1
|
Sajid S, Xiao B, Zhang G, Zhang Z, Chen L, Fang JKH, Lu Y, Cai L. Increased sulfate-reducing bacteria can drive microbial dysbiosis in bleached corals. J Appl Microbiol 2025; 136:lxaf043. [PMID: 39993925 DOI: 10.1093/jambio/lxaf043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/14/2025] [Accepted: 02/20/2025] [Indexed: 02/26/2025]
Abstract
AIMS Coral bleaching occurs when coral colonies lose their Symbiodiniaceae partner and turn pale or white. Although this event is generally temperature-induced, there is also the possibility of holobiont microbial infection and dysbiosis. To address this issue, this study was conducted to investigate the diversity and composition of Symbiodiniaceae and bacteria in healthy and bleached colonies of Porites lutea collected from eastern Shenzhen. METHODS AND RESULTS Internal transcribed spacer 2 and 16S amplicon sequencing analysis were used to explore the diversity and composition of Symbiodiniaceae and bacteria in healthy and bleached colonies of P. lutea. Bacterial diversity and richness were significantly higher in bleached colonies than in healthy colonies (P < 0.05), whereas the diversity and richness of Symbiodiniaceae showed no significant changes. The bleaching event exerted a more significant impact on Symbiodiniaceae composition, which differed between healthy and bleached colonies (PERMANOVA, F = 8.246, P < 0.05). In terms of composition, Clade C (Cladocopium) was the predominant Symbiodiniaceae, whereas subclade C116 and C2r were significantly less abundant in bleached colonies than in healthy colonies (P < 0.05). The phyla Bacteroidetes, Acidobacteria, and Actinobacteria were significantly more abundant in bleached colonies than in healthy colonies (P < 0.05). The sulfate-reducing bacteria (SRB) Desulfobulbus and Desulfobacter at the genus level and Desulfobacterales and Desulfuromonadales at the order level were significantly more abundant in bleached colonies than in healthy colonies (P < 0.05). The co-occurrence patterns of Symbiodiniaceae and bacteria revealed a negative correlation of Desulfofaba, Desulfovibrio, Desulfarculus, and Desulfobulbus with Endozoicomonas, a very common symbiotic bacterial genus found in corals. CONCLUSION Coral bleaching may be associated with significant shifts in microbial communities, including increased SRB abundance, which may disrupt microbial balance and contribute to bleaching.
Collapse
Affiliation(s)
- Sumbal Sajid
- Shenzhen Institute of Guangdong Ocean University, Binhai 2nd Road, Shenzhen 518120, China
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Baohua Xiao
- Shenzhen Institute of Guangdong Ocean University, Binhai 2nd Road, Shenzhen 518120, China
| | - Guoqiang Zhang
- Shenzhen Institute of Guangdong Ocean University, Binhai 2nd Road, Shenzhen 518120, China
| | - Zongyao Zhang
- Shenzhen Institute of Guangdong Ocean University, Binhai 2nd Road, Shenzhen 518120, China
| | - Lianguo Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - James Kar-Hei Fang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Yishan Lu
- Shenzhen Institute of Guangdong Ocean University, Binhai 2nd Road, Shenzhen 518120, China
| | - Lin Cai
- Shenzhen Institute of Guangdong Ocean University, Binhai 2nd Road, Shenzhen 518120, China
| |
Collapse
|
2
|
Rabbani G, Afiq-Rosli L, Lee JN, Waheed Z, Wainwright BJ. Effects of life history strategy on the diversity and composition of the coral holobiont communities of Sabah, Malaysia. Sci Rep 2025; 15:4459. [PMID: 39915510 PMCID: PMC11802840 DOI: 10.1038/s41598-025-88231-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 01/28/2025] [Indexed: 02/09/2025] Open
Abstract
Coral-associated microbes have essential roles in promoting and regulating host function and health. As climate change advances and other environmental perturbations increasingly impact corals, it is becoming ever more important that we understand the composition of the microbial communities hosted. Without this baseline it is impossible to assess the magnitude and direction of any future changes in microbial community structure. Here, we characterised both the bacterial and Symbiodiniaceae communities in four coral species (Diploastrea heliopora, Porites lutea, Pachyseris speciosa, and Pocillopora acuta) collected from Sabah, Malaysia. Our findings reveal distinct microbial communities associated with different coral species tending to reflect the varied life history strategies of their hosts. Microbial communities could be differentiated by collection site, with shifts in Symbiodiniaceae communities towards more stress tolerant types seen in samples collected on the shallow Sunda Shelf. Additionally, we identified a core microbiome within species and a more discrete core between all species. We show bacterial and Symbiodiniaceae communities are structured by host species and appear to be influenced by host life history characteristics. Furthermore, we identified a core microbiome for each species finding that several amplicon sequence variants were shared between hosts, this suggests a key role in coral health regardless of species identity. Given the paucity of work performed in megadiverse regions such as the Coral Triangle, this research takes on increased importance in our efforts to understand how the coral holobiont functions and how it could be altered as climate change advances.
Collapse
Affiliation(s)
- Golam Rabbani
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Yale-NUS College, National University of Singapore, 16 College Avenue West, Singapore, 138527, Singapore
| | - Lutfi Afiq-Rosli
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Tropical Marine Science Institute, National University of Singapore, Singapore, Singapore
| | - Jen Nie Lee
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Zarinah Waheed
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Benjamin J Wainwright
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
- Yale-NUS College, National University of Singapore, 16 College Avenue West, Singapore, 138527, Singapore.
| |
Collapse
|
3
|
Chen J, Yu X, Yu K, Chen B, Qin Z, Liao Z, Ma Y, Xu L, Wang Y. Potential adaptation of scleractinian coral Pocillopora damicornis during hypo-salinity stress caused by extreme pre-flood rainfall over south China. ENVIRONMENTAL RESEARCH 2024; 262:119848. [PMID: 39216737 DOI: 10.1016/j.envres.2024.119848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Global warming intensifies the water cycle, resulting in significant increases in precipitation and river runoff, which brings severe hypo-salinity stress to nearshore coral reefs. Ecological investigations have found that some corals exhibit remarkable adaptability to hypo-salinity stress during mass-bleaching events. However, the exact cause of this phenomenon remains unclear. To elucidate the potential molecular mechanism leading to high tolerance to hypo-salinity stress, Pocillopora damicornis was used as a research object in this study. We compared the differences in transcriptional responses and symbiotic microbiomes between bleaching and unbleaching P. damicornis during hypo-salinity stress caused by extreme pre-flood rainfall over South China in 2022. The results showed that: (1) Under hypo-salinity stress, the coral genes related to immune defense and cellular stress were significantly upregulated in bleaching corals, indicating more severe immune damage and stress, and the Symbiodiniaceae had no significant gene enrichment. Conversely, metabolic genes related to glycolysis/gluconeogenesis were significantly downregulated in unbleaching corals, whereas Symbiodiniaceae genes related to oxidative phosphorylation were significantly upregulated to meet the energy requirements of coral holobiont; (2) C1d was the dominant Symbiodiniaceae subclade in all samples, with no significant difference between the two groups; (3) The symbiotic bacterial community structure was reorganized under hypo-salinity stress. The abundance of opportunistic bacteria increased significantly in bleaching coral, whereas the relative abundance of probiotics was higher in unbleaching coral. This may be due to severe immune damage, making the coral more susceptible to opportunistic infection and bleaching. These results suggest that long-term hypo-salinity acclimation in the Pearl River Estuary enhances the tolerance of some corals to hypo-salinity stress. Corals with higher tolerance may reduce energy consumption by slowing down their metabolism, improve the energy metabolism of Symbiodiniaceae to meet the energy requirements of the coral holobiont, and alter the structure of symbiotic bacterial communities to avoid bleaching.
Collapse
Affiliation(s)
- Junling Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Xiaopeng Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China.
| | - Biao Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Zhenjun Qin
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Zhiheng Liao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China; Nanning Normal University, Nanning, China
| | - Yuling Ma
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Lijia Xu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, China.
| | - Yongzhi Wang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, China
| |
Collapse
|
4
|
Zaheer A, Tang C, Yang Y, Zhang J, Zhou S. The Changes of Microbial Diversity and Isolation of Microorganism in Soil for Alleviating the Production Decreasing After Continuous Cultivation of Ganoderma lucidum. Curr Microbiol 2024; 81:321. [PMID: 39177881 DOI: 10.1007/s00284-024-03852-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
Ganoderma lucidum is a medicinal mushroom usually cultivated in logs and covered with soil. Its production decreases after continuous cultivation. Changes of microbial diversity in soil are suggested to be one of the reasons. This study aims to investigate the changes of microbial diversity and abundance in soil during cultivation, and isolate potential microbial strains that affect the yield of G. lucidum. Soil samples were collected at two different ranges from logs during one complete growth cycle of G. lucidum. The changes in fungi and bacteria were investigated by using high-throughput sequencing and real-time PCR. Results indicated that the relative abundance of Firmicutes in the bacterial community decreased at the short-range site. In the fungal community, the relative abundance of Ganoderma increased to 70% at the long-range site at the end of the cultivation. The abundance of bacteria and fungi decreased significantly at the end of the growth cycle. Recovery of microbial changes in soil should be proceeded separately based on different ranges to logs. The microbial strains in these soil samples were also isolated and identified. Potential strains were assessed in the form of bio-fertilizer. The yield of G. lucidum in the field using bio-fertilizer with isolated bacterial strains from the Firmicutes phylum was about 13% higher than that without using bio-fertilizer, suggesting the possibility of alleviating the production decrease of G. lucidum by this method.
Collapse
Affiliation(s)
- Ahmad Zaheer
- National Engineering Research Centre of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilisation, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agriculture Sciences, 1000 Jinqi Road, Shanghai, 201403, China
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Defence Road, Lahore, Pakistan
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Chuanhong Tang
- National Engineering Research Centre of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilisation, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agriculture Sciences, 1000 Jinqi Road, Shanghai, 201403, China
| | - Yan Yang
- National Engineering Research Centre of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilisation, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agriculture Sciences, 1000 Jinqi Road, Shanghai, 201403, China
| | - Jingsong Zhang
- National Engineering Research Centre of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilisation, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agriculture Sciences, 1000 Jinqi Road, Shanghai, 201403, China.
| | - Shuai Zhou
- National Engineering Research Centre of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilisation, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agriculture Sciences, 1000 Jinqi Road, Shanghai, 201403, China.
| |
Collapse
|
5
|
Yu X, Yu K, Liao Z, Chen B, Qin Z, Liang J, Gao X. Adaptation strategies of relatively high-latitude marginal reef corals in response to severe temperature fluctuations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166439. [PMID: 37604380 DOI: 10.1016/j.scitotenv.2023.166439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
The large seasonal temperature fluctuations caused by global warming and frequent marine heatwaves pose new challenges to survival of relatively high-latitude marginal reef corals. However, the adaptation strategies of high-latitude marginal corals are not fully understood. We employed integrated approach to investigate the response mechanism of hosts, Symbiodiniaceae, and symbiotic bacteria of marginal reef corals Acropora pruinosa and Pavona decussate in response to large seasonal temperature fluctuations. The coral holobiont maintained a high level of immunity to adapt to seasonal pressure by increasing Symbiodiniaceae energy supply. The symbiotic Symbiodiniaceae of two coral was dominated by C1 subgroup, and was stable across seasons. The α-diversity of symbiotic bacteria P. decussata and A. pruinosa in summer was higher than that in winter. The symbiotic bacterial community of two coral reorganized during different seasons. Scleractinian corals improve adaptability to seasonal stress by increasing energy supply to maintain high levels of immunity, increasing symbiotic bacterial α-diversity, and changing dominant bacteria. This study demonstrates the adaptation strategies of marginal reef corals to seasonal temperature fluctuations and provides novel insights into the study of the adaptation of corals and relatively high-latitude coral refuges in the context of global warming and intensified marine heatwaves.
