1
|
kammoun I, Miotello G, Ben Slama K, Armengaud J, Ghodhbane-Gtari F, Gtari M. The impact of Elaeagnus angustifolia root exudates on Parafrankia soli NRRL B-16219 exoproteome. J Genomics 2024; 12:58-70. [PMID: 38751381 PMCID: PMC11093716 DOI: 10.7150/jgen.93243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/21/2024] [Indexed: 05/18/2024] Open
Abstract
Root exudates from host plant species are known to play a critical role in the establishment and maintenance of symbiotic relationships with soil bacteria. In this study, we investigated the impact of root exudates from compatible host plant species; Elaeagnus angustifolia on the exoproteome of Parafrankia soli strain NRRL B-16219. A total of 565 proteins were evidenced as differentially abundant, with 32 upregulated and 533 downregulated in presence of the plant exudates. Analysis of the function of these proteins suggests that the bacterial strain is undergoing a complex metabolic reprogramming towards a new developmental phase elicited in presence of host plant root exudates. The upregulation of Type II/IV secretion system proteins among the differentially expressed proteins indicates their possible role in infecting the host plant, as shown for some rhizobia. Additionally, EF-Tu, proteins upregulated in this study, may function as an effector for the T4SSs and trigger plant defense responses. These findings suggest that Parafrankia soli may use EF-Tu to infect the actinorhizal host plant and pave the way for further investigations of the molecular mechanisms underlying the establishment of symbiotic relationships.
Collapse
Affiliation(s)
- Ikram kammoun
- Department of Biological and Chemical Engineering USCR Molecular Bacteriology and & Genomics, National Institute of Applied Sciences and Technology, University of Carthage, Tunis, Tunisia
| | - Guylaine Miotello
- Département Médicaments et Technologies pour la Santé (DMTS), CEA, INRAE, Université Paris-Saclay, SPI, 30200 Bagnols sur Cèze, France
| | - Karim Ben Slama
- Higher Institute of Applied Biological Sciences, Laboratory of Bioresources, Environment, and Biotechnology, University of Tunis El Manar, Tunis, Tunisia
| | - Jean Armengaud
- Département Médicaments et Technologies pour la Santé (DMTS), CEA, INRAE, Université Paris-Saclay, SPI, 30200 Bagnols sur Cèze, France
| | - Faten Ghodhbane-Gtari
- Department of Biological and Chemical Engineering USCR Molecular Bacteriology and & Genomics, National Institute of Applied Sciences and Technology, University of Carthage, Tunis, Tunisia
- Higher Institute of Biotechnology of Sidi Thabet, University of La Manouba, Sidi Thabet, Tunisia
| | - Maher Gtari
- Department of Biological and Chemical Engineering USCR Molecular Bacteriology and & Genomics, National Institute of Applied Sciences and Technology, University of Carthage, Tunis, Tunisia
| |
Collapse
|
2
|
Boutonnet C, Ginies C, Alpha-Bazin B, Armengaud J, Château A, Duport C. S-layer is a key element in metabolic response and entry into the stationary phase in Bacillus cereus AH187. J Proteomics 2023; 289:105007. [PMID: 37730087 DOI: 10.1016/j.jprot.2023.105007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/21/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023]
Abstract
Bacillus cereus is a food-borne Gram-positive pathogen. The emetic reference strain B. cereus AH187 is surrounded by a proteinaceous surface layer (S-layer) that contributes to its physico-chemical surface properties, and promotes its adhesion in response to starvation conditions. The S-layer produced by B. cereus AH187 is composed of two proteins, SL2 and EA1, which are incorporated at different growth stages. Here, we showed that deletion of the genes encoding SL2 and EA1 produced viable cells, but decreased the glucose uptake rate at the start of growth, and induced extensive reorganization of the cellular and exoproteomes upon entry into the stationary phase. As a consequence, stationary cells were less resistant to abiotic stress. Taken together, our data indicate that the S-layer is crucial but comes at a metabolic cost that modulates the stationary phase response. SIGNIFICANCE: The emetic strains of Bacillus cereus are known to cause severe food poisoning, making it crucial to understand the factors contributing to their selective enrichment in foods. Most emetic strains are surrounded by a crystalline S-layer, which is a costly protein structure to produce. In this study, we used high-throughput proteomics to investigate how S-layer synthesis affects the allocation of cellular resources in the emetic B. cereus strain AH187. Our results demonstrate that the synthesis of the S-layer plays a crucial role in the pathogen's ability to thrive under stationary growth phase conditions by modulating the stress response, thereby promoting its lifestyle as an emetic pathogen. We conclude that the synthesis of the S-layer is a critical adaptation for emetic B. cereus to successfully colonize specific niches.
