1
|
Varasteh T, Lima MS, Silva TA, da Cruz MLR, Ahmadi RA, Atella GC, Attias M, Swings J, de Souza W, Thompson FL, Thompson CC. The dispersant Corexit 9500 and (dispersed) oil are lethal to coral endosymbionts. MARINE POLLUTION BULLETIN 2024; 203:116491. [PMID: 38754321 DOI: 10.1016/j.marpolbul.2024.116491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024]
Abstract
Endosymbionts (Symbiodiniaceae) play a vital role in the health of corals. Seawater pollution can harm these endosymbionts and dispersants used during oil spill cleanup can be extremely toxic to these organisms. Here, we examined the impact of oil and a specific dispersant, Corexit-9500, on two representative endosymbionts - Symbiodinium and Cladocopium - from the Southwestern endemic coral Mussismilia braziliensis. The survival and photosynthetic potential of the endosymbionts decreased dramatically after exposure to the dispersant and oil by ~25 % after 2 h and ~50 % after 7 days. Low concentrations of dispersant (0.005 ml/l) and dispersed oil (Polycyclic Aromatic Hydrocarbons, 1132 μg/l; Total Petroleum Hydrocarbons, 595 μg/l) proved highly toxic to both Symbiodinium and Cladocopium. These levels triggered a reduction in growth rate, cell size, and cell wall thickness. After a few hours of exposure, cellular organelles were damaged or destroyed. These acute toxic effects underline the fragile nature of coral endosymbionts.
Collapse
Affiliation(s)
- Tooba Varasteh
- Laboratory of Microbiology, Biology Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Michele S Lima
- Laboratory of Microbiology, Biology Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Tatiana A Silva
- Laboratory of Celullar Ultrastructure Hertha Meyer, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Maria Luíza R da Cruz
- Laboratory of Microbiology, Biology Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Reza Amir Ahmadi
- Laboratory of Microbiology, Biology Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Georgia C Atella
- Laboratory of Lipids Biochemistry and Lipoprotein, Biochemistry Institute Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Marcia Attias
- Laboratory of Celullar Ultrastructure Hertha Meyer, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Jean Swings
- Laboratory of Microbiology, Biology Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Wanderley de Souza
- Laboratory of Celullar Ultrastructure Hertha Meyer, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Fabiano L Thompson
- Laboratory of Microbiology, Biology Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| | - Cristiane C Thompson
- Laboratory of Microbiology, Biology Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Peña-Montenegro TD, Kleindienst S, Allen AE, Eren AM, McCrow JP, Sánchez-Calderón JD, Arnold J, Joye SB. Species-specific responses of marine bacteria to environmental perturbation. ISME COMMUNICATIONS 2023; 3:99. [PMID: 37736763 PMCID: PMC10516948 DOI: 10.1038/s43705-023-00310-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023]
Abstract
Environmental perturbations shape the structure and function of microbial communities. Oil spills are a major perturbation and resolving spills often requires active measures like dispersant application that can exacerbate the initial disturbance. Species-specific responses of microorganisms to oil and dispersant exposure during such perturbations remain largely unknown. We merged metatranscriptomic libraries with pangenomes to generate Core-Accessory Metatranscriptomes (CA-Metatranscriptomes) for two microbial hydrocarbon degraders that played important roles in the aftermath of the Deepwater Horizon oil spill. The Colwellia CA-Metatranscriptome illustrated pronounced dispersant-driven acceleration of core (~41%) and accessory gene (~59%) transcription, suggesting an opportunistic strategy. Marinobacter responded to oil exposure by expressing mainly accessory genes (~93%), suggesting an effective hydrocarbon-degrading lifestyle. The CA-Metatranscriptome approach offers a robust way to identify the underlying mechanisms of key microbial functions and highlights differences of specialist-vs-opportunistic responses to environmental disturbance.
Collapse
Affiliation(s)
- Tito D Peña-Montenegro
- Department of Marine Sciences, University of Georgia, 325 Sanford Dr., Athens, GA, 30602-3636, USA
- Institute of Bioinformatics, University of Georgia, 120 Green St., Athens, GA, 30602-7229, USA
- Grupo de Investigación y Desarrollo en Ciencias, Tecnología e Innovación (BioGRID), Sociedad de Doctores e Investigadores de Colombia (SoPhIC), Bogotá, Colombia
| | - Sara Kleindienst
- Department of Marine Sciences, University of Georgia, 325 Sanford Dr., Athens, GA, 30602-3636, USA
- Department of Environmental Microbiology, Institute for Sanitary Engineering, Water Quality and Solid Waste Management (ISWA), University of Stuttgart, Bandtäle 2, 70569, Stuttgart, Germany
| | - Andrew E Allen
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA, 92037, USA
- Integrative Oceanography Division, Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, 92037, USA
| | - A Murat Eren
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg, University of Oldenburg, Oldenburg, 26129, Germany
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, USA
| | - John P McCrow
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA, 92037, USA
| | - Juan D Sánchez-Calderón
- Grupo de Investigación en Gestión Ecológica y Agroindustrial (GEA), Programa de Microbiología, Facultad de Ciencias Exactas y Naturales, Universidad Libre, Seccional Barranquilla, Barranquilla, Colombia
| | - Jonathan Arnold
- Institute of Bioinformatics, University of Georgia, 120 Green St., Athens, GA, 30602-7229, USA
- Department of Genetics, University of Georgia, 120 Green St., Athens, GA, 30602-7223, USA
| | - Samantha B Joye
- Department of Marine Sciences, University of Georgia, 325 Sanford Dr., Athens, GA, 30602-3636, USA.
| |
Collapse
|
3
|
Lin X, Ma J, Zhou Z, Qiao B, Li Y, Zheng W, Tian Y. Oil-contaminated sites act as high-risk pathogen reservoirs previously overlooked in coastal zones. WATER RESEARCH 2023; 242:120225. [PMID: 37329716 DOI: 10.1016/j.watres.2023.120225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/03/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
In addition to the organic pollutants and disturbance to the microbial, plant and animal systems, oil contamination can also enrich opportunistic pathogens. But little is known about whether and how the most common coastal oil-contaminated water bodies act as reservoirs for pathogens. Here, we delved into the characteristics of pathogenic bacteria in coastal zones by constructing seawater-based microcosms with diesel oil as a pollutant. 16S rRNA gene full-length sequencing and genomic exploration revealed that pathogenic bacteria with genes involved in alkane or aromatic degradation were significantly enriched under oil contamination, providing a genetic basis for them to thrive in oil-contaminated seawater. Moreover, high-throughput qPCR assays showed an increased abundance of the virulence gene and enrichment in antibiotics resistance genes (ARGs), especially those related to multidrug resistance efflux pumps, and their high relevance to Pseudomonas, enabling this genus to achieve high levels of pathogenicity and environmental adaptation. More importantly, infection experiments with a culturable P. aeruginosa strain isolated from an oil-contaminated microcosm provided clear evidence that the environmental strain was pathogenic to grass carp (Ctenopharyngodon idellus), and the highest lethality rate was found in the oil pollutant treatment, demonstrating the synergistic effect of toxic oil pollutants and pathogens on infected fish. A global genomic investigation then revealed that diverse environmental pathogenic bacteria with oil degradation potential are widely distributed in marine environments, especially in coastal zones, suggesting extensive pathogenic reservoir risks in oil-contaminated sites. Overall, the study uncovered a hidden microbial risk, showing that oil-contaminated seawater could be a high-risk pathogen reservoir, and provides new insights and potential targets for environmental risk assessment and control.
