1
|
Aftab H, Samudio J, Wang G, Le L, Soni RK, Donegan RK. Heme alters biofilm formation in Mycobacterium abscessus. Microbiol Spectr 2024:e0241524. [PMID: 39705014 DOI: 10.1128/spectrum.02415-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024] Open
Abstract
Mycobacterium abscessus (Mabs) is commonly found in the cystic fibrosis (CF) lung. During infection, Mabs can form biofilms in the lung which reduce both the ability of the immune response to clear infection and the effectiveness of antibiotic therapy. In the CF lung, heme and hemoglobin levels are increased and may provide both iron and heme to Mabs cells. In this work, we show that exogenous heme altered Mabs biofilm formation and measured the effects of exogenous heme on protein level and metabolism in Mabs. Our findings suggest that heme impacts iron homeostasis in Mabs and affects other aspects of its metabolism, highlighting the potential role of heme as a critical nutrient for Mabs growth and biofilm formation.IMPORTANCEMycobacterium abscessus (Mabs) is commonly found in the cystic fibrosis (CF) lung, where Mabs can form biofilms that can reduce the efficacy of antibiotics. During infection, the CF lung can have more than 10 times the extracellular heme than that of a healthy lung. We have found that extracellular heme can change the way Mabs cells grow and form biofilms, which may have implications for pathogenesis.
Collapse
Affiliation(s)
- Hadia Aftab
- Department of Chemistry, Barnard College, Columbia University, New York, New York, USA
| | - Jessica Samudio
- Department of Chemistry, Barnard College, Columbia University, New York, New York, USA
| | - Grace Wang
- Department of Chemistry, Barnard College, Columbia University, New York, New York, USA
| | - Lily Le
- Department of Chemistry, Barnard College, Columbia University, New York, New York, USA
| | - Rajesh K Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, USA
| | - Rebecca K Donegan
- Department of Chemistry, Barnard College, Columbia University, New York, New York, USA
| |
Collapse
|
2
|
Malmsheimer S, Daher W, Tasrini Y, Hamela C, Aguilera-Correa JJ, Chalut C, Hatfull GF, Kremer L. Trehalose polyphleates participate in Mycobacterium abscessus fitness and pathogenesis. mBio 2024; 15:e0297024. [PMID: 39475242 PMCID: PMC11633156 DOI: 10.1128/mbio.02970-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 10/15/2024] [Indexed: 12/12/2024] Open
Abstract
Mycobacteria produce a large repertoire of surface-exposed lipids with major biological functions. Among these lipids, trehalose polyphleates (TPPs) are instrumental in the infection of Mycobacterium abscessus by the therapeutic phage BPs. However, while the biosynthesis and transport of TPPs across the membrane by MmpL10 have been reported, the role of TPPs in host infection remains enigmatic. Here, we addressed whether the loss of TPPs influences interactions with macrophages and the virulence of M. abscessus. As anticipated, the deletion of mmpL10 in smooth (S) and rough (R) variants of M. abscessus abrogated TPP production, which was rescued upon gene complementation. Importantly, infection of human THP-1 cells with the mmpL10 mutants was associated with decreased intramacrophage survival and a reduced proportion of infected cells. The rough mmpL10 mutant showed an impaired capacity to block phagosomal acidification and was unable to co-localize with Galectin-3, a marker of phagosomal membrane damage. This suggests that TPPs participate, directly or indirectly, in phagolysosomal fusion and in phagosomal membrane damage to establish cytosolic communication. The TPP defect that affects the fitness and virulence of M. abscessus was further demonstrated in zebrafish embryos using a rough clinical strain resistant to phage BPs and harboring a frameshift mutation in mmpL10. Infection with this strain was correlated with a slight decrease in embryo survival and a reduced bacterial burden as compared to the corresponding parental and complemented derivatives. Together, these results indicate that TPPs are important surface lipids contributing to the pathogenicity of M. abscessus.IMPORTANCETrehalose polyphleates (TPPs) are complex lipids associated with the mycobacterial cell surface and were identified 50 years ago. While the TPP biosynthetic pathway has been described recently, the role of these lipids in the biology of mycobacteria remains yet to be established. The wide distribution of TPPs across mycobacterial species suggests that they may exhibit important functions in these actinobacteria. Here, we demonstrate that Mycobacterium abscessus, an emerging multidrug-resistant pathogen that causes severe lung diseases in cystic fibrosis patients, requires TPPs for survival in macrophages and virulence in a zebrafish model of infection. These findings support the importance of this underexplored family of lipids in mycobacterial pathogenesis.