Collapse
Affiliation(s)
| | | | - Béatrice Alpha-Bazin
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200 Bagnols-sur-Cèze, France
| | - Jean Armengaud
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200 Bagnols-sur-Cèze, France
| | - Alice Château
- Avignon Université, INRAE, UMR SQPOV, F-84914 Avignon, France
| | | |
Collapse
|
3
|
Mollova D, Gozmanova M, Apostolova E, Yahubyan G, Iliev I, Baev V. Illuminating the Genomic Landscape of Lactiplantibacillus plantarum PU3-A Novel Probiotic Strain Isolated from Human Breast Milk, Explored through Nanopore Sequencing. Microorganisms 2023; 11:2440. [PMID: 37894099 PMCID: PMC10609609 DOI: 10.3390/microorganisms11102440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/11/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Lactiplantibacillus plantarum stands out as a remarkably diverse species of lactic acid bacteria, occupying a myriad of ecological niches. Particularly noteworthy is its presence in human breast milk, which can serve as a reservoir of probiotic bacteria, contributing significantly to the establishment and constitution of infant gut microbiota. In light of this, our study attempted to conduct an initial investigation encompassing both genomic and phenotypic aspects of the L. plantarum PU3 strain, that holds potential as a probiotic agent. By employing the cutting-edge third-generation Nanopore sequencing technology, L. plantarum PU3 revealed a circular chromosome of 3,180,940 bp and nine plasmids of various lengths. The L. plantarum PU3 genome has a total of 2962 protein-coding and non-coding genes. Our in-depth investigations revealed more than 150 probiotic gene markers that unfold the genetic determinants for acid tolerance, bile resistance, adhesion, and oxidative and osmotic stress. The in vivo analysis showed the strain's proficiency in utilizing various carbohydrates as growth substrates, complementing the in silico analysis of the genes involved in metabolic pathways. Notably, the strain demonstrated a pronounced affinity for D-sorbitol, D-mannitol, and D-Gluconic acid, among other carbohydrate sources. The in vitro experimental verification of acid, osmotic and bile tolerance validated the robustness of the strain in challenging environments. Encouragingly, no virulence factors were detected in the genome of PU3, suggesting its safety profile. In search of beneficial properties, we found potential bacteriocin biosynthesis clusters, suggesting its capability for antimicrobial activity. The characteristics exhibited by L. plantarum PU3 pave the way for promising strain potential, warranting further investigations to unlock its full capacity and contributions to probiotic and therapeutic avenues.
Collapse
Affiliation(s)
- Daniela Mollova
- Faculty of Biology, Department of Biochemistry and Microbiology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria; (D.M.); (I.I.)
| | - Mariyana Gozmanova
- Faculty of Biology, Department of Plant Physiology and Molecular Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria; (M.G.); (E.A.); (G.Y.)
| | - Elena Apostolova
- Faculty of Biology, Department of Plant Physiology and Molecular Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria; (M.G.); (E.A.); (G.Y.)
| | - Galina Yahubyan
- Faculty of Biology, Department of Plant Physiology and Molecular Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria; (M.G.); (E.A.); (G.Y.)
| | - Ilia Iliev
- Faculty of Biology, Department of Biochemistry and Microbiology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria; (D.M.); (I.I.)
| | - Vesselin Baev
- Faculty of Biology, Department of Plant Physiology and Molecular Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria; (M.G.); (E.A.); (G.Y.)