Collapse
Affiliation(s)
- Xiaolan Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jiaxin Ma
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | | | - Baoyi Qiao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yixin Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Wei Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yun Tian
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
4
|
Giwa A, Chalermthai B, Shaikh B, Taher H. Green dispersants for oil spill response: A comprehensive review of recent advances. MARINE POLLUTION BULLETIN 2023; 193:115118. [PMID: 37300957 DOI: 10.1016/j.marpolbul.2023.115118] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/19/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023]
Abstract
Green dispersants are so-called "green" because they are renewable (from bio-based sources), non-volatile (from ionic liquids), or are from naturally available solvents (vegetable oils). In this review, the effectiveness of different types of green dispersants, namely, protein isolates and hydrolysates from fish and marine wastes, biosurfactants from bacterial and fungal strains, vegetable-based oils such as soybean lecithin and castor oils, as well as green solvents like ionic liquids are reviewed. The challenges and opportunities offered by these green dispersants are also elucidated. The effectiveness of these dispersants varies widely and depends on oil type, dispersant hydrophilicity/hydrophobicity, and seawater conditions. However, their advantages lie in their relatively low toxicity and desirable physico-chemical properties, which make them potentially ecofriendly and effective dispersants for future oil spill response.
Collapse
Affiliation(s)
- Adewale Giwa
- Chemical and Water Desalination Engineering Program, Mechanical & Nuclear Engineering (MNE) Department, College of Engineering, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates.
| | - Bushra Chalermthai
- Bio-Circular-Green-economy Technology & Engineering Center, BCGeTEC, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bismah Shaikh
- Sustainable Energy Development Research Group, Sustainable Energy and Power Systems Research Center, Research Institute for Sciences and Engineering, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates
| | - Hanifa Taher
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Research and Innovation Center on CO(2) and H(2) (RICH), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
5
|
Emulating Deep-Sea Bioremediation: Oil Plume Degradation by Undisturbed Deep-Sea Microbial Communities Using a High-Pressure Sampling and Experimentation System. ENERGIES 2022. [DOI: 10.3390/en15134525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Hydrocarbon biodegradation rates in the deep-sea have been largely determined under atmospheric pressure, which may lead to non-representative results. In this work, we aim to study the response of deep-sea microbial communities of the Eastern Mediterranean Sea (EMS) to oil contamination at in situ environmental conditions and provide representative biodegradation rates. Seawater from a 600 to 1000 m depth was collected using a high-pressure (HP) sampling device equipped with a unidirectional check-valve, without depressurization upon retrieval. The sample was then passed into a HP-reactor via a piston pump without pressure disruption and used for a time-series oil biodegradation experiment at plume concentrations, with and without dispersant application, at 10 MPa and 14 °C. The experimental results demonstrated a high capacity of indigenous microbial communities in the deep EMS for alkane degradation regardless of dispersant application (>70%), while PAHs were highly degraded when oil was dispersed (>90%) and presented very low half-lives (19.4 to 2.2 days), compared to published data. To our knowledge, this is the first emulation study of deep-sea bioremediation using undisturbed deep-sea microbial communities.
Collapse
|
6
|
Shi H, Cheng J, Gao W, Ma M, Liu A, Hu T, Han B, Zheng L. Biodiversity and degradation potential of oil-degrading bacteria isolated from sediments of hydrothermal and non-hydrothermal areas of the Southwest Mid-Indian Ocean Ridge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:26821-26834. [PMID: 34854009 DOI: 10.1007/s11356-021-17826-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
In this study, sediments from eight sites were collected from hydrothermal areas (e.g., the Tiancheng, Tianzuo, and Longqi hydrothermal areas) and non-hydrothermal area on the Southwest Mid-Indian Ocean Ridge. Using crude oil as the only carbon and energy source, 162 strains of culturable oil-degrading bacteria were isolated and obtained. The rate of oil degradation of the consortia was 39.48-46.00% in hydrothermal and non-hydrothermal areas. High-throughput sequencing found that the alpha diversity indices (e.g., Shannon and Simpson) of the communities in hydrothermal areas were higher than those in non-hydrothermal area. The species diversities of the oil-degrading bacteria were different among different hydrothermal areas. The composition of the oil-degrading bacterial species in the Tianzuo hydrothermal area tended to be more similar to that in the non-hydrothermal area. This similarity is attributed to the changes in the bacterial community that followed the cessation of hydrothermal vent eruptions at this site. The Alphaproteobacteria abundance of the oil-degrading bacteria was significantly different in oil-degrading bacteria between the hydrothermal and non-hydrothermal areas.
Collapse
Affiliation(s)
- Haolei Shi
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266071, China
| | - Jiangfeng Cheng
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266071, China
| | - Wei Gao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Meng Ma
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Ang Liu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Tianyi Hu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Bin Han
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Li Zheng
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
7
|
Cabral L, Giovanella P, Pellizzer EP, Teramoto EH, Kiang CH, Sette LD. Microbial communities in petroleum-contaminated sites: Structure and metabolisms. CHEMOSPHERE 2022; 286:131752. [PMID: 34426136 DOI: 10.1016/j.chemosphere.2021.131752] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/24/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Over recent decades, hydrocarbon concentrations have been augmented in soil and water, mainly derived from accidents or operations that input crude oil and petroleum into the environment. Different techniques for remediation have been proposed and used to mitigate oil contamination. Among the available environmental recovery approaches, bioremediation stands out since these hydrocarbon compounds can be used as growth substrates for microorganisms. In turn, microorganisms can play an important role with significant contributions to the stabilization of impacted areas. In this review, we present the current knowledge about responses from natural microbial communities (using DNA barcoding, multiomics, and functional gene markers) and bioremediation experiments (microcosm and mesocosm) conducted in the presence of petroleum and chemical dispersants in different samples, including soil, sediment, and water. Additionally, we present metabolic mechanisms for aerobic/anaerobic hydrocarbon degradation and alternative pathways, as well as a summary of studies showing functional genes and other mechanisms involved in petroleum biodegradation processes.
