1
|
Priya, Gaur PK, Kumar S. Nanocarrier-Mediated Dermal Drug Delivery System of Antimicrobial Agents for Targeting Skin and Soft Tissue Infections. Assay Drug Dev Technol 2024. [PMID: 39587945 DOI: 10.1089/adt.2024.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024] Open
Abstract
Antimicrobial resistance in disease-causing microbes is seen as a severe problem that affects the entire world, makes therapy less effective, and raises mortality rates. Dermal antimicrobial therapy becomes a desirable choice in the management of infectious disorders since the rising resistance to systemic antimicrobial treatment frequently necessitates the use of more toxic drugs. Nanoparticulate systems such as nanobactericides, which have built-in antibacterial activity, and nanocarriers, which function as drug delivery systems for conventional antimicrobials, are just two examples of the treatment methods made feasible by nanotechnology. Silver nanoparticles, zinc oxide nanoparticles, and titanium dioxide nanoparticles are examples of inorganic nanoparticles that are efficient on sensitive and multidrug-resistant bacterial strains both as nanobactericides and nanocarriers. To stop the growth of microorganisms that are resistant to standard antimicrobials, various antimicrobials for dermal application are widely used. This review covers the most prevalent microbes responsible for skin and soft tissue infections, techniques to deliver dermal antimicrobials, topical antimicrobial safety concerns, current issues, challenges, and potential future developments. A thorough and methodical search of databases, such as Google Scholar, PubMed, Science Direct, and others, using specified keyword combinations, such as "antimicrobials," "dermal," "nanocarriers," and numerous others, was used to gather relevant literature for this work.
Collapse
Affiliation(s)
- Priya
- Department of Pharmaceutical Technology, Meerut Institute of Engineering & Technology, Meerut, Uttar Pradesh, India
| | - Praveen Kumar Gaur
- Department of Pharmaceutics, Metro College of Health Sciences & Research, Greater Noida, Uttar Pradesh, India
| | - Shobhit Kumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering & Technology, Meerut, Uttar Pradesh, India
| |
Collapse
|
2
|
Yokota K, Kawakami K. Efficacy and side-effect profile of tedizolid in the treatment of streptococcal toxic shock syndrome due to clindamycin-resistant Streptococcus pyogenes: A case report. J Infect Chemother 2024; 30:785-788. [PMID: 38185364 DOI: 10.1016/j.jiac.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/09/2024]
Abstract
Oxazolidinones, such as tedizolid and linezolid, are bacteriostatic antibiotics that inhibit protein synthesis. Based on the findings from animal studies and their mechanism of action, these antibiotics are considered for managing toxic shock caused by clindamycin-resistant Group A Streptococcus (GAS; Streptococcus pyogenes). However, clinical reports on their usage in such cases are limited. Herein, we report a case of a 67-year-old woman with chronic myeloid leukemia who presented with fever, facial swelling, and myalgia. She was diagnosed with cellulitis and empirically treated with meropenem. Blood culture later revealed GAS, and she was diagnosed with streptococcal toxic shock syndrome. The antibiotic regimen was adjusted based on sensitivity results, with clindamycin initially replaced by linezolid and later switched to tedizolid owing to concerns about potential bone marrow suppression. Her condition improved, and she was discharged 15 days after admission. Therefore, tedizolid may be a safer option for managing toxic shock syndrome in patients with comorbidities that include thrombocytopenia.
Collapse
Affiliation(s)
- Kyoko Yokota
- Department of Infectious Diseases, Kagawa Prefectural Central Hospital, 1-2-1 Asahi-machi, Takamatsu, Kagawa, 760-8557, Japan.
| | - Kimihiro Kawakami
- Departments of Hematology, Kagawa Prefectural Central Hospital, 1-2-1 Asahi-machi, Takamatsu, Kagawa, 760-8557, Japan
| |
Collapse
|
3
|
Rampersadh K, Salie MT, Engel KC, Moodley C, Zühlke LJ, Engel ME. Presence of Group A streptococcus frequently assayed virulence genes in invasive disease: a systematic review and meta-analysis. Front Cell Infect Microbiol 2024; 14:1337861. [PMID: 39055978 PMCID: PMC11270091 DOI: 10.3389/fcimb.2024.1337861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/18/2024] [Indexed: 07/28/2024] Open
Abstract
Introduction It is currently unclear what the role of Group A streptococcus (GAS) virulence factors (VFs) is in contributing to the invasive potential of GAS. This work investigated the evidence for the association of GAS VFs with invasive disease. Methods We employed a broad search strategy for studies reporting the presence of GAS VFs in invasive and non-invasive GAS disease. Data were independently extracted by two reviewers, quality assessed, and meta-analyzed using Stata®. Results A total of 32 studies reported on 45 putative virulence factors [invasive (n = 3,236); non-invasive (n = 5,218)], characterized by polymerase chain reaction (PCR) (n = 30) and whole-genome sequencing (WGS) (n = 2). The risk of bias was rated as low and moderate, in 23 and 9 studies, respectively. Meta-,analyses of high-quality studies (n = 23) revealed a significant association of speM [OR, 1.64 (95%CI, 1.06; 2.52)] with invasive infection. Meta-analysis of WGS studies demonstrated a significant association of hasA [OR, 1.91 (95%CI, 1.36; 2.67)] and speG [OR, 2.83 (95%CI, 1.63; 4.92)] with invasive GAS (iGAS). Meta-analysis of PCR studies indicated a significant association of speA [OR, 1.59 (95%CI, 1.10; 2.30)] and speK [OR, 2.95 (95%CI, 1.81; 4.80)] with invasive infection. A significant inverse association was observed between prtf1 [OR, 0.42 (95%CI, 0.20; 0.87)] and invasive infection. Conclusion This systematic review and genomic meta-analysis provides evidence of a statistically significant association with invasive infection for the hasA gene, while smeZ, ssa, pnga3, sda1, sic, and NaDase show statistically significantly inverse associations with invasive infection. SpeA, speK, and speG are associated with GAS virulence; however, it is unclear if they are markers of invasive infection. This work could possibly aid in developing preventative strategies.
Collapse
Affiliation(s)
- Kimona Rampersadh
- AFROStrep Research Group, Department of Medicine and Cape Heart Institute, University of Cape Town, Cape Town, South Africa
| | - M. Taariq Salie
- AFROStrep Research Group, Department of Medicine and Cape Heart Institute, University of Cape Town, Cape Town, South Africa
| | - Kelin C. Engel
- AFROStrep Research Group, Department of Medicine and Cape Heart Institute, University of Cape Town, Cape Town, South Africa
| | - Clinton Moodley
- Department of Pathology, Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- The National Health Laboratory Service, Microbiology, Groote Schuur Hospital, Cape Town, South Africa
| | - Liesl J. Zühlke
- Division of Paediatric Cardiology, Department of Paediatrics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council, Parrow Valley, Cape Town, South Africa
| | - Mark E. Engel
- AFROStrep Research Group, Department of Medicine and Cape Heart Institute, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council, Parrow Valley, Cape Town, South Africa
| |
Collapse
|
4
|
Gergova R, Boyanov V, Muhtarova A, Alexandrova A. A Review of the Impact of Streptococcal Infections and Antimicrobial Resistance on Human Health. Antibiotics (Basel) 2024; 13:360. [PMID: 38667036 PMCID: PMC11047474 DOI: 10.3390/antibiotics13040360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/29/2024] Open
Abstract
Streptococcus pneumoniae, Streptococcus pyogenes (GAS), and Streptococcus agalactiae (GBS) are bacteria that can cause a range of infections, some of them life-threatening. This review examines the spread of antibiotic resistance and its mechanisms against antibiotics for streptococcal infections. Data on high-level penicillin-resistant invasive pneumococci have been found in Brazil (42.8%) and Japan (77%). The resistance is caused by mutations in genes that encode penicillin-binding proteins. Similarly, GAS and GBS strains reported from Asia, the USA, and Africa have undergone similar transformations in PBPs. Resistance to major alternatives of penicillins, macrolides, and lincosamides has become widespread among pneumococci and streptococci, especially in Asia (70-95%). The combination of several emm types with erm(B) is associated with the development of high-level macrolide resistance in GAS. Major mechanisms are ribosomal target modifications encoded by erm genes, ribosomal alterations, and active efflux pumps that regulate antibiotic entry due to mefA/E and msrD genes. Tetracycline resistance for streptococci in different countries varied from 22.4% in the USA to 83.7/100% in China, due to tet genes. Combined tetracycline/macrolide resistance is usually linked with the insertion of ermB into the transposon carrying tetM. New quinolone resistance is increasing by between 11.5 and 47.9% in Asia and Europe. The mechanism of quinolone resistance is based on mutations in gyrA/B, determinants for DNA gyrase, or parC/E encoding topoisomerase IV. The results for antibiotic resistance are alarming, and urgently call for increased monitoring of this problem and precautionary measures for control to prevent the spread of resistant mutant strains.
Collapse
Affiliation(s)
- Raina Gergova
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, Zdrave Str. 2, 1431 Sofia, Bulgaria; (V.B.); (A.M.); (A.A.)
| | | | | | | |
Collapse
|
5
|
Smeesters PR, de Crombrugghe G, Tsoi SK, Leclercq C, Baker C, Osowicki J, Verhoeven C, Botteaux A, Steer AC. Global Streptococcus pyogenes strain diversity, disease associations, and implications for vaccine development: a systematic review. THE LANCET. MICROBE 2024; 5:e181-e193. [PMID: 38070538 DOI: 10.1016/s2666-5247(23)00318-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 02/12/2024]
Abstract
The high strain diversity of Streptococcus pyogenes serves as a major obstacle to vaccine development against this leading global pathogen. We did a systematic review of studies in PubMed, MEDLINE, and Embase that reported the global distribution of S pyogenes emm-types and emm-clusters from Jan 1, 1990, to Feb 23, 2023. 212 datasets were included from 55 countries, encompassing 74 468 bacterial isolates belonging to 211 emm-types. Globally, an inverse correlation was observed between strain diversity and the UNDP Human Development Index (HDI; r=-0·72; p<0·0001), which remained consistent upon subanalysis by global region and site of infection. Greater strain diversity was associated with a lower HDI, suggesting the role of social determinants in diseases caused by S pyogenes. We used a population-weighted analysis to adjust for the disproportionate number of epidemiological studies from high-income countries and identified 15 key representative isolates as vaccine targets. Strong strain type associations were observed between the site of infection (invasive, skin, and throat) and several streptococcal lineages. In conclusion, the development of a truly global vaccine to reduce the immense burden of diseases caused by S pyogenes should consider the multidimensional diversity of the pathogen, including its social and environmental context, and not merely its geographical distribution.