| |
Collapse
|
4
|
Ahmad W, Khaliq S, Akhtar N, El Arab J, Akhtar K, Prakash S, Anwar MA, Munawar N. Whole Genome Sequence Analysis of a Novel Apilactobacillus Species from Giant Honeybee (Apis dorsata) Gut Reveals Occurrence of Genetic Elements Coding Prebiotic and Probiotic Traits. Microorganisms 2022; 10:microorganisms10050904. [PMID: 35630349 PMCID: PMC9147854 DOI: 10.3390/microorganisms10050904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
Apilactobacillus spp. are classified as obligate fructophilic lactic acid bacteria (FLAB) that inhabit fructose-rich niches such as honeybee gut. Lactic acid bacteria are an important component of the gut microbiome and play a crucial role in maintaining gut health. In this study, a new FLAB strain HBW1, capable of producing glucan-type exopolysaccharide, was isolated from giant honeybee (Apis dorsata) gut and subjected to whole genome sequencing (WHS) to determine its health-beneficial traits. The genome size of the isolate was 1.49 Mb with a GC content of 37.2%. For species level identity, 16S rDNA sequence similarity, genome to genome distance calculator (dDDH), and average nucleotide identity (ANI) values were calculated. Phylogenetic analysis showed that the isolate HBW1 belongs to the Apilactobacillus genus. The dDDH and ANI values in comparison with closely clustered Apilactobacillus kunkeei species were 52% and 93.10%, respectively. Based on these values, we concluded that HBW1 is a novel species of Apilactobacillus, and we propose the name Apilactobacillus waqarii HBW1 for it. Further, WHS data mining of HBW1 revealed that it harbors two glucosyltransferase genes for prebiotic glucan-type exopolysaccharide synthesis. Moreover, chaperon (clp) and methionine sulfoxide reductase (msrA, msrB, and msrC) genes as well as nutritional marker genes for folic acid (folD) and riboflavin biosynthesis (rib operon), important for conferring probiotic properties, were also detected. Occurrence of these genetic traits make HBW1 an excellent candidate for application to improve gut function.
Collapse
Affiliation(s)
- Waqar Ahmad
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan; (W.A.); (S.K.); (N.A.); (K.A.)
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC H3A 2B4, Canada;
| | - Shazia Khaliq
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan; (W.A.); (S.K.); (N.A.); (K.A.)
| | - Nasrin Akhtar
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan; (W.A.); (S.K.); (N.A.); (K.A.)
| | - Jamilah El Arab
- Department of Chemistry, College of Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates;
| | - Kalsoom Akhtar
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan; (W.A.); (S.K.); (N.A.); (K.A.)
| | - Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC H3A 2B4, Canada;
| | - Munir A. Anwar
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan; (W.A.); (S.K.); (N.A.); (K.A.)
- Correspondence: (M.A.A.); (N.M.)
| | - Nayla Munawar
- Department of Chemistry, College of Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates;
- Correspondence: (M.A.A.); (N.M.)
| |
Collapse
|
5
|
Ahmad W, Khaliq S, Akhtar N, El Arab J, Akhtar K, Prakash S, Anwar MA, Munawar N. Whole Genome Sequence Analysis of a Novel Apilactobacillus Species from Giant Honeybee (Apis dorsata) Gut Reveals Occurrence of Genetic Elements Coding Prebiotic and Probiotic Traits. Microorganisms 2022. [DOI: https://doi.org/10.3390/microorganisms10050904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Apilactobacillus spp. are classified as obligate fructophilic lactic acid bacteria (FLAB) that inhabit fructose-rich niches such as honeybee gut. Lactic acid bacteria are an important component of the gut microbiome and play a crucial role in maintaining gut health. In this study, a new FLAB strain HBW1, capable of producing glucan-type exopolysaccharide, was isolated from giant honeybee (Apis dorsata) gut and subjected to whole genome sequencing (WHS) to determine its health-beneficial traits. The genome size of the isolate was 1.49 Mb with a GC content of 37.2%. For species level identity, 16S rDNA sequence similarity, genome to genome distance calculator (dDDH), and average nucleotide identity (ANI) values were calculated. Phylogenetic analysis showed that the isolate HBW1 belongs to the Apilactobacillus genus. The dDDH and ANI values in comparison with closely clustered Apilactobacillus kunkeei species were 52% and 93.10%, respectively. Based on these values, we concluded that HBW1 is a novel species of Apilactobacillus, and we propose the name Apilactobacillus waqarii HBW1 for it. Further, WHS data mining of HBW1 revealed that it harbors two glucosyltransferase genes for prebiotic glucan-type exopolysaccharide synthesis. Moreover, chaperon (clp) and methionine sulfoxide reductase (msrA, msrB, and msrC) genes as well as nutritional marker genes for folic acid (folD) and riboflavin biosynthesis (rib operon), important for conferring probiotic properties, were also detected. Occurrence of these genetic traits make HBW1 an excellent candidate for application to improve gut function.