Collapse
Affiliation(s)
- Lucélia Cabral
- Laboratório de Micologia Ambiental e Industrial (LAMAI), Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Patricia Giovanella
- Laboratório de Micologia Ambiental e Industrial (LAMAI), Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil; Centro de Estudos Ambientais (CEA), Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Elisa Pais Pellizzer
- Laboratório de Micologia Ambiental e Industrial (LAMAI), Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Elias Hideo Teramoto
- Centro de Estudos Ambientais (CEA), Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil; Laboratório de Estudos de Bacias (LEBAC), Departamento de Geologia Aplicada, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Chang Hung Kiang
- Centro de Estudos Ambientais (CEA), Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil; Laboratório de Estudos de Bacias (LEBAC), Departamento de Geologia Aplicada, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Lara Durães Sette
- Laboratório de Micologia Ambiental e Industrial (LAMAI), Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil; Centro de Estudos Ambientais (CEA), Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil.
| |
Collapse
|
8
|
Tomasino MP, Aparício M, Ribeiro I, Santos F, Caetano M, Almeida CMR, de Fátima Carvalho M, Mucha AP. Diversity and Hydrocarbon-Degrading Potential of Deep-Sea Microbial Community from the Mid-Atlantic Ridge, South of the Azores (North Atlantic Ocean). Microorganisms 2021; 9:microorganisms9112389. [PMID: 34835516 PMCID: PMC8620031 DOI: 10.3390/microorganisms9112389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022] Open
Abstract
Deep-sea sediments (DSS) are one of the largest biotopes on Earth and host a surprisingly diverse microbial community. The harsh conditions of this cold environment lower the rate of natural attenuation, allowing the petroleum pollutants to persist for a long time in deep marine sediments raising problematic environmental concerns. The present work aims to contribute to the study of DSS microbial resources as biotechnological tools for bioremediation of petroleum hydrocarbon polluted environments. Four deep-sea sediment samples were collected in the Mid-Atlantic Ridge, south of the Azores (North Atlantic Ocean). Their autochthonous microbial diversity was investigated by 16S rRNA metabarcoding analysis. In addition, a total of 26 deep-sea bacteria strains with the ability to utilize crude oil as their sole carbon and energy source were isolated from the DSS samples. Eight of them were selected for a novel hydrocarbonoclastic-bacterial consortium and their potential to degrade petroleum hydrocarbons was tested in a bioremediation experiment. Bioaugmentation treatments (with inoculum pre-grown either in sodium acetate or petroleum) showed an increase in degradation of the hydrocarbons comparatively to natural attenuation. Our results provide new insights into deep-ocean oil spill bioremediation by applying DSS hydrocarbon-degrading consortium in lab-scale microcosm to simulate an oil spill in natural seawater.
Collapse
Affiliation(s)
- Maria Paola Tomasino
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (M.A.); (I.R.); (F.S.); (M.C.); (C.M.R.A.); (M.d.F.C.); (A.P.M.)
- Correspondence:
| | - Mariana Aparício
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (M.A.); (I.R.); (F.S.); (M.C.); (C.M.R.A.); (M.d.F.C.); (A.P.M.)
| | - Inês Ribeiro
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (M.A.); (I.R.); (F.S.); (M.C.); (C.M.R.A.); (M.d.F.C.); (A.P.M.)
| | - Filipa Santos
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (M.A.); (I.R.); (F.S.); (M.C.); (C.M.R.A.); (M.d.F.C.); (A.P.M.)
| | - Miguel Caetano
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (M.A.); (I.R.); (F.S.); (M.C.); (C.M.R.A.); (M.d.F.C.); (A.P.M.)
- Instituto Português do Mar e da Atmosfera, I.P. Avenida de Brasília, 1449-006 Lisboa, Portugal
| | - C. Marisa R. Almeida
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (M.A.); (I.R.); (F.S.); (M.C.); (C.M.R.A.); (M.d.F.C.); (A.P.M.)
| | - Maria de Fátima Carvalho
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (M.A.); (I.R.); (F.S.); (M.C.); (C.M.R.A.); (M.d.F.C.); (A.P.M.)
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Ana P. Mucha
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (M.A.); (I.R.); (F.S.); (M.C.); (C.M.R.A.); (M.d.F.C.); (A.P.M.)
- Faculty of Sciences, University of Porto, Rua do Campo Alegre 790, 4150-171 Porto, Portugal
| |
Collapse
|
9
|
Nanjappa D, Liang Y, Bretherton L, Brown C, Quigg A, Irwin AJ, Finkel ZV. Contrasting transcriptomic responses of a microbial eukaryotic community to oil and dispersant. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117774. [PMID: 34274645 DOI: 10.1016/j.envpol.2021.117774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Dispersants can aid dispersion and biodegradation of oil in seawater, but the wider ecotoxicological effects of oil and dispersant to the base of marine food webs is unclear. Here we apply a metatranscriptomic approach to identify molecular responses of a natural marine microbial eukaryotic community to oil and chemically dispersed oil. Oil exposure stimulated the upregulation of ketogenesis in the eukaryotic community, which may alleviate carbon- and energy-limitation and reduce oxidative stress. In contrast, a chemically dispersed oil treatment stimulated eukaryotic genes and pathways consistent with nitrogen and oxygen depletion. These results suggest that the addition of dispersant may elevate bacterial biodegradation of crude oil, indirectly increasing competition for nitrogen between prokaryotic and eukaryotic communities as oxygen consumption induces bacterial anaerobic respiration and denitrification. Eukaryotic microbial communities may mitigate some of the negative effects of oil exposure such as reduced photosynthesis and elevated oxidative stress, through ketosis, but the addition of dispersant to the oil fundamentally alters the environmental and ecological conditions and therefore the biochemical response of the eukaryotic community.
Collapse
Affiliation(s)
- Deepak Nanjappa
- Department of Oceanography, Dalhousie University, Halifax, NS, Canada.
| | - Yue Liang
- Department of Oceanography, Dalhousie University, Halifax, NS, Canada
| | - Laura Bretherton
- Department of Oceanography, Dalhousie University, Halifax, NS, Canada
| | - Chris Brown
- Environmental Science Program, Mount Allison University, Sackville, NB, Canada
| | - Antonietta Quigg
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, USA
| | - Andrew J Irwin
- Department of Oceanography, Dalhousie University, Halifax, NS, Canada; Department of Mathematics & Statistics, Dalhousie University, Halifax, NS, Canada
| | - Zoe V Finkel
- Department of Oceanography, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
10
|
Ganesh Kumar A, Manisha D, Sujitha K, Magesh Peter D, Kirubagaran R, Dharani G. Genome sequence analysis of deep sea Aspergillus sydowii BOBA1 and effect of high pressure on biodegradation of spent engine oil. Sci Rep 2021; 11:9347. [PMID: 33931710 PMCID: PMC8087790 DOI: 10.1038/s41598-021-88525-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/30/2021] [Indexed: 02/02/2023] Open
Abstract
A deep-sea fungus Aspergillus sydowii BOBA1 isolated from marine sediment at a depth of 3000 m was capable of degrading spent engine (SE) oil. The response of immobilized fungi towards degradation at elevated pressure was studied in customized high pressure reactors without any deviation in simulating in situ deep-sea conditions. The growth rate of A. sydowii BOBA1 in 0.1 MPa was significantly different from the growth at 10 MPa pressure. The degradation percentage reached 71.2 and 82.5% at atmospheric and high pressure conditions, respectively, within a retention period of 21 days. The complete genome sequence of BOBA1 consists of 38,795,664 bp in size, comprises 2582 scaffolds with predicted total coding genes of 18,932. A total of 16,247 genes were assigned with known functions and many families found to have a potential role in PAHs and xenobiotic compound metabolism. Functional genes controlling the pathways of hydrocarbon and xenobiotics compound degrading enzymes such as dioxygenase, decarboxylase, hydrolase, reductase and peroxidase were identified. The spectroscopic and genomic analysis revealed the presence of combined catechol, gentisate and phthalic acid degradation pathway. These results of degradation and genomic studies evidenced that this deep-sea fungus could be employed to develop an eco-friendly mycoremediation technology to combat the oil polluted marine environment. This study expands our knowledge on piezophilic fungi and offer insight into possibilities about the fate of SE oil in deep-sea.