Collapse
Affiliation(s)
- Xiaopeng Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China.
| | - Zhiheng Liao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Biao Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Zhenjun Qin
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Jiayuan Liang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Xu Gao
- Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
6
|
Li J, Chai G, Xiao Y, Li Z. The impacts of ocean acidification, warming and their interactive effects on coral prokaryotic symbionts. ENVIRONMENTAL MICROBIOME 2023; 18:49. [PMID: 37287087 DOI: 10.1186/s40793-023-00505-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/19/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Reef-building corals, the foundation of tropical coral reefs, are vulnerable to climate change e.g. ocean acidification and elevated seawater temperature. Coral microbiome plays a key role in host acclimatization and maintenance of the coral holobiont's homeostasis under different environmental conditions, however, the response patterns of coral prokaryotic symbionts to ocean acidification and/or warming are rarely known at the metatranscriptional level, particularly the knowledge of interactive and persistent effects is limited. Using branching Acropora valida and massive Galaxea fascicularis as models in a lab system simulating extreme ocean acidification (pH 7.7) and/or warming (32 °C) in the future, we investigated the changes of in situ active prokaryotic symbionts community and gene expression of corals under/after (6/9 d) acidification (A), warming (H) and acidification-warming (AH) by metatranscriptome analysis with pH8.1, 26 °C as the control. RESULTS A, H and AH increased the relative abundance of in situ active pathogenic bacteria. Differentially expressed genes (DEGs) involved in virulence, stress resistance, and heat shock proteins were up-regulated. Many DEGs involved in photosynthesis, carbon dioxide fixation, amino acids, cofactors and vitamins, auxin synthesis were down-regulated. A broad array of new DEGs involved in carbohydrate metabolism and energy production emerged after the stress treatment. Different response patterns of prokaryotic symbionts of massive G. fascicularis and branching A. valida were suggested, as well as the interactive effects of combined AH and persistent effects. CONCLUSIONS The metatranscriptome-based study indicates that acidification and/or warming might change coral's in situ active prokaryotic microbial diversity and functional gene expression towards more pathogenic and destabilized coral-microbes symbioses, particularly combined acidification and warming show interactive effects. These findings will aid in comprehension of the coral holobiont's ability for acclimatization under future climate change.
Collapse
Affiliation(s)
- Jinlong Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Guangjun Chai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yilin Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Zhiyong Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
7
|
Cheng K, Tong M, Cai Z, Jong MC, Zhou J, Xiao B. Prokaryotic and eukaryotic microbial communities associated with coral species have high host specificity in the South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161185. [PMID: 36581277 DOI: 10.1016/j.scitotenv.2022.161185] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/13/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Reef-building corals are well known for their obligate association with Symbiodiniaceae, and an array of other microbes, including bacteria, fungi, and symbiotic algae (i.e., total microbiome), which together form the coral holobiont. The total microbiome plays an intricate part in maintaining the homeostasis of the coral holobiont and is closely associated with host health. However, the composition of the coral associated microbiome and interaction between its different members remains elusive because few analyses have bridged taxonomically disparate groups. This research gaps have prevented a holistic understanding of the total microbiome. Thus, to simultaneously characterize the bacterial, fungal and symbiotic algal communities associated with different coral species, and explore the relationship between these symbionts and coral health, healthy and bleached tissues from four coral species, Acropora muricata, Galaxea fascicularis, Platygyra daedalea, and Pavona explanulata, were collected from the Xisha Islands of the South China Sea. Using high throughput sequencing, a high degree of host-specificity was observed among bacterial, fungal, and algal groups across coral species. There were no obvious changes in the microbial community structure of apparently healthy and bleached corals, but host bleaching allowed colonization of the holobionts by diverse opportunistic microbes, resulting in a significant elevation in the α-diversity of microbial communities. In addition, co-occurrence analysis of the coral microbiota also identified more complex microbial interactions in bleached corals than in healthy ones. In summary, this study characterized the structure of coral-associated microbiomes across four coral species, and systematically studied microbiome differences between healthy and bleached corals. The findings improve our understanding of the heterogeneity of symbiotic microorganisms and the impact of coral's physiological status on its associated microbial communities composition.
Collapse
Affiliation(s)
- Keke Cheng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Mengmeng Tong
- Ocean College, Zhejiang University, Zhoushan 316021, PR China
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Mui Choo Jong
- Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| | - Baohua Xiao
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518114, PR China.
| |
Collapse
|
8
|
Ouédraogo DY, Mell H, Perceval O, Burga K, Domart-Coulon I, Hédouin L, Delaunay M, Guillaume MMM, Castelin M, Calvayrac C, Kerkhof O, Sordello R, Reyjol Y, Ferrier-Pagès C. What are the toxicity thresholds of chemical pollutants for tropical reef-building corals? A systematic review. ENVIRONMENTAL EVIDENCE 2023; 12:4. [PMID: 39294817 PMCID: PMC11378836 DOI: 10.1186/s13750-023-00298-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/22/2023] [Indexed: 09/21/2024]
Abstract
BACKGROUND Tropical coral reefs cover only ca. 0.1% of the Earth's surface but harbour exceptional marine biodiversity and provide vital ecosystem services to millions of people living nearby. They are currently threatened by global (e.g. climate change) and local (e.g. chemical pollution) stressors that interact in multiple ways. While global stressors cannot be mitigated by local actions alone, local stressors can be reduced through ecosystem management. Here, we aimed to systematically review experimental studies assessing the toxicity of chemical pollutants to tropical reef-building corals to generate accessible and usable knowledge and data that can be used to calculate measurement endpoints in ecological risk assessment. From the quantitative estimates of effects, we determined toxicity thresholds as the highest exposures tested at which no statistically significant adverse effects were observed, and we compared them to regulatory predicted no effect concentrations for the protection of marine organisms, to assess whether these reference values are indeed protective of corals. METHODS The evidence was taken from a systematic map of the impacts of chemicals arising from human activity on tropical reef-building corals published in 2021. All studies in the map database corresponding to the knowledge cluster "Evidence on the ecotoxicological effects of chemicals on corals" were selected. To identify subsequently published literature, the search was updated using a subset of the search string used for the systematic map. Titles, abstracts and full-texts were screened according to the criteria defining the selected cluster of the map. Because the eligibility criteria for the systematic review are narrower than the criteria used to define the cluster in the systematic map, additional screening was performed. Studies included were critically appraised and each study was rated as low, unclear, medium, or high risk of bias. Data were extracted from the studies and synthesised according to a strategy dependent on the type of exposure and outcome. REVIEW FINDINGS The systematic review reports the known effects of chemical exposures on corals from 847 studies corresponding to 181 articles. A total of 697 studies (161 articles) were included in the quantitative synthesis and 150 studies (50 articles) in the narrative synthesis of the findings. The quantitative synthesis records the effects of 2706 exposure concentrations-durations of 164 chemicals or mixtures of chemicals, and identifies 105 toxicity thresholds corresponding to 56 chemicals or mixtures of chemicals. When toxicity thresholds were compared to reference values set for the protection of marine organisms by environmental agencies, the reference values appear to be protective of corals for all but three chemicals assessed: the metal copper and the pesticides diuron and irgarol 1051. CONCLUSIONS This open-access database of known ecotoxicological effects of chemical exposures on corals can assist managers in the ecological risk assessment of chemicals, by allowing easy determination of various ecotoxicological thresholds. Several limitations of the toxicity tests synthesised here were noted (in particular the lack of measurement of effective concentrations for more than half of the studies). Overall, most of the currently available data on coral toxicity should be replicated independently and extended to corals from less studied geographical regions and functional groups.
Collapse
Affiliation(s)
- Dakis-Yaoba Ouédraogo
- Direction de L'Expertise, Muséum National d'Histoire Naturelle (MNHN), 75005, Paris, France.
| | - Hugo Mell
- UMS Patrimoine Naturel (PatriNat), OFB-MNHN-CNRS, 75005, Paris, France
| | - Olivier Perceval
- Office Français de la Biodiversité (OFB), 94300, Vincennes, France
| | - Karen Burga
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 94701, Maisons-Alfort Cedex, France
| | - Isabelle Domart-Coulon
- Laboratoire Molécules de Communication et Adaptation des Microorganismes (MCAM), UMR 7245, CNRS-Muséum National d'Histoire Naturelle (MNHN), 75005, Paris, France
| | - Laetitia Hédouin
- Laboratoire d'Excellence CORAIL, 66860, Perpignan, France
- USR 3278 CRIOBE, PSL Université Paris : EPHE-UPVD-CNRS, 98729, Papetoai, Mo'orea, French Polynesia
| | - Mathilde Delaunay
- UMS Patrimoine Naturel (PatriNat), OFB-MNHN-CNRS, 75005, Paris, France
| | - Mireille M M Guillaume
- Laboratoire d'Excellence CORAIL, 66860, Perpignan, France
- Laboratoire de Biologie Des Organismes et Ecosystèmes Aquatiques (BOrEA), Muséum National d'Histoire Naturelle-CNRS - SorbonneU - IRD - UCN - UA EcoFunc - Aviv, 75005, Paris, France
| | - Magalie Castelin
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle - CNRS - Sorbonne Université - EPHE - Université des Antilles, 75005, Paris, France
| | - Christophe Calvayrac
- Biocapteurs Analyses Environnement, University of Perpignan via Domitia, 66000, Perpignan, France
- Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Sorbonne Universités - CNRS, 66650, Banyuls Sur Mer, France
| | - Odile Kerkhof
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 94701, Maisons-Alfort Cedex, France
| | - Romain Sordello
- UMS Patrimoine Naturel (PatriNat), OFB-MNHN-CNRS, 75005, Paris, France
| | - Yorick Reyjol
- UMS Patrimoine Naturel (PatriNat), OFB-MNHN-CNRS, 75005, Paris, France
| | | |
Collapse
|
9
|
Morrow KM, Pankey MS, Lesser MP. Community structure of coral microbiomes is dependent on host morphology. MICROBIOME 2022; 10:113. [PMID: 35902906 PMCID: PMC9331152 DOI: 10.1186/s40168-022-01308-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The importance of symbiosis has long been recognized on coral reefs, where the photosynthetic dinoflagellates of corals (Symbiodiniaceae) are the primary symbiont. Numerous studies have now shown that a diverse assemblage of prokaryotes also make-up part of the microbiome of corals. A subset of these prokaryotes is capable of fixing nitrogen, known as diazotrophs, and is also present in the microbiome of scleractinian corals where they have been shown to supplement the holobiont nitrogen budget. Here, an analysis of the microbiomes of 16 coral species collected from Australia, Curaçao, and Hawai'i using three different marker genes (16S rRNA, nifH, and ITS2) is presented. These data were used to examine the effects of biogeography, coral traits, and ecological life history characteristics on the composition and diversity of the microbiome in corals and their diazotrophic communities. RESULTS The prokaryotic microbiome community composition (i.e., beta diversity) based on the 16S rRNA gene varied between sites and ecological life history characteristics, but coral morphology was the most significant factor affecting the microbiome of the corals studied. For 15 of the corals studied, only two species Pocillopora acuta and Seriotopora hystrix, both brooders, showed a weak relationship between the 16S rRNA gene community structure and the diazotrophic members of the microbiome using the nifH marker gene, suggesting that many corals support a microbiome with diazotrophic capabilities. The order Rhizobiales, a taxon that contains primarily diazotrophs, are common members of the coral microbiome and were eight times greater in relative abundances in Hawai'i compared to corals from either Curacao or Australia. However, for the diazotrophic component of the coral microbiome, only host species significantly influenced the composition and diversity of the community. CONCLUSIONS The roles and interactions between members of the coral holobiont are still not well understood, especially critical functions provided by the coral microbiome (e.g., nitrogen fixation), and the variation of these functions across species. The findings presented here show the significant effect of morphology, a coral "super trait," on the overall community structure of the microbiome in corals and that there is a strong association of the diazotrophic community within the microbiome of corals. However, the underlying coral traits linking the effects of host species on diazotrophic communities remain unknown. Video Abstract.