Collapse
Affiliation(s)
- Pierre R Smeesters
- Department of Paediatrics, Brussels University Hospital, Academic Children Hospital Queen Fabiola, Université libre de Bruxelles, Brussels, Belgium; Molecular Bacteriology Laboratory, European Plotkin Institute for Vaccinology, Université Libre de Bruxelles, Brussels, Belgium; Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia.
| | - Gabrielle de Crombrugghe
- Department of Paediatrics, Brussels University Hospital, Academic Children Hospital Queen Fabiola, Université libre de Bruxelles, Brussels, Belgium; Molecular Bacteriology Laboratory, European Plotkin Institute for Vaccinology, Université Libre de Bruxelles, Brussels, Belgium
| | - Shu Ki Tsoi
- Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia; Infectious Diseases Unit, Royal Children's Hospital Melbourne, Melbourne, VIC, Australia
| | - Céline Leclercq
- Department of Paediatrics, Brussels University Hospital, Academic Children Hospital Queen Fabiola, Université libre de Bruxelles, Brussels, Belgium
| | - Ciara Baker
- Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Joshua Osowicki
- Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia; Infectious Diseases Unit, Royal Children's Hospital Melbourne, Melbourne, VIC, Australia
| | - Caroline Verhoeven
- Laboratoire d'enseignement des Mathématiques, Université Libre de Bruxelles, Brussels, Belgium
| | - Anne Botteaux
- Molecular Bacteriology Laboratory, European Plotkin Institute for Vaccinology, Université Libre de Bruxelles, Brussels, Belgium
| | - Andrew C Steer
- Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia; Infectious Diseases Unit, Royal Children's Hospital Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Miao C, Yan Z, Chen C, Kuang L, Ao K, Li Y, Li J, Huang X, Zhu X, Zhao Y, Cui Y, Jiang Y, Xie Y. Serotype, antibiotic susceptibility and whole-genome characterization of Streptococcus pneumoniae in all age groups living in Southwest China during 2018-2022. Front Microbiol 2024; 15:1342839. [PMID: 38362498 PMCID: PMC10867222 DOI: 10.3389/fmicb.2024.1342839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024] Open
Abstract
Background Streptococcus pneumoniae is a common pathogen that colonizes the human upper respiratory tract, causing high morbidity and mortality worldwide. This study aimed to investigate the prevalence status of S. pneumoniae isolated from patients of all ages in Southwest China, including serotype, antibiotic susceptibility and other molecular characteristics, to provide a basis for clinical antibiotic usage and vaccine development. Methods This study was conducted from January 2018 to March 2022 at West China Hospital, West China Second University Hospital, First People's Hospital of Longquanyi District (West China Longquan Hospital), Meishan Women and Children's Hospital (Alliance Hospital of West China Second University Hospital) and Chengdu Jinjiang Hospital for Women and Children Health. Demographic and clinical characteristics of 263 pneumococcal disease (PD) all-age patients were collected and analyzed. The serotypes, sequence types (STs), and antibiotic resistance of the strains were determined by next-generation sequencing, sequence analysis and the microdilution broth method. Results The most common pneumococcal serotypes were 19F (17.87%), 19A (11.41%), 3 (8.75%), 23F (6.46%) and 6A (5.70%). Coverage rates for PCV10, PCV13, PCV15, PCV20 and PCV24 were 36.12, 61.98, 61.98, 63.12 and 64.26%, respectively. Prevalent STs were ST271 (12.55%), ST320 (11.79%), ST90 (4.18%), ST876 (4.18%) and ST11972 (3.42%). Penicillin-resistant S. pneumoniae (PRSP) accounted for 82.35 and 1.22% of meningitis and nonmeningitis PD cases, respectively. Resistance genes msrD (32.7%), mefA (32.7%), ermB (95.8%), tetM (97.3%) and catTC (7.6%) were found among 263 isolates. Most isolates showed high resistance to erythromycin (96.96%) and tetracycline (79.85%), with more than half being resistant to SXT (58.94%). A few isolates were resistant to AMX (9.89%), CTX (11.03%), MEN (9.13%), OFX (1.14%), LVX (1.14%) and MXF (0.38%). All isolates were susceptible to vancomycin and linezolid. Conclusion Our study provides reliable information, including the prevalence, molecular characterization and antimicrobial resistance of S. pneumoniae isolates causing pneumococcal diseases in Southwest China. The findings contribute to informed and clinical policy decisions for prevention and treatment.
Collapse
Affiliation(s)
- Chenglin Miao
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ziyi Yan
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chunmei Chen
- Department of Laboratory Medicine, Meishan Women and Children’s Hospital, Alliance Hospital of West China Second University Hospital, Sichuan University, Meishan, Sichuan, China
- Department of Laboratory Medicine, West China Second University Hospital (Tianfu), Sichuan University/Sichuan Provincial Children’s Hospital, Meishan, Sichuan, China
| | - Linghan Kuang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Keping Ao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yingying Li
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Laboratory Medicine, Tibet Autonomous Region Women's and Children's Hospital, Lhasa, China
| | - Jialu Li
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaocui Huang
- Department of Laboratory Medicine, Chengdu Jinjiang District Maternal and Child Healthcare Hospital, Chengdu, Sichuan, China
| | - Xinghua Zhu
- Department of Laboratory Medicine, The First People’s Hospital of Longquanyi District, Chengdu, Sichuan, China
| | - Yijia Zhao
- Department of Laboratory Medicine, Meishan Women and Children’s Hospital, Alliance Hospital of West China Second University Hospital, Sichuan University, Meishan, Sichuan, China
- Department of Laboratory Medicine, West China Second University Hospital (Tianfu), Sichuan University/Sichuan Provincial Children’s Hospital, Meishan, Sichuan, China
| | - Yali Cui
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Laboratory Medicine, Meishan Women and Children’s Hospital, Alliance Hospital of West China Second University Hospital, Sichuan University, Meishan, Sichuan, China
- Department of Laboratory Medicine, West China Second University Hospital (Tianfu), Sichuan University/Sichuan Provincial Children’s Hospital, Meishan, Sichuan, China
| | - Yongmei Jiang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Yi Xie
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Gatica S, Fuentes B, Rivera-Asín E, Ramírez-Céspedes P, Sepúlveda-Alfaro J, Catalán EA, Bueno SM, Kalergis AM, Simon F, Riedel CA, Melo-Gonzalez F. Novel evidence on sepsis-inducing pathogens: from laboratory to bedside. Front Microbiol 2023; 14:1198200. [PMID: 37426029 PMCID: PMC10327444 DOI: 10.3389/fmicb.2023.1198200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
Sepsis is a life-threatening condition and a significant cause of preventable morbidity and mortality globally. Among the leading causative agents of sepsis are bacterial pathogens Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, Pseudomonas aeruginosa, and Streptococcus pyogenes, along with fungal pathogens of the Candida species. Here, we focus on evidence from human studies but also include in vitro and in vivo cellular and molecular evidence, exploring how bacterial and fungal pathogens are associated with bloodstream infection and sepsis. This review presents a narrative update on pathogen epidemiology, virulence factors, host factors of susceptibility, mechanisms of immunomodulation, current therapies, antibiotic resistance, and opportunities for diagnosis, prognosis, and therapeutics, through the perspective of bloodstream infection and sepsis. A list of curated novel host and pathogen factors, diagnostic and prognostic markers, and potential therapeutical targets to tackle sepsis from the research laboratory is presented. Further, we discuss the complex nature of sepsis depending on the sepsis-inducing pathogen and host susceptibility, the more common strains associated with severe pathology and how these aspects may impact in the management of the clinical presentation of sepsis.
Collapse
Affiliation(s)
- Sebastian Gatica
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Brandon Fuentes
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Elizabeth Rivera-Asín
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Paula Ramírez-Céspedes
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Javiera Sepúlveda-Alfaro
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eduardo A. Catalán
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe Simon
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Claudia A. Riedel
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Felipe Melo-Gonzalez
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| |
Collapse
|
8
|
Li H, Zhou L, Zhao Y, Ma L, Zhang H, Liu Y, Liu X, Hu J. Epidemiological analysis of Group A streptococcus infection diseases among children in Beijing, China under COVID-19 pandemic. BMC Pediatr 2023; 23:76. [PMID: 36782167 PMCID: PMC9923647 DOI: 10.1186/s12887-023-03885-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 02/03/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Group A streptococcus is human-restricted gram-positive pathogen, responsible for various clinical presentations from mild epidermis infections to life threatened invasive diseases. Under COVID-19 pandemic,. the characteristics of the epidemic strains of GAS could be different. PURPOSE To investigate epidemiological and molecular features of isolates from GAS infections among children in Beijing, China between January 2020 and December 2021. Antimicrobial susceptibility profiling was performed based on Cinical Laboratory Sandards Institute. Distribution of macrolide-resistance genes, emm types, and superantigens was examined by polymerase chain reaction. RESULTS 114 GAS isolates were collected which were frequent resistance against erythromycin (94.74%), followed by clindamycin (92.98%), tetracycline (87.72%). Emm12 (46.49%), emm1 (25.44%) were dominant emm types. Distribution of ermB, ermA, and mefA gene was 93.85%, 2.63%, and 14.04%, respectively. Frequent superantigenes identified were smeZ (97.39%), speG (95.65%), and speC (92.17%). Emm1 strains possessed smeZ, ssa, and speC, while emm12 possessed smeZ, ssa, speG, and speC. Erythromycin resistance was predominantly mediated by ermB. Scarlet fever strains harbored smeZ (98.81%), speC (94.05%). Impetigo strains harbored smeZ (88.98%), ssa (88.89%), and speC (88.89%). Psoriasis strains harbored smeZ (100%). CONCLUSIONS Under COVID-19 pandemic, our collections of GAS infection cutaneous diseases decreased dramatically. Epidemiological analysis of GAS infections among children during COVID-19 pandemic was not significantly different from our previous study. There was a correlation among emm, superantigen gene and disease manifestations. Long-term surveillance and investigation of emm types and superantigens of GAS prevalence are imperative.
Collapse
Affiliation(s)
- Hongxin Li
- Department of Dermatology, Children's Hospital Affiliated to Capital Institute of Pediatrics, Beijing, 100020, China.
| | - Lin Zhou
- grid.459434.bDepartment of Clinical Laboratory, Children’s Hospital Affiliated to Capital Institute of Pediatrics, Beijing, 100020 China
| | - Yong Zhao
- grid.414252.40000 0004 1761 8894Department of Reproductive Medicine, Senior Department of Obstetrics & Gynecology, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Lijuan Ma
- grid.459434.bDepartment of Clinical Laboratory, Children’s Hospital Affiliated to Capital Institute of Pediatrics, Beijing, 100020 China
| | - Haihua Zhang
- grid.459434.bDepartment of Dermatology, Children’s Hospital Affiliated to Capital Institute of Pediatrics, Beijing, 100020 China
| | - Yan Liu
- grid.459434.bDepartment of Dermatology, Children’s Hospital Affiliated to Capital Institute of Pediatrics, Beijing, 100020 China
| | - Xiaoyan Liu
- grid.459434.bDepartment of Dermatology, Children’s Hospital Affiliated to Capital Institute of Pediatrics, Beijing, 100020 China
| | - Jin Hu
- grid.459434.bDepartment of Dermatology, Children’s Hospital Affiliated to Capital Institute of Pediatrics, Beijing, 100020 China
| |
Collapse
|
9
|
Jayakumar JS, Niyas VKM, Arjun R. Group A Streptococcal Bacteremia: Ten Years’ Experience from a Tertiary Care Center in South India. Indian J Crit Care Med 2022; 26:1019-1021. [PMID: 36213703 PMCID: PMC9492746 DOI: 10.5005/jp-journals-10071-24306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
Background Patients and methods Results Conclusion How to cite this article
Collapse
Affiliation(s)
- Jeethu Sreekala Jayakumar
- Department of Internal Medicine, Kerala Institute of Medical Sciences/KIMSHEALTH, Thiruvananthapuram, Kerala, India
| | - Vettakkara Kandy Muhammed Niyas
- Department of Infectious Diseases, Kerala Institute of Medical Sciences/KIMSHEALTH, Thiruvananthapuram, Kerala, India
- Vettakkara Kandy Muhammed Niyas, Department of Infectious Diseases, Kerala Institute of Medical Sciences/KIMSHEALTH, Thiruvananthapuram, Kerala, India, Phone: +91 9446218291, e-mail:
| | - Rajalakshmi Arjun
- Department of Infectious Diseases, Kerala Institute of Medical Sciences/KIMSHEALTH, Thiruvananthapuram, Kerala, India
| |
Collapse
|
10
|
George S, Muhaj FF, Nguyen CD, Tyring SK. Part I Antimicrobial resistance: Bacterial pathogens of dermatologic significance and implications of rising resistance. J Am Acad Dermatol 2022; 86:1189-1204. [PMID: 35122894 PMCID: PMC8808428 DOI: 10.1016/j.jaad.2021.11.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/24/2022]
Abstract
Although the COVID-19 pandemic has been the defining global health crisis of our time, public health officials have been sounding the alarm of another ominous threat for years: an impending antimicrobial resistance crisis. In dermatology, antibiotics are often used for prolonged courses in the treatment of skin and soft tissue infections and common inflammatory skin conditions, increasing the risk of microbiome alteration and antibiotic-related adverse effects, all while exerting consequential selective pressures on both pathogenic and bystander bacteria. In this review, we hope to raise awareness of the crisis of antimicrobial resistance and review resistance concerns related to dermatology-relevant bacterial pathogens.