Collapse
Affiliation(s)
- Silke Malmsheimer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Wassim Daher
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
- INSERM, IRIM, Montpellier, France
| | - Yara Tasrini
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Claire Hamela
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - John Jairo Aguilera-Correa
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Christian Chalut
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III – Paul Sabatier (UT3), Toulouse, France
| | - Graham F. Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
- INSERM, IRIM, Montpellier, France
| |
Collapse
|
3
|
Patel RR, Arun PP, Singh SK, Singh M. Mycobacterial biofilms: Understanding the genetic factors playing significant role in pathogenesis, resistance and diagnosis. Life Sci 2024; 351:122778. [PMID: 38879157 DOI: 10.1016/j.lfs.2024.122778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/25/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024]
Abstract
Even though the genus Mycobacterium is a diverse group consisting of a majority of environmental bacteria known as non-tuberculous mycobacteria (NTM), it also contains some of the deadliest pathogens (Mycobacterium tuberculosis) in history associated with chronic disease called tuberculosis (TB). Formation of biofilm is one of the unique strategies employed by mycobacteria to enhance their ability to survive in hostile conditions. Biofilm formation by Mycobacterium species is an emerging area of research with significant implications for understanding its pathogenesis and treatment of related infections, specifically TB. This review provides an overview of the biofilm-forming abilities of different species of Mycobacterium and the genetic factors influencing biofilm formation with a detailed focus on M. tuberculosis. Biofilm-mediated resistance is a significant challenge as it can limit antibiotic penetration and promote the survival of dormant mycobacterial cells. Key genetic factors promoting biofilm formation have been explored such as the mmpL genes involved in lipid transport and cell wall integrity as well as the groEL gene essential for mature biofilm formation. Additionally, biofilm-mediated antibiotic resistance and pathogenesis highlighting the specific niches, sites of infection along with the possible mechanisms of biofilm dissemination have been discussed. Furthermore, drug targets within mycobacterial biofilm and their role as potential biomarkers in the development of rapid diagnostic tools have been highlighted. The review summarises the current understanding of the complex nature of Mycobacterium biofilm and its clinical implications, paving the way for advancements in the field of disease diagnosis, management and treatment against its multi-drug resistant species.
Collapse
Affiliation(s)
- Ritu Raj Patel
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Pandey Priya Arun
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Sudhir Kumar Singh
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Meenakshi Singh
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
4
|
De K, Belardinelli JM, Pandurangan AP, Ehianeta T, Lian E, Palčeková Z, Lam H, Gonzalez-Juarrero M, Bryant JM, Blundell TL, Parkhill J, Floto RA, Lowary TL, Wheat WH, Jackson M. Lipoarabinomannan modification as a source of phenotypic heterogeneity in host-adapted Mycobacterium abscessus isolates. Proc Natl Acad Sci U S A 2024; 121:e2403206121. [PMID: 38630725 PMCID: PMC11046677 DOI: 10.1073/pnas.2403206121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/20/2024] [Indexed: 04/19/2024] Open
Abstract
Mycobacterium abscessus is increasingly recognized as the causative agent of chronic pulmonary infections in humans. One of the genes found to be under strong evolutionary pressure during adaptation of M. abscessus to the human lung is embC which encodes an arabinosyltransferase required for the biosynthesis of the cell envelope lipoglycan, lipoarabinomannan (LAM). To assess the impact of patient-derived embC mutations on the physiology and virulence of M. abscessus, mutations were introduced in the isogenic background of M. abscessus ATCC 19977 and the resulting strains probed for phenotypic changes in a variety of in vitro and host cell-based assays relevant to infection. We show that patient-derived mutational variations in EmbC result in an unexpectedly large number of changes in the physiology of M. abscessus, and its interactions with innate immune cells. Not only did the mutants produce previously unknown forms of LAM with a truncated arabinan domain and 3-linked oligomannoside chains, they also displayed significantly altered cording, sliding motility, and biofilm-forming capacities. The mutants further differed from wild-type M. abscessus in their ability to replicate and induce inflammatory responses in human monocyte-derived macrophages and epithelial cells. The fact that different embC mutations were associated with distinct physiologic and pathogenic outcomes indicates that structural alterations in LAM caused by nonsynonymous nucleotide polymorphisms in embC may be a rapid, one-step, way for M. abscessus to generate broad-spectrum diversity beneficial to survival within the heterogeneous and constantly evolving environment of the infected human airway.