Collapse
Affiliation(s)
- Kathleen M Morrow
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, USA
- Present address: Thomas Jefferson High School for Science and Technology, 6560 Braddock Rd, Alexandria, VA, 22312, USA
| | - M Sabrina Pankey
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, USA
| | - Michael P Lesser
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, USA.
| |
Collapse
|
10
|
Long-Term Heat Selection of the Coral Endosymbiont Cladocopium C1 acro (Symbiodiniaceae) Stabilizes Associated Bacterial Communities. Int J Mol Sci 2022; 23:ijms23094913. [PMID: 35563303 PMCID: PMC9101544 DOI: 10.3390/ijms23094913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Heat-tolerant strains of the coral endosymbiont, Cladocopium C1acro (Symbiodiniaceae), have previously been developed via experimental evolution. Here, we examine physiological responses and bacterial community composition (using 16S rRNA gene metabarcoding) in cultures of 10 heat-evolved (SS) and 9 wild-type (WT) strains, which had been exposed for 6 years to 31 °C and 27 °C, respectively. We also examine whether the associated bacterial communities were affected by a three-week reciprocal transplantation to both temperatures. The SS strains had bacterial communities with lower diversities that showed more stability and lower variability when exposed to elevated temperatures compared with the WT strains. Amplicon sequence variants (ASVs) of the bacterial genera Labrenzia, Algiphilus, Hyphobacterium and Roseitalea were significantly more associated with the SS strains compared with the WT strains. WT strains showed higher abundance of ASVs assigned to the genera Fabibacter and Tropicimonas. We hypothesize that these compositional differences in associated bacterial communities between SS and WT strains also contribute to the thermal tolerance of the microalgae. Future research should explore functional potential between bacterial communities using metagenomics to unravel specific genomic adaptations.
Collapse
|
11
|
Qi Z, Diao X, Yang T, Zeng R, Wang H, Zhou H. Spatial and interspecific differences in coral-associated bacterial diversity in Hainan, China. MARINE POLLUTION BULLETIN 2022; 175:113321. [PMID: 35149312 DOI: 10.1016/j.marpolbul.2022.113321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 12/13/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Coral reefs are suffering from environmental change and anthropogenic disturbances. It is well known that microbes play an indispensable role in the stable state of coral reef health. Furthermore, the coral reef microbial database helps to understand the connections among microbiomes shifts and ecosystem stress. Hainan Province is the main coral reef distribution area in China. Therefore, targeted microbial reference information from Hainan, including several coral microbiomes, was generated by 16S rRNA gene sequencing in this study. This study focused on a small range of coral-associated bacterial information and found a relationship between microbes and the surrounding environment based on coral interspecific and environmental factors. Interestingly, compared with species, the differences of bacterial community structures are best explained by site. It seems that various environmental factors contribute more to the microbial structure of corals than interspecific influences.
Collapse
Affiliation(s)
- Zhao Qi
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Xiaoping Diao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; College of Life Science, Hainan Normal University, Haikou 571158, China.
| | - Tinghan Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Ruohan Zeng
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Haihua Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Hailong Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; College of Life Sciences and Pharmacy, Hainan University, Haikou 570228, China
| |
Collapse
|
12
|
Wang G, Li Y, Liu J, Chen B, Su H, Liang J, Huang W, Yu K. Comparative Genomics Reveal the Animal-Associated Features of the Acanthopleuribacteraceae Bacteria, and Description of Sulfidibacter corallicola gen. nov., sp., nov. Front Microbiol 2022; 13:778535. [PMID: 35173698 PMCID: PMC8841776 DOI: 10.3389/fmicb.2022.778535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
Members of the phylum Acidobacteria are ubiquitous in various environments. Soil acidobacteria have been reported to present a variety of strategies for their success in terrestrial environments. However, owing to lack of pure culture, information on animal-associated acidobacteria are limited, except for those obtained from 16S rRNA genes. To date, only two acidobacteria have been isolated from animals, namely strain M133T obtained from coral Porites lutea and Acanthopleuribacter pedis KCTC 12899T isolated from chiton. Genomics and physiological characteristics of strain M133T and A. pedis KCTC 12899T were compared with 19 other isolates (one strain from each genus) in the phylum Acidobacteria. The results revealed that strain M133T represents a new species in a new genus in the family Acanthopleuribacteraceae. To date, these two Acanthopleuribacteraceae isolates have the largest genomes (10.85–11.79 Mb) in the phylum Acidobacteria. Horizontal gene transfer and gene duplication influenced the structure and plasticity of these large genomes. Dissimilatory nitrate reduction and abundant secondary metabolite biosynthetic gene clusters (including eicosapentaenoic acid de novo biosynthesis) are two distinct features of the Acanthopleuribacteraceae bacteria in the phylum Acidobacteria. The absence of glycoside hydrolases involved in plant polysaccharide degradation and presence of animal disease-related peptidases indicate that these bacteria have evolved to adapt to the animal hosts. In addition to low- and high-affinity respiratory oxygen reductases, enzymes for nitrate to nitrogen, and sulfhydrogenase were also detected in strain M133T, suggesting the capacity and flexibility to grow in aerobic and anaerobic environments. This study highlighted the differences in genome structure, carbohydrate and protein utilization, respiration, and secondary metabolism between animal-associated acidobacteria and other acidobacteria, especially the soil acidobacteria, displaying flexibility and versatility of the animal-associated acidobacteria in environmental adaption.
Collapse
Affiliation(s)
- Guanghua Wang
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, China
- Coral Reef Research Center of China, Guangxi University, Nanning, China
- School of Marine Sciences, Guangxi University, Nanning, China
| | - Yuanjin Li
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, China
- Coral Reef Research Center of China, Guangxi University, Nanning, China
- School of Marine Sciences, Guangxi University, Nanning, China
| | - Jianfeng Liu
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, China
- Coral Reef Research Center of China, Guangxi University, Nanning, China
- School of Marine Sciences, Guangxi University, Nanning, China
| | - Biao Chen
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, China
- Coral Reef Research Center of China, Guangxi University, Nanning, China
- School of Marine Sciences, Guangxi University, Nanning, China
| | - Hongfei Su
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, China
- Coral Reef Research Center of China, Guangxi University, Nanning, China
- School of Marine Sciences, Guangxi University, Nanning, China
| | - Jiayuan Liang
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, China
- Coral Reef Research Center of China, Guangxi University, Nanning, China
- School of Marine Sciences, Guangxi University, Nanning, China
| | - Wen Huang
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, China
- Coral Reef Research Center of China, Guangxi University, Nanning, China
- School of Marine Sciences, Guangxi University, Nanning, China
| | - Kefu Yu
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, China
- Coral Reef Research Center of China, Guangxi University, Nanning, China
- School of Marine Sciences, Guangxi University, Nanning, China
- *Correspondence: Kefu Yu,
| |
Collapse
|
13
|
Ge R, Liang J, Yu K, Chen B, Yu X, Deng C, Chen J, Xu Y, Qin L. Regulation of the Coral-Associated Bacteria and Symbiodiniaceae in Acropora valida Under Ocean Acidification. Front Microbiol 2022; 12:767174. [PMID: 34975794 PMCID: PMC8718875 DOI: 10.3389/fmicb.2021.767174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
Ocean acidification is one of many stressors that coral reef ecosystems are currently contending with. Thus, understanding the response of key symbiotic microbes to ocean acidification is of great significance for understanding the adaptation mechanism and development trend of coral holobionts. Here, high-throughput sequencing technology was employed to investigate the coral-associated bacteria and Symbiodiniaceae of the ecologically important coral Acropora valida exposed to different pH gradients. After 30 days of acclimatization, we set four acidification gradients (pH 8.2, 7.8, 7.4, and 7.2, respectively), and each pH condition was applied for 10 days, with the whole experiment lasting for 70 days. Although the Symbiodiniaceae density decreased significantly, the coral did not appear to be bleached, and the real-time photosynthetic rate did not change significantly, indicating that A. valida has strong tolerance to acidification. Moreover, the Symbiodiniaceae community composition was hardly affected by ocean acidification, with the C1 subclade (Cladocopium goreaui) being dominant among the Symbiodiniaceae dominant types. The relative abundance of the Symbiodiniaceae background types was significantly higher at pH 7.2, indicating that ocean acidification might increase the stability of the community composition by regulating the Symbiodiniaceae rare biosphere. Furthermore, the stable symbiosis between the C1 subclade and coral host may contribute to the stability of the real-time photosynthetic efficiency. Finally, concerning the coral-associated bacteria, the stable symbiosis between Endozoicomonas and coral host is likely to help them adapt to ocean acidification. The significant increase in the relative abundance of Cyanobacteria at pH 7.2 may also compensate for the photosynthesis efficiency of a coral holobiont. In summary, this study suggests that the combined response of key symbiotic microbes helps the whole coral host resist the threats of ocean acidification.
Collapse
Affiliation(s)
- Ruiqi Ge
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Jiayuan Liang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Biao Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Xiaopeng Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Chuanqi Deng
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Jinni Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Yongqian Xu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Liangyun Qin
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| |
Collapse
|
14
|
Liang J, Luo W, Yu K, Xu Y, Chen J, Deng C, Ge R, Su H, Huang W, Wang G. Multi-Omics Revealing the Response Patterns of Symbiotic Microorganisms and Host Metabolism in Scleractinian Coral Pavona minuta to Temperature Stresses. Metabolites 2021; 12:metabo12010018. [PMID: 35050140 PMCID: PMC8780272 DOI: 10.3390/metabo12010018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/30/2022] Open
Abstract
Global climate change has resulted in large-scale coral reef decline worldwide, for which the ocean warming has paid more attention. Coral is a typical mutually beneficial symbiotic organism with diverse symbiotic microorganisms, which maintain the stability of physiological functions. This study compared the responses of symbiotic microorganisms and host metabolism in a common coral species, Pavona minuta, under indoor simulated thermal and cold temperatures. The results showed that abnormal temperature stresses had unfavorable impact on the phenotypes of corals, resulting in bleaching and color change. The compositions of symbiotic bacteria and dinoflagellate communities only presented tiny changes under temperature stresses. However, some rare symbiotic members have been showed to be significantly influenced by water temperatures. Finally, by using ultra-performance liquid chromatography tandem mass spectrometry (UPLC–MS) method, we found that different temperature stresses had very different impacts on the metabolism of coral holobiont. The thermal and cold stresses induced the decrease of anti-oxidation metabolites, several monogalactosyldiacylglycerols (MGDGs), and the increase of lipotoxic metabolite, 10-oxo-nonadecanoic acid, in the coral holobiont, respectively. Our study indicated the response patterns of symbiotic microorganisms and host metabolism in coral to the thermal and cold stresses, providing theoretical data for the adaptation and evolution of coral to a different climate in the future.