Collapse
Affiliation(s)
- Saira George
- Department of Dermatology, MD Anderson Cancer Center, Houston, Texas
| | - Fiorinda F Muhaj
- Department of Dermatology, MD Anderson Cancer Center, Houston, Texas; Department of Dermatology, University of Texas McGovern Medical School at Houston, Houston, Texas
| | | | - Stephen K Tyring
- Department of Dermatology, University of Texas McGovern Medical School at Houston, Houston, Texas; Center for Clinical Studies, Houston, Texas.
| |
Collapse
|
11
|
Sun L, Xiao Y, Huang W, Lai J, Lyu J, Ye B, Chen H, Gu B. Prevalence and identification of antibiotic-resistant scarlet fever group A Streptococcus strains in some pediatric cases at Shenzhen, China. J Glob Antimicrob Resist 2022; 30:199-204. [PMID: 35618209 DOI: 10.1016/j.jgar.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE This study aimed to investigate the annual incidence, molecular epidemiological characteristics, and antimicrobial resistance of group A Streptococcus (GAS) clinical isolates from pediatric patients at Shenzhen Children's Hospital during 2016-2020. METHODS Clinical samples were collected from pediatric patients with a suspected diagnosis of GAS infections. We studied the annual incidence and characteristics of GAS infections using the GAS antigen detection method. Additionally, 250 GAS isolates were randomly selected for genotyping of the emm gene, and antimicrobial susceptibility assay was performed using the Kirby-Bauer paper dispersion strategy. RESULTS Among 43,593 collected samples, 9,313 were positive for the GAS antigen. The main emm type was emm12, followed by emm1, emm6, and emm 4, which were used for distinguishing 90% of the scarlet fever isolated strains. The percentage of emm1 increased from 36% in 2016 to 44% in 2019, whereas the percentage of emm12 decreased from 62% to 50%. Several unusual emm types isolated from scarlet fever patients showed an increase in proportions from 2016 to 2020. These GAS isolates were sensitive to penicillin, ceftriaxone, and vancomycin and were highly resistant to erythromycin and clindamycin. CONCLUSION There was a high incidence of GAS infections during 2016-2020 in Shenzhen, China. The GAS isolates had a high resistance rate to erythromycin and clindamycin; penicillin was the antibiotic of choice for GAS infections. The common emm types were emm12 and emm1. Future studies should investigate the clonal structure and superantigen profiles of the population of GAS isolates associated with scarlet fever.
Collapse
Affiliation(s)
- Lifang Sun
- Laboratory of Shenzhen Children's Hospital, Shenzhen, China
| | - Yunju Xiao
- Division of Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Weilong Huang
- Laboratory of Shenzhen Children's Hospital, Shenzhen, China
| | - Jianwei Lai
- Laboratory of Shenzhen Children's Hospital, Shenzhen, China
| | - Jingwen Lyu
- Division of Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China; Medical Technology School of Xuzhou Medical University, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou, China
| | - Bingjun Ye
- Laboratory of Shenzhen Children's Hospital, Shenzhen, China
| | - Hongyu Chen
- Laboratory of Shenzhen Children's Hospital, Shenzhen, China.
| | - Bing Gu
- Division of Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China; Medical Technology School of Xuzhou Medical University, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou, China.
| |
Collapse
|
12
|
Rafei R, Al Iaali R, Osman M, Dabboussi F, Hamze M. A global snapshot on the prevalent macrolide-resistant emm types of Group A Streptococcus worldwide, their phenotypes and their resistance marker genotypes during the last two decades: A systematic review. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 99:105258. [PMID: 35219865 DOI: 10.1016/j.meegid.2022.105258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 12/29/2021] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Watchful epidemiological surveillance of macrolide-resistant Group A Streptococcus (MRGAS) clones is important owing to the evolutionary and epidemiological dynamic of GAS. Meanwhile, data on the global distribution of MRGAS emm types according to macrolide resistance phenotypes and genotypes are scant and need to be updated. For this, the present systematic review analyses a global set of extensively characterized MRGAS isolates from patients of diverse ages and clinical presentations over approximately two decades (2000 to 2020) and recaps the peculiar epidemiological features of the dominant MRGAS clones. Based on the inclusion and exclusion criteria, 53 articles (3593 macrolide-resistant and 15,951 susceptible isolates) distributed over 23 countries were dissected with a predominance of high-income countries over low-income ones. Although macrolide resistance in GAS is highly variable in different countries, its within-GAS distribution seems not to be random. emm pattern E, 13 major emm types (emm12, 4, 28, 77, 75, 11, 22, 92, 58, 60, 94, 63, 114) and 4 emm clusters (A-C4, E1, E6, and E2) were significantly associated with macrolide resistance. emm patterns A-C and D, 14 major emm types (emm89, 3, 6, 2, 44, 82, 87, 118, 5, 49, 81, 59, 227, 78) and 3 well-defined emm clusters (A-C5, E3, and D4) were significantly associated with macrolide susceptibility. Scrutinizing the tendency of each MRGAS emm type to be significantly associated with specific macrolide resistance phenotype or genotype, interesting vignettes are also unveiled. The 30-valent vaccine covers ~95% of MRGAS isolates. The presented data urge the importance of comprehensive nationwide sustained surveillance of MRGAS circulating clones particularly in Low and Middle income countries where sampling bias is high and GAS epidemiology is obfuscated and needs to be demystified.
Collapse
Affiliation(s)
- Rayane Rafei
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon.
| | - Rayane Al Iaali
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Marwan Osman
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon; Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA
| | - Fouad Dabboussi
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| |
Collapse
|
13
|
Muhaj FF, George SJ, Tyring SK. Bacterial resistance and dermatological ramifications. Br J Dermatol 2022; 187:12-20. [PMID: 35083740 DOI: 10.1111/bjd.21033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 11/28/2022]
Abstract
The spread of COVID-19 serves as a reminder of the might of microbes in the era of modern medicine. For years, another threat has preoccupied infectious disease experts and public health officials alike: rising antimicrobial resistance (AMR). Resistance is exceeding stewardship efforts and the rates of new drug development and approval in the market. A dry antimicrobial pipeline is threatening our regression to a pre-antibiotic era. While the consequences of resistance may seem far removed from daily clinical practices, awareness of AMR is significant to dermatological care given that dermatologists prescribe more antibiotics per physician than other providers. Antibiotics in dermatology are often used for prolonged courses, with a significant potential for microbiome alteration and antibiotic-related adverse effects. Through this review we hope to contribute to efforts of bringing the crisis of AMR to the forefront of daily dermatological practice.
Collapse
Affiliation(s)
- F F Muhaj
- Department of Dermatology, MD Anderson Cancer Center, Houston, Texas, USA
| | - S J George
- Department of Dermatology, MD Anderson Cancer Center, Houston, Texas, USA
| | - S K Tyring
- Department of Dermatology, University of Texas McGovern Medical School at Houston, Houston, Texas, USA.,Center for Clinical Studies, Houston, Texas, USA
| |
Collapse
|
14
|
Yu D, Liang Y, Lu Q, Meng Q, Wang W, Huang L, Bao Y, Zhao R, Chen Y, Zheng Y, Yang Y. Molecular Characteristics of Streptococcus pyogenes Isolated From Chinese Children With Different Diseases. Front Microbiol 2021; 12:722225. [PMID: 34956108 PMCID: PMC8696671 DOI: 10.3389/fmicb.2021.722225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
Streptococcus pyogenes is a bacterial pathogen that causes a wide spectrum of clinical diseases exclusively in humans. The distribution of emm type, antibiotic resistance and virulence gene expression for S. pyogenes varies temporally and geographically, resulting in distinct disease spectra. In this study, we analyzed antibiotic resistance and resistance gene expression patterns among S. pyogenes isolates from pediatric patients in China and investigated the relationship between virulence gene expression, emm type, and disease categories. Forty-two representative emm1.0 and emm12.0 strains (n = 20 and n = 22, respectively) isolated from patients with scarlet fever or obstructive sleep apnea-hypopnea syndrome were subjected to whole-genome sequencing and phylogenetic analysis. These strains were further analyzed for susceptibility to vancomycin. We found a high rate and degree of resistance to macrolides and tetracycline in these strains, which mainly expressed ermB and tetM. The disease category correlated with emm type but not superantigens. The distribution of vanuG and virulence genes were associated with emm type. Previously reported important prophages, such as φHKU16.vir, φHKU488.vir, Φ5005.1, Φ5005.2, and Φ5005.3 encoding streptococcal toxin, and integrative conjugative elements (ICEs) such as ICE-emm12 and ICE-HKU397 encoding macrolide and tetracycline resistance were found present amongst emm1 or emm12 clones from Shenzhen, China.
Collapse
Affiliation(s)
- Dingle Yu
- Microbiology Laboratory, National Center for Children's Health, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China.,Shenzhen Children's Hospital, Shenzhen, China
| | - Yunmei Liang
- Beijing Chaoyang Hospital Affiliated to the Capital Medical University, Beijing, China
| | - Qinghua Lu
- Microbiology Laboratory, National Center for Children's Health, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China.,Shenzhen Children's Hospital, Shenzhen, China
| | - Qing Meng
- Shenzhen Children's Hospital, Shenzhen, China
| | | | - Lu Huang
- Shenzhen Children's Hospital, Shenzhen, China
| | - Yanmin Bao
- Shenzhen Children's Hospital, Shenzhen, China
| | | | | | | | - Yonghong Yang
- Microbiology Laboratory, National Center for Children's Health, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China.,Shenzhen Children's Hospital, Shenzhen, China
| |
Collapse
|
15
|
Horn DL, Roberts EA, Shen J, Chan JD, Bulger EM, Weiss NS, Lynch JB, Bryson-Cahn C, Robinson BRH. Outcomes of β-Hemolytic Streptococcal Necrotizing Skin and Soft-tissue Infections and the Impact of Clindamycin Resistance. Clin Infect Dis 2021; 73:e4592-e4598. [PMID: 33151283 PMCID: PMC8664434 DOI: 10.1093/cid/ciaa976] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/11/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND β-Hemolytic streptococci are frequently implicated in necrotizing soft-tissue infections (NSTIs). Clindamycin administration may improve outcomes in patients with serious streptococcal infections. However, clindamycin resistance is growing worldwide, and resistance patterns in NSTIs and their impact on outcomes are unknown. METHODS Between 2015 and 2018, patients with NSTI at a quaternary referral center were followed up for the outcomes of death, limb loss, and streptococcal toxic shock syndrome. Surgical wound cultures and resistance data were obtained within 48 hours of admission as part of routine care. Risk ratios for the association between these outcomes and the presence of β-hemolytic streptococci or clindamycin-resistant β-hemolytic streptococci were calculated using log-binomial regression, controlling for age, transfer status, and injection drug use-related etiology. RESULTS Of 445 NSTIs identified, 85% had surgical wound cultures within 48 hours of admission. β-Hemolytic streptococci grew in 31%, and clindamycin resistance was observed in 31% of cultures. The presence of β-hemolytic streptococci was associated with greater risk of amputation (risk ratio, 1.80; 95% confidence interval, 1.07-3.01), as was the presence of clindamycin resistance among β-hemolytic streptococci infections (1.86; 1.10-3.16). CONCLUSIONS β-Hemolytic streptococci are highly prevalent in NSTIs, and in our population clindamycin resistance was more common than previously described. Greater risk of limb loss among patients with β-hemolytic streptococci-particularly clindamycin-resistant strains-may portend a more locally aggressive disease process or may represent preexisting patient characteristics that predispose to both infection and limb loss. Regardless, these findings may inform antibiotic selection and surgical management to maximize the potential for limb salvage.
