marcy l'Etoile, France
| | - Anuwat Wiratsudakul
- Department of Clinical Sciences and Public Health, and the Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Charin Modchang
- Biophysics Group, Department of Physics, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Centre of Excellence in Mathematics, CHE, 328, Si Ayutthaya Road, Bangkok, 10400, Thailand
| |
Collapse
|
11
|
Abstract
The functional diversity of the mammalian intestinal microbiome far exceeds that of the host organism, and microbial genes contribute substantially to the well-being of the host. However, beneficial gut organisms can also be pathogenic when present in the gut or other locations in the body. Among dominant beneficial bacteria are several species of Bacteroides, which metabolize polysaccharides and oligosaccharides, providing nutrition and vitamins to the host and other intestinal microbial residents. These topics and the specific organismal and molecular interactions that are known to be responsible for the beneficial and detrimental effects of Bacteroides species in humans comprise the focus of this review. The complexity of these interactions will be revealed.
Collapse
Affiliation(s)
- Hassan Zafar
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, USA
- Department of Microbiology and Molecular Genetics, Faculty of Life Sciences, University of Okara,Okara, PunjabPakistan
| | - Milton H. Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, USA
| |
Collapse
|
12
|
Gaultney RA, Vincent AT, Lorioux C, Coppée JY, Sismeiro O, Varet H, Legendre R, Cockram CA, Veyrier F, Picardeau M. 4-Methylcytosine DNA modification is critical for global epigenetic regulation and virulence in the human pathogen Leptospira interrogans. Nucleic Acids Res 2020; 48:12102-12115. [PMID: 33301041 PMCID: PMC7708080 DOI: 10.1093/nar/gkaa966] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/01/2020] [Accepted: 10/13/2020] [Indexed: 12/25/2022] Open
Abstract
In bacteria, DNA methylation can be facilitated by 'orphan' DNA methyltransferases lacking cognate restriction endonucleases, but whether and how these enzymes control key cellular processes are poorly understood. The effects of a specific modification, 4-methylcytosine (4mC), are even less clear, as this epigenetic marker is unique to bacteria and archaea, whereas the bulk of epigenetic research is currently performed on eukaryotes. Here, we characterize a 4mC methyltransferase from the understudied pathogen Leptospira spp. Inactivating this enzyme resulted in complete abrogation of CTAG motif methylation, leading to genome-wide dysregulation of gene expression. Mutants exhibited growth defects, decreased adhesion to host cells, higher susceptibility to LPS-targeting antibiotics, and, importantly, were no longer virulent in an acute infection model. Further investigation resulted in the discovery of at least one gene, that of an ECF sigma factor, whose transcription was altered in the methylase mutant and, subsequently, by mutation of the CTAG motifs in the promoter of the gene. The genes that comprise the regulon of this sigma factor were, accordingly, dysregulated in the methylase mutant and in a strain overexpressing the sigma factor. Our results highlight the importance of 4mC in Leptospira physiology, and suggest the same of other understudied species.
Collapse
Affiliation(s)
| | - Antony T Vincent
- Bacterial Symbionts Evolution, INRS-Centre Armand-Frappier, Laval, Quebec, Canada
| | - Céline Lorioux
- Unité Biologie des Spirochètes, Institut Pasteur, Paris, France
| | - Jean-Yves Coppée
- Transcriptome and Epigenome Platform, Biomics, Center for Technological Resources and Research (C2RT), Institut Pasteur, Paris, France
| | - Odile Sismeiro
- Transcriptome and Epigenome Platform, Biomics, Center for Technological Resources and Research (C2RT), Institut Pasteur, Paris, France
| | - Hugo Varet
- Transcriptome and Epigenome Platform, Biomics, Center for Technological Resources and Research (C2RT), Institut Pasteur, Paris, France
- Bioinformatics and Biostatistics Hub, Department of Computational Biology, USR 3756 CNRS, Institut Pasteur, Paris, France
| | - Rachel Legendre
- Transcriptome and Epigenome Platform, Biomics, Center for Technological Resources and Research (C2RT), Institut Pasteur, Paris, France
- Bioinformatics and Biostatistics Hub, Department of Computational Biology, USR 3756 CNRS, Institut Pasteur, Paris, France
| | | | - Frédéric J Veyrier
- Bacterial Symbionts Evolution, INRS-Centre Armand-Frappier, Laval, Quebec, Canada
| | | |
Collapse
|
13
|
Yasouri SR, Doudi M, Ghane M, Naghavi NS, Rezaei A. The Effect of Environmental Stresses on lipL32 Gene Expression in Pathogenic Leptospira spp. through Real-Time PCR. Pol J Microbiol 2020; 69:301-310. [PMID: 33574859 PMCID: PMC7810116 DOI: 10.33073/pjm-2020-033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 12/27/2022] Open
Abstract