Collapse
Affiliation(s)
- Kavita De
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO80523-1682
| | - Juan M. Belardinelli
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO80523-1682
| | - Arun Prasad Pandurangan
- Victor Phillip Dahdaleh Heart and Lung Research Institute, Biomedical Campus, Trumpington, CambridgeCB2 OBB, United Kingdom
| | - Teddy Ehianeta
- Institute of Biological Chemistry, Academia Sinica, Nangang, Taipei11529, Taiwan
| | - Elena Lian
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO80523-1682
| | - Zuzana Palčeková
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO80523-1682
| | - Ha Lam
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO80523-1682
| | - Mercedes Gonzalez-Juarrero
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO80523-1682
| | - Josephine M. Bryant
- Parasites and Microbes Programme, Wellcome Sanger Institute, HinxtonCB10 1SA, United Kingdom
| | - Tom L. Blundell
- Victor Phillip Dahdaleh Heart and Lung Research Institute, Biomedical Campus, Trumpington, CambridgeCB2 OBB, United Kingdom
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, CambridgeCB3 0ES, United Kingdom
| | - R. Andres Floto
- Victor Phillip Dahdaleh Heart and Lung Research Institute, Biomedical Campus, Trumpington, CambridgeCB2 OBB, United Kingdom
- Molecular Immunity Unit, Department of Medicine, Medical Research Council-Laboratory of Molecular Biology, University of Cambridge, Trumpington, CambridgeCB2 0QH, United Kingdom
- University of Cambridge Centre for AI in Medicine, Cambridge CB3 0WA, United Kingdom
- Cambridge Centre for Lung Infection, Royal Papworth Hospital, CambridgeCB2 0AY, United Kingdom
| | - Todd L. Lowary
- Institute of Biological Chemistry, Academia Sinica, Nangang, Taipei11529, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei106, Taiwan
| | - William H. Wheat
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO80523-1682
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO80523-1682
| |
Collapse
|
5
|
Oschmann-Kadenbach AM, Schaudinn C, Borst L, Schwarz C, Konrat K, Arvand M, Lewin A. Impact of Mycobacteroides abscessus colony morphology on biofilm formation and antimicrobial resistance. Int J Med Microbiol 2024; 314:151603. [PMID: 38246090 DOI: 10.1016/j.ijmm.2024.151603] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
Mycobacteroides abscessus is one of the most resistant bacteria so far known and causes severe and hard to treat lung infections in predisposed patients such as those with Cystic Fibrosis (CF). Further, it causes nosocomial infections by forming biofilms on medical devices or water reservoirs. An eye-catching feature of M. abscessus is the growth in two colony morphotypes. Depending on the presence or absence of glycopeptidolipids on the cell surface, it forms smooth or rough colonies. In this study, a porous glass bead biofilm model was used to compare biofilm formation, biofilm organization and biofilm matrix composition in addition to the antimicrobial susceptibility of M. abscessus biofilms versus suspensions of isogenic (smooth and rough) patient isolates. Both morphotypes reached the same cell densities in biofilms. The biofilm architecture, however, was dramatically different with evenly distributed oligo-layered biofilms in smooth isolates, compared to tightly packed, voluminous biofilm clusters in rough morphotypes. Biofilms of both morphotypes contained more total biomass of the matrix components protein, lipid plus DNA than was seen in corresponding suspensions. The biofilm mode of growth of M. abscessus substantially increased resistance to the antibiotics amikacin and tigecycline. Tolerance to the disinfectant peracetic acid of both morphotypes was increased when grown as biofilm, while tolerance to glutaraldehyde was significantly increased in biofilm of smooth isolates only. Overall, smooth colony morphotypes had more pronounced antimicrobial resistance benefit when growing as biofilm than M. abscessus showing rough colony morphotypes.
Collapse
Affiliation(s)
- Anna Maria Oschmann-Kadenbach
- Unit 14 Hospital Hygiene, Infection Prevention and Control, Robert Koch Institute, Seestr. 10, Berlin, Germany; Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Seestr. 10, Berlin, Germany
| | - Christoph Schaudinn
- Unit ZBS4 Advanced Light and Electron Microscopy, Robert Koch Institute, Seestr. 10, Berlin, Germany
| | - Leonard Borst
- Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Seestr. 10, Berlin, Germany
| | - Carsten Schwarz
- CF Center Westbrandenburg, Division Cystic Fibrosis, Health and Medical University Potsdam and Clinic Westbrandenburg, Hebbelstraße 1, 14467 Potsdam, Germany
| | - Katharina Konrat
- Unit 14 Hospital Hygiene, Infection Prevention and Control, Robert Koch Institute, Seestr. 10, Berlin, Germany
| | - Mardjan Arvand
- Unit 14 Hospital Hygiene, Infection Prevention and Control, Robert Koch Institute, Seestr. 10, Berlin, Germany
| | - Astrid Lewin
- Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Seestr. 10, Berlin, Germany.
| |
Collapse
|
6
|
Wetzel KS, Illouz M, Abad L, Aull HG, Russell DA, Garlena RA, Cristinziano M, Malmsheimer S, Chalut C, Hatfull GF, Kremer L. Therapeutically useful mycobacteriophages BPs and Muddy require trehalose polyphleates. Nat Microbiol 2023; 8:1717-1731. [PMID: 37644325 PMCID: PMC10465359 DOI: 10.1038/s41564-023-01451-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/17/2023] [Indexed: 08/31/2023]
Abstract
Mycobacteriophages show promise as therapeutic agents for non-tuberculous mycobacterium infections. However, little is known about phage recognition of Mycobacterium cell surfaces or mechanisms of phage resistance. We show here that trehalose polyphleates (TPPs)-high-molecular-weight, surface-exposed glycolipids found in some mycobacterial species-are required for infection of Mycobacterium abscessus and Mycobacterium smegmatis by clinically useful phages BPs and Muddy. TPP loss leads to defects in adsorption and infection and confers resistance. Transposon mutagenesis shows that TPP disruption is the primary mechanism for phage resistance. Spontaneous phage resistance occurs through TPP loss by mutation, and some M. abscessus clinical isolates are naturally phage-insensitive due to TPP synthesis gene mutations. Both BPs and Muddy become TPP-independent through single amino acid substitutions in their tail spike proteins, and M. abscessus mutants resistant to TPP-independent phages reveal additional resistance mechanisms. Clinical use of BPs and Muddy TPP-independent mutants should preempt phage resistance caused by TPP loss.
Collapse
Affiliation(s)
- Katherine S Wetzel
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Morgane Illouz
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Lawrence Abad
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Haley G Aull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel A Russell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rebecca A Garlena
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Madison Cristinziano
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Silke Malmsheimer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Christian Chalut
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France.