Collapse
Affiliation(s)
- Dara L Horn
- Department of Surgery, University of Washington, Seattle, Washington, USA
| | - Emma A Roberts
- University of Washington School of Medicine, Seattle, Washington, USA
| | - Jolie Shen
- University of Washington School of Medicine, Seattle, Washington, USA
| | - Jeannie D Chan
- Department of Medicine, Divisions of Allergy & Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Eileen M Bulger
- Division of Trauma and Critical Care, Department of Surgery, University of Washington, Harborview Medical Center, Seattle, Washington, USA
| | - Noel S Weiss
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - John B Lynch
- Department of Medicine, Divisions of Allergy & Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Chloe Bryson-Cahn
- Department of Medicine, Divisions of Allergy & Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Bryce R H Robinson
- Division of Trauma and Critical Care, Department of Surgery, University of Washington, Harborview Medical Center, Seattle, Washington, USA
| |
Collapse
|
16
|
Miron VD, Craiu M. "Red throat" or acute pharyngitis - challenges in real life clinical practice. Germs 2021; 11:351-353. [PMID: 34722356 DOI: 10.18683/germs.2021.1271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Victor Daniel Miron
- MD, PhD student, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania, National Institute for Mother and Child Health "Alessandrescu-Rusescu”, Bd Lacul Tei 120, Bucharest, Romania
| | - Mihai Craiu
- MD, PhD, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania, National Institute for Mother and Child Health "Alessandrescu-Rusescu”, Bd Lacul Tei 120, Bucharest, Romania
| |
Collapse
|
17
|
Bittner Fialová S, Rendeková K, Mučaji P, Nagy M, Slobodníková L. Antibacterial Activity of Medicinal Plants and Their Constituents in the Context of Skin and Wound Infections, Considering European Legislation and Folk Medicine-A Review. Int J Mol Sci 2021; 22:ijms221910746. [PMID: 34639087 PMCID: PMC8509446 DOI: 10.3390/ijms221910746] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/26/2021] [Accepted: 10/01/2021] [Indexed: 12/24/2022] Open
Abstract
Bacterial infections of skin and wounds may seriously decrease the quality of life and even cause death in some patients. One of the largest concerns in their treatment is the growing antimicrobial resistance of bacterial infectious agents and the spread of resistant strains not only in the hospitals but also in the community. This trend encourages researchers to seek for new effective and safe therapeutical agents. The pharmaceutical industry, focusing mainly on libraries of synthetic compounds as a drug discovery source, is often failing in the battle with bacteria. In contrast, many of the natural compounds, and/or the whole and complex plants extracts, are effective in this field, inactivating the resistant bacterial strains or decreasing their virulence. Natural products act comprehensively; many of them have not only antibacterial, but also anti-inflammatory effects and may support tissue regeneration and wound healing. The European legislative is in the field of natural products medicinal use formed by European Medicines Agency (EMA), based on the scientific work of its Committee on Herbal Medicinal Products (HMPC). HMPC establishes EU monographs covering the therapeutic uses and safe conditions for herbal substances and preparations, mostly based on folk medicine, but including data from scientific research. In this review, the medicinal plants and their active constituents recommended by EMA for skin disorders are discussed in terms of their antibacterial effect. The source of information about these plant products in the review is represented by research articles listed in scientific databases (Science Direct, PubMed, Scopus, Web of Science, etc.) published in recent years.
Collapse
Affiliation(s)
- Silvia Bittner Fialová
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (K.R.); (P.M.); (M.N.)
- Correspondence: ; Tel.: +421-250-117-206
| | - Katarína Rendeková
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (K.R.); (P.M.); (M.N.)
| | - Pavel Mučaji
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (K.R.); (P.M.); (M.N.)
| | - Milan Nagy
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (K.R.); (P.M.); (M.N.)
| | - Lívia Slobodníková
- Institute of Microbiology, Faculty of Medicine and the University Hospital in Bratislava, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia;
| |
Collapse
|
18
|
Berbel D, Càmara J, González-Díaz A, Cubero M, López de Egea G, Martí S, Tubau F, Domínguez MA, Ardanuy C. Deciphering mobile genetic elements disseminating macrolide resistance in Streptococcus pyogenes over a 21 year period in Barcelona, Spain. J Antimicrob Chemother 2021; 76:1991-2003. [PMID: 34015100 DOI: 10.1093/jac/dkab130] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 03/23/2021] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES To phenotypically and genetically characterize the antibiotic resistance determinants and associated mobile genetic elements (MGEs) among macrolide-resistant (MR) Streptococcus pyogenes [Group A streptococci (GAS)] clinical isolates collected in Barcelona, Spain. METHODS Antibiotic susceptibility testing was performed by microdilution. Isolates were emm and MLST typed and 55 were whole-genome sequenced to determine the nature of the macrolide resistance (MR) determinants and their larger MGE and chromosomal context. RESULTS Between 1998 and 2018, 142 of 1028 GAS (13.8%) were MR. Among 108 isolates available for molecular characterization, 41.7% had cMLSB, 30.5% iMLSB and 27.8% M phenotype. Eight erm(B)-containing strains were notable in having an MDR phenotype conferred by an MGE encoding several antibiotic resistance genes. MR isolates were comprised of several distinct genetic lineages as defined by the combination of emm and ST. Although most lineages were only transiently present, the emm11/ST403 clone persisted throughout the period. Two lineages, emm9/ST75 with erm(B) and emm77/ST63 with erm(TR), emerged in 2016-18. The erm(B) was predominantly encoded on the Tn916 family of transposons (21/31) with different genetic contexts, and in other MGEs (Tn6263, ICESpHKU372 and one harbouring an MDR cluster called ICESp1070HUB). The erm(TR) was found in ICESp2905 (8/17), ICESp1108-like (4/17), ICESpHKU165 (3/17) and two structures described in this study (IMESp316HUB and ICESp3729HUB). The M phenotype [mef(A)-msr(D)] was linked to phage φ1207.3. Eight integrative conjugative element/integrative mobilizable element (ICE/IME) cluster groups were classified on the basis of gene content within conjugation modules. These groups were found among MGEs, which corresponded with the MR-containing element or the site of integration. CONCLUSIONS We detected several different MGEs harbouring erm(B) or erm(TR). This is the first known description of Tn6263 in GAS and three MGEs [IMESp316HUB, ICESp3729HUB and ICESp1070HUB] associated with MR. Periods of high MR rates in our area were mainly associated with the expansion of certain predominant lineages, while in low MR periods different sporadic and low prevalence lineages were more frequent.
Collapse
Affiliation(s)
- Dàmaris Berbel
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, ISCIII, Madrid, Spain
| | - Jordi Càmara
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, ISCIII, Madrid, Spain
| | - Aida González-Díaz
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, ISCIII, Madrid, Spain
| | - Meritxell Cubero
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, ISCIII, Madrid, Spain
| | - Guillem López de Egea
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Sara Martí
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, ISCIII, Madrid, Spain
| | - Fe Tubau
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, ISCIII, Madrid, Spain
| | - M Angeles Domínguez
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.,Departament of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain
| | - Carmen Ardanuy
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, ISCIII, Madrid, Spain.,Departament of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain
| |
Collapse
|
19
|
Yamawaki T, Nakakido M, Ujiie K, Aikawa C, Nakagawa I, Tsumoto K. Characterization of a putative maltodextrin-binding protein of Streptococcus pyogenes, SPs0871 and the development of a VHH inhibitor. Biochem Biophys Res Commun 2021; 565:1-7. [PMID: 34077827 DOI: 10.1016/j.bbrc.2021.05.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 11/30/2022]
Abstract
Streptococcus pyogenes causes a wide range of human infections. Currently, antibiotics are the main treatment for S. pyogenes infection, but serious anti-microbial resistance requires alternative treatment options. To develop a novel strategy for treatment, we physicochemically characterized SPs0871, a putative maltose/maltodextrin-binding protein that is thought to have important roles in the pathogenesis of invasive streptococci. We obtained a variable domain of heavy chain of heavy-chain antibody, the smallest unit of an antibody, which specifically binds to SPs0871. Although the VHH completely inhibited the binding of maltodextrins to SPs0871, the inhibition did not lead to growth suppression of the bacteria. Our results provide important insights for development of VHH as an anti-streptococcal therapeutic.
Collapse
Affiliation(s)
- Tsukushi Yamawaki
- Department of Chemistry & Biotechnology, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Makoto Nakakido
- Department of Chemistry & Biotechnology, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan; Department of Bioengineering, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Kan Ujiie
- Department of Bioengineering, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Chihiro Aikawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Ichiro Nakagawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Kouhei Tsumoto
- Department of Chemistry & Biotechnology, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan; Department of Bioengineering, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan; Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan.
| |
Collapse
|
20
|
Key Takeaways From the U.S. CDC's 2019 Antibiotic Resistance Threats Report for Frontline Providers. Crit Care Med 2021; 48:939-945. [PMID: 32282351 PMCID: PMC7176261 DOI: 10.1097/ccm.0000000000004371] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Chatterjee N, Huang YS, Lyles KV, Morgan JE, Kauvar LM, Greer SF, Eichenbaum Z. Native Human Antibody to Shr Promotes Mice Survival After Intraperitoneal Challenge With Invasive Group A Streptococcus. J Infect Dis 2021; 223:1367-1375. [PMID: 32845315 DOI: 10.1093/infdis/jiaa540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/20/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND A vaccine against group A Streptococcus (GAS) has been actively pursued for decades. The surface receptor Shr is vital in GAS heme uptake and provides an effective target for active and passive immunization. Here, we isolated human monoclonal antibodies (mAbs) against Shr and evaluated their efficacy and mechanism. METHODS We used a single B-lymphocyte screen to discover the mAbs TRL186 and TRL96. Interactions of the mAbs with whole cells, proteins, and peptides were investigated. Growth assays and cultured phagocytes were used to study the mAbs' impact on heme uptake and bacterial killing. Efficacy was tested in prophylactic and therapeutic vaccination using intraperitoneal mAb administration and GAS challenge. RESULTS Both TRL186 and TRL96 interact with whole GAS cells, recognizing the NTR and NEAT1 domains of Shr, respectively. Both mAbs promoted killing by phagocytes in vitro, but prophylactic administration of only TRL186 increased mice survival. TRL186 improved survival also in a therapeutic mode. TRL186 but not TRL96 also impeded Shr binding to hemoglobin and GAS growth on hemoglobin iron. CONCLUSIONS Interference with iron acquisition is central for TRL186 efficacy against GAS. This study supports the concept of antibody-based immunotherapy targeting the heme uptake proteins to combat streptococcal infections.