Collapse
Affiliation(s)
- A. Ganesh Kumar
- grid.454780.a0000 0001 0683 2228Marine Biotechnology Division, National Institute of Ocean Technology, Ministry of Earth Sciences (MoES), Government of India, Chennai, 600100 Tamil Nadu India
| | - D. Manisha
- grid.454780.a0000 0001 0683 2228Marine Biotechnology Division, National Institute of Ocean Technology, Ministry of Earth Sciences (MoES), Government of India, Chennai, 600100 Tamil Nadu India
| | - K. Sujitha
- grid.454780.a0000 0001 0683 2228Marine Biotechnology Division, National Institute of Ocean Technology, Ministry of Earth Sciences (MoES), Government of India, Chennai, 600100 Tamil Nadu India
| | - D. Magesh Peter
- grid.454780.a0000 0001 0683 2228Marine Biotechnology Division, National Institute of Ocean Technology, Ministry of Earth Sciences (MoES), Government of India, Chennai, 600100 Tamil Nadu India
| | - R. Kirubagaran
- grid.454780.a0000 0001 0683 2228Marine Biotechnology Division, National Institute of Ocean Technology, Ministry of Earth Sciences (MoES), Government of India, Chennai, 600100 Tamil Nadu India
| | - G. Dharani
- grid.454780.a0000 0001 0683 2228Marine Biotechnology Division, National Institute of Ocean Technology, Ministry of Earth Sciences (MoES), Government of India, Chennai, 600100 Tamil Nadu India
| |
Collapse
|
11
|
Unravelling Microbial Communities Associated with Different Light Non-Aqueous Phase Liquid Types Undergoing Natural Source Zone Depletion Processes at a Legacy Petroleum Site. WATER 2021. [DOI: 10.3390/w13070898] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Petroleum contaminants are exposed to weathering when released into environment, resulting in the alteration of their chemical composition. Here, we investigated microbial communities through the soil profile at an industrial site, which was exposed to various petroleum products for over 50 years. The petroleum is present as light non-aqueous phase liquid (LNAPL) and is undergoing natural source zone depletion (NSZD). Microbial community composition was compared to the contaminant type, concentration, and its depth of obtained soil cores. A large population of Archaea, particularly Methanomicrobia and Methanobacteria and indication of complex syntrophic relationships of methanogens, methanotrophs and bacteria were found in the contaminated cores. Different families were enriched across the LNAPL types. Results indicate methanogenic or anoxic conditions in the deeper and highly contaminated sections of the soil cores investigated. The contaminant was highly weathered, likely resulting in the formation of recalcitrant polar compounds. This research provides insight into the microorganisms fundamentally associated with LNAPL, throughout a soil depth profile above and below the water table, undergoing NSZD processes at a legacy petroleum site. It advances the potential for integration of microbial community effects on bioremediation and in response to physicochemical partitioning of LNAPL components from different petroleum types.
Collapse
|
12
|
Singh H, Bhardwaj N, Arya SK, Khatri M. Environmental impacts of oil spills and their remediation by magnetic nanomaterials. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.enmm.2020.100305] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Freitas L, Appolinario L, Calegario G, Campeão M, Tschoeke D, Garcia G, Venancio IM, Cosenza CAN, Leomil L, Bernardes M, Albuquerque AL, Thompson C, Thompson F. Glacial-interglacial transitions in microbiomes recorded in deep-sea sediments from the western equatorial Atlantic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:140904. [PMID: 32763595 DOI: 10.1016/j.scitotenv.2020.140904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
In the late Quaternary, glacial-interglacial transitions are marked by major environmental changes. Glacial periods in the western equatorial Atlantic (WEA) are characterized by high continental terrigenous input, which increases the proportion of terrestrial organic matter (e.g. lignin, alkanes), nutrients (e.g. iron and sulphur), and lower primary productivity. On the other hand, interglacials are characterized by lower continental contribution and maxima in primary productivity. Microbes can serve as biosensors of past conditions, but scarce information is available on deep-sea sediments in the WEA. The hypothesis put forward in this study is that past changes in climate conditions modulated the taxonomic/functional composition of microbes from deep sediment layers. To address this hypothesis, we collected samples from a marine sediment core located in the WEA, which covered the last 130 kyr. This region is influenced by the presence of the Amazon River plume, which outputs dissolved and particulate nutrients in vast oceanic regions, as well as the Parnaiba river plume. Core GL-1248 was analysed by shotgun metagenomics and geochemical analyses (alkane, lignin, perylene, sulphur). Two clusters (glacial and interglacial-deglacial) were found based on taxonomic and functional profiles of metagenomes. The interglacial period had a higher abundance of genes belonging to several sub-systems (e.g. DNA, RNA metabolism, cell division, chemotaxis, and respiration) that are consistent with a past environment with enhanced primary productivity. On the other hand, the abundance of Alcanivorax, Marinobacter, Kangiella and aromatic compounds that may serve as energy sources for these bacteria were higher in the glacial. The glacial period was enriched in genes for the metabolism of aromatic compounds, lipids, isoprenoids, iron, and Sulphur, consistent with enhanced fluvial input during the last glacial period. In contrast, interglacials have increased contents of more labile materials originating from phytoplankton (e.g. Prochlorococcus). This study provides new insights into the microbiome as climatic archives at geological timescales.