Collapse
|
6
|
Hamitouche F, Gaillard JC, Schmitt P, Armengaud J, Duport C, Dedieu L. Redox proteomic study of Bacillus cereus thiol proteome during fermentative anaerobic growth. BMC Genomics 2021; 22:648. [PMID: 34493209 PMCID: PMC8425097 DOI: 10.1186/s12864-021-07962-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/05/2021] [Indexed: 11/15/2022] Open
Abstract
Background Bacillus cereus is a notorious foodborne pathogen, which can grow under anoxic conditions. Anoxic growth is supported by endogenous redox metabolism, for which the thiol redox proteome serves as an interface. Here, we studied the cysteine (Cys) proteome dynamics of B. cereus ATCC 14579 cells grown under fermentative anoxic conditions. We used a quantitative thiol trapping method combined with proteomics profiling. Results In total, we identified 153 reactive Cys residues in 117 proteins participating in various cellular processes and metabolic pathways, including translation, carbohydrate metabolism, and stress response. Of these reactive Cys, 72 were detected as reduced Cys. The B. cereus Cys proteome evolved during growth both in terms of the number of reduced Cys and the Cys-containing proteins identified, reflecting its growth-phase-dependence. Interestingly, the reduced status of the B. cereus thiol proteome increased during growth, concomitantly to the decrease of extracellular oxidoreduction potential. Conclusions Taken together, our data show that the B. cereus Cys proteome during unstressed fermentative anaerobic growth is a dynamic entity and provide an important foundation for future redox proteomic studies in B. cereus and other organisms. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07962-y.
Collapse
Affiliation(s)
- Fella Hamitouche
- Avignon Université, INRAE, UMR SQPOV, Site Agroparc, F-84914, Avignon Cedex 9, France
| | - Jean-Charles Gaillard
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200, Bagnols-sur-Cèze, France
| | - Philippe Schmitt
- Avignon Université, INRAE, UMR SQPOV, Site Agroparc, F-84914, Avignon Cedex 9, France
| | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200, Bagnols-sur-Cèze, France
| | - Catherine Duport
- Avignon Université, INRAE, UMR SQPOV, Site Agroparc, F-84914, Avignon Cedex 9, France
| | - Luc Dedieu
- Avignon Université, INRAE, UMR SQPOV, Site Agroparc, F-84914, Avignon Cedex 9, France.
| |
Collapse
|
7
|
Duport C, Madeira JP, Farjad M, Alpha-Bazin B, Armengaud J. Methionine Sulfoxide Reductases Contribute to Anaerobic Fermentative Metabolism in Bacillus cereus. Antioxidants (Basel) 2021; 10:antiox10050819. [PMID: 34065610 PMCID: PMC8161402 DOI: 10.3390/antiox10050819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 12/30/2022] Open
Abstract
Reversible oxidation of methionine to methionine sulfoxide (Met(O)) is a common posttranslational modification occurring on proteins in all organisms under oxic conditions. Protein-bound Met(O) is reduced by methionine sulfoxide reductases, which thus play a significant antioxidant role. The facultative anaerobe Bacillus cereus produces two methionine sulfoxide reductases: MsrA and MsrAB. MsrAB has been shown to play a crucial physiological role under oxic conditions, but little is known about the role of MsrA. Here, we examined the antioxidant role of both MsrAB and MrsA under fermentative anoxic conditions, which are generally reported to elicit little endogenous oxidant stress. We created single- and double-mutant Δmsr strains. Compared to the wild-type and ΔmsrAB mutant, single- (ΔmsrA) and double- (ΔmsrAΔmsrAB) mutants accumulated higher levels of Met(O) proteins, and their cellular and extracellular Met(O) proteomes were altered. The growth capacity and motility of mutant strains was limited, and their energy metabolism was altered. MsrA therefore appears to play a major physiological role compared to MsrAB, placing methionine sulfoxides at the center of the B. cereus antioxidant system under anoxic fermentative conditions.
Collapse
Affiliation(s)
- Catherine Duport
- Département de Biologie, Avignon Université, INRAE, UMR SQPOV, F-84914 Avignon, France; (J.-P.M.); (M.F.)