Collapse
Affiliation(s)
| | - Ya-Shu Huang
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Kristin V Lyles
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Julie E Morgan
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | | | - Susanna F Greer
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Zehava Eichenbaum
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
22
|
Ikebe T, Okuno R, Kanda Y, Sasaki M, Yamaguchi T, Otsuka H, Kazawa Y, Suzuki M, Ohya H, Uchida K, Ohnishi M. Molecular characterization and antimicrobial resistance of group A streptococcus isolates in streptococcal toxic shock syndrome cases in Japan from 2013 to 2018. Int J Med Microbiol 2021; 311:151496. [PMID: 33756191 DOI: 10.1016/j.ijmm.2021.151496] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/08/2021] [Accepted: 03/14/2021] [Indexed: 12/01/2022] Open
Abstract
Streptococcal toxic shock syndrome (STSS) is a severe invasive infection characterized by the sudden onset of shock, multi-organ failure, and puerperal sepsis and shows high mortality. Its primary cause is group A streptococcus (GAS, Streptococcus pyogenes). In this study, we genotyped the cell-surface M virulence protein gene (emm) from 621 GAS isolates obtained from patients with STSS in Japan in 2013-2018 and performed antimicrobial susceptibility testing using the broth microdilution method. The predominant emm type was found to be 1, followed by 89, 12, and 3, which were identified in more than 70 % of STSS isolates. The proportions of emm3 and emm89 increased from 2.4 % and 12.0 %, respectively, during 2010-2012 to 5.6 % and 23.3 % during 2013-2018. In contrast, the proportion of emm1 decreased from 60.6 % to 39.3 % during the same two periods. Some emm types showed increasing proportions and were not isolated from patients with STSS in 2010-2012. Among these, an emm76 type increased in prevalence and was not included in the 30-valent M protein-based vaccine. Continual investigation of changes in the epidemiology of GAS which causes STSS can provide useful monitoring information such as future vaccination strategies and the emergence status of antimicrobial-resistant bacteria.
Collapse
Affiliation(s)
- Tadayoshi Ikebe
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Rumi Okuno
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunin-cho, Shinjuku-ku, Tokyo 169-0073, Japan
| | - Yoshiko Kanda
- Laboratory of Microbiology, Oita Prefectural Institute of Health and Environment, 2-8 Takae-Nishi, Oita 870-1117, Japan
| | - Mari Sasaki
- Laboratory of Microbiology, Oita Prefectural Institute of Health and Environment, 2-8 Takae-Nishi, Oita 870-1117, Japan
| | - Takahiro Yamaguchi
- Division of Microbiology, Osaka Institute of Public Health, 1-3-69 Nakamichi, Higashinari-ku, Osaka 537-0025, Japan
| | - Hitoshi Otsuka
- Department of Public Health Sciences, Yamaguchi Prefectural Institute of Public Health and Environment, 2-5-67 Aoi, Yamaguchi 753-0821, Japan
| | - Yu Kazawa
- Division of Microbiology, Fukushima Prefectural Institute of Public Health, 16-6 Mitouchi, Hokida, Fukushima 960-8560, Japan
| | - Miyuki Suzuki
- Division of Microbiology, Kanagawa Prefectural Institute of Public Health, 1-3-1 Shimomachiya, Chigasaki, Kanagawa 253-0087, Japan
| | - Hitomi Ohya
- Division of Microbiology, Kanagawa Prefectural Institute of Public Health, 1-3-1 Shimomachiya, Chigasaki, Kanagawa 253-0087, Japan
| | - Kaoru Uchida
- Department of Bacteriology, Toyama Institute of Health, 17-1 Naka-Taikouyama, Imizu, Toyama 939-0363, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | | |
Collapse
|
23
|
Streptococcus pyogenes Is Associated with Idiopathic Cutaneous Ulcers in Children on a Yaws-Endemic Island. mBio 2021; 12:mBio.03162-20. [PMID: 33436440 PMCID: PMC7844543 DOI: 10.1128/mbio.03162-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Exudative cutaneous ulcers (CU) in yaws-endemic areas are associated with Treponema pallidum subsp. pertenue (TP) and Haemophilus ducreyi (HD), but one-third of CU cases are idiopathic (IU). Using mass drug administration (MDA) of azithromycin, a yaws eradication campaign on Lihir Island in Papua New Guinea reduced but failed to eradicate yaws; IU rates remained constant throughout the campaign. To identify potential etiologies of IU, we obtained swabs of CU lesions (n = 279) and of the skin of asymptomatic controls (AC; n = 233) from the Lihir Island cohort and characterized their microbiomes using a metagenomics approach. CU bacterial communities were less diverse than those of the AC. Using real-time multiplex PCR with pathogen-specific primers, we separated CU specimens into HD-positive (HD+), TP+, HD+TP+, and IU groups. Each CU subgroup formed a distinct bacterial community, defined by the species detected and/or the relative abundances of species within each group. Streptococcus pyogenes was the most abundant organism in IU (22.65%) and was enriched in IU compared to other ulcer groups. Follow-up samples (n = 31) were obtained from nonhealed ulcers; the average relative abundance of S. pyogenes was 30.11% in not improved ulcers and 0.88% in improved ulcers, suggesting that S. pyogenes in the not improved ulcers may be azithromycin resistant. Catonella morbi was enriched in IU that lacked S. pyogenes As some S. pyogenes and TP strains are macrolide resistant, penicillin may be the drug of choice for CU azithromycin treatment failures. Our study will aid in the design of diagnostic tests and selective therapies for CU.IMPORTANCE Cutaneous ulcers (CU) affect approximately 100,000 children in the tropics each year. While two-thirds of CU are caused by Treponema pallidum subspecies pertenue and Haemophilus ducreyi, the cause(s) of the remaining one-third is unknown. Given the failure of mass drug administration of azithromycin to eradicate CU, the World Health Organization recently proposed an integrated disease management strategy to control CU. Success of this strategy requires determining the unknown cause(s) of CU. By using 16S rRNA gene sequencing of swabs obtained from CU and the skin of asymptomatic children, we identified another possible cause of skin ulcers, Streptococcus pyogenes Although S. pyogenes is known to cause impetigo and cellulitis, this is the first report implicating the organism as a causal agent of CU. Inclusion of S. pyogenes into the integrated disease management plan will improve diagnostic testing and treatment of this painful and debilitating disease of children and strengthen elimination efforts.
Collapse
|
24
|
Buckley SJ, Davies MR, McMillan DJ. In silico characterisation of stand-alone response regulators of Streptococcus pyogenes. PLoS One 2020; 15:e0240834. [PMID: 33075055 PMCID: PMC7571705 DOI: 10.1371/journal.pone.0240834] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/02/2020] [Indexed: 12/20/2022] Open
Abstract
Bacterial “stand-alone” response regulators (RRs) are pivotal to the control of gene transcription in response to changing cytosolic and extracellular microenvironments during infection. The genome of group A Streptococcus (GAS) encodes more than 30 stand-alone RRs that orchestrate the expression of virulence factors involved in infecting multiple tissues, so causing an array of potentially lethal human diseases. Here, we analysed the molecular epidemiology and biological associations in the coding sequences (CDSs) and upstream intergenic regions (IGRs) of 35 stand-alone RRs from a collection of global GAS genomes. Of the 944 genomes analysed, 97% encoded 32 or more of the 35 tested RRs. The length of RR CDSs ranged from 297 to 1587 nucleotides with an average nucleotide diversity (π) of 0.012, while the IGRs ranged from 51 to 666 nucleotides with average π of 0.017. We present new evidence of recombination in multiple RRs including mga, leading to mga-2 switching, emm-switching and emm-like gene chimerization, and the first instance of an isolate that encodes both mga-1 and mga-2. Recombination was also evident in rofA/nra and msmR loci with 15 emm-types represented in multiple FCT (fibronectin-binding, collagen-binding, T-antigen)-types, including novel emm-type/FCT-type pairings. Strong associations were observed between concatenated RR allele types, and emm-type, MLST-type, core genome phylogroup, and country of sampling. No strong associations were observed between individual loci and disease outcome. We propose that 11 RRs may form part of future refinement of GAS typing systems that reflect core genome evolutionary associations. This subgenomic analysis revealed allelic traits that were informative to the biological function, GAS strain definition, and regional outbreak detection.
Collapse
Affiliation(s)
- Sean J. Buckley
- School of Health and Sports Sciences, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- * E-mail:
| | - Mark R. Davies
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - David J. McMillan
- School of Health and Sports Sciences, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| |
Collapse
|
25
|
Epidemiological analysis of Group A Streptococcus infections in a hospital in Beijing, China. Eur J Clin Microbiol Infect Dis 2020; 39:2361-2371. [PMID: 32676802 DOI: 10.1007/s10096-020-03987-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023]
Abstract
Our study aimed to investigate the epidemiological and molecular characteristics of isolates collected from Group A Streptococcus (GAS) infections in children in Beijing China during the year 2019. Emm typing, superantigens, and erythromycin resistance genotypes were determined by PCR. Antimicrobial susceptibility testing was performed as recommended by Clinical Laboratory Standards Institute (CLSI). A total of 271 GAS isolates were collected. Thirteen different emm types, including 31 subtypes, were identified. The most prevalent emm types were emm12 (52.77%), emm1 (36.9%), emm3.1 (2.95%), and emm75.0 (2.95%). Two variant subtypes, STC36.0 and STG840.2, were identified. There was no difference in the portion of emm12 and emm1 isolates in scarlet fever, impetigo, and psoriasis. The majority of superantigens detected were smeZ (94.46%), speC (91.14%), and ssa (74.91%), followed by speH (56.46%), speI (45.76%), speJ (36.9%), and speA (34.32%). More scarlet fever isolates harbored speA (35.6%) and speJ (38.4%), more psoriasis isolates harbored speI (57.9%), and more impetigo isolates harbored ssa (89.7%). Isolates were universally susceptible to penicillin and resistant to erythromycin (94.83%). Moreover, 89.67% erythromycin resistance isolates harbored the ermB gene. The erythromycin resistance rate of the isolates from the three diseases was different. Scarlet fever is the common streptococcal infectious disease in dermatology. Emm12 and emm1 were the most prevalent emm types. The most prevalent superantigens detected were smeZ, spec, and ssa. There is association between diversity of superantigens and disease manifestation. Hence, continuous surveillance of GAS molecular epidemiological characterizations in different diseases is needed.
Collapse
|
26
|
Li H, Zhou L, Zhao Y, Ma L, Liu X, Hu J. Molecular epidemiology and antimicrobial resistance of group a streptococcus recovered from patients in Beijing, China. BMC Infect Dis 2020; 20:507. [PMID: 32660436 PMCID: PMC7359455 DOI: 10.1186/s12879-020-05241-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 07/07/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Group A streptococcus (GAS) is an important human pathogen responsible for a broad range of infections. Epidemiological surveillance has been crucial to detect changes in the geographical and temporal variation of the disease pattern. The objective of this study was to investigate the molecular epidemiological characteristics and antimicrobial resistance of GAS isolates from patients in Children's Hospital in Beijing. METHODS From 2016 to 2017, pharyngeal swab samples were collected from the outpatients in Children's Hospital, Capital Institute of Pediatrics, who were diagnosed with scarlet fever. Antimicrobial susceptibility test was performed according to the distribution of conventional antibiotics and Clinical and Laboratory Standards Institute (CLSI) recommendations. The distribution of the macrolide-resistance genes (ermB, ermA, mefA), emm (M protein-coding gene) typing, and superantigens (SAg) gene profiling were examined by polymerase chain reaction (PCR). RESULTS A total of 297 GAS isolates were collected. The susceptibility of the isolates to penicillin, ceftriaxone, and levofloxacin was 100%. The resistance rate to erythromycin and clindamycin was 98.3 and 96.6%, respectively. The dominant emm types were emm12 (65.32%), emm1 (27.61%), emm75 (2.69%), and emm89 (1.35%). Of the 297 isolates, 290 (97.64%) carried the ermB gene, and 5 (1.68%) carried the mefA gene, while none carried the ermA gene. The most common superantigen genes identified from GAS isolates were smeZ (96.97%), speC (92.59%), speG (91.58%), ssa (85.52%), speI (54.55%), speH (52.19%), and speA (34.34%). Isolates with the genotype emm1 possessed speA, speC, speG, speJ, speM, ssa, and smeZ, while emm12 possessed speC, speG, speH, speI, speM, ssa, and smeZ superantigens. CONCLUSIONS The prevalent strain of GAS isolates in Beijing has a high resistance rate to macrolides; however, penicillin can still be the preferred antibiotic for treatment. Erythromycin resistance was predominantly mediated by ermB. The common emm types were emm12 and emm1. There was a correlation between emm and the superantigen gene. Thus, long-term monitoring and investigation of the emm types and superantigen genes of GAS prevalence are imperative.