Collapse
Affiliation(s)
- Jiayuan Liang
- Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; (J.L.); (H.S.); (W.H.); (G.W.)
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, China
- School of Marine Sciences, Guangxi University, Nanning 530004, China; (W.L.); (Y.X.); (J.C.); (C.D.); (R.G.)
| | - Wenwen Luo
- School of Marine Sciences, Guangxi University, Nanning 530004, China; (W.L.); (Y.X.); (J.C.); (C.D.); (R.G.)
| | - Kefu Yu
- Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; (J.L.); (H.S.); (W.H.); (G.W.)
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, China
- School of Marine Sciences, Guangxi University, Nanning 530004, China; (W.L.); (Y.X.); (J.C.); (C.D.); (R.G.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519080, China
- Correspondence: ; Tel./Fax: +86-771-3231358
| | - Yongqian Xu
- School of Marine Sciences, Guangxi University, Nanning 530004, China; (W.L.); (Y.X.); (J.C.); (C.D.); (R.G.)
| | - Jinni Chen
- School of Marine Sciences, Guangxi University, Nanning 530004, China; (W.L.); (Y.X.); (J.C.); (C.D.); (R.G.)
| | - Chuanqi Deng
- School of Marine Sciences, Guangxi University, Nanning 530004, China; (W.L.); (Y.X.); (J.C.); (C.D.); (R.G.)
| | - Ruiqi Ge
- School of Marine Sciences, Guangxi University, Nanning 530004, China; (W.L.); (Y.X.); (J.C.); (C.D.); (R.G.)
| | - Hongfei Su
- Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; (J.L.); (H.S.); (W.H.); (G.W.)
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, China
- School of Marine Sciences, Guangxi University, Nanning 530004, China; (W.L.); (Y.X.); (J.C.); (C.D.); (R.G.)
| | - Wen Huang
- Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; (J.L.); (H.S.); (W.H.); (G.W.)
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, China
- School of Marine Sciences, Guangxi University, Nanning 530004, China; (W.L.); (Y.X.); (J.C.); (C.D.); (R.G.)
| | - Guanghua Wang
- Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; (J.L.); (H.S.); (W.H.); (G.W.)
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, China
- School of Marine Sciences, Guangxi University, Nanning 530004, China; (W.L.); (Y.X.); (J.C.); (C.D.); (R.G.)
| |
Collapse
|
15
|
Li Y, Liao X, Bi K, Han T, Chen J, Lu J, He C, Lu Z. Micro-CT reconstruction reveals the colony pattern regulations of four dominant reef-building corals. Ecol Evol 2021; 11:16266-16279. [PMID: 34824826 PMCID: PMC8601894 DOI: 10.1002/ece3.8308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 01/23/2023] Open
Abstract
Colonies are the basic geometric building blocks of coral reefs. However, the forming regulations of both colonies and reefs are still not understood adequately. Therefore, in this study, we reconstructed 25 samples using high-resolution micro-computed tomography to investigate coral growth patterns and parameters. Our skeleton and canal reconstructions revealed the characteristics of different coral species, and we further visualized the growth axes and growth rings to understand the coral growth directions. We drew a skeleton grayscale map and calculated the coral skeleton void ratios to ascertain the skeletal diversity, devising a method to quantify coral growth. On the basis of the three-dimensional (3D) reconstructions and growth parameters, we investigated the growth strategies of different coral species. This research increases the breadth of knowledge on how reef-building corals grow their colonies, providing information on reef-forming regulations. The data in this paper contain a large amount of coral growth information, which can be used in further research on reef-forming patterns under different conditions. The method used in this study can also be applied to animals with porous skeletons.
Collapse
Affiliation(s)
- Yixin Li
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Xin Liao
- Guangxi Key Lab of Mangrove Conservation and UtilizationGuangxi Academy of SciencesGuangxi Mangrove Research CenterBeihaiChina
| | - Kun Bi
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Tingyu Han
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Junyuan Chen
- Nanjing Institute of Geology and PalaeontologyChinese Academy of SciencesNanjingChina
| | - Jing Lu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of SciencesInstitute of Vertebrate Paleontology and PaleoanthropologyChinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Life and PaleoenvironmentBeijingChina
| | - Chunpeng He
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Zuhong Lu
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| |
Collapse
|
16
|
Yu X, Yu K, Liao Z, Chen B, Deng C, Yu J, Yao Q, Qin Z, Liang J. Seasonal fluctuations in symbiotic bacteria and their role in environmental adaptation of the scleractinian coral Acropora pruinosa in high-latitude coral reef area of the South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148438. [PMID: 34153755 DOI: 10.1016/j.scitotenv.2021.148438] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Coral-associated bacterial communities are paramount for coral ecosystems and holobiont health. However, the role of symbiotic bacteria in the adaptation of high-latitude corals to seasonal fluctuations remains underexplored. Therefore, we used 16S rRNA-based high-throughput sequencing to analyze the symbiotic bacterial diversity, composition, and core bacterial community in high-latitude coral and explored the seasonal fluctuation characteristics of symbiotic bacterial communities. We found that bacterial richness and α-diversity changed significantly across different seasons. Additionally, the community structure recombined seasonally, with different dominant bacterial phyla and genera in different seasons. However, the symbiotic bacterial community structures of Acropora pruinosa in winter and spring were similar. Proteobacteria were the dominant bacteria in spring, autumn, and winter. In summer, the dominant bacterial taxa were Bacteroidota and Proteobacteria. Ralstonia was the dominant bacterial genus in spring and winter, whereas in autumn, BD1-7_clade was dominant. Linear discriminant analysis effect size identified 20 abundant genera between the different groups. Core microbiome analysis revealed that 12 core bacterial operational taxonomic units were associated with A. pruinosa in all seasons, seven of which varied with the seasons, changing between dominant and rare. Distance-based redundancy and variation partitioning analyses revealed that sea surface temperature was the major contributor of variation in the microbial community structure. We hypothesized that the high diversity and abundance of symbiotic bacteria and the increase in Prosthecochloris abundance in coral in summer can help A. pruinosa maintain its physiological functions, ameliorating the negative physiological effects of the decrease in Symbiodiniaceae density under high-temperature stress. Thus, the rapid reorganization of the symbiotic bacterial community structure and core microflora in different seasons may allow the corals to adapt to large seasonal environmental fluctuations. In conclusion, seasonal variation of bacteria plays an important role in coral adaptation to large environmental fluctuations.
Collapse
Affiliation(s)
- Xiaopeng Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China.
| | - Zhiheng Liao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Biao Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Chuanqi Deng
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Jiaoyang Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Qiucui Yao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Zhenjun Qin
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Jiayuan Liang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| |
Collapse
|
17
|
Influence of temperature changes on symbiotic Symbiodiniaceae and bacterial communities’ structure: an experimental study on soft coral Sarcophyton trocheliophorum (Anthozoa: Alcyoniidae). JOURNAL OF TROPICAL ECOLOGY 2021. [DOI: 10.1017/s0266467421000109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractIt is well concluded that microbial composition and diversity of coral species can be affected under temperature alterations. However, the interaction of environmental accumulation of corals and temperature stress on symbiotic Symbiodiniaceae and bacterial communities are rarely studied. In this study, two groups of soft coral Sarcophyton trocheliophorum were cultured under constant (26 °C) and inconstant (22 °C to 26 °C) temperature conditions for 30 days as control treatments. After that, water was cooled rapidly to decrease to 20 °C in 24 h. The results of diversity analysis showed that symbiotic Symbiodiniaceae and bacterial communities had a significant difference between the two accumulated groups. The principal coordinate analyses confirmed that symbiotic Symbiodiniaceae and bacterial communities of both control treatments were clustered into two groups. Our results evidenced that rapid cooling stress could not change symbiotic Symbiodiniaceae and bacterial communities’ composition. On the other hand, cooling stress could alter only bacterial communities in constant group. In conclusion, our study represents a clear relationship between environmental accumulation and the impact of short-term cooling stress in which microbial composition structure can be affected by early adaptation conditions.
Collapse
|
18
|
Cross-Linked Regulation of Coral-Associated Dinoflagellates and Bacteria in Pocillopora sp. during High-Temperature Stress and Recovery. Microorganisms 2021; 9:microorganisms9091972. [PMID: 34576867 PMCID: PMC8468813 DOI: 10.3390/microorganisms9091972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/06/2021] [Accepted: 09/15/2021] [Indexed: 11/17/2022] Open
Abstract
As the problem of ocean warming worsens, the environmental adaptation potential of symbiotic Symbiodiniaceae and bacteria is directly related to the future and fate of corals. This study aimed to analyse the comprehensive community dynamics and physiology of these two groups of organisms in the coral Pocillopora sp. through indoor simulations of heat stress (which involved manually adjusting the temperature between both 26 °C and 34 °C). Heat treatment (≥30 °C) significantly reduced the abundance of Symbiodiniaceae and bacteria by more than 70%. After the temperature was returned to 26 °C for one month, the Symbiodiniaceae density was still low, while the absolute number of bacteria quickly recovered to 55% of that of the control. At this time point, the Fv/Fm value rose to 91% of the pretemperature value. The content of chlorophyll b associated with Cyanobacteria increased by 50% compared with that under the control conditions. Moreover, analysis of the Symbiodiniaceae subclade composition suggested that the relative abundance of C1c.C45, C1, and C1ca increased during heat treatment, indicating that they might constitute heat-resistant subgroups. We suggest that the increase in the absolute number of bacteria during the recovery period could be an important indicator of coral holobiont recovery after heat stress. This study provides insight into the cross-linked regulation of key symbiotic microbes in the coral Pocillopora sp. during high-temperature stress and recovery and provides a scientific basis for exploring the mechanism underlying coral adaptation to global warming.