Leptospirosis is a worldwide infectious and zoonotic disease. The incidence of this disease is high in temperate regions, especially in northern Iran. The aim of this study was to investigate the effects of temperature, pH, and Phyllanthus amarus plant extract on the lipL32 gene expression in pathogenic Leptospira spp. Fifty water samples were collected. Culture and PCR technique were used to isolate and identify the bacterium and the presence of the lipL32 gene. The samples were exposed to different temperatures and pH levels for one day and the Ph. amarus plant extract at different concentrations for one and seven days. RNA was extracted, and cDNA synthesis was performed for all the samples. All cDNAs were evaluated by the real-time PCR (SYBR green) technique. Out of the 50 samples, ten samples (20%), using PCR were determined to contain the pathogenic Leptospira. Fold change of the expression of the lipL32 gene associated with stresses was as follows: temperature stress of 40°C, 35°C, and 25°C reduced the lipL32 gene expression in all three isolates, especially in the isolates type 1. The pH stress, i.e., pH values equal to 8 or 9 reduced the gene expression in three types of isolates, and pH = 6 stress increases the lipL32 gene expression in the isolates of type 1. Ph. amarus plant extract stress reduced the mentioned gene expression only in isolates of type 2. Temperature and pH stresses could lead to differences in the expression level and cause the lipL32 gene expression decrease in three pathogenic isolates. The MIC results showed anti-leptospiral effect of Ph. amarus plant extract.
Collapse
Affiliation(s)
| | - Monir Doudi
- Department of Microbiology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Masood Ghane
- Department of Microbiology, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Nafiseh Sadat Naghavi
- Department of Microbiology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Abolhasan Rezaei
- Department of Genetic, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| |
Collapse
|
14
|
Dhewantara PW, Hu W, Zhang W, Yin WW, Ding F, Mamun AA, Soares Magalhães RJ. Climate variability, satellite-derived physical environmental data and human leptospirosis: A retrospective ecological study in China. ENVIRONMENTAL RESEARCH 2019; 176:108523. [PMID: 31203048 DOI: 10.1016/j.envres.2019.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 05/28/2019] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND In the past three decades, the incidence rate of notified leptospirosis cases in China have steeply declined and are now circumscribed to discrete areas in the country. Previous research showed that climate and environmental variation may play an important role in leptospirosis transmission. However, quantitative associations between climate, environmental factors and leptospirosis in the high-risk areas in China, is still poorly understood. OBJECTIVE To quantify the temporal effects of climate and remotely-sensed physical environmental factors on human leptospirosis in the high-risk counties in China. METHODS Time series seasonal decomposition was performed to explore the seasonality pattern of leptospirosis incidence in Mengla County, Yunnan and Yilong County, Sichuan for the period 2006-2016. Time series cross-correlation analysis was carried out to examine lagged effects of rainfall, relative humidity, normalized difference vegetation index (NDVI), modified normalized difference water index (MNDWI) and land surface temperature (LST) on leptospirosis. The associations of climatic and physical environment factors with leptospirosis in each county were assessed by using a generalized linear regression model with negative binomial link, adjusted by seasonal components. RESULTS Leptospirosis incidence in both counties showed strong and unique annual seasonality. Our results show that in Mengla County leptospirosis notifications exhibits a bi-modal temporal pattern while in Yilong County it follows a typical single epidemic curve. After adjusting for seasonality, the final best-fitting model for Mengla County indicated that leptospirosis notifications were significantly associated with present LST values (incidence rate ratio, IRR = 0.857, 95% confidence interval (CI):0.729-0.929) and rainfall at a lag of 6-months (IRR = 0.989; 95% CI: 0.985-0.993). The incidence of leptospirosis in Yilong was associated with rainfall at 1-month lag (IRR = 1.013, 95% CI: 1.003-1.023), LST (3-months lag) (IRR = 1.193, 95% CI: 1.095-1.301), and MNDWI (5-months lag) (IRR = 7.960, 95% CI: 1.241-47.66). CONCLUSIONS Our study identified lagged effects between leptospirosis incidence and climate and remotely-sensed environmental factors in the two most endemic counties in China. Rainfall in combination with satellite derived physical environment factors provided better insight of the local epidemiology as well as good predictors for leptospirosis outbreak in both counties. This would also be an avenue for the development of leptospirosis early warning systems to support leptospirosis control in China.