Collapse
Affiliation(s)
- Hongxin Li
- Department of Dermatology, Children's Hospital Affiliated to Capital Institute of Pediatrics, Beijing, 100020, China.
| | - Lin Zhou
- Department of Clinical Laboratory, Children's Hospital Affiliated to Capital Institute of Pediatrics, Beijing, 100020, China
| | - Yong Zhao
- The Sixth Medical Centre of PLA, General Hospital, Beijing, 100048, China
| | - Lijuan Ma
- Department of Clinical Laboratory, Children's Hospital Affiliated to Capital Institute of Pediatrics, Beijing, 100020, China
| | - Xiaoyan Liu
- Department of Dermatology, Children's Hospital Affiliated to Capital Institute of Pediatrics, Beijing, 100020, China
| | - Jin Hu
- Department of Dermatology, Children's Hospital Affiliated to Capital Institute of Pediatrics, Beijing, 100020, China.
| |
Collapse
|
27
|
Chatterjee N, Cook LCC, Lyles KV, Nguyen HAT, Devlin DJ, Thomas LS, Eichenbaum Z. A Novel Heme Transporter from the Energy Coupling Factor Family Is Vital for Group A Streptococcus Colonization and Infections. J Bacteriol 2020; 202:e00205-20. [PMID: 32393520 PMCID: PMC7317044 DOI: 10.1128/jb.00205-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/04/2020] [Indexed: 12/16/2022] Open
Abstract
Group A streptococcus (GAS) produces millions of infections worldwide, including mild mucosal infections, postinfection sequelae, and life-threatening invasive diseases. During infection, GAS readily acquires nutritional iron from host heme and hemoproteins. Here, we identified a new heme importer, named SiaFGH, and investigated its role in GAS pathophysiology. The SiaFGH proteins belong to a group of transporters with an unknown ligand from the recently described family of energy coupling factors (ECFs). A siaFGH deletion mutant exhibited high streptonigrin resistance compared to the parental strain, suggesting that iron ions or an iron complex is the likely ligand. Iron uptake and inductively coupled plasma mass spectrometry (ICP-MS) studies showed that the loss of siaFGH did not impact GAS import of ferric or ferrous iron, but the mutant was impaired in using hemoglobin iron for growth. Analysis of cells growing on hemoglobin iron revealed a substantial decrease in the cellular heme content in the mutant compared to the complemented strain. The induction of the siaFGH genes in trans resulted in the induction of heme uptake. The siaFGH mutant exhibited a significant impairment in murine models of mucosal colonization and systemic infection. Together, the data show that SiaFGH is a new type of heme importer that is key for GAS use of host hemoproteins and that this system is imperative for bacterial colonization and invasive infection.IMPORTANCE ECF systems are new transporters that take up various vitamins, cobalt, or nickel with a high affinity. Here, we establish the GAS SiaFGH proteins as a new ECF module that imports heme and demonstrate its importance in virulence. SiaFGH is the first heme ECF system described in bacteria. We identified homologous systems in the genomes of related pathogens from the Firmicutes phylum. Notably, GAS and other pathogens that use a SiaFGH-type importer rely on host hemoproteins for a source of iron during infection. Hence, recognizing the function of this noncanonical ABC transporter in heme acquisition and the critical role that it plays in disease has broad implications.
Collapse
Affiliation(s)
| | - Laura C C Cook
- Binghamton Biofilm Research Center, Department of Biology, Binghamton University, Binghamton, New York, USA
| | - Kristin V Lyles
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Hong Anh T Nguyen
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Darius J Devlin
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Lamar S Thomas
- Binghamton Biofilm Research Center, Department of Biology, Binghamton University, Binghamton, New York, USA
| | - Zehava Eichenbaum
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
28
|
Antibacterial Activities of Selected Pure Compounds Isolated from Gut Bacteria of Animals Living in Polluted Environments. Antibiotics (Basel) 2020; 9:antibiotics9040190. [PMID: 32316471 PMCID: PMC7235713 DOI: 10.3390/antibiotics9040190] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/04/2020] [Accepted: 04/07/2020] [Indexed: 01/16/2023] Open
Abstract
Antibiotic resistance is a global threat to public health, further accelerated by the misuse of antibiotics in humans and animals. Our recent studies have shown that gut bacteria of animals living in polluted environments are a potential source of antibacterials. Gut bacteria of cockroaches, water monitor lizards and the turtle exhibited molecules such as curcumenol, docosanedioic acid, N-acyl-homoserine lactone, L-homotyrosine and Di-rhamnolipids. Using purified compounds, assays were performed to determine their antibacterial properties using serial dilution method, cytotoxic effects using lactate dehydrogenase release, and cell viability using MTT assay. The results revealed that the purified compounds exhibited significant antibacterial activities (p < 0.05) against selected Gram-negative (Pseudomonas aeruginosa) and Gram-positive bacteria (Streptococcus pyogenes) with effective MIC50 and MIC90 at µg concentrations, and with minimal effects on human cells as observed from LDH and MTT assays. These findings are significant and provide a basis for the rational development of therapeutic antibacterials. Future studies are needed to determine in vivo effects of the identified molecules together with their mode of action, which could lead to the development of novel antibacterial(s).
Collapse
|
29
|
Rafei R, Hawli M, Osman M, Dabboussi F, Hamze M. Distribution of emm types and macrolide resistance determinants among group A streptococci in the Middle East and North Africa region. J Glob Antimicrob Resist 2020; 22:334-348. [PMID: 32084609 DOI: 10.1016/j.jgar.2020.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/03/2020] [Accepted: 02/09/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES The aim of this review was to provide an updated scenario on the epidemiology of group A streptococci (GAS) in the Middle East and North Africa (MENA) region with a special spotlight on the most prevalent emmtypes and macrolide resistance profiles. METHODS This review briefly summarises the disease burden for GAS in the MENA region. RESULTS Whilst the burden of invasive GAS infections is difficult to assess in the MENA region, the GAS prevalence ranged from 2.5% up to 42.4% in pharyngitis patients and from 2.4% up to 35.4% in healthy carriers.emm1, emm12, emm89, emm4, emm28 and emm3were responsible for the major GAS burden in the MENA region. The coverage rate of the new M protein-based vaccine candidate (30-valent) varied from 42% to 100% according to the country. The rate of erythromycin resistance differed substantially between countries from low to moderate or high. CONCLUSION These data add more shreds of evidence on the neglected GAS burden in the MENA region. Systematic surveillance of invasive GAS infections along with molecular characterisation of GAS isolates are strongly recommended to track the trends of circulating clones and to evaluate the potential coverage of vaccine candidates.
Collapse
Affiliation(s)
- Rayane Rafei
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Malaik Hawli
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Marwan Osman
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Fouad Dabboussi
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon.
| |
Collapse
|
30
|
Active and passive immunizations with HtsA, a streptococcal heme transporter protein, protect mice from subcutaneous group A Streptococcus infection. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2020; 53:87-93. [PMID: 29807723 DOI: 10.1016/j.jmii.2018.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/26/2017] [Accepted: 03/15/2018] [Indexed: 11/21/2022]
Abstract
BACKGROUND/PURPOSE HtsA (Streptococcus heme transporter A) is the lipoprotein component of the streptococcal heme ABC transporter (HtsABC). The aim of this study is to investigate whether the HtsA protein has immunoprotective effect against group A Streptococcus (GAS) infection in mice. METHODS The HtsA protein was purified by sequential chromatography on Ni-sepharose, DEAE-sepharose and Phenyl-sepharose, CD-1 mice were actively immunized with ALUM (control) or HtsA/ALUM, and passively immunized with control or anti-HtsA serum. Mice were challenged with GAS after immunization, and the survival rate, skin lesion size and systemic GAS dissemination were determined. RESULTS The HtsA gene was cloned, and the recombinant protein HtsA was successfully purified. HtsA has a strong antigenicity, and active immunization with the HtsA protein significantly protected mice against lethal subcutaneous GAS infection, inhibited invasion of the skin by GAS, and reduced GAS systemic dissemination in blood and organs. In addition, passive immunization with anti-HtsA serum also significantly protected mice against subcutaneous GAS infection, and inhibited invasion of the skin by GAS. CONCLUSION The results showed that both active and passive immunization with the HtsA protein protected mice against subcutaneous GAS infection, suggesting that HtsA may be a candidate of GAS vaccine to protect against GAS infection.
Collapse
|
31
|
Oppegaard O, Rath E. Treatment of Necrotizing Soft Tissue Infections: Antibiotics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1294:87-103. [PMID: 33079365 DOI: 10.1007/978-3-030-57616-5_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Necrotizing soft tissue infections (NSTIs) are severe, life-threatening infections, and early therapeutic intervention is essential. Prompt administration of potent antimicrobial agents is pivotal, but inadequate empirical therapy is unfortunately common. Optimization of the antibiotic treatment strategy in NSTIs requires consideration of local epidemiology of causative pathogens and antimicrobial resistance patterns, knowledge on common pathogenetic mechanisms in NSTIs, and adaptations to pharmacokinetic and pharmacodynamic physiological changes in critically ill patients. In the present article we address all these issues, as well as review and compare contemporary guidelines for antimicrobial treatment of NSTIs from around the world.
Collapse
Affiliation(s)
- Oddvar Oppegaard
- Department of Medicine, Haukeland University Hospital, Bergen, Norway.
| | - Eivind Rath
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
32
|
Muhtarova A, Mihova K, Markovska R, Mitov I, Kaneva R, Gergova R. Molecular emm typing of Bulgarian macrolide-resistant Streptococcus pyogenes isolates. Acta Microbiol Immunol Hung 2019; 67:14-17. [PMID: 31833385 DOI: 10.1556/030.66.2019.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/06/2019] [Indexed: 12/19/2022]
Abstract
Group A streptococcus (GAS) is a human pathogen causing a broad range of infections, linked with global morbidity and mortality. Macrolide resistance rates vary significantly in different parts of the world. Driving factors of the emergence and spread of resistant clones are not clearly understood. We investigated 102 macrolide-resistant GAS strains collected during the period 2014-2018 from various clinical specimens from Bulgarian patients. Strains were characterized by the presence of mefA/mefE, ermA, and ermB using polymerase chain reaction and sequencing for mefA/mefE. Resistant strains were studied by emm sequence typing and emm-cluster system. Most prevalent emm types among the macrolide-resistant GAS strains were emm28 (22.55%), emm12 (17.65%), and emm4 (16.66%). Almost all (87.25%) of the macrolide-resistant isolates harboring ermB were emm28. The isolates that carried ermA were predominantly emm12 (38.24%) and emm77 (38.24%), with fewer emm89 (23.53%). The isolates harbored predominantly mefE (49 isolates) and only 9 strains carried mefA. The most prevalent emm clusters among the GAS isolates were E4 (40.20%), A-C4 (17.65%), and E1 (16.66%). The study's results suggest that dissemination of specific clones in GAS population may also be the reason for the increasing macrolide-resistance rate in our country.