- Correspondence: ; Tel.: +33-432-722-507
| | - Jean-Paul Madeira
- Département de Biologie, Avignon Université, INRAE, UMR SQPOV, F-84914 Avignon, France; (J.-P.M.); (M.F.)
| | - Mahsa Farjad
- Département de Biologie, Avignon Université, INRAE, UMR SQPOV, F-84914 Avignon, France; (J.-P.M.); (M.F.)
| | - Béatrice Alpha-Bazin
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, F-30200 Bagnols-sur-Cèze, France; (B.A.-B.); (J.A.)
| | - Jean Armengaud
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, F-30200 Bagnols-sur-Cèze, France; (B.A.-B.); (J.A.)
| |
Collapse
|
8
|
Aussel L, Ezraty B. Methionine Redox Homeostasis in Protein Quality Control. Front Mol Biosci 2021; 8:665492. [PMID: 33928125 PMCID: PMC8076862 DOI: 10.3389/fmolb.2021.665492] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/24/2021] [Indexed: 01/21/2023] Open
Abstract
Bacteria live in different environments and are subject to a wide variety of fluctuating conditions. During evolution, they acquired sophisticated systems dedicated to maintaining protein structure and function, especially during oxidative stress. Under such conditions, methionine residues are converted into methionine sulfoxide (Met-O) which can alter protein function. In this review, we focus on the role in protein quality control of methionine sulfoxide reductases (Msr) which repair oxidatively protein-bound Met-O. We discuss our current understanding of the importance of Msr systems in rescuing protein function under oxidative stress and their ability to work in coordination with chaperone networks. Moreover, we highlight that bacterial chaperones, like GroEL or SurA, are also targeted by oxidative stress and under the surveillance of Msr. Therefore, integration of methionine redox homeostasis in protein quality control during oxidative stress gives a complete picture of this bacterial adaptive mechanism.
Collapse
Affiliation(s)
- Laurent Aussel
- Aix-Marseille Université, CNRS, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Benjamin Ezraty
- Aix-Marseille Université, CNRS, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Marseille, France
| |
Collapse
|
9
|
Aledo JC, Aledo P. Susceptibility of Protein Methionine Oxidation in Response to Hydrogen Peroxide Treatment-Ex Vivo Versus In Vitro: A Computational Insight. Antioxidants (Basel) 2020; 9:antiox9100987. [PMID: 33066324 PMCID: PMC7602125 DOI: 10.3390/antiox9100987] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 11/25/2022] Open
Abstract
Methionine oxidation plays a relevant role in cell signaling. Recently, we built a database containing thousands of proteins identified as sulfoxidation targets. Using this resource, we have now developed a computational approach aimed at characterizing the oxidation of human methionyl residues. We found that proteins oxidized in both cell-free preparations (in vitro) and inside living cells (ex vivo) were enriched in methionines and intrinsically disordered regions. However, proteins oxidized ex vivo tended to be larger and less abundant than those oxidized in vitro. Another distinctive feature was their subcellular localizations. Thus, nuclear and mitochondrial proteins were preferentially oxidized ex vivo but not in vitro. The nodes corresponding with ex vivo and in vitro oxidized proteins in a network based on gene ontology terms showed an assortative mixing suggesting that ex vivo oxidized proteins shared among them molecular functions and biological processes. This was further supported by the observation that proteins from the ex vivo set were co-regulated more often than expected by chance. We also investigated the sequence environment of oxidation sites. Glutamate and aspartate were overrepresented in these environments regardless the group. In contrast, tyrosine, tryptophan and histidine were clearly avoided but only in the environments of the ex vivo sites. A hypothetical mechanism of methionine oxidation accounts for these observations presented.