Collapse
|
19
|
Kitamura R, Miura N, Ito M, Takagi T, Yamashiro H, Nishikawa Y, Nishimura Y, Kobayashi K, Kataoka M. Specific Detection of Coral-Associated Ruegeria, a Potential Probiotic Bacterium, in Corals and Subtropical Seawater. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:576-589. [PMID: 34275003 DOI: 10.1007/s10126-021-10047-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Coral microbial flora has been attracting attention because of their potential to protect corals from environmental stresses or pathogens. Although coral-associated bacteria are considered to be acquired from seawater, little is known about the relationships between microbial composition in corals and its surrounding seawater. Here, we tested several methods to identify coral-associated bacteria in coral and its surrounding seawater to detect specific types of Ruegeria species, some of which exhibit growth inhibition activities against the coral pathogen Vibrio coralliilyticus. We first isolated coral-associated bacteria from the reef-building coral Galaxea fascicularis collected at Sesoko Island, Okinawa, Japan, via random colony picking, which showed the existence of varieties of bacteria including Ruegeria species. Using newly constructed primers for colony PCR, several Ruegeria species were successfully isolated from G. fascicularis and seawater. We further investigated the seawater microbiome in association with the distance from coral reefs. By seasonal sampling, it was suggested that the seawater microbiome is more affected by seasonality than the distance from coral reefs. These methods and results may contribute to investigating and understanding the relationships between the presence of corals and microbial diversity in seawater, in addition to the efficient isolation of specific bacterial species from coral or its surrounding seawater.
Collapse
Affiliation(s)
- Ruriko Kitamura
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, 599-8531, Japan
| | - Natsuko Miura
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, 599-8531, Japan.
| | - Michihiro Ito
- Center of Molecular Biosciences, Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, 903-0213, Japan
| | - Toshiyuki Takagi
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, 277-8564, Japan
| | - Hideyuki Yamashiro
- Tropical Biosphere Research Center, Sesoko Station, University of the Ryukyus, Motobu, 905-0227, Japan
| | - Yumi Nishikawa
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, 599-8531, Japan
| | - Yuna Nishimura
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, 599-8531, Japan
| | - Keita Kobayashi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, 599-8531, Japan
| | - Michihiko Kataoka
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, 599-8531, Japan
| |
Collapse
|
20
|
Pootakham W, Mhuantong W, Yoocha T, Sangsrakru D, Kongkachana W, Sonthirod C, Naktang C, Jomchai N, U-Thoomporn S, Yeemin T, Pengsakun S, Sutthacheep M, Tangphatsornruang S. Taxonomic profiling of Symbiodiniaceae and bacterial communities associated with Indo-Pacific corals in the Gulf of Thailand using PacBio sequencing of full-length ITS and 16S rRNA genes. Genomics 2021; 113:2717-2729. [PMID: 34089786 DOI: 10.1016/j.ygeno.2021.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/28/2021] [Accepted: 06/01/2021] [Indexed: 11/15/2022]
Abstract
Corals live with complex assemblages of microbes including bacteria, the dinoflagellate Symbiodiniaceae, fungi and viruses in a coral holobiont. These coral-associated microorganisms play an important role in their host fitness and survival. Here, we investigated the structure and diversity of algal and bacterial communities associated with five Indo-Pacific coral species, using full-length 16S rRNA and internal transcribed spacer sequences. While the dinoflagellate communities associated with Poriteslutea were dominated with Symbiodiniaceae genus Cladocopium, the other four coral hosts were associated mainly with members of the Durusdinium genus, suggesting that host species was one of the underlying factors influencing the structure and composition of dinoflagellate communities associated with corals in the Gulf of Thailand. Alphaproteobacteria dominated the microbiomes of Pocillopora spp. while Pavonafrondifera and P. lutea were associated primarily with Gammaproteobacteria. Finally, we demonstrated a superior performance of full-length 16S rRNA sequences in achieving species-resolution taxonomic classification of coral-associated microbiota.
Collapse
Affiliation(s)
- Wirulda Pootakham
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand.
| | - Wuttichai Mhuantong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Thippawan Yoocha
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Duangjai Sangsrakru
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Wasitthee Kongkachana
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Chutima Sonthirod
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Chaiwat Naktang
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Nukoon Jomchai
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Sonicha U-Thoomporn
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Thammasak Yeemin
- Marine Biodiversity Research Group, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Sittiporn Pengsakun
- Marine Biodiversity Research Group, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Makamas Sutthacheep
- Marine Biodiversity Research Group, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | | |
Collapse
|
21
|
El-Khaled YC, Roth F, Rädecker N, Tilstra A, Karcher DB, Kürten B, Jones BH, Voolstra CR, Wild C. Nitrogen fixation and denitrification activity differ between coral- and algae-dominated Red Sea reefs. Sci Rep 2021; 11:11820. [PMID: 34083565 PMCID: PMC8175748 DOI: 10.1038/s41598-021-90204-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/07/2021] [Indexed: 11/18/2022] Open
Abstract
Coral reefs experience phase shifts from coral- to algae-dominated benthic communities, which could affect the interplay between processes introducing and removing bioavailable nitrogen. However, the magnitude of such processes, i.e., dinitrogen (N2) fixation and denitrification levels, and their responses to phase shifts remain unknown in coral reefs. We assessed both processes for the dominant species of six benthic categories (hard corals, soft corals, turf algae, coral rubble, biogenic rock, and reef sands) accounting for > 98% of the benthic cover of a central Red Sea coral reef. Rates were extrapolated to the relative benthic cover of the studied organisms in co-occurring coral- and algae-dominated areas of the same reef. In general, benthic categories with high N2 fixation exhibited low denitrification activity. Extrapolated to the respective reef area, turf algae and coral rubble accounted for > 90% of overall N2 fixation, whereas corals contributed to more than half of reef denitrification. Total N2 fixation was twice as high in algae- compared to coral-dominated areas, whereas denitrification levels were similar. We conclude that algae-dominated reefs promote new nitrogen input through enhanced N2 fixation and comparatively low denitrification. The subsequent increased nitrogen availability could support net productivity, resulting in a positive feedback loop that increases the competitive advantage of algae over corals in reefs that experienced a phase shift.
Collapse
Affiliation(s)
- Yusuf C El-Khaled
- Marine Ecology Department, Faculty of Biology and Chemistry, University of Bremen, 28359, Bremen, Germany.
| | - Florian Roth
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23995, Saudi Arabia
- Baltic Sea Centre, Stockholm University, 10691, Stockholm, Sweden
- Faculty of Biological and Environmental Sciences, Tvärminne Zoological Station, University of Helsinki, 00014, Helsinki, Finland
| | - Nils Rädecker
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23995, Saudi Arabia
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Arjen Tilstra
- Marine Ecology Department, Faculty of Biology and Chemistry, University of Bremen, 28359, Bremen, Germany
| | - Denis B Karcher
- Marine Ecology Department, Faculty of Biology and Chemistry, University of Bremen, 28359, Bremen, Germany
- Australian National Centre for the Public Awareness of Science, Australian National University, ACT, Canberra, 2601, Australia
| | - Benjamin Kürten
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23995, Saudi Arabia
- Project Management Jülich, Jülich Research Centre GmbH, 18069, Rostock, Germany
| | - Burton H Jones
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23995, Saudi Arabia
| | - Christian R Voolstra
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23995, Saudi Arabia
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Christian Wild
- Marine Ecology Department, Faculty of Biology and Chemistry, University of Bremen, 28359, Bremen, Germany
| |
Collapse
|
22
|
Chen B, Yu K, Liao Z, Yu X, Qin Z, Liang J, Wang G, Wu Q, Jiang L. Microbiome community and complexity indicate environmental gradient acclimatisation and potential microbial interaction of endemic coral holobionts in the South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142690. [PMID: 33071127 DOI: 10.1016/j.scitotenv.2020.142690] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/31/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
Regional acclimatisation and microbial interactions significantly influence the resilience of reef-building corals facing anthropogenic climate change, allowing them to adapt to environmental stresses. However, the connections between community structure and microbial interactions of the endemic coral microbiome and holobiont acclimatisation remain unclear. Herein, we used generation sequencing of internal transcribed spacer (ITS2) and 16S rRNA genes to investigate the microbiome composition (Symbiodiniaceae and bacteria) and associated potential interactions of endemic dominant coral holobionts (Pocillopora verrucosa and Turbinaria peltata) in the South China Sea (SCS). We found that shifts in Symbiodiniaceae and bacterial communities of P. verrucosa were associated with latitudinal gradient and climate zone changes, respectively. The C1 sub-clade consistently dominated the Symbiodiniaceae community in T. peltata; yet, the bacterial community structure was spatially heterogeneous. The relative abundance of the core microbiome among P. verrucosa holobionts was reduced in the biogeographical transition zone, while bacterial taxa associated with anthropogenic activity (Escherichia coli and Sphingomonas) were identified in the core microbiomes. Symbiodiniaceae and bacteria potentially interact in microbial co-occurrence networks. Further, increased bacterial, and Symbiodiniaceae α-diversity was associated with increased and decreased network complexity, respectively. Hence, Symbiodiniaceae and bacteria demonstrated different flexibility in latitudinal or climatic environmental regimes, which correlated with holobiont acclimatisation. Core microbiome analysis has indicated that the function of core bacterial microbiota might have changed in distinct environmental regimes, implying potential human activity in the coral habitats. Increased bacterial α diversity may lead to a decline in the stability of coral-microorganism symbioses, whereas rare Symbiodiniaceae may help to retain symbioses. Cladocopium, γ-proteobacteria, while α-proteobacteria may have been the primary drivers in the Symbiodiniaceae-bacterial interactions (SBIs). Our study highlights the association between microbiome shift in distinct environmental regimes and holobiont acclimatisation, while providing insights into the impact of SBIs on holobiont health and acclimatisation during climate change.
Collapse
Affiliation(s)
- Biao Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China.
| | - Zhiheng Liao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| | - Xiaopeng Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| | - Zhenjun Qin
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| | - Jiayuan Liang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| | - Guanghua Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| | - Qian Wu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| | - Leilei Jiang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| |
Collapse
|
23
|
Su H, Xiao Z, Yu K, Zhang Q, Lu C, Wang G, Wang Y, Liang J, Huang W, Huang X, Wei F. High Diversity of β-Glucosidase-Producing Bacteria and Their Genes Associated with Scleractinian Corals. Int J Mol Sci 2021; 22:ijms22073523. [PMID: 33805379 PMCID: PMC8037212 DOI: 10.3390/ijms22073523] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 01/08/2023] Open
Abstract
β-Glucosidase is a microbial cellulose multienzyme that plays an important role in the regulation of the entire cellulose hydrolysis process, which is the rate-limiting step in bacterial carbon cycling in marine environments. Despite its importance in coral reefs, the diversity of β-glucosidase-producing bacteria, their genes, and enzymatic characteristics are poorly understood. In this study, 87 β-glucosidase-producing cultivable bacteria were screened from 6 genera of corals. The isolates were assigned to 21 genera, distributed among three groups: Proteobacteria, Firmicutes, and Actinobacteria. In addition, metagenomics was used to explore the genetic diversity of bacterial β-glucosidase enzymes associated with scleractinian corals, which revealed that these enzymes mainly belong to the glycosidase hydrolase family 3 (GH3). Finally, a novel recombinant β-glucosidase, referred to as Mg9373, encompassing 670 amino acids and a molecular mass of 75.2 kDa, was classified as a member of the GH3 family and successfully expressed and characterized. Mg9373 exhibited excellent tolerance to ethanol, NaCl, and glucose. Collectively, these results suggest that the diversity of β-glucosidase-producing bacteria and genes associated with scleractinian corals is high and novel, indicating great potential for applications in the food industry and agriculture.