- INSERM, IRIM, Montpellier, France.
| |
Collapse
|
7
|
Wetzel KS, Illouz M, Abad L, Aull HG, Russell DA, Garlena RA, Cristinziano M, Malmsheimer S, Chalut C, Hatfull GF, Kremer L. Mycobacterium trehalose polyphleates are required for infection by therapeutically useful mycobacteriophages BPs and Muddy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532567. [PMID: 36993724 PMCID: PMC10055034 DOI: 10.1101/2023.03.14.532567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mycobacteriophages are good model systems for understanding their bacterial hosts and show promise as therapeutic agents for nontuberculous mycobacterium infections. However, little is known about phage recognition of Mycobacterium cell surfaces, or mechanisms of phage resistance. We show here that surface-exposed trehalose polyphleates (TPPs) are required for infection of Mycobacterium abscessus and Mycobacterium smegmatis by clinically useful phages BPs and Muddy, and that TPP loss leads to defects in adsorption, infection, and confers resistance. Transposon mutagenesis indicates that TPP loss is the primary mechanism for phage resistance. Spontaneous phage resistance occurs through TPP loss, and some M. abscessus clinical isolates are phage-insensitive due to TPP absence. Both BPs and Muddy become TPP-independent through single amino acid substitutions in their tail spike proteins, and M. abscessus mutants resistant to TPP-independent phages reveal additional resistance mechanisms. Clinical use of BPs and Muddy TPP-independent mutants should preempt phage resistance caused by TPP loss.
Collapse
|
8
|
Parmar S, Tocheva EI. The cell envelope of Mycobacterium abscessus and its role in pathogenesis. PLoS Pathog 2023; 19:e1011318. [PMID: 37200238 DOI: 10.1371/journal.ppat.1011318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023] Open
Abstract
Mycobacterium abscessus is a nontuberculosis mycobacterium (NTM) that has shown an exponential rise in its ability to cause disease. Due to its ubiquitous presence in the environment, M. abscessus is widely implicated in secondary exacerbations of many nosocomial infections and genetic respiratory disorders, such as cystic fibrosis (CF). Contrary to other rapidly growing NTMs, the cell envelope of M. abscessus harbors several prominent features and undergoes modifications that are responsible for its pathogenesis. Compositional changes of the mycobacterial outer membrane (MOM) significantly decrease the presence of glycopeptidolipids (GPLs) and enable the transition from a colonizing, smooth morphotype into a virulent, rough morphotype. The GPLs are transported to the MOM by the Mycobacterial membrane proteins Large (MmpL), which further act as drug efflux pumps and confer antibiotic resistance. Lastly, M. abscessus possesses 2 type VII secretion systems (T7SS): ESX-3 and ESX-4, both of which have recently been implicated in host-pathogen interactions and virulence. This review summarizes the current knowledge of M. abscessus pathogenesis and highlights the clinically relevant association between the structure and functions of its cell envelope.
Collapse
Affiliation(s)
- Shweta Parmar
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Elitza I Tocheva
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
9
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
10
|
Mycobacterium abscessus infection results in decrease of oxidative metabolism of lung airways cells and relaxation of the epithelial mucosal tight junctions. Tuberculosis (Edinb) 2023; 138:102303. [PMID: 36652813 DOI: 10.1016/j.tube.2023.102303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023]
Abstract
Mycobacterium abscessus complex is a group of environmental pathogens that recently have been isolated more from patients with underlying lung diseases, such and COPD, bronchiectasis, and cystic fibrosis. The mechanisms involved in the pathogenesis of these diseases have only recently been investigated. Infection is associated with biofilm formation on the airway mucosa, invasion of the mucosal epithelial cells and a time-dependent impairment of the integrity of the monolayer. Using electron microscopy, it was shown that Mycobacterium abscessus induced lesions of the cell surface structures. Tight junction proteins claudin-1 and occludin-1 have increased transcription in cells exposed to Mycobacterium abscessus, in contrast to cells exposed to Mycobacterium avium. Infection of A549 alveolar epithelial cells by Mycobacterium abscessus reduced the oxidative metabolism of the cell, without inducing necrosis. A transposon library screen identified mutants that do not alter the metabolism of the A549 cells.Once the bacterium crosses the epithelial barrier, it may encounter sub-epithelial macrophages. Select mutants were used for infection assays to determine their effects on membrane integrity. Translocated select mutants were attenuated in macrophages compared to wild type Mycobacterium abscessus. In summary, the dynamics of Mycobacterium abscessus infection appears to be different from other non-tuberculous mycobacteria (NTMs). Future studies will attempt to address the mechanism involved in airway membrane lesions.