Collapse
|
10
|
Bacillus cereus Decreases NHE and CLO Exotoxin Synthesis to Maintain Appropriate Proteome Dynamics During Growth at Low Temperature. Toxins (Basel) 2020; 12:toxins12100645. [PMID: 33036317 PMCID: PMC7601483 DOI: 10.3390/toxins12100645] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/17/2020] [Accepted: 09/23/2020] [Indexed: 12/02/2022] Open
Abstract
Cellular proteomes and exoproteomes are dynamic, allowing pathogens to respond to environmental conditions to sustain growth and virulence. Bacillus cereus is an important food-borne pathogen causing intoxication via emetic toxin and/or multiple protein exotoxins. Here, we compared the dynamics of the cellular proteome and exoproteome of emetic B. cereus cells grown at low (16 °C) and high (30 °C) temperature. Tandem mass spectrometry (MS/MS)-based shotgun proteomics analysis identified 2063 cellular proteins and 900 extracellular proteins. Hierarchical clustering following principal component analysis indicated that in B. cereus the abundance of a subset of these proteins—including cold-stress responders, and exotoxins non-hemolytic enterotoxin (NHE) and hemolysin I (cereolysin O (CLO))—decreased at low temperature, and that this subset governs the dynamics of the cellular proteome. NHE, and to a lesser extent CLO, also contributed significantly to exoproteome dynamics; with decreased abundances in the low-temperature exoproteome, especially in late growth stages. Our data therefore indicate that B. cereus may reduce its production of secreted protein toxins to maintain appropriate proteome dynamics, perhaps using catabolite repression to conserve energy for growth in cold-stress conditions, at the expense of virulence.
Collapse
|
11
|
Kappler U, Nasreen M, McEwan A. New insights into the molecular physiology of sulfoxide reduction in bacteria. Adv Microb Physiol 2019; 75:1-51. [PMID: 31655735 DOI: 10.1016/bs.ampbs.2019.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Sulfoxides occur in biology as products of the S-oxygenation of small molecules as well as in peptides and proteins and their formation is often associated with oxidative stress and can affect biological function. In bacteria, sulfoxide damage can be reversed by different types of enzymes. Thioredoxin-dependent peptide methionine sulfoxide reductases (MSR proteins) repair oxidized methionine residues and are found in all Domains of life. In bacteria MSR proteins are often found in the cytoplasm but in some bacteria, including pathogenic Neisseria, Streptococci, and Haemophilus they are extracytoplasmic. Mutants lacking MSR proteins are often sensitive to oxidative stress and in pathogens exhibit decreased virulence as indicated by reduced survival in host cell or animal model systems. Molybdenum enzymes are also known to reduce S-oxides and traditionally their physiological role was considered to be in anaerobic respiration using dimethylsulfoxide (DMSO) as an electron acceptor. However, it now appears that some enzymes (MtsZ) of the DMSO reductase family of Mo enzymes use methionine sulfoxide as preferred physiological substrate and thus may be involved in scavenging/recycling of this amino acid. Similarly, an enzyme (MsrP/YedY) of the sulfite oxidase family of Mo enzymes has been shown to be involved in repair of methionine sulfoxides in periplasmic proteins. Again, some mutants deficient in Mo-dependent sulfoxide reductases exhibit reduced virulence, and there is evidence that these Mo enzymes and some MSR systems are induced by hypochlorite produced by the innate immune system. This review describes recent advances in the understanding of the molecular microbiology of MSR systems and the broadening of the role of Mo-dependent sulfoxide reductase to encompass functions beyond anaerobic respiration.
Collapse
Affiliation(s)
- Ulrike Kappler
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Marufa Nasreen
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Alastair McEwan
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
12
|
Rhodobacter sphaeroides methionine sulfoxide reductase P reduces R- and S-diastereomers of methionine sulfoxide from a broad-spectrum of protein substrates. Biochem J 2018; 475:3779-3795. [PMID: 30389844 DOI: 10.1042/bcj20180706] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/26/2018] [Accepted: 11/01/2018] [Indexed: 01/22/2023]
Abstract
Methionine (Met) is prone to oxidation and can be converted to Met sulfoxide (MetO), which exists as R- and S-diastereomers. MetO can be reduced back to Met by the ubiquitous methionine sulfoxide reductase (Msr) enzymes. Canonical MsrA and MsrB were shown to be absolutely stereospecific for the reduction of S-diastereomer and R-diastereomer, respectively. Recently, a new enzymatic system, MsrQ/MsrP which is conserved in all gram-negative bacteria, was identified as a key actor for the reduction of oxidized periplasmic proteins. The haem-binding membrane protein MsrQ transmits reducing power from the electron transport chains to the molybdoenzyme MsrP, which acts as a protein-MetO reductase. The MsrQ/MsrP function was well established genetically, but the identity and biochemical properties of MsrP substrates remain unknown. In this work, using the purified MsrP enzyme from the photosynthetic bacteria Rhodobacter sphaeroides as a model, we show that it can reduce a broad spectrum of protein substrates. The most efficiently reduced MetO is found in clusters, in amino acid sequences devoid of threonine and proline on the C-terminal side. Moreover, R. sphaeroides MsrP lacks stereospecificity as it can reduce both R- and S-diastereomers of MetO, similarly to its Escherichia coli homolog, and preferentially acts on unfolded oxidized proteins. Overall, these results provide important insights into the function of a bacterial envelop protecting system, which should help understand how bacteria cope in harmful environments.