Collapse
Affiliation(s)
- Lucas Freitas
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; SAGE-COPPE, UFRJ, Rio de Janeiro, Brazil
| | - Luciana Appolinario
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; SAGE-COPPE, UFRJ, Rio de Janeiro, Brazil
| | - Gabriela Calegario
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; SAGE-COPPE, UFRJ, Rio de Janeiro, Brazil
| | - Mariana Campeão
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; SAGE-COPPE, UFRJ, Rio de Janeiro, Brazil
| | - Diogo Tschoeke
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; SAGE-COPPE, UFRJ, Rio de Janeiro, Brazil
| | - Gizele Garcia
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; SAGE-COPPE, UFRJ, Rio de Janeiro, Brazil
| | - Igor Martins Venancio
- Center for Weather Forecasting and Climate Studies (CPTEC), National Institute for Space Research (INPE), Cachoeira Paulista, Brazil; Gradutate Program on Geoscience (Geochemistry), Federal Fluminense University, Niterói, Brazil
| | | | | | - Marcelo Bernardes
- Gradutate Program on Geoscience (Geochemistry), Federal Fluminense University, Niterói, Brazil
| | - Ana Luiza Albuquerque
- Gradutate Program on Geoscience (Geochemistry), Federal Fluminense University, Niterói, Brazil.
| | - Cristiane Thompson
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; SAGE-COPPE, UFRJ, Rio de Janeiro, Brazil.
| | - Fabiano Thompson
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; SAGE-COPPE, UFRJ, Rio de Janeiro, Brazil.
| |
Collapse
|
14
|
Appolinario LR, Tschoeke D, Calegario G, Barbosa LH, Moreira MA, Albuquerque ALS, Thompson CC, Thompson FL. Oil leakage induces changes in microbiomes of deep-sea sediments of Campos Basin (Brazil). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:139556. [PMID: 32554026 DOI: 10.1016/j.scitotenv.2020.139556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/16/2020] [Accepted: 05/17/2020] [Indexed: 06/11/2023]
Abstract
The Campos Basin (100,000 km2) is located on the continental shelf of southeastern Brazil. Despite the significant oil and gas industrial activities underway in the Campos Basin, scarce information is available regarding the hydrocarbon contents and microbial communities in the deep-sea sediments. To gain new insights on these aspects, we first obtained deep-sea sediment samples with different degrees of oil exposure. We obtained samples from a seabed fissure (N = 28), surroundings (250 m to 500 m from the fissure; N = 24), and a control area (N = 4). We used shotgun metagenomics to characterize the taxonomic and metabolic diversity and analyzed biogeochemical parameters (metal and oil concentration) of all samples. The high levels of unresolved complex mixture of hydrocarbons in the fissure indicate a potentially recent petrogenic contribution in these sediments. The fissure area was found to have a higher abundance of hydrocarbonoclastic bacterial genera and hydrocarbon degradation genes. These bacteria may be used as biosensors of sediment contamination. The effects of oil contamination, mainly around the fissure, are less clear at 250 m and 500 m, suggesting that the surroundings may not have been heavily affected by the oil leakage. Our study demonstrates that metagenomics can disclose biosensors for environmental monitoring.
Collapse
Affiliation(s)
- Luciana R Appolinario
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Diogo Tschoeke
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; Center of Technology e Biomedical Engineer Program - COPPE, UFRJ, Rio de Janeiro, Brazil
| | - Gabriela Calegario
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Luiz Henrique Barbosa
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Manuel A Moreira
- Programa de Pós-Graduação em Geoquímica, Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Ana Luiza S Albuquerque
- Programa de Pós-Graduação em Geoquímica, Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Cristiane C Thompson
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Fabiano L Thompson
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; Center of Technology - CT2, SAGE-COPPE, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| |
Collapse
|
15
|
Cerqueda-García D, Améndola-Pimenta M, Zamora-Briseño JA, González-Penagos CE, Árcega-Cabrera F, Ceja-Moreno V, Rodríguez-Canul R. Effects of chronic exposure to water accommodated fraction (WAF) of light crude oil on gut microbiota composition of the lined sole (Achirus lineatus). MARINE ENVIRONMENTAL RESEARCH 2020; 161:105116. [PMID: 32861142 DOI: 10.1016/j.marenvres.2020.105116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
Exposure of marine fish to hydrocarbon compounds from crude oil can cause physiological and ecological alterations that can result in several cytotoxic, genotoxic, and teratogenic damages. One consequence of this exposure is the dysbiosis of the gut microbiota, where the normal bacterial composition is modified. Herein, we assessed the effect of the exposure to water accommodated fraction (WAF) of a light crude oil into the gut microbiota of a native species, the lined sole Achirus lineatus, a benthonic fish widely distributed in the Gulf of Mexico (GoM). We performed a chronic bioassay using two WAF concentrations (5 and 10% v/v), collecting lined sole entire gastrointestinal tracts for microbiota analyses at two timepoints, 14 and 28 days. Changes in the gut microbiota composition were determined by high throughput amplicon sequencing of the gene 16S rRNA. Diversity analyses showed that WAF exposure produced similar changes in the microbiota composition at both concentrations. Metagenomic functional prediction showed that these alterations could result in a shift in the gut redox status, towards a more anoxygenic environment. Enrichment of bacteria capable of use hydrocarbon as carbon source seems to be fast regardless time of exposure or WAF concentrations. Our results suggest that chronic WAF exposure can cause a dysbiosis in this benthic native species from the GoM.
Collapse
Affiliation(s)
- Daniel Cerqueda-García
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN)-Unidad Mérida, Carretera Antigua a Progreso Km. 6, 97310, Mérida, Yucatán, Mexico
| | - Monica Améndola-Pimenta
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN)-Unidad Mérida, Carretera Antigua a Progreso Km. 6, 97310, Mérida, Yucatán, Mexico.
| | - Jesús Alejandro Zamora-Briseño
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN)-Unidad Mérida, Carretera Antigua a Progreso Km. 6, 97310, Mérida, Yucatán, Mexico
| | - Carlos Eduardo González-Penagos
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN)-Unidad Mérida, Carretera Antigua a Progreso Km. 6, 97310, Mérida, Yucatán, Mexico
| | - Flor Árcega-Cabrera
- Unidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México. Puerto de Abrigo S/N, Sisal Yucatán, 97356, Mexico
| | - Víctor Ceja-Moreno
- Unidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México. Puerto de Abrigo S/N, Sisal Yucatán, 97356, Mexico
| | - Rossanna Rodríguez-Canul
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN)-Unidad Mérida, Carretera Antigua a Progreso Km. 6, 97310, Mérida, Yucatán, Mexico.