Collapse
|
11
|
Guallar-Garrido S, Campo-Pérez V, Pérez-Trujillo M, Cabrera C, Senserrich J, Sánchez-Chardi A, Rabanal RM, Gómez-Mora E, Noguera-Ortega E, Luquin M, Julián E. Mycobacterial surface characters remodeled by growth conditions drive different tumor-infiltrating cells and systemic IFN-γ/IL-17 release in bladder cancer treatment. Oncoimmunology 2022; 11:2051845. [PMID: 35355681 PMCID: PMC8959508 DOI: 10.1080/2162402x.2022.2051845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Sandra Guallar-Garrido
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Víctor Campo-Pérez
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
- Bacterial Infections and Antimicrobial Therapies group, Institute for Bioengineering of Catalonia (IBEC), Barcelona 08028, Spain
| | - Míriam Pérez-Trujillo
- Servei de Ressonància Magnètica Nuclear i Departament de Química, Facultat de Ciències i Biociències, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Cecilia Cabrera
- AIDS Research Institute IrsiCaixa, Institut de Recerca en Ciències de la Salut Germans Trias i Universitat Autònoma de Barcelona, Badalona, 08916, Spain
| | - Jordi Senserrich
- AIDS Research Institute IrsiCaixa, Institut de Recerca en Ciències de la Salut Germans Trias i Universitat Autònoma de Barcelona, Badalona, 08916, Spain
| | - Alejandro Sánchez-Chardi
- Servei de Microscòpia, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
- Departament de Biologia Evolutiva, Ecologia i Universitat de Barcelona, Barcelona 08028, Spain
| | - Rosa Maria Rabanal
- Unitat de Patologia Murina i Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Elisabet Gómez-Mora
- AIDS Research Institute IrsiCaixa, Institut de Recerca en Ciències de la Salut Germans Trias i Universitat Autònoma de Barcelona, Badalona, 08916, Spain
| | - Estela Noguera-Ortega
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Marina Luquin
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Esther Julián
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| |
Collapse
|
12
|
Ferrell KC, Johansen MD, Triccas JA, Counoupas C. Virulence Mechanisms of Mycobacterium abscessus: Current Knowledge and Implications for Vaccine Design. Front Microbiol 2022; 13:842017. [PMID: 35308378 PMCID: PMC8928063 DOI: 10.3389/fmicb.2022.842017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/08/2022] [Indexed: 12/22/2022] Open
Abstract
Mycobacterium abscessus is a member of the non-tuberculous mycobacteria (NTM) group, responsible for chronic infections in individuals with cystic fibrosis (CF) or those otherwise immunocompromised. While viewed traditionally as an opportunistic pathogen, increasing research into M. abscessus in recent years has highlighted its continued evolution into a true pathogen. This is demonstrated through an extensive collection of virulence factors (VFs) possessed by this organism which facilitate survival within the host, particularly in the harsh environment of the CF lung. These include VFs resembling those of other Mycobacteria, and non-mycobacterial VFs, both of which make a notable contribution in shaping M. abscessus interaction with the host. Mycobacterium abscessus continued acquisition of VFs is cause for concern and highlights the need for novel vaccination strategies to combat this pathogen. An effective M. abscessus vaccine must be suitably designed for target populations (i.e., individuals with CF) and incorporate current knowledge on immune correlates of protection against M. abscessus infection. Vaccination strategies must also build upon lessons learned from ongoing efforts to develop novel vaccines for other pathogens, particularly Mycobacterium tuberculosis (M. tb); decades of research into M. tb has provided insight into unconventional and innovative vaccine approaches that may be applied to M. abscessus. Continued research into M. abscessus pathogenesis will be critical for the future development of safe and effective vaccines and therapeutics to reduce global incidence of this emerging pathogen.
Collapse
Affiliation(s)
- Kia C. Ferrell
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Tuberculosis Research Program, Centenary Institute, Sydney, NSW, Australia
- *Correspondence: Kia C. Ferrell,
| | - Matt D. Johansen
- Centre for Inflammation, Centenary Institute, University of Technology, Sydney, NSW, Australia
- Faculty of Science, School of Life Sciences, University of Technology, Sydney, NSW, Australia
| | - James A. Triccas
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Sydney Institute for Infectious Diseases and the Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Claudio Counoupas
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Tuberculosis Research Program, Centenary Institute, Sydney, NSW, Australia
- Sydney Institute for Infectious Diseases and the Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- Claudio Counoupas,
| |
Collapse
|
13
|
Mycobacterial Adhesion: From Hydrophobic to Receptor-Ligand Interactions. Microorganisms 2022; 10:microorganisms10020454. [PMID: 35208908 PMCID: PMC8875947 DOI: 10.3390/microorganisms10020454] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/07/2022] [Accepted: 02/12/2022] [Indexed: 11/24/2022] Open
Abstract
Adhesion is crucial for the infective lifestyles of bacterial pathogens. Adhesion to non-living surfaces, other microbial cells, and components of the biofilm extracellular matrix are crucial for biofilm formation and integrity, plus adherence to host factors constitutes a first step leading to an infection. Adhesion is, therefore, at the core of pathogens’ ability to contaminate, transmit, establish residency within a host, and cause an infection. Several mycobacterial species cause diseases in humans and animals with diverse clinical manifestations. Mycobacterium tuberculosis, which enters through the respiratory tract, first adheres to alveolar macrophages and epithelial cells leading up to transmigration across the alveolar epithelium and containment within granulomas. Later, when dissemination occurs, the bacilli need to adhere to extracellular matrix components to infect extrapulmonary sites. Mycobacteria causing zoonotic infections and emerging nontuberculous mycobacterial pathogens follow divergent routes of infection that probably require adapted adhesion mechanisms. New evidence also points to the occurrence of mycobacterial biofilms during infection, emphasizing a need to better understand the adhesive factors required for their formation. Herein, we review the literature on tuberculous and nontuberculous mycobacterial adhesion to living and non-living surfaces, to themselves, to host cells, and to components of the extracellular matrix.