Collapse
|
13
|
Singh VK, Singh K, Baum K. The Role of Methionine Sulfoxide Reductases in Oxidative Stress Tolerance and Virulence of Staphylococcus aureus and Other Bacteria. Antioxidants (Basel) 2018; 7:antiox7100128. [PMID: 30274148 PMCID: PMC6210949 DOI: 10.3390/antiox7100128] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/19/2018] [Accepted: 09/26/2018] [Indexed: 11/18/2022] Open
Abstract
Methionine sulfoxide reductases (MSRA1 and MSRB) are proteins overproduced in Staphylococcus aureus during exposure with cell wall-active antibiotics. Later studies identified the presence of two additional MSRA proteins (MSRA2 and MSRA3) in S. aureus. These MSR proteins have been characterized in many other bacteria as well. This review provides the current knowledge about the conditions and regulatory network that mimic the expression of these MSR encoding genes and their role in defense from oxidative stress and virulence.
Collapse
Affiliation(s)
- Vineet K Singh
- Department of Microbiology and Immunology, A.T. Still University of Health Sciences, Kirksville, MO 63501, USA.
| | | | - Kyle Baum
- Department of Microbiology and Immunology, A.T. Still University of Health Sciences, Kirksville, MO 63501, USA.
| |
Collapse
|
14
|
Madeira JP, Alpha-Bazin B, Armengaud J, Duport C. Time-course proteomics dataset to monitor protein-bound methionine oxidation in Bacillus cereus ATCC 14579. Data Brief 2018; 18:394-398. [PMID: 29896523 PMCID: PMC5996235 DOI: 10.1016/j.dib.2018.03.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 01/25/2018] [Accepted: 03/06/2018] [Indexed: 11/22/2022] Open
Abstract
Aerobic respiratory growth generates endogenous reactive oxygen species (ROS). ROS oxidize protein-bound methionine residues into methionine sulfoxide. Methionine sulfoxide reductases catalyze the reduction of methionine sulfoxide to methionine in proteins. Here, we use high-throughput nanoLC-MS/MS methodology to establish detailed maps of oxidized proteins from Bacillus cereus ATCC 14579 ΔpBClin15 and its mutant for which the methionine sulfoxide reductase AB gene (msrAB) has been inactivated (Madeira et al., 2017) [1]. Lists of oxidized peptides and proteins identified at early exponential, late exponential and stationary growth phases are supplied in this article as data files. Raw data are deposited at the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifiers, PXD006169 and PDX006205 (http://www.ebi.ac/uk). Given the importance of methionine oxidation in several key cellular processes and its impact in the field of medical and food microbiology, this paper should be useful for further insightful redox studies in B. cereus and its numerous relatives.
Collapse
Affiliation(s)
- Jean-Paul Madeira
- SQPOV, UMR0408, Avignon Université, INRA, F-84914 Avignon, France
- CEA, DRF/Joliot/DMTS/SPI, Li2D, Laboratory "Innovative technologies for Detection and Diagnostics", Bagnols-sur-Cèze F-30200, France
| | - Béatrice Alpha-Bazin
- CEA, DRF/Joliot/DMTS/SPI, Li2D, Laboratory "Innovative technologies for Detection and Diagnostics", Bagnols-sur-Cèze F-30200, France
| | - Jean Armengaud
- CEA, DRF/Joliot/DMTS/SPI, Li2D, Laboratory "Innovative technologies for Detection and Diagnostics", Bagnols-sur-Cèze F-30200, France
| | - Catherine Duport
- SQPOV, UMR0408, Avignon Université, INRA, F-84914 Avignon, France
| |
Collapse
|