| |
Collapse
|
16
|
Knapik K, Bagi A, Krolicka A, Baussant T. Metatranscriptomic Analysis of Oil-Exposed Seawater Bacterial Communities Archived by an Environmental Sample Processor (ESP). Microorganisms 2020; 8:E744. [PMID: 32429288 PMCID: PMC7284936 DOI: 10.3390/microorganisms8050744] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 11/17/2022] Open
Abstract
The use of natural marine bacteria as "oil sensors" for the detection of pollution events can be suggested as a novel way of monitoring oil occurrence at sea. Nucleic acid-based devices generically called genosensors are emerging as potentially promising tools for in situ detection of specific microbial marker genes suited for that purpose. Functional marker genes are particularly interesting as targets for oil-related genosensing but their identification remains a challenge. Here, seawater samples, collected in tanks with oil addition mimicking a realistic oil spill scenario, were filtered and archived by the Environmental Sample Processor (ESP), a fully robotized genosensor, and the samples were then used for post-retrieval metatranscriptomic analysis. After extraction, RNA from ESP-archived samples at start, Day 4 and Day 7 of the experiment was used for sequencing. Metatranscriptomics revealed that several KEGG pathways were significantly enriched in samples exposed to oil. However, these pathways were highly expressed also in the non-oil-exposed water samples, most likely as a result of the release of natural organic matter from decaying phytoplankton. Temporary peaks of aliphatic alcohol and aldehyde dehydrogenases and monoaromatic ring-degrading enzymes (e.g., ben, box, and dmp clusters) were observed on Day 4 in both control and oil-exposed and non-exposed tanks. Few alkane 1-monooxygenase genes were upregulated on oil, mostly transcribed by families Porticoccaceae and Rhodobacteraceae, together with aromatic ring-hydroxylating dioxygenases, mostly transcribed by Rhodobacteraceae. Few transcripts from obligate hydrocarbonoclastic genera of Alcanivorax, Oleispira and Cycloclasticus were significantly enriched in the oil-treated exposed tank in comparison to control the non-exposed tank, and these were mostly transporters and genes involved in nitrogen and phosphorous acquisition. This study highlights the importance of seasonality, i.e., phytoplankton occurrence and senescence leading to organic compound release which can be used preferentially by bacteria over oil compounds, delaying the latter process. As a result, such seasonal effect can reduce the sensitivity of genosensing tools employing bacterial functional genes to sense oil. A better understanding of the use of natural organic matter by bacteria involved in oil-biodegradation is needed to develop an array of functional markers enabling the rapid and specific in situ detection of anthropogenic pollution.
Collapse
Affiliation(s)
| | | | | | - Thierry Baussant
- NORCE Environment, NORCE Norwegian Research Centre AS, 4070 Randaberg, Norway; (K.K.); (A.B.); (A.K.)
| |
Collapse
|
17
|
Tikariha H, Purohit HJ. Unfolding microbial community intelligence in aerobic and anaerobic biodegradation processes using metagenomics. Arch Microbiol 2020; 202:1269-1274. [PMID: 32130435 DOI: 10.1007/s00203-020-01839-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 12/25/2022]
Abstract
Environmental factors and available nutrients influence microbial communities, and with that, there exists a dynamic shift in community structure and hierarchy in wastewater treatment systems. Of the various factors, the availability and gradient of oxygen selectively enrich a typical microbial community and also form the community stratification which could be established through metagenomics studies. In recent years, metagenomics with various sets of bioinformatics tools has assisted in exploration and better insight into the organization and relation of the taxonomical and functional composition and associate physiological intelligence of the microbial communities. The microbial communities, under defined conditions acquire a typical hierarchy with flexible but active network of the metabolic route, which ensures the survival needs of every member residing in that community and their abundance. This knowledge of community functional organization defines the rule in designing and improving biodegradation processes in case of both aerobic and anaerobic systems.
Collapse
Affiliation(s)
- Hitesh Tikariha
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, India
| | - Hemant J Purohit
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, India.
| |
Collapse
|
18
|
Mugge RL, Lee JS, Brown TT, Hamdan LJ. Marine biofilm bacterial community response and carbon steel loss following Deepwater Horizon spill contaminant exposure. BIOFOULING 2019; 35:870-882. [PMID: 31603038 DOI: 10.1080/08927014.2019.1673377] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 09/11/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
Steel marine structures provide foci of biodiversity when they develop into artificial reefs. Development begins with deposition of a biofilm. The effects of contaminants from oil spills on biofilm microbiomes, microbially-induced corrosion (MIC) and metal loss may impact preservation of marine metal structures. A microcosm experiment exposed biofilms on carbon steel disks (CSDs) to crude oil, dispersant, and dispersed oil to address their impacts on bacterial composition and metal loss and pitting. Biofilm diversity increased over time in all exposures. Community composition in dispersant and dispersed oil treatments deviated from the controls for the duration of a 12-week experiment. As biofilms matured, Pseudomonadaceae increased while Rhodobacteraceae decreased in abundance in dispersed oil treatments compared to the controls and dispersant treatments. Greatest mass loss and deepest pitting on CSDs were observed in dispersed oil treatments, suggesting impacts manifest as a consequence of increased MIC potential on carbon steel.
Collapse
Affiliation(s)
- Rachel L Mugge
- Division of Coastal Sciences, School of Ocean Science and Engineering, University of Southern Mississippi, Ocean Springs, MS, USA
| | - Jason S Lee
- Naval Research Laboratory, Stennis Space Center, Hancock, MS, USA
| | - Treva T Brown
- Naval Research Laboratory, Stennis Space Center, Hancock, MS, USA
| | - Leila J Hamdan
- Division of Coastal Sciences, School of Ocean Science and Engineering, University of Southern Mississippi, Ocean Springs, MS, USA
| |
Collapse
|
19
|
Appolinario LR, Tschoeke D, Paixão RVS, Venas T, Calegario G, Leomil L, Silva BS, Thompson CC, Thompson FL. Metagenomics sheds light on the metabolic repertoire of oil-biodegrading microbes of the South Atlantic Ocean. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:295-304. [PMID: 30901643 DOI: 10.1016/j.envpol.2019.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 02/27/2019] [Accepted: 03/03/2019] [Indexed: 06/09/2023]
Abstract
Unplanned oil spills during offshore oil production are a serious problem for the industry and the marine environment. Here we assess the biodegradation potential of marine microorganisms from three water depths in the Campos Basin (South Atlantic Ocean): (i) 5 m (surface), (ii) ∼80 m (chlorophyll maximum layer), and (iii) ∼1200 m (near the bottom). After incubating seawater samples with or without crude oil for 52 days, we used metagenomics and classic microbiology techniques to analyze microbial abundance and diversity, and measured physical-chemical parameters to better understand biodegradation processes. We observed increased microbial abundance and concomitant decreases in dissolved oxygen and hydrocarbon concentrations, indicating oil biodegradation in the three water depths treatments within approximately 27 days. An increase in metagenomic sequences of oil-degrading archaea, fungi, and bacteria (Alcanivorax, Alteromonas, Colwellia, Marinobacter, and Pseudomonas) accompanied by a significant increase in metagenomic sequences involved in the degradation of aromatic compounds indicate that crude oil promotes the growth of microorganisms with oil degradation potential. The abundance of genes involved in biodegrading benzene, toluene, ethylbenzene, xylene, alkanes, and poly-aromatic hydrocarbons peaked approximately 3 days after oil addition. All 12 novel metagenome-assembled genomes contained genes involved in hydrocarbon degradation, indicating the oil-degrading potential of planktonic microbes in the Campos Basin.