Collapse
Affiliation(s)
- Hongfei Su
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530004, China; (H.S.); (Z.X.); (Q.Z.); (C.L.); (G.W.); (Y.W.); (J.L.); (W.H.); (X.H.); (F.W.)
| | - Zhenlun Xiao
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530004, China; (H.S.); (Z.X.); (Q.Z.); (C.L.); (G.W.); (Y.W.); (J.L.); (W.H.); (X.H.); (F.W.)
| | - Kefu Yu
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530004, China; (H.S.); (Z.X.); (Q.Z.); (C.L.); (G.W.); (Y.W.); (J.L.); (W.H.); (X.H.); (F.W.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519080, China
- Correspondence:
| | - Qi Zhang
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530004, China; (H.S.); (Z.X.); (Q.Z.); (C.L.); (G.W.); (Y.W.); (J.L.); (W.H.); (X.H.); (F.W.)
| | - Chunrong Lu
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530004, China; (H.S.); (Z.X.); (Q.Z.); (C.L.); (G.W.); (Y.W.); (J.L.); (W.H.); (X.H.); (F.W.)
| | - Guanghua Wang
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530004, China; (H.S.); (Z.X.); (Q.Z.); (C.L.); (G.W.); (Y.W.); (J.L.); (W.H.); (X.H.); (F.W.)
| | - Yinghui Wang
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530004, China; (H.S.); (Z.X.); (Q.Z.); (C.L.); (G.W.); (Y.W.); (J.L.); (W.H.); (X.H.); (F.W.)
| | - Jiayuan Liang
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530004, China; (H.S.); (Z.X.); (Q.Z.); (C.L.); (G.W.); (Y.W.); (J.L.); (W.H.); (X.H.); (F.W.)
| | - Wen Huang
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530004, China; (H.S.); (Z.X.); (Q.Z.); (C.L.); (G.W.); (Y.W.); (J.L.); (W.H.); (X.H.); (F.W.)
| | - Xueyong Huang
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530004, China; (H.S.); (Z.X.); (Q.Z.); (C.L.); (G.W.); (Y.W.); (J.L.); (W.H.); (X.H.); (F.W.)
| | - Fen Wei
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530004, China; (H.S.); (Z.X.); (Q.Z.); (C.L.); (G.W.); (Y.W.); (J.L.); (W.H.); (X.H.); (F.W.)
| |
Collapse
|
24
|
Abstract
There is a growing interest in the endolithic microbial biofilms inhabiting skeletons of living corals because of their contribution to coral reef bioerosion and the reputed benefits they provide to live coral hosts. Here, we sought to identify possible correlations between coral interspecific patterns in skeletal morphology and variability in the biomass of, and chlorophyll concentrations within, the endolithic biofilm. We measured five morphological characteristics of five coral species and the biomasses/chlorophyll concentrations of their endolithic microbiome, and we compare interspecific patterns in these variables. We propose that the specific density of a coral’s skeleton and its capacity for capturing and scattering incident light are the main correlates of endolithic microbial biomass. Our data suggest that the correlation between light capture and endolithic biomass is likely influenced by how the green microalgae (obligatory microborers) respond to skeletal variability. These results demonstrate that coral species differ significantly in their endolithic microbial biomass and that their skeletal structure could be used to predict these interspecific differences. Further exploring how and why the endolithic microbiome varies between coral species is vital in defining the role of these microbes on coral reefs, both now and in the future. IMPORTANCE Microbial communities living inside the skeletons of living corals play a variety of important roles within the coral meta-organism, both symbiotic and parasitic. Properly contextualizing the contribution of these enigmatic microbes to the life history of coral reefs requires knowledge of how these endolithic biofilms vary between coral species. To this effect, we measured differences in the morphology of five coral species and correlate these with variability in the biomass of the skeletal biofilms. We found that the density of the skeleton and its capacity to trap incoming light, as opposed to scattering it back into the surrounding water, both significantly correlated with skeletal microbial biomass. These patterns are likely driven by how dominant green microalgae in the endolithic niche, such as Ostreobium spp., are responding to the skeletal morphology. This study highlights that the structure of a coral’s skeleton could be used to predict the biomass of its resident endolithic biofilm.
Collapse
|
25
|
Liang Y, Yu K, Pan Z, Qin Z, Liao Z, Chen B, Huang X, Xu L. Intergeneric and geomorphological variations in Symbiodiniaceae densities of reef-building corals in an isolated atoll, central South China Sea. MARINE POLLUTION BULLETIN 2021; 163:111946. [PMID: 33360728 DOI: 10.1016/j.marpolbul.2020.111946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/04/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
The healthy status of corals in the isolated atolls of the central South China Sea (SCS) remains unclear. Symbiodiniaceae density (SD) can effectively reflect the thermal tolerance and health of hard corals. Here, the SDs of 238 samples from the Huangyan Atoll (HA) were analyzed. The results revealed significantly intergeneric and geomorphological differences in SD. Intergeneric variation may reflect that corals with high SD have stronger thermal tolerance. Geomorphic analysis showed that the SDs at the outer reef slope were higher than in the lagoon. Hydrodynamics and sea surface temperature were likely the main influencing factors. Most notably, corals in SCS HA had higher SDs than those at neighboring reefs, indicating that their thermal tolerance were strong, which may be related to HA's local upwelling. These results suggest that the HA has the potential to serve as a refuge for corals, but increasing human disturbance limit its function.
Collapse
Affiliation(s)
- Yanting Liang
- Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Kefu Yu
- Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China.
| | - Ziliang Pan
- Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Zhenjun Qin
- Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Zhiheng Liao
- Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Biao Chen
- Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Xueyong Huang
- Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Lijia Xu
- South China Institute of Environmental Sciences, the Ministry of Ecology and Environment of PRC, Guangzhou 510530, China
| |
Collapse
|
26
|
Yu X, Yu K, Huang W, Liang J, Qin Z, Chen B, Yao Q, Liao Z. Thermal acclimation increases heat tolerance of the scleractinian coral Acropora pruinosa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 733:139319. [PMID: 32446076 DOI: 10.1016/j.scitotenv.2020.139319] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/28/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Field ecological observations indicate that scleractinian coral exposed to early thermal stress are likely to develop higher tolerance to subsequent heat stress. The causes of this phenomenon, however, remain enigmatic. To unravel the mechanisms underlying the increased heat tolerance, we applied different thermal treatments to the scleractinian coral Acropora pruinosa and studied the resulting differences in appearance, physiological index, Symbiodiniaceae and bacterial communities, and transcriptome response. We found that early heat stress improved the thermal tolerance of the coral holobiont. After thermal acclimation, the community structure and symbiotic bacterial diversity in the microbiota were reorganized, whereas those of Symbiodiniaceae remained stable. RNA-seq analysis revealed that the downregulated coral host genes were mainly involved in pathways relating to metabolism, particularly the nitrogen metabolism pathway. This indicates that thermal acclimation led to decrease in the metabolism level in the coral host, which might be a self-protection mechanism. We suggest that thermal acclimation may increase scleractinian coral thermal tolerance by slowing host metabolism, altering the dominant bacterial population, and increasing bacterial diversity. This study offers new insights into the adaptive potential of scleractinian coral to heat stress from global warming.
Collapse
Affiliation(s)
- Xiaopeng Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China; Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai), China.
| | - Wen Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| | - Jiayuan Liang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| | - Zhenjun Qin
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| | - Biao Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| | - Qiucui Yao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| | - Zhiheng Liao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| |
Collapse
|
27
|
Yu X, Yu K, Liao Z, Liang J, Deng C, Huang W, Huang Y. Potential molecular traits underlying environmental tolerance of Pavona decussata and Acropora pruinosa in Weizhou Island, northern South China Sea. MARINE POLLUTION BULLETIN 2020; 156:111199. [PMID: 32510361 DOI: 10.1016/j.marpolbul.2020.111199] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Coral species display varying susceptibilities to biotic or abiotic stress. To address the causes underlying this phenomenon, we profiled the Symbiodiniaceae clade type, bacterial communities and coral transcriptome responses in Pavona decussata and Acropora pruinosa, two species displaying different environmental tolerances in the Weizhou Island. We found that C1 was the most dominant Symbiodiniaceae subclade, with no difference detected between A. pruinosa and P. decussata. Nevertheless, P. decussata exhibited higher microbial diversity and significantly different community structure compared with that of A. pruinosa. Transcriptome analysis revealed that coral genes with significantly high expression in P. decussata were mostly related to immune and stress-resistance responses, whereas, those with significantly low expression were metabolism-related. We postulate that the higher tolerance of P. decussata as compared with that of A. pruinosa is the result of several traits, such as higher microbial diversity, different dominant bacteria, higher immune and stress-resistant response, and lower metabolic rate.
Collapse
Affiliation(s)
- Xiaopeng Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China.
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519000, China.
| | - Zhiheng Liao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Jiayuan Liang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Chuanqi Deng
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Wen Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Yanhua Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| |
Collapse
|
28
|
Liang J, Yu K, Wang Y, Huang X, Huang W, Qin Z, Wang G, Su H, Chen B, Wu Z. Diazotroph Diversity Associated With Scleractinian Corals and Its Relationships With Environmental Variables in the South China Sea. Front Physiol 2020; 11:615. [PMID: 32625112 PMCID: PMC7314963 DOI: 10.3389/fphys.2020.00615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/15/2020] [Indexed: 11/13/2022] Open
Abstract
Coral reef ecosystems cannot operate normally without an effective nitrogen cycle. For oligotrophic coral reef areas, coral-associated diazotrophs are indispensable participants in the nitrogen cycle. However, the distribution of these diazotrophs and the correlation with the physical and chemical variables of the surrounding seawater remain unclear. To this end, 68 scleractinian coral colonies were sampled from 6 coral reef areas with different environmental variables in the South China Sea to investigate the composition of associated diazotrophs based on nifH gene amplification using high-throughput sequencing. The six coral reefs can be clearly divided into two types (fringing reefs and island reefs), are affected by varying degrees of human activities and are located at different latitudes from 9°20’06”N to 22°34’55”N with different seawater temperatures. Alpha- and beta-diversity analyses showed that the distribution of diazotrophs among coral reefs exhibited significant geographical fluctuations (p ≤ 0.05) and non-significant interspecific fluctuations (p > 0.05). The predominant bacterial phyla included Proteobacteria, Chlorobi, Cyanobacteria, and two unclassified phyla. Chlorobi exhibited a relative abundance of 47–96% in coral samples from the high-latitude Daya Bay fringing reef affected by eutrophication. Unclassified bacteria II, with a relative abundance of 28–87%, was found in all coral samples from the midlatitude Luhuitou fringing reef affected by eutrophication. However, unclassified bacteria I and Proteobacteria dominated (>80% relative abundance) in most of the coral samples from the Weizhou Island fringing reef, which is far from land, and three island reefs (Huangyan Island, Xinyi Reef, and Sanjiao Reef) at relatively low latitudes. At the genus level, some core diazotrophs were found in different coral sample groups. In addition, correlation analysis with various environmental variables revealed that the variables were positively or negatively correlated with different diazotrophic genera. Coral-associated diazotrophs were common among coral individuals. However, their composition was closely related to the different environmental variables. These results provide insights into the geographical distribution characteristics of coral-associated diazotrophs and their evolutionary trends in response to environmental change in the South China Sea.