Collapse
|
14
|
Zhang Z, Yang Z, Zhen J, Xiang X, Liao P, Xie J. Insertion Mutation of MSMEG_0392 Play an Important Role in Resistance of M. smegmatis to Mycobacteriophage SWU1. Infect Drug Resist 2022; 15:347-357. [PMID: 35140480 PMCID: PMC8818766 DOI: 10.2147/idr.s341494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/21/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Phage is a new choice for the treatment of multi-drug-resistant bacteria, and phage resistance is also an issue of concern. SWU1 is a mycobacteriophage, and the mechanism of its resistance remain poorly understood. Methods The mutant strains which were stably resistant to SWU1 were screened by transposon mutation library. The stage of phage resistance was observed by transmission electron microscope (TEM). The insertion site of transposon was identified by thermal asymmetric interlaced PCR (TAIL-PCR). The possible relationship between insertion site and phage resistance was verified by gene knockout technique. The fatty acid composition of bacterial cell wall was analyzed by Gas Chromatography-Mass Spectrometer (GC-MS). Through the amplification and sequencing of target genes and gene complement techniques to find the mechanism of SWU1 resistance. Results The transposon mutant M12 which was stably resistant to mycobacteriophage SWU1 was successfully screened. It was confirmed that resistance occurred in the adsorption stage of bacteriophage. It was verified that the insertion site of the transposon was located in the MSMEG_3705 gene, but after knocking out the gene in the wild type M. smegmatis mc2 155, the resistance of the knockout strain to SWU1 was not observed. Through the amplification and sequencing of the target gene MSMEG_0392, it was found that there was an adenine insertion mutation at position 817. After complementing MSMEG_0392 in M12, it was found that M12 returned to sensitivity to SWU1. Conclusion We confirmed that the resistance of M12 to SWU1 was related to the functional inactivation of MSMEG_0392 and this phenomenon may be caused by the change of cell wall of M. smegmatis.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Clinical Laboratory, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, People’s Republic of China
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Three Gorges Eco-Environment and Bioresources, Eco-Environment Key Laboratory of the Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, People’s Republic of China
| | - Zhulan Yang
- Department of Clinical Laboratory, Southwest Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Junfeng Zhen
- Department of Clinical Laboratory, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, People’s Republic of China
| | - Xiaohong Xiang
- School of Pharmacy, Chongqing Medical and Pharmaceutical College, Chongqing, People’s Republic of China
| | - Pu Liao
- Department of Clinical Laboratory, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, People’s Republic of China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Three Gorges Eco-Environment and Bioresources, Eco-Environment Key Laboratory of the Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, People’s Republic of China
- Correspondence: Jianping Xie; Pu Liao, Tel/Fax +8623-68367108, Email ;
| |
Collapse
|
15
|
Aitken JM, Phan K, Bodman SE, Sharma S, Watt A, George PM, Agrawal G, Tie ABM. A Mycobacterium species for Crohn's disease? Pathology 2021; 53:818-823. [PMID: 34158180 DOI: 10.1016/j.pathol.2021.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/18/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022]
Abstract
In ruminants Mycobacterium avium subspecies paratuberculosis (MAP) is the causative organism of a chronic granulomatous inflammatory bowel disease called Johne's disease (JD). Some researchers have hypothesised that MAP is also associated with Crohn's disease (CD), an inflammatory bowel disease in humans that shares some histological features of JD. Despite numerous attempts to demonstrate causality by researchers, direct microbiological evidence of MAP involvement in CD remains elusive. Importantly, it has not been possible to reliably and reproducibly demonstrate mycobacteria in the tissue of CD patients. Past attempts to visualise mycobacteria in tissue may have been hampered by the use of stains optimised for Mycobacterium tuberculosis complex (MTB) and the lack of reliable bacteriological culture media for both non-tuberculous mycobacteria (NTM) and cell-wall-deficient mycobacteria (CWDM). Here we describe a Ziehl-Neelsen (ZN) staining method for the demonstration of CWDM in resected tissue from patients with Crohn's disease, revealing the association of CWDM in situ with host tissue reactions, and posit this as a cause of the tissue inflammation. Using the ZN stain described we demonstrated the presence of CWDM in 18 out of 18 excised tissue samples from patients diagnosed as having Crohn's disease, and in zero samples out of 15 non-inflammatory bowel disease controls.
Collapse
Affiliation(s)
| | - Khoi Phan
- Southern Community Laboratories, Wellington Hospital, Wellington, New Zealand
| | | | | | | | | | - Gaurav Agrawal
- Guy's and St Thomas' Hospitals NHS Foundation Trust, Kings College, London, UK
| | - Andrew B M Tie
- Southern Community Laboratories, Wellington Hospital, Wellington, New Zealand
| |
Collapse
|
16
|
Niño-Padilla EI, Velazquez C, Garibay-Escobar A. Mycobacterial biofilms as players in human infections: a review. BIOFOULING 2021; 37:410-432. [PMID: 34024206 DOI: 10.1080/08927014.2021.1925886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/18/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
The role of biofilms in pathogenicity and treatment strategies is often neglected in mycobacterial infections. In recent years, the emergence of nontuberculous mycobacterial infections has necessitated the development of novel prophylactic strategies and elucidation of the mechanisms underlying the establishment of chronic infections. More importantly, the question arises whether members of the Mycobacterium tuberculosis complex can form biofilms and contribute to latent tuberculosis and drug resistance because of the long-lasting and recalcitrant nature of its infections. This review discusses some of the molecular mechanisms by which biofilms could play a role in infection or pathological events in humans.