Collapse
Affiliation(s)
- Luciana R Appolinario
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Diogo Tschoeke
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; Center of Technology - Biomedical Engineer Program - COPPE, UFRJ, Rio de Janeiro, Brazil
| | - Raphael V S Paixão
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Tainá Venas
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Gabriela Calegario
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Luciana Leomil
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Bruno S Silva
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Cristiane C Thompson
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Fabiano L Thompson
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; Center of Technology - CT2, SAGE-COPPE, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| |
Collapse
|
20
|
" Candidatus Colwellia aromaticivorans" sp. nov., " Candidatus Halocyntiibacter alkanivorans" sp. nov., and " Candidatus Ulvibacter alkanivorans" sp. nov. Genome Sequences. Microbiol Resour Announc 2019; 8:8/15/e00086-19. [PMID: 30975799 PMCID: PMC6460022 DOI: 10.1128/mra.00086-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Unplanned oil spills during offshore production are a serious problem for the industry and the marine environment. Here, we present the genome sequence analysis of three novel hydrocarbon-degrading bacteria, namely, “Candidatus Colwellia aromaticivorans” sp. Unplanned oil spills during offshore production are a serious problem for the industry and the marine environment. Here, we present the genome sequence analysis of three novel hydrocarbon-degrading bacteria, namely, “Candidatus Colwellia aromaticivorans” sp. nov., “Candidatus Halocyntiibacter alkanivorans” sp. nov., and “Candidatus Ulvibacter alkanivorans” sp. nov.
Collapse
|
21
|
Krzmarzick MJ, Taylor DK, Fu X, McCutchan AL. Diversity and Niche of Archaea in Bioremediation. ARCHAEA (VANCOUVER, B.C.) 2018; 2018:3194108. [PMID: 30254509 PMCID: PMC6140281 DOI: 10.1155/2018/3194108] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 08/01/2018] [Indexed: 12/03/2022]
Abstract
Bioremediation is the use of microorganisms for the degradation or removal of contaminants. Most bioremediation research has focused on processes performed by the domain Bacteria; however, Archaea are known to play important roles in many situations. In extreme conditions, such as halophilic or acidophilic environments, Archaea are well suited for bioremediation. In other conditions, Archaea collaboratively work alongside Bacteria during biodegradation. In this review, the various roles that Archaea have in bioremediation is covered, including halophilic hydrocarbon degradation, acidophilic hydrocarbon degradation, hydrocarbon degradation in nonextreme environments such as soils and oceans, metal remediation, acid mine drainage, and dehalogenation. Research needs are addressed in these areas. Beyond bioremediation, these processes are important for wastewater treatment (particularly industrial wastewater treatment) and help in the understanding of the natural microbial ecology of several Archaea genera.
Collapse
Affiliation(s)
- Mark James Krzmarzick
- School of Civil and Environmental Engineering, College of Engineering, Architecture, and Technology, Oklahoma State University, Stillwater, OK 74078, USA
| | - David Kyle Taylor
- School of Civil and Environmental Engineering, College of Engineering, Architecture, and Technology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Xiang Fu
- School of Civil and Environmental Engineering, College of Engineering, Architecture, and Technology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Aubrey Lynn McCutchan
- School of Civil and Environmental Engineering, College of Engineering, Architecture, and Technology, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
22
|
Chen See JR, Ulrich N, Nwanosike H, McLimans CJ, Tokarev V, Wright JR, Campa MF, Grant CJ, Hazen TC, Niles JM, Ressler D, Lamendella R. Bacterial Biomarkers of Marcellus Shale Activity in Pennsylvania. Front Microbiol 2018; 9:1697. [PMID: 30116227 PMCID: PMC6083035 DOI: 10.3389/fmicb.2018.01697] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/09/2018] [Indexed: 01/24/2023] Open
Abstract
Unconventional oil and gas (UOG) extraction, also known as hydraulic fracturing, is becoming more prevalent with the increasing use and demand for natural gas; however, the full extent of its environmental impacts is still unknown. Here we measured physicochemical properties and bacterial community composition of sediment samples taken from twenty-eight streams within the Marcellus shale formation in northeastern Pennsylvania differentially impacted by hydraulic fracturing activities. Fourteen of the streams were classified as UOG+, and thirteen were classified as UOG- based on the presence of UOG extraction in their respective watersheds. One stream was located in a watershed that previously had UOG extraction activities but was recently abandoned. We utilized high-throughput sequencing of the 16S rRNA gene to infer differences in sediment aquatic bacterial community structure between UOG+ and UOG- streams, as well as correlate bacterial community structure to physicochemical water parameters. Although overall alpha and beta diversity differences were not observed, there were a plethora of significantly enriched operational taxonomic units (OTUs) within UOG+ and UOG- samples. Our biomarker analysis revealed many of the bacterial taxa enriched in UOG+ streams can live in saline conditions, such as Rubrobacteraceae. In addition, several bacterial taxa capable of hydrocarbon degradation were also enriched in UOG+ samples, including Oceanospirillaceae. Methanotrophic taxa, such as Methylococcales, were significantly enriched as well. Several taxa that were identified as enriched in these samples were enriched in samples taken from different streams in 2014; moreover, partial least squares discriminant analysis (PLS-DA) revealed clustering between streams from the different studies based on the presence of hydraulic fracturing along the second axis. This study revealed significant differences between bacterial assemblages within stream sediments of UOG+ and UOG- streams and identified several potential biomarkers for evaluating and monitoring the response of autochthonous bacterial communities to potential hydraulic fracturing impacts.
Collapse
Affiliation(s)
- Jeremy R Chen See
- Department of Biology, Juniata College, Huntingdon, PA, United States
| | - Nikea Ulrich
- Department of Biology, Juniata College, Huntingdon, PA, United States
| | | | | | - Vasily Tokarev
- Department of Biology, Juniata College, Huntingdon, PA, United States
| | - Justin R Wright
- Department of Biology, Juniata College, Huntingdon, PA, United States
| | - Maria F Campa
- The Bredesen Center, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | | | - Terry C Hazen
- The Bredesen Center, The University of Tennessee, Knoxville, Knoxville, TN, United States.,Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, Knoxville, TN, United States.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Jonathan M Niles
- Freshwater Research Initiative, Susquehanna University, Selinsgrove, PA, United States
| | - Daniel Ressler
- Department of Earth and Environmental Sciences, Susquehanna University, Selinsgrove, PA, United States
| | - Regina Lamendella
- Department of Biology, Juniata College, Huntingdon, PA, United States
| |
Collapse
|
23
|
Kamalanathan M, Xu C, Schwehr K, Bretherton L, Beaver M, Doyle SM, Genzer J, Hillhouse J, Sylvan JB, Santschi P, Quigg A. Extracellular Enzyme Activity Profile in a Chemically Enhanced Water Accommodated Fraction of Surrogate Oil: Toward Understanding Microbial Activities After the Deepwater Horizon Oil Spill. Front Microbiol 2018; 9:798. [PMID: 29740422 PMCID: PMC5928240 DOI: 10.3389/fmicb.2018.00798] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 04/10/2018] [Indexed: 01/29/2023] Open
Abstract
Extracellular enzymes and extracellular polymeric substances (EPS) play a key role in overall microbial activity, growth and survival in the ocean. EPS, being amphiphilic in nature, can act as biological surfactant in an oil spill situation. Extracellular enzymes help microbes to digest and utilize fractions of organic matter, including EPS, which can stimulate growth and enhance microbial activity. These natural processes might have been altered during the 2010 Deepwater Horizon oil spill due to the presence of hydrocarbon and dispersant. This study aims to investigate the role of bacterial extracellular enzymes during exposure to hydrocarbons and dispersant. Mesocosm studies were conducted using a water accommodated fraction of oil mixed with the chemical dispersant, Corexit (CEWAF) in seawater collected from two different locations in the Gulf of Mexico and corresponding controls (no additions). Activities of five extracellular enzymes typically found in the EPS secreted by the microbial community - α- and β-glucosidase, lipase, alkaline phosphatase, leucine amino-peptidase - were measured using fluorogenic substrates in three different layers of the mesocosm tanks (surface, water column and bottom). Enhanced EPS production and extracellular enzyme activities were observed in the CEWAF treatment compared to the Control. Higher bacterial and micro-aggregate counts were also observed in the CEWAF treatment compared to Controls. Bacterial genera in the order Alteromonadaceae were the most abundant bacterial 16S rRNA amplicons recovered. Genomes of Alteromonadaceae commonly have alkaline phosphatase and leucine aminopeptidase, therefore they may contribute significantly to the measured enzyme activities. Only Alteromonadaceae and Pseudomonadaceae among bacteria detected here have higher percentage of genes for lipase. Piscirickettsiaceae was abundant; genomes from this order commonly have genes for leucine aminopeptidase. Overall, this study provides insights into the alteration to the microbial processes such as EPS and extracellular enzyme production, and to the microbial community, when exposed to the mixture of oil and dispersant.