Collapse
Affiliation(s)
- Jiayuan Liang
- Coral Reef Research Center of China, Guangxi University, Nanning, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, China.,School of Marine Sciences, Guangxi University, Nanning, China
| | - Kefu Yu
- Coral Reef Research Center of China, Guangxi University, Nanning, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, China.,School of Marine Sciences, Guangxi University, Nanning, China
| | - Yinghui Wang
- Coral Reef Research Center of China, Guangxi University, Nanning, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, China.,School of Marine Sciences, Guangxi University, Nanning, China
| | - Xueyong Huang
- Coral Reef Research Center of China, Guangxi University, Nanning, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, China.,School of Marine Sciences, Guangxi University, Nanning, China
| | - Wen Huang
- Coral Reef Research Center of China, Guangxi University, Nanning, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, China.,School of Marine Sciences, Guangxi University, Nanning, China
| | - Zhenjun Qin
- Coral Reef Research Center of China, Guangxi University, Nanning, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, China.,School of Marine Sciences, Guangxi University, Nanning, China
| | - Guanghua Wang
- Coral Reef Research Center of China, Guangxi University, Nanning, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, China.,School of Marine Sciences, Guangxi University, Nanning, China
| | - Hongfei Su
- Coral Reef Research Center of China, Guangxi University, Nanning, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, China.,School of Marine Sciences, Guangxi University, Nanning, China
| | - Biao Chen
- Coral Reef Research Center of China, Guangxi University, Nanning, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, China.,School of Marine Sciences, Guangxi University, Nanning, China
| | - Zhengchao Wu
- State Key Laboratory of Tropical Oceanography (LTO), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
29
|
Su H, Xiao Z, Yu K, Huang Q, Wang G, Wang Y, Liang J, Huang W, Huang X, Wei F, Chen B. Diversity of cultivable protease-producing bacteria and their extracellular proteases associated to scleractinian corals. PeerJ 2020; 8:e9055. [PMID: 32411529 PMCID: PMC7210813 DOI: 10.7717/peerj.9055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/03/2020] [Indexed: 01/15/2023] Open
Abstract
Protease-producing bacteria play a vital role in degrading organic nitrogen in marine environments. However, the diversity of the bacteria and extracellular proteases has seldom been addressed, especially in communities of coral reefs. In this study, 136 extracellular protease-producing bacterial strains were isolated from seven genera of scleractinian corals from Luhuitou fringing reef, and their protease types were characterized. The massive coral had more cultivable protease-producing bacteria than branching or foliose corals. The abundance of cultivable protease-producing bacteria reached 106 CFU g−1 of coral. Phylogenetic analysis of 16S rRNA gene sequences revealed that the isolates were assigned to 24 genera, from which 20 corresponded to the phyla Firmicutes and Proteobacteria. Bacillus and Fictibacillus were retrieved from all coral samples. Moreover, Vibrio and Pseudovibrio were most prevalent in massive or foliose coral Platygyra and Montipora. In contrast, 11 genera were each identified in only one isolate. Nearly all the extracellular proteases from the bacteria were serine proteases or metalloproteases; 45.83% of isolates also released cysteine or aspartic proteases. These proteases had different hydrolytic ability against different substrates. This study represents a novel insight on the diversity of cultivable protease-producing bacteria and their extracellular proteases in scleractinian corals.
Collapse
Affiliation(s)
- Hongfei Su
- Coral Reef Research Center of China, Guangxi University, Nanning, Guangxi, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, Guangxi, China.,School of Marine Sciences, Guangxi University, Nanning, Guangxi, China
| | - Zhenlun Xiao
- Coral Reef Research Center of China, Guangxi University, Nanning, Guangxi, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, Guangxi, China.,School of Marine Sciences, Guangxi University, Nanning, Guangxi, China
| | - Kefu Yu
- Coral Reef Research Center of China, Guangxi University, Nanning, Guangxi, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, Guangxi, China.,School of Marine Sciences, Guangxi University, Nanning, Guangxi, China
| | - Qinyu Huang
- School of Marine Sciences, Guangxi University, Nanning, Guangxi, China
| | - Guanghua Wang
- Coral Reef Research Center of China, Guangxi University, Nanning, Guangxi, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, Guangxi, China.,School of Marine Sciences, Guangxi University, Nanning, Guangxi, China
| | - Yinghui Wang
- Coral Reef Research Center of China, Guangxi University, Nanning, Guangxi, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, Guangxi, China.,School of Marine Sciences, Guangxi University, Nanning, Guangxi, China
| | - Jiayuan Liang
- Coral Reef Research Center of China, Guangxi University, Nanning, Guangxi, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, Guangxi, China.,School of Marine Sciences, Guangxi University, Nanning, Guangxi, China
| | - Wen Huang
- Coral Reef Research Center of China, Guangxi University, Nanning, Guangxi, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, Guangxi, China.,School of Marine Sciences, Guangxi University, Nanning, Guangxi, China
| | - Xueyong Huang
- Coral Reef Research Center of China, Guangxi University, Nanning, Guangxi, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, Guangxi, China.,School of Marine Sciences, Guangxi University, Nanning, Guangxi, China
| | - Fen Wei
- Coral Reef Research Center of China, Guangxi University, Nanning, Guangxi, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, Guangxi, China.,School of Marine Sciences, Guangxi University, Nanning, Guangxi, China
| | - Biao Chen
- Coral Reef Research Center of China, Guangxi University, Nanning, Guangxi, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
30
|
Qin Z, Yu K, Liang Y, Chen B, Huang X. Latitudinal variation in reef coral tissue thickness in the South China Sea: Potential linkage with coral tolerance to environmental stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:134610. [PMID: 32000316 DOI: 10.1016/j.scitotenv.2019.134610] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 09/21/2019] [Indexed: 06/10/2023]
Abstract
Coral tissue thickness (CTT) is an effective indicator of the adaptability of corals to environmental stress, but the relationships between the spatial and intergeneric variation of coral tissue across latitudes and tolerance to environmental stress are not well understood. To investigate this, the CTT of 768 specimens of 10 typical coral genera and surrounding seawater parameters were measured in six coral reef regions (CRRs) across the 9-22°N latitudes in the South China Sea (SCS). Results showed significant differences in CTT between different genera of corals and CRRs. CTTs were significantly higher in the northern SCS than in the southern SCS. There was also notable intergeneric variation, with the abundance of branching Acropora and foliaceous Pavona being significantly lower than that of massive Porites, Galaxea, Favia, Favites, Hydnophora, Platygyra, and encrusting Montipora, Psammocora across these CRRs. Redundancy analysis showed that dissolved inorganic nitrogen (DIN), soluble reactive phosphorus (SRP), sea surface temperature (SST), turbidity, and transparency were the main factors affecting CTT. Overall CTT, irrespective of genus, was significantly positively correlated with DIN, SRP, and latitude, but was significantly negatively correlated with transparency and SST. Further analysis suggested that corals in the southern SCS are mainly threatened by thermal stress, whereas in the northern SCS, corals have often suffered from destructive anthropogenic disturbance. Although seawater conditions were normal during on-site investigation, a large number of branching corals (e.g., Acropora corals) have been lost in the last several decades due to destructive human activity. In contrast, massive and encrusting corals may have higher energy reserves and photo-protective capacities due to their thicker tissues, and consequently have higher tolerance to environmental stress. Therefore, the coral communities of the SCS have gradually been transformed from branching corals to massive/encrusting corals.
Collapse
Affiliation(s)
- Zhenjun Qin
- Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Kefu Yu
- Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China.
| | - Yanting Liang
- Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Biao Chen
- Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Xueyong Huang
- Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| |
Collapse
|
31
|
Qin Z, Yu K, Chen B, Wang Y, Liang J, Luo W, Xu L, Huang X. Diversity of Symbiodiniaceae in 15 Coral Species From the Southern South China Sea: Potential Relationship With Coral Thermal Adaptability. Front Microbiol 2019; 10:2343. [PMID: 31681208 PMCID: PMC6813740 DOI: 10.3389/fmicb.2019.02343] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 09/25/2019] [Indexed: 12/21/2022] Open
Abstract
It is well-known that the adaptability of coral-Symbiodiniaceae symbiosis to thermal stress varies among coral species, but the cause and/or mechanism behind it are not well-understood. In this study, we aimed to explore this issue based on zooxanthellae density (ZD) and Symbiodiniaceae genus/subclade. Hemocytometry and next-generation sequencing of the internal transcribed spacer region 2 (ITS2) marker gene were used to observe ZDs and Symbiodiniaceae genera/subclades associated with 15 typical coral species in the southern South China Sea (SCS). Average ZDs of all corals were in low levels, ranging from 0.84 to 1.22 × 106 cells cm−2, with a total of five Symbiodiniaceae genera, Symbiodinium, Cladocopium, Durusdinium, Fugacium, and Gerakladium, as well as 24 dominant subclades, were detected and varied among these coral species. Pocillopora verrucosa was dominated by Durusdinium (subclade D1/D1a), and other colonial corals were dominated by Cladocopium, but the subclades were varied among these species. Porites lutea and Montipora efflorescens were dominated by C15, and Echinopora lamellosa, Hydnophora exesa, and Coscinaraea exesa were dominated by C40. Acropora corymbosa, Merulina ampliata, and five species of Faviidae were mainly associated with Cladocopium types of C3u and Cspc. In contrast to other colonial corals, the dominant subclade of solitary Fungia fungites was C27, with high host specificity. Our study indicates that coral thermal stress adaptability is mainly affected by dominant Symbiodiniaceae type instead of ZD in the southern SCS. Some heat-sensitive corals, such as P. verrucosa corals, have acquired a high abundance of heat-tolerant Durusdinium to adapt to thermal stress. This could be the main reason for these corals becoming the dominant corals in this reef region. Background subclades analyses showed significant differences among coral species in subclade quantity and diversity. These suggest that numbers of coral species may have adapted to high environmental temperature by adopting various symbionts and/or associating with heat-tolerant Symbiodiniaceae.