Collapse
Affiliation(s)
| | - Carlos Velazquez
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo, Sonora, México
| | - Adriana Garibay-Escobar
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo, Sonora, México
| |
Collapse
|
17
|
Palčeková Z, Gilleron M, Angala SK, Belardinelli JM, McNeil M, Bermudez LE, Jackson M. Polysaccharide Succinylation Enhances the Intracellular Survival of Mycobacterium abscessus. ACS Infect Dis 2020; 6:2235-2248. [PMID: 32657565 PMCID: PMC7875180 DOI: 10.1021/acsinfecdis.0c00361] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Lipoarabinomannan (LAM) and its biosynthetic precursors, phosphatidylinositol mannosides (PIMs) and lipomannan (LM) play important roles in the interactions of Mycobacterium tuberculosis with phagocytic cells and the modulation of the host immune response, but nothing is currently known of the impact of these cell envelope glycoconjugates on the physiology and pathogenicity of nontuberculous mycobacteria. We here report on the structures of Mycobacterium abscessus PIM, LM, and LAM. Intriguingly, these structures differ from those reported previously in other mycobacterial species in several respects, including the presence of a methyl substituent on one of the mannosyl residues of PIMs as well as the PIM anchor of LM and LAM, the size and branching pattern of the mannan backbone of LM and LAM, and the modification of the arabinan domain of LAM with both succinyl and acetyl substituents. Investigations into the biological significance of some of these structural oddities point to the important role of polysaccharide succinylation on the ability of M. abscessus to enter and survive inside human macrophages and epithelial cells and validate for the first time cell envelope polysaccharides as important modulators of the virulence of this emerging pathogen.
Collapse
Affiliation(s)
- Zuzana Palčeková
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA
| | - Martine Gilleron
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Shiva kumar Angala
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA
| | - Juan Manuel Belardinelli
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA
| | - Michael McNeil
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA
| | - Luiz E. Bermudez
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR 97331, USA
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA
| |
Collapse
|
18
|
Thouvenel L, Prevot G, Chiaradia L, Parra J, Mouton-Barbosa E, Locard-Paulet M, Marcoux J, Tropis M, Burlet-Schiltz O, Daffé M, Guilhot C, Etienne G, Chalut C. The final assembly of trehalose polyphleates takes place within the outer layer of the mycobacterial cell envelope. J Biol Chem 2020; 295:11184-11194. [PMID: 32554804 PMCID: PMC7415978 DOI: 10.1074/jbc.ra120.013299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/11/2020] [Indexed: 12/19/2022] Open
Abstract
Trehalose polyphleates (TPP) are high-molecular-weight, surface-exposed glycolipids present in a broad range of nontuberculous mycobacteria. These compounds consist of a trehalose core bearing polyunsaturated fatty acyl substituents (called phleic acids) and a straight-chain fatty acid residue and share a common basic structure with trehalose-based glycolipids produced by Mycobacterium tuberculosis TPP production starts in the cytosol with the formation of a diacyltrehalose intermediate. An acyltransferase, called PE, subsequently catalyzes the transfer of phleic acids onto diacyltrehalose to form TPP, and an MmpL transporter promotes the export of TPP or its precursor across the plasma membrane. PE is predicted to be an anchored membrane protein, but its topological organization is unknown, raising questions about the subcellular localization of the final stage of TPP biosynthesis and the chemical nature of the substrates that are translocated by the MmpL transporter. Here, using genetic, biochemical, and proteomic approaches, we established that PE of Mycobacterium smegmatis is exported to the cell envelope following cleavage of its signal peptide and that this process is required for TPP biosynthesis, indicating that the last step of TPP formation occurs in the outer layers of the mycobacterial cell envelope. These results provide detailed insights into the molecular mechanisms controlling TPP formation and transport to the cell surface, enabling us to propose an updated model of the TPP biosynthetic pathway. Because the molecular mechanisms of glycolipid production are conserved among mycobacteria, these findings obtained with PE from M. smegmatis may offer clues to glycolipid formation in M. tuberculosis.