Collapse
Affiliation(s)
- Manoj Kamalanathan
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, United States
| | - Chen Xu
- Department of Marine Science, Texas A&M University at Galveston, Galveston, TX, United States
| | - Kathy Schwehr
- Department of Marine Science, Texas A&M University at Galveston, Galveston, TX, United States
| | - Laura Bretherton
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, United States
| | - Morgan Beaver
- Department of Marine Science, Texas A&M University at Galveston, Galveston, TX, United States
| | - Shawn M. Doyle
- Department of Oceanography, Texas A&M University, College Station, TX, United States
| | - Jennifer Genzer
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, United States
| | - Jessica Hillhouse
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, United States
| | - Jason B. Sylvan
- Department of Oceanography, Texas A&M University, College Station, TX, United States
| | - Peter Santschi
- Department of Marine Science, Texas A&M University at Galveston, Galveston, TX, United States
- Department of Oceanography, Texas A&M University, College Station, TX, United States
| | - Antonietta Quigg
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, United States
- Department of Oceanography, Texas A&M University, College Station, TX, United States
| |
Collapse
|
24
|
Zhang S, Hu Z, Wang H. A Retrospective Review of Microbiological Methods Applied in Studies Following the Deepwater Horizon Oil Spill. Front Microbiol 2018; 9:520. [PMID: 29628913 PMCID: PMC5876298 DOI: 10.3389/fmicb.2018.00520] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 03/08/2018] [Indexed: 12/19/2022] Open
Abstract
The Deepwater Horizon (DWH) oil spill in the Gulf of Mexico in 2010 resulted in serious damage to local marine and coastal environments. In addition to the physical removal and chemical dispersion of spilled oil, biodegradation by indigenous microorganisms was regarded as the most effective way for cleaning up residual oil. Different microbiological methods were applied to investigate the changes and responses of bacterial communities after the DWH oil spills. By summarizing and analyzing these microbiological methods, giving recommendations and proposing some methods that have not been used, this review aims to provide constructive guidelines for microbiological studies after environmental disasters, especially those involving organic pollutants.
Collapse
Affiliation(s)
| | - Zhong Hu
- Biology Department, College of Science, Shantou University, Shantou, China
| | - Hui Wang
- Biology Department, College of Science, Shantou University, Shantou, China
| |
Collapse
|
25
|
Yan L, Yu D, Hui N, Naanuri E, Viggor S, Gafarov A, Sokolov SL, Heinaru A, Romantschuk M. Distribution of Archaeal Communities along the Coast of the Gulf of Finland and Their Response to Oil Contamination. Front Microbiol 2018; 9:15. [PMID: 29410652 PMCID: PMC5787342 DOI: 10.3389/fmicb.2018.00015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 01/05/2018] [Indexed: 11/13/2022] Open
Abstract
The Baltic Sea is vulnerable to environmental changes. With the increasing shipping activities, the risk of oil spills remains high. Archaea are widely distributed in many environments. However, the distribution and the response of archaeal communities to oil contamination have rarely been investigated in brackish habitats. Hence, we conducted a survey to investigate the distribution, diversity, composition, and species interactions of indigenous archaeal communities at oil-contaminated sites along the coast of the Gulf of Finland (GoF) using high-throughput sequencing. Surface water and littoral sediment samples were collected at presumably oil-contaminated (oil distribution facilities) and clean sites along the coastline of the GoF in the winter 2015 and the summer 2016. Another three samples of open sea surface water were taken as offshore references. Of Archaea, Euryarchaeota dominated in the surface water and the littoral sediment of the coast of the GoF, followed by Crenarchaeota (including Thaumarchaeota, Thermoprotei, and Korarchaeota based on the Greengenes database used). The unclassified sequences accounted for 5.62% of the total archaeal sequences. Our study revealed a strong dependence of the archaeal community composition on environmental variables (e.g., salinity, pH, oil concentration, TOM, electrical conductivity, and total DNA concentration) in both littoral sediment and coastal water in the GoF. The composition of archaeal communities was season and ecosystem dependent. Archaea was highly diverse in the three ecosystems (littoral sediment, coastal water, and open sea water). Littoral sediment harbored the highest diversity of archaea. Oil was often detected in the littoral sediment but rarely detected in water at those presumably contaminated sites. Although the composition of archaeal community in the littoral sediment was sensitive to low-input oil contamination, the unchanged putative functional profiles and increased interconnectivity of the archaeal core species network plausibly revealed resilience and the potential for oil degradation. Halobacteriaceae and putative cytochrome P450 pathways were significantly enriched in the oil-contaminated littoral sediment. The archaeal taxa formed highly interconnected and interactive networks, in which Halobacteriaceae, Thermococcus, and methanogens were the main components, implying a potential relevant trophic connection between hydrocarbon degradation, methanogenesis, sulfate reduction, and/or fermentative growth.
Collapse
Affiliation(s)
- Lijuan Yan
- Department of Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Dan Yu
- Department of Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Nan Hui
- Department of Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Eve Naanuri
- Faculty of Science and Technology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Signe Viggor
- Faculty of Science and Technology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Arslan Gafarov
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Russia
| | - Sergei L Sokolov
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Russia
| | - Ain Heinaru
- Faculty of Science and Technology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Martin Romantschuk
- Department of Environmental Sciences, University of Helsinki, Lahti, Finland.,Institute of Environmental Sciences, Kazan Federal University, Kazan, Russia
| |
Collapse
|