Collapse
Affiliation(s)
- Zhenjun Qin
- Coral Reef Research Center of China, Guangxi University, Nanning, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, China.,School of Marine Sciences, Guangxi University, Nanning, China.,College of Forestry, Guangxi University, Nanning, China
| | - Kefu Yu
- Coral Reef Research Center of China, Guangxi University, Nanning, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, China.,School of Marine Sciences, Guangxi University, Nanning, China
| | - Biao Chen
- Coral Reef Research Center of China, Guangxi University, Nanning, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, China.,School of Marine Sciences, Guangxi University, Nanning, China
| | - Yinghui Wang
- Coral Reef Research Center of China, Guangxi University, Nanning, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, China.,School of Marine Sciences, Guangxi University, Nanning, China
| | - Jiayuan Liang
- Coral Reef Research Center of China, Guangxi University, Nanning, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, China.,School of Marine Sciences, Guangxi University, Nanning, China
| | - Wenwen Luo
- Coral Reef Research Center of China, Guangxi University, Nanning, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, China.,School of Marine Sciences, Guangxi University, Nanning, China.,College of Forestry, Guangxi University, Nanning, China
| | - Lijia Xu
- Coral Reef Research Center of China, Guangxi University, Nanning, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, China.,School of Marine Sciences, Guangxi University, Nanning, China
| | - Xueyong Huang
- Coral Reef Research Center of China, Guangxi University, Nanning, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, China.,School of Marine Sciences, Guangxi University, Nanning, China.,College of Forestry, Guangxi University, Nanning, China
| |
Collapse
|
32
|
Damjanovic K, van Oppen MJH, Menéndez P, Blackall LL. Experimental Inoculation of Coral Recruits With Marine Bacteria Indicates Scope for Microbiome Manipulation in Acropora tenuis and Platygyra daedalea. Front Microbiol 2019; 10:1702. [PMID: 31396197 PMCID: PMC6668565 DOI: 10.3389/fmicb.2019.01702] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/10/2019] [Indexed: 12/19/2022] Open
Abstract
Coral-associated microorganisms are essential for maintaining the health of the coral holobiont by participating in nutrient cycling and protecting the coral host from pathogens. Under stressful conditions, disruption of the coral prokaryotic microbiome is linked to increased susceptibility to diseases and mortality. Inoculation of corals with beneficial microbes could confer enhanced stress tolerance to the host and may be a powerful tool to help corals thrive under challenging environmental conditions. Here, we explored the feasibility of coral early life stage microbiome manipulation by repeatedly inoculating coral recruits with a bacterial cocktail generated in the laboratory. Co-culturing the two species Acropora tenuis and Platygyra daedalea allowed us to simultaneously investigate the effect of host factors on the coral microbiome. Inoculation cocktails were regularly prepared from freshly grown pure bacterial cultures, which were hence assumed viable, and characterized via the optical density measurement of each individual strain put in suspension. Coral early recruits were inoculated seven times over 3 weeks and sampled once 36 h following the last inoculation event. At this time point, the cumulative inoculations with the bacterial cocktails had a strong effect on the bacterial community composition in recruits of both coral species. While the location of bacterial cells within the coral hosts was not assessed, metabarcoding using the 16S rRNA gene revealed that two and six of the seven bacterial strains administered through the cocktails were significantly enriched in inoculated recruits of A. tenuis and P. daedalea, respectively, compared to control recruits. Despite being reared in the same environment, A. tenuis and P. daedalea established significantly different bacterial communities, both in terms of taxonomic composition and diversity measurements. These findings indicate that coral host factors as well as the environmental bacterial pool play a role in shaping coral-associated bacterial community composition. Host factors may include microbe transmission mode (horizontal versus maternal) and host specificity. While the long-term stability of taxa included in the bacterial inocula as members of the host-associated microbiome remains to be evaluated, our results provide support for the feasibility of coral microbiome manipulation, at least in a laboratory setting.
Collapse
Affiliation(s)
- Katarina Damjanovic
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia.,Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Madeleine J H van Oppen
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia.,Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Patricia Menéndez
- Australian Institute of Marine Science, Townsville, QLD, Australia.,School of Mathematics and Physics, University of Queensland, Saint Lucia, QLD, Australia
| | - Linda L Blackall
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
33
|
Dubé CE, Ky CL, Planes S. Microbiome of the Black-Lipped Pearl Oyster Pinctada margaritifera, a Multi-Tissue Description With Functional Profiling. Front Microbiol 2019; 10:1548. [PMID: 31333634 PMCID: PMC6624473 DOI: 10.3389/fmicb.2019.01548] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/20/2019] [Indexed: 12/21/2022] Open
Abstract
Elucidating the role of prokaryotic symbionts in mediating host physiology has emerged as an important area of research. Since oysters are the world’s most heavily cultivated bivalve molluscs, numerous studies have applied molecular techniques to understand the taxonomic and functional diversity of their associated bacteria. Here, we expand on this research by assessing the composition and putative functional profiles of prokaryotic communities from different organs/compartments of the black-lipped pearl oyster Pinctada margaritifera, a commercially important shellfish valued for cultured pearl production in the Pacific region. Seven tissues, in addition to mucous secretions, were targeted from P. margaritifera individuals: the gill, gonad, byssus gland, haemolymph, mantle, adductor muscle, mucus, and gut. Richness of bacterial Operational Taxonomic Units (OTUs) and phylogenetic diversity differed between host tissues, with mucous layers displaying the highest richness and diversity. This multi-tissues approach permitted the identification of consistent microbial members, together constituting the core microbiome of P. margaritifera, including Alpha- and Gammaproteobacteria, Flavobacteriia, and Spirochaetes. We also found a high representation of Endozoicimonaceae symbionts, indicating that they may be of particular importance to oyster health, survival and homeostasis, as in many other coral reef animals. Our study demonstrates that the microbial communities and their associated predicted functional profiles are tissue specific. Inferred physiological functions were supported by current physiological data available for the associated bacterial taxa specific to each tissue. This work provides the first baseline of microbial community composition in P. margaritifera, providing a solid foundation for future research into this commercially important species and emphasises the important effects of tissue differentiation in structuring the oyster microbiome.
Collapse
Affiliation(s)
- Caroline Eve Dubé
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan, France.,Laboratoire d'Excellence "CORAIL", Mo'orea, French Polynesia
| | - Chin-Long Ky
- Laboratoire d'Excellence "CORAIL", Mo'orea, French Polynesia.,Ifremer, UMR 241, Centre du Pacifique, Tahiti, French Polynesia.,Ifremer, UMR 5244 Interactions Hôtes Pathogènes Environnements, Université de Montpellier, Montpellier, France
| | - Serge Planes
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan, France.,Laboratoire d'Excellence "CORAIL", Mo'orea, French Polynesia
| |
Collapse
|
34
|
van Oppen MJH, Blackall LL. Coral microbiome dynamics, functions and design in a changing world. Nat Rev Microbiol 2019; 17:557-567. [DOI: 10.1038/s41579-019-0223-4] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2019] [Indexed: 12/20/2022]
|
35
|
Gardner SG, Camp EF, Smith DJ, Kahlke T, Osman EO, Gendron G, Hume BCC, Pogoreutz C, Voolstra CR, Suggett DJ. Coral microbiome diversity reflects mass coral bleaching susceptibility during the 2016 El Niño heat wave. Ecol Evol 2019; 9:938-956. [PMID: 30805132 PMCID: PMC6374667 DOI: 10.1002/ece3.4662] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 12/30/2022] Open
Abstract
Repeat marine heat wave-induced mass coral bleaching has decimated reefs in Seychelles for 35 years, but how coral-associated microbial diversity (microalgal endosymbionts of the family Symbiodiniaceae and bacterial communities) potentially underpins broad-scale bleaching dynamics remains unknown. We assessed microbiome composition during the 2016 heat wave peak at two contrasting reef sites (clear vs. turbid) in Seychelles, for key coral species considered bleaching sensitive (Acropora muricata, Acropora gemmifera) or tolerant (Porites lutea, Coelastrea aspera). For all species and sites, we sampled bleached versus unbleached colonies to examine how microbiomes align with heat stress susceptibility. Over 30% of all corals bleached in 2016, half of which were from Acropora sp. and Pocillopora sp. mass bleaching that largely transitioned to mortality by 2017. Symbiodiniaceae ITS2-sequencing revealed that the two Acropora sp. and P. lutea generally associated with C3z/C3 and C15 types, respectively, whereas C. aspera exhibited a plastic association with multiple D types and two C3z types. 16S rRNA gene sequencing revealed that bacterial communities were coral host-specific, largely through differences in the most abundant families, Hahellaceae (comprising Endozoicomonas), Rhodospirillaceae, and Rhodobacteraceae. Both Acropora sp. exhibited lower bacterial diversity, species richness, and community evenness compared to more bleaching-resistant P. lutea and C. aspera. Different bleaching susceptibility among coral species was thus consistent with distinct microbiome community profiles. These profiles were conserved across bleached and unbleached colonies of all coral species. As this pattern could also reflect a parallel response of the microbiome to environmental changes, the detailed functional associations will need to be determined in future studies. Further understanding such microbiome-environmental interactions is likely critical to target more effective management within oceanically isolated reefs of Seychelles.
Collapse
Affiliation(s)
| | - Emma F. Camp
- University of Technology SydneyClimate Change ClusterUltimo NSW 2007Australia
| | - David J. Smith
- Coral Reef Research Unit, School of Biological SciencesUniversity of EssexColchesterUK
| | - Tim Kahlke
- University of Technology SydneyClimate Change ClusterUltimo NSW 2007Australia
| | - Eslam O. Osman
- Coral Reef Research Unit, School of Biological SciencesUniversity of EssexColchesterUK
- Marine Biology Department, Faculty of ScienceAl‐Azhar UniversityCairoEgypt
| | | | - Benjamin C. C. Hume
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Claudia Pogoreutz
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Christian R. Voolstra
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - David J. Suggett
- University of Technology SydneyClimate Change ClusterUltimo NSW 2007Australia
| |
Collapse
|
36
|
Hernandez-Agreda A, Leggat W, Bongaerts P, Herrera C, Ainsworth TD. Rethinking the Coral Microbiome: Simplicity Exists within a Diverse Microbial Biosphere. mBio 2018; 9:e00812-18. [PMID: 30301849 PMCID: PMC6178627 DOI: 10.1128/mbio.00812-18] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/27/2018] [Indexed: 12/28/2022] Open
Abstract
Studies of the coral microbiome predominantly characterize the microbial community of the host species as a collective, rather than that of the individual. This ecological perspective on the coral microbiome has led to the conclusion that the coral holobiont is the most diverse microbial biosphere studied thus far. However, investigating the microbiome of the individual, rather than that of the species, highlights common and conserved community attributes which can provide insights into the significance of microbial associations to the host. Here, we show there are consistent characteristics between individuals in the proposed three components of the coral microbiome (i.e., "environmentally responsive community," "resident or individual microbiome," and "core microbiome"). We found that the resident microbiome of a photoendosymbiotic coral harbored <3% (∼605 phylotypes) of the 16S rRNA phylotypes associated with all investigated individuals of that species ("species-specific microbiome") (∼21,654 phylotypes; individuals from Pachyseris speciosa [n = 123], Mycedium elephantotus [n = 95], and Acropora aculeus [n = 91] from 10 reef locations). The remaining bacterial phylotypes (>96%) (environmentally responsive community) of the species-specific microbiome were in fact not found in association with the majority of individuals of the species. Only 0.1% (∼21 phylotypes) of the species-specific microbiome of each species was shared among all individuals of the species (core microbiome), equating to ∼3.4% of the resident microbiome. We found taxonomic redundancy and consistent patterns of composition, structure, and taxonomic breadth across individual microbiomes from the three coral species. Our results demonstrate that the coral microbiome is structured at the individual level.IMPORTANCE We propose that the coral holobiont should be conceptualized as a diverse transient microbial community that is responsive to the surrounding environment and encompasses a simple, redundant, resident microbiome and a small conserved core microbiome. Most importantly, we show that the coral microbiome is comparable to the microbiomes of other organisms studied thus far. Accurately characterizing the coral-microbe interactions provides an important baseline from which the functional roles and the functional niches within which microbes reside can be deciphered.
Collapse
Affiliation(s)
- Alejandra Hernandez-Agreda
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia
- California Academy of Sciences, San Francisco, California, USA
| | - William Leggat
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia
- School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, Australia
| | - Pim Bongaerts
- Global Change Institute, The University of Queensland, Brisbane, Australia
- California Academy of Sciences, San Francisco, California, USA
| | - César Herrera
- TropWATER, Centre for Tropical Water & Aquatic Ecosystem Research, James Cook University, Townsville, Australia
- College of Science and Engineering, James Cook University, Townsville, Australia
| | - Tracy D Ainsworth
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|