Collapse
Affiliation(s)
- Adile Muhtarova
- 1 Department of Medical Microbiology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Kalina Mihova
- 2 Department of Medical Chemistry and Biochemistry, Molecular Medicine Center, Faculty of Medicine, Medical University, Sofia, Bulgaria
| | - Rumyana Markovska
- 1 Department of Medical Microbiology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Ivan Mitov
- 1 Department of Medical Microbiology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Radka Kaneva
- 2 Department of Medical Chemistry and Biochemistry, Molecular Medicine Center, Faculty of Medicine, Medical University, Sofia, Bulgaria
| | - Raina Gergova
- 1 Department of Medical Microbiology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
33
|
Effect of Phosphatase Activity of the Control of Virulence Sensor (CovS) on Clindamycin-Mediated Streptolysin O Production in Group A Streptococcus. Infect Immun 2019; 87:IAI.00583-19. [PMID: 31527126 DOI: 10.1128/iai.00583-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/09/2019] [Indexed: 01/28/2023] Open
Abstract
Severe manifestations of group A Streptococcus (GAS) infections are associated with massive tissue destruction and high mortality. Clindamycin (CLI), a bacterial protein synthesis inhibitor, is recommended for treating patients with severe invasive GAS infection. Nonetheless, the subinhibitory concentration of CLI induces the production of GAS virulent exoproteins, such as streptolysin O (SLO) and NADase, which would enhance bacterial virulence and invasiveness. A better understanding of the molecular mechanism of how CLI triggers GAS virulence factor expression will be critical to develop appropriate therapeutic approaches. The present study shows that CLI activates SLO and NADase expressions in the emm1-type CLI-susceptible wild-type strain but not in covS or control of virulence sensor (CovS) phosphatase-inactivated mutants. Supplementation with Mg2+, which is a CovS phosphatase inhibitor, inhibits the CLI-mediated SLO upregulation in a dose-dependent manner in CLI-susceptible and CLI-resistant strains. These results not only reveal that the phosphorylation of response regulator CovR is essential for responding to CLI stimuli, but also suggest that inhibiting the phosphatase activity of CovS could be a potential strategy for the treatment of invasive GAS infection with CLI.
Collapse
|
34
|
Yao W, Xu G, Bai B, Wang H, Deng M, Zheng J, Li D, Deng X, Liu X, Lin Z, Chen Z, Li G, Deng Q, Yu Z. In vitro-induced erythromycin resistance facilitates cross-resistance to the novel fluoroketolide, solithromycin, in Staphylococcus aureus. FEMS Microbiol Lett 2019; 365:4992303. [PMID: 29733362 DOI: 10.1093/femsle/fny116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/02/2018] [Indexed: 12/31/2022] Open
Abstract
The aim of this study was to determine whether in vitro induced erythromycin resistance facilitates the cross-resistance to the novel fluoroketolide, solithromycin, in Staphylococcus aureus. Four strains of methicillin-susceptible S. aureus strains S2, S3, S5 and S7 were successfully induced to establish erythromycin-resistant strains by continuous in vitro culture with erythromycin. Mutations at drug binding sites were shown to increase the minimal inhibitory concentrations for ketolides, including telithromycin and the novel compound solithromycin, but did not increase for lincosamides, chloramphenicols or oxazolidinones. In S2-, S5- and S7-derived strains, L22 protein mutations occurred first, resulting in a low level of cross-resistance to ketolides (≤4 μg/mL). The L4 protein mutations were dependent on the L22 protein, resulting in high-level cross-resistance to ketolides (≥8 μg/mL). In S3-derived strains, high levels of cross-resistance occurred concurrently in the 23S rRNA domains II/V and the L22 protein. Hence, long-term exposure of erythromycin results in resistance to ketolides in S. aureus through drug binding site mutations. These results demonstrate that since erythromycin has been used clinically for a long time, it is necessary to carefully evaluate the rewards and risks when prescribing solithromycin for the treatment of infectious diseases.
Collapse
Affiliation(s)
- Weiming Yao
- Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, Shenzhen Nanshan Hospital of Shenzhen University, No 89, Taoyuan Road, Nanshan District, Shenzhen 518052, China.,Quality Control Center of Hospital Infection Management of Shenzhen, No 89, Taoyuan Road, Nanshan District, Shenzhen 518052, China
| | - Guangjian Xu
- Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, Shenzhen Nanshan Hospital of Shenzhen University, No 89, Taoyuan Road, Nanshan District, Shenzhen 518052, China.,Quality Control Center of Hospital Infection Management of Shenzhen, No 89, Taoyuan Road, Nanshan District, Shenzhen 518052, China
| | - Bing Bai
- Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, Shenzhen Nanshan Hospital of Shenzhen University, No 89, Taoyuan Road, Nanshan District, Shenzhen 518052, China.,Quality Control Center of Hospital Infection Management of Shenzhen, No 89, Taoyuan Road, Nanshan District, Shenzhen 518052, China
| | - Hongyan Wang
- Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, Shenzhen Nanshan Hospital of Shenzhen University, No 89, Taoyuan Road, Nanshan District, Shenzhen 518052, China.,Quality Control Center of Hospital Infection Management of Shenzhen, No 89, Taoyuan Road, Nanshan District, Shenzhen 518052, China
| | - Minggui Deng
- Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, Shenzhen Nanshan Hospital of Shenzhen University, No 89, Taoyuan Road, Nanshan District, Shenzhen 518052, China.,Quality Control Center of Hospital Infection Management of Shenzhen, No 89, Taoyuan Road, Nanshan District, Shenzhen 518052, China
| | - Jinxin Zheng
- Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, Shenzhen Nanshan Hospital of Shenzhen University, No 89, Taoyuan Road, Nanshan District, Shenzhen 518052, China.,Quality Control Center of Hospital Infection Management of Shenzhen, No 89, Taoyuan Road, Nanshan District, Shenzhen 518052, China.,Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, No 130, Dongan road, Xuhui District, Shanghai 200032, China
| | - Duoyun Li
- Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, Shenzhen Nanshan Hospital of Shenzhen University, No 89, Taoyuan Road, Nanshan District, Shenzhen 518052, China.,Quality Control Center of Hospital Infection Management of Shenzhen, No 89, Taoyuan Road, Nanshan District, Shenzhen 518052, China
| | - Xiangbin Deng
- Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, Shenzhen Nanshan Hospital of Shenzhen University, No 89, Taoyuan Road, Nanshan District, Shenzhen 518052, China.,Quality Control Center of Hospital Infection Management of Shenzhen, No 89, Taoyuan Road, Nanshan District, Shenzhen 518052, China
| | - Xiaojun Liu
- Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, Shenzhen Nanshan Hospital of Shenzhen University, No 89, Taoyuan Road, Nanshan District, Shenzhen 518052, China.,Quality Control Center of Hospital Infection Management of Shenzhen, No 89, Taoyuan Road, Nanshan District, Shenzhen 518052, China
| | - Zhiwei Lin
- Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, Shenzhen Nanshan Hospital of Shenzhen University, No 89, Taoyuan Road, Nanshan District, Shenzhen 518052, China.,Quality Control Center of Hospital Infection Management of Shenzhen, No 89, Taoyuan Road, Nanshan District, Shenzhen 518052, China.,Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, No 130, Dongan road, Xuhui District, Shanghai 200032, China
| | - Zhong Chen
- Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, Shenzhen Nanshan Hospital of Shenzhen University, No 89, Taoyuan Road, Nanshan District, Shenzhen 518052, China.,Quality Control Center of Hospital Infection Management of Shenzhen, No 89, Taoyuan Road, Nanshan District, Shenzhen 518052, China
| | - Guiqiu Li
- Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, Shenzhen Nanshan Hospital of Shenzhen University, No 89, Taoyuan Road, Nanshan District, Shenzhen 518052, China.,Quality Control Center of Hospital Infection Management of Shenzhen, No 89, Taoyuan Road, Nanshan District, Shenzhen 518052, China
| | - Qiwen Deng
- Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, Shenzhen Nanshan Hospital of Shenzhen University, No 89, Taoyuan Road, Nanshan District, Shenzhen 518052, China.,Quality Control Center of Hospital Infection Management of Shenzhen, No 89, Taoyuan Road, Nanshan District, Shenzhen 518052, China
| | - Zhijian Yu
- Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, Shenzhen Nanshan Hospital of Shenzhen University, No 89, Taoyuan Road, Nanshan District, Shenzhen 518052, China.,Quality Control Center of Hospital Infection Management of Shenzhen, No 89, Taoyuan Road, Nanshan District, Shenzhen 518052, China
| |
Collapse
|
35
|
Li Y, Chen X, Zhang Z, Wang L, Wang J, Zeng J, Yang J, Lu B. Microbiological and clinical characteristics of Streptococcus gallolyticus subsp. pasteurianus infection in China. BMC Infect Dis 2019; 19:791. [PMID: 31500570 PMCID: PMC6734276 DOI: 10.1186/s12879-019-4413-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/27/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Infections by Streptococcus gallolyticus subsp. pasteurianus (SGSP) is often underestimated. Herein, the epidemiological features and resistant characteristics of SGSP in mainland China are characterized to enable a better understanding of its role in clinical infections. METHODS In the present work, 45 SGSP isolates were collected from the samples of bloodstream, urine, aseptic body fluid, and fetal membrane/placenta from patients in 8 tertiary general hospitals of 6 cities/provinces in China from 2011 to 2017. The identification of all isolates was performed using traditional biochemical methods, 16S rRNA and gyrB sequencing, followed by the characterization of their antibiotic resistance profiling and involved genes. RESULTS Among 34 non-pregnancy-related patients, 4 (4/34,11.8%) patients had gastrointestinal cancer, 10 (10/34, 29.4%) patients had diabetes, and one patient had infective endocarditis. Moreover, 11 cases of pregnant women were associated with intrauterine infection (9/11, 81.2%) and urinary tract infection (1/11, 9.1%), respectively. Except one, all other SGSP isolates were correctly identified by the BD Phoenix automated system. We found that all SGSP isolates were phenotypically susceptible to penicillin, ampicillin, cefotaxime, meropenem, and vancomycin. Forty strains (40/45, 88.9%) were both erythromycin and clindamycin-resistant, belonging to the cMLSB phenotype, and the majority of them carried erm(B) gene (39/40, 97.5%). Although the cMLSB/erm(B) constituted the most frequently identified phenotype/genotype combination (25/40, 62.5%) among all erythromycin-resistant cMLSB isolates, erm(B)/erm(A), erm(B)/mef(A/E), and erm(B)/erm(T) was detected in 7, 4, and 3 isolates, respectively. Furthermore, 43 strains (43/45, 95.6%) were tetracycline-resistant, and out of these, 39 strains (39/45, 86.7%) carried tet(L), 27(27/45, 60.0%) strains carried tet(O), and 7 (7/45, 15.6%) strains carried tet(M), alone or combined, respectively. All erythromycin-resistant isolates were also resistant to tetracycline. CONCLUSIONS It is important to study and draw attention on SGSP, an underreported opportunistic pathogen targeting immunodeficient populations, notably elderly subjects, pregnant women and neonates.