Collapse
Affiliation(s)
- Pandji Wibawa Dhewantara
- UQ Spatial Epidemiology Laboratory, School of Veterinary Science, The University of Queensland, Gatton, QLD, 4343, Australia; Pangandaran Unit of Health Research and Development, National Institute of Health Research and Development (NIHRD), Ministry of Health of Indonesia, West Java, 46396, Indonesia.
| | - Wenbiao Hu
- School of Public Health and Social Work, Queensland University of Technology, Kelvin Grove, QLD, 4059, Australia.
| | - Wenyi Zhang
- Center for Disease Control and Prevention of PLA, Beijing, 100071, People's Republic of China.
| | - Wen-Wu Yin
- Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China.
| | - Fan Ding
- Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China.
| | - Abdullah Al Mamun
- Institute for Social Science Research, The University of Queensland, Indooroopilly, QLD, 4068, Australia.
| | - Ricardo J Soares Magalhães
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, 4343, Australia; Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, QLD, 4101, Australia.
| |
Collapse
|
15
|
Abstract
Until about 15 years ago, the molecular and cellular basis for pathogenesis in leptospirosis was virtually unknown. The determination of the first full genome sequence in 2003 was followed rapidly by other whole genome sequences, whose availability facilitated the development of transposon mutagenesis and then directed mutagenesis of pathogenic Leptospira spp. The combination of genomics, transcriptomics and mutant construction and characterisation has resulted in major progress in our understanding of the taxonomy and biology of Leptospira. The most recent advances are analysed and discussed in this chapter.
Collapse
Affiliation(s)
- Dieter Bulach
- Melbourne Bioinformatics, The University of Melbourne, Carlton, VIC, Australia
| | - Ben Adler
- Department of Microbiology, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
16
|
Relation of reproductive disturbance in sheep and Leptospira interrogans serovar Icterohaemorrhagiae infection: Impacts on cellular oxidation status. Microb Pathog 2019; 130:65-70. [DOI: 10.1016/j.micpath.2019.02.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 11/22/2022]
|
17
|
Vonaesch P, Anderson M, Sansonetti PJ. Pathogens, microbiome and the host: emergence of the ecological Koch's postulates. FEMS Microbiol Rev 2018; 42:273-292. [PMID: 29325027 DOI: 10.1093/femsre/fuy003] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Indexed: 02/07/2023] Open
Abstract
Even though tremendous progress has been made in the last decades to elucidate the mechanisms of intestinal homeostasis, dysbiosis and disease, we are only at the beginning of understanding the complexity of the gut ecosystem and the underlying interaction networks. We are also only starting to unravel the mechanisms that pathogens have evolved to overcome the barriers imposed by the microbiota and host to exploit the system to their own benefit. Recent work in these domains clearly indicates that the 'traditional Koch's postulates', which state that a given pathogen leads to a distinct disease, are not valid for all 'infectious' diseases, but that a more complete and complex interpretation of Koch's postulates is needed in order to understand and explain them. This review summarises the current understanding of what defines a healthy gut ecosystem and highlights recent progress in uncovering the interplay between the host, its microbiota and invading intestinal pathogens. Based on these recent findings, we propose a new interpretation of Koch's postulates that we term 'ecological Koch's postulates'.
Collapse
Affiliation(s)
- Pascale Vonaesch
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 28 Rue du Dr. Roux, Paris 75015, France
| | - Mark Anderson
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 28 Rue du Dr. Roux, Paris 75015, France
| | - Philippe J Sansonetti
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 28 Rue du Dr. Roux, Paris 75015, France
| |
Collapse
|
18
|
Affiliation(s)
- Jin-Bo Xiong
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Li Nie
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China; E-mail:
| |
Collapse
|