Collapse
Affiliation(s)
- Yi Li
- Department of Laboratory Medicine, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Xingchun Chen
- Department of Laboratory Medicine, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Zhijun Zhang
- Department of Laboratory Medicine, Tai'an City Central Hospital (Tai'an), Shandong, 271016, China
| | - Lijun Wang
- Department of Laboratory Medicine, Beijing Tsinghua Chang Gung Hospital, Tsinghua University, Beijing, 102218, China
| | - Junrui Wang
- Department of clinical laboratory, Affiliated hospital of Inner Mongolia medical university, Hohhot, 010050, China
| | - Ji Zeng
- Department of Laboratory Medicine, Wuhan Pu Ai Hospital of Huazhong University of Science and Technology, Wuhan, 430034, China
| | - Junwen Yang
- Department of Laboratory Medicine, Zhengzhou children's hospital, Zhengzhou, 450018, China
| | - Binghuai Lu
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China. .,Center for Respiratory Diseases, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China. .,National Clinical Research Center of Respiratory Diseases, No 2, East Yinghua Road, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
36
|
Hua CZ, Yu H, Xu HM, Yang LH, Lin AW, Lyu Q, Lu HP, Xu ZW, Gao W, Chen XJ, Wang CQ, Jing CM. A multi-center clinical investigation on invasive Streptococcus pyogenes infection in China, 2010-2017. BMC Pediatr 2019; 19:181. [PMID: 31167650 PMCID: PMC6549372 DOI: 10.1186/s12887-019-1536-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 05/14/2019] [Indexed: 12/19/2022] Open
Abstract
Background Invasive S. pyogenes diseases are uncommon, serious infections with high case fatality rates (CFR). There are few publications on this subject in the field of pediatrics. This study aimed at characterizing clinical and laboratory aspects of this disease in Chinese children. Patients and methods A retrospective study was conducted and pediatric in-patients with S. pyogenes infection identified by cultures from normally sterile sites were included, who were diagnosed and treated in 9 tertiary hospitals during 2010–2017. Results A total of 66 cases were identified, in which 37 (56.1%) were male. The median age of these patients, including 11 neonates, was 3.0 y. Fifty-nine (89.4%) isolates were determined from blood. Fever was the major symptom (60/66, 90.9%) and sepsis was the most frequent presentation (64/66, 97.0%, including 42.4% with skin or soft tissue infections and 25.8% with pneumonia. The mean duration of the chief complaint was (3.8 ± 3.2) d. Only 18 (27.3%) patients had been given antibiotics prior to the hospitalization. Among all patients, 15 (22.7%) developed streptococcal toxin shock syndrome (STSS). No S. pyogenes strain was resistant to penicillin, ceftriaxone, or vancomycin, while 88.9% (56/63) and 81.4% (48/59) of the tested isolates were resistant to clindamycin and erythromycin respectively. Most of the patients were treated with β-lactams antibiotics and 36.4% had been treated with meropenem or imipenem. Thirteen (19.7%) cases died from infection, in which 9 (13.6%) had complication with STSS. Conclusions Invasive S. pyogenes infections often developed from skin or soft tissue infection and STSS was the main cause of death in Chinese children. Ongoing surveillance is required to gain a greater understanding of this disease.
Collapse
Affiliation(s)
- Chun-Zhen Hua
- Division of Infectious Diseases, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China.
| | - Hui Yu
- Division of Infectious Diseases, Children's Hospital of Fudan University, Shanghai, 201102, People's Republic of China
| | - Hong-Mei Xu
- Division of Infectious Diseases, Chongqing Medical University Affiliated Children's Hospital, Chongqing, 400014, People's Republic of China
| | - Lin-Hai Yang
- Department of Cardiology, Shanxi Children's Hospital, Taiyuan, 030013, People's Republic of China
| | - Ai-Wei Lin
- Division of Infectious Diseases, Qilu Children's Hospital of Shandong University, Jinan, 250022, People's Republic of China
| | - Qin Lyu
- The Intensive Care Unit, Ningbo Women and Children's Hospital, Ningbo, 315012, People's Republic of China
| | - Hong-Ping Lu
- The intensive Care Unit, Taizhou Hospital of Zhejiang Province, Linhai, 317000, People's Republic of China
| | - Zhi-Wei Xu
- Division of Infectious Diseases, The Second Affiliated Hospital &Yuying Children's Hospital of Wenzhou Medicial University, Wenzhou, 325027, People's Republic of China
| | - Wei Gao
- Division of Infectious Diseases, Kaifeng Children's Hospital, Kaifeng, 475000, People's Republic of China
| | - Xue-Jun Chen
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Chuan-Qing Wang
- Department of Clinical Laboratory, Children's Hospital of Fudan University, Shanghai, 201102, People's Republic of China
| | - Chun-Mei Jing
- Department of Clinical Laboratory, Chongqing Medical University Affiliated Children's Hospital, Chongqing, 400014, People's Republic of China
| |
Collapse
|
37
|
Berwal A, Chawla K, Shetty S, Gupta A. Trend of antibiotic susceptibility of Streptococcus pyogenes isolated from respiratory tract infections in tertiary care hospital in south Karnataka. IRANIAN JOURNAL OF MICROBIOLOGY 2019; 11:13-18. [PMID: 30996826 PMCID: PMC6462275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
BACKGROUND AND OBJECTIVES Streptococcus pyogenes is recognized as an important pathogen of respiratory tract infections. The rapidly, emerging problem of antibiotic resistant Streptococcus pyogenes is a major issue nowadays. The present study aimed to evaluate the antibiotic susceptibility of Streptococcus pyogenes isolated from upper respiratory tract infections in tertiary care hospital of south Karnataka. MATERIALS AND METHODS A retrospective study was conducted over a period of two years. The specimens were processed by Gram staining and aerobic culture. The bacteria were isolated as per standard protocols. The minimum inhibitory values and extent of antibiotic resistance of commonly used antimicrobials were analysed for the isolated strains. RESULTS A total of 2123 specimens were received from patients with respiratory tract infections, among which, 50 Streptococcus pyogenes isolates were obtained. Out of these, 8% were not sensitive to penicillin. Using VITEK 2 system, the prevalence of resistances to cefotaxime, erythromycin, tetracycline, levofloxacin, clindamycin and ceftriaxone were 4.2%, 83%, 51%, 8.9%, 40% and 5.3% respectively. CONCLUSION It is important to know about the prevalence of resistance and rising MIC values of commonly used antibiotics regarding Streptococcus pyogenes to avoid therapeutic failures.
Collapse
Affiliation(s)
- Anupam Berwal
- Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Kiran Chawla
- Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India,Corresponding author: Kiran Chawla, MD, Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India. Tel: +91-820-2922717,
| | - Seema Shetty
- Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Ashu Gupta
- Department of Microbiology, Deendayalupadhyay Hospital, New Delhi, India
| |
Collapse
|
38
|
Huang L, Chen X, Xu H, Sun L, Li C, Guo W, Xiang L, Luo G, Cui Y, Lu B. Clinical features, identification, antimicrobial resistance patterns of Nocardia species in China: 2009-2017. Diagn Microbiol Infect Dis 2018; 94:165-172. [PMID: 30679058 DOI: 10.1016/j.diagmicrobio.2018.12.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 12/04/2018] [Accepted: 12/14/2018] [Indexed: 02/06/2023]
Abstract
Nocardia spp. is a pathogen responsible for a variety of clinical infections, ranging from skin and soft tissue infections, to the respiratory tract and central nervous system infections. Its epidemiological characteristics, including species distribution, clinical features, and antimicrobial susceptibility profiles, should be under surveillance for the prevention and treatment of nocardiosis. In the present study, over a 9-year period (from 2009 to 2017), 53 non-repetitive Nocardia isolates were collected from 8 tertiary general hospitals of 7 cities in China. These isolates were identified to species level by multilocus sequence analysis(MLSA). The clinical data were also reviewed. The susceptibilities to 10 commonly-used antibiotics for Nocardia were determined by E-test stripes, and the resistance rates, MIC50 and MIC90 to each antibiotic by different species were analyzed. Of 53 Nocardia isolates, N. farcinica was the most common species (24.5%, 13/53), followed by N. cyriacigeorgica (20.8%, 11/53), N. terpenica (15.1%, 8/53), N. abscessus (9.43%, 5/53), N. otitidiscaviarum (7.55%, 4/53), respectively. Furthermore, 31 Nocardia (58.5%) isolates were recovered from lower respiratory tract (sputum and BALF), 15 (28.3%) from superficial Infection, 3 (5.7%) from pleural effusion, 2 (3.8%) from CSF, and 1 from bone marrow and 1 from synovial fluid, respectively. The antibiotic resistance profiles varied between different Nocardia species. All Nocardia isolates were susceptible to linezolid, followed by imipenem and amikacin (both 92.5% susceptibility rate). N. terpenica, rarely documented elsewhere, showed a different antimicrobial susceptibility profile. In summary, herein, the clinical and antibiotic resistance features of Nocardia species reported would be helpful for understanding the diversity of Nocardia species circulating in China and for decision making in the context of empiric therapy.
Collapse
Affiliation(s)
- Lei Huang
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Xingchun Chen
- Department of Laboratory Medicine, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Heping Xu
- Department of Clinical Laboratory, First Hospital Affiliated to Xiamen University, Xiamen, China
| | - Liying Sun
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Chen Li
- Department of Laboratory Medicine, Liuyang city traditional Chinese medicine hospital, Liuyang City, Changsha, Hunan, China
| | - Wenchen Guo
- Department of Laboratory Medicine, Weifang People's Hospital, Weifang,Shandong, China
| | - Lili Xiang
- Department of Laboratory Medicine, Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Shapingba District, Chongqing, China
| | - Guolan Luo
- Medical Science Laboratory, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Yancao Cui
- Department of Laboratory Medicine, Civil Aviation General Hospital, Beijing, China
| | - Binghuai Lu
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
39
|
Giménez MJ, Aguilar L, Granizo JJ. Revisiting cefditoren for the treatment of community-acquired infections caused by human-adapted respiratory pathogens in adults. Multidiscip Respir Med 2018; 13:40. [PMID: 30410757 PMCID: PMC6214181 DOI: 10.1186/s40248-018-0152-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/24/2018] [Indexed: 11/13/2022] Open
Abstract
Fifteen years after its licensure, this revision assesses the role of cefditoren facing the current pharmacoepidemiology of resistances in respiratory human-adapted pathogens (Streptococcus pneumoniae, Streptococcus pyogenes, Haemophilus influenzae and Moraxella catarrhalis). In the era of post- pneumococcal conjugate vaccines and in an environment of increasing diffusion of the ftsI gene among H. influenzae isolates, published studies on the cefditoren in vitro microbiological activity, pharmacokinetic/pharmcodynamic (PK/PD) activity and clinical efficacy are reviewed. Based on published data, an overall analysis is performed for PK/PD susceptibility interpretation. Further translation of PK/PD data into clinical/microbiological outcomes obtained in clinical trials carried out in the respiratory indications approved for cefditoren in adults (tonsillitis, sinusitis, acute exacerbation of chronic bronchitis and community-acquired pneumonia) is commented. Finally, the role of cefditoren within the current antibiotic armamentarium for the treatment of community respiratory tract infections in adults is discussed based on the revised information on its intrinsic activity, pharmacodynamic adequacy and clinical/bacteriological efficacy. Cefditoren remains an option to be taken into account when selecting an oral antibiotic for the empirical treatment of respiratory infections in the community caused by human-adapted pathogens, even when considering changes in the pharmacoepidemiology of resistances over the last two decades.
Collapse
Affiliation(s)
- María-José Giménez
- Research Department, PRISM-AG, Don Ramón de la Cruz 72, 28006 Madrid, Spain
| | - Lorenzo Aguilar
- Research Department, PRISM-AG, Don Ramón de la Cruz 72, 28006 Madrid, Spain
| | - Juan José Granizo
- Preventive Medicine Department, Hospital Universitario Infanta Cristina, Parla, Madrid, Spain
| |
Collapse
|
40
|
Affiliation(s)
- Monika L Dietrich
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA
| | - Russell W Steele
- Department of Pediatrics, Ochsner Health Center for Children, New Orleans, LA.,University of Queensland School of Medicine, Ochsner Clinical School, New Orleans, LA
| |
Collapse
|
41
|
Hoshino M, Nakakido M, Nagatoishi S, Aikawa C, Nakagawa I, Tsumoto K. Biophysical characterization of the interaction between heme and proteins responsible for heme transfer in Streptococcus pyogenes. Biochem Biophys Res Commun 2017; 493:1109-1114. [DOI: 10.1016/j.bbrc.2017.09.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 09/12/2017] [Indexed: 10/18/2022]
|