Collapse
Affiliation(s)
- Laurie Thouvenel
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Gautier Prevot
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Laura Chiaradia
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Julien Parra
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Emmanuelle Mouton-Barbosa
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Marie Locard-Paulet
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Maryelle Tropis
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Mamadou Daffé
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Christophe Guilhot
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Gilles Etienne
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Christian Chalut
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
19
|
Techniques to Understand Mycobacterial Lipids and Use of Lipid-Based Nanoformulations for Tuberculosis Management. Nanobiomedicine (Rij) 2020. [DOI: 10.1007/978-981-32-9898-9_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
20
|
Skwark MJ, Torres PHM, Copoiu L, Bannerman B, Floto RA, Blundell TL. Mabellini: a genome-wide database for understanding the structural proteome and evaluating prospective antimicrobial targets of the emerging pathogen Mycobacterium abscessus. Database (Oxford) 2019; 2019:5611286. [PMID: 31681953 PMCID: PMC6853642 DOI: 10.1093/database/baz113] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/31/2019] [Accepted: 08/28/2019] [Indexed: 02/02/2023]
Abstract
Mycobacterium abscessus, a rapid growing, multidrug resistant, nontuberculous mycobacteria, can cause a wide range of opportunistic infections, particularly in immunocompromised individuals. M. abscessus has emerged as a growing threat to patients with cystic fibrosis, where it causes accelerated inflammatory lung damage, is difficult and sometimes impossible to treat and can prevent safe transplantation. There is therefore an urgent unmet need to develop new therapeutic strategies. The elucidation of the M. abscessus genome in 2009 opened a wide range of research possibilities in the field of drug discovery that can be more effectively exploited upon the characterization of the structural proteome. Where there are no experimental structures, we have used the available amino acid sequences to create 3D models of the majority of the remaining proteins that constitute the M. abscessus proteome (3394 proteins and over 13 000 models) using a range of up-to-date computational tools, many developed by our own group. The models are freely available for download in an on-line database, together with quality data and functional annotation. Furthermore, we have developed an intuitive and user-friendly web interface (http://www.mabellinidb.science) that enables easy browsing, querying and retrieval of the proteins of interest. We believe that this resource will be of use in evaluating the prospective targets for design of antimicrobial agents and will serve as a cornerstone to support the development of new molecules to treat M. abscessus infections.
Collapse
Affiliation(s)
- Marcin J Skwark
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Pedro H M Torres
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Liviu Copoiu
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Bridget Bannerman
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - R Andres Floto
- Molecular Immunity Unit, Department of Medicine University of Cambridge, MRC-Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
and,Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge CB23 3RE, UK
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK,Corresponding author: Tel: +44 1223 333628; Fax: +44 1223 766002;
| |
Collapse
|
21
|
Ryan K, Byrd TF. Mycobacterium abscessus: Shapeshifter of the Mycobacterial World. Front Microbiol 2018; 9:2642. [PMID: 30443245 PMCID: PMC6221961 DOI: 10.3389/fmicb.2018.02642] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/16/2018] [Indexed: 01/23/2023] Open
Abstract
In this review we will focus on unique aspects of Mycobacterium abscessus (MABS) which we feel earn it the designation of "shapeshifter of the mycobacterial world." We will review its emergence as a distinct species, the recognition and description of MABS subspecies which are only now being clearly defined in terms of pathogenicity, its ability to exist in different forms favoring a saprophytic lifestyle or one more suitable to invasion of mammalian hosts, as well as current challenges in terms of antimicrobial therapy and future directions for research. One can see in the various phases of MABS, a species transitioning from a free living saprophyte to a host-adapted pathogen.
Collapse
Affiliation(s)
- Keenan Ryan
- Department of Pharmacy, University of New Mexico Hospital, Albuquerque, NM, United States
| | - Thomas F. Byrd
- Department of Medicine, The University of New Mexico School of Medicine, Albuquerque, NM, United States
| |
Collapse
|
22
|
Dubois V, Viljoen A, Laencina L, Le Moigne V, Bernut A, Dubar F, Blaise M, Gaillard JL, Guérardel Y, Kremer L, Herrmann JL, Girard-Misguich F. MmpL8 MAB controls Mycobacterium abscessus virulence and production of a previously unknown glycolipid family. Proc Natl Acad Sci U S A 2018; 115:E10147-E10156. [PMID: 30301802 PMCID: PMC6205491 DOI: 10.1073/pnas.1812984115] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Mycobacterium abscessus is a peculiar rapid-growing Mycobacterium (RGM) capable of surviving within eukaryotic cells thanks to an arsenal of virulence genes also found in slow-growing mycobacteria (SGM), such as Mycobacterium tuberculosis A screen based on the intracellular survival in amoebae and macrophages (MΦ) of an M. abscessus transposon mutant library revealed the important role of MAB_0855, a yet uncharacterized Mycobacterial membrane protein Large (MmpL). Large-scale comparisons with SGM and RGM genomes uncovered MmpL12 proteins as putative orthologs of MAB_0855 and a locus-scale synteny between the MAB_0855 and Mycobacterium chelonae mmpL8 loci. A KO mutant of the MAB_0855 gene, designated herein as mmpL8MAB , had impaired adhesion to MΦ and displayed a decreased intracellular viability. Despite retaining the ability to block phagosomal acidification, like the WT strain, the mmpL8MAB mutant was delayed in damaging the phagosomal membrane and in making contact with the cytosol. Virulence attenuation of the mutant was confirmed in vivo by impaired zebrafish killing and a diminished propensity to induce granuloma formation. The previously shown role of MmpL in lipid transport prompted us to investigate the potential lipid substrates of MmpL8MAB Systematic lipid analysis revealed that MmpL8MAB was required for the proper expression of a glycolipid entity, a glycosyl diacylated nonadecyl diol (GDND) alcohol comprising different combinations of oleic and stearic acids. This study shows the importance of MmpL8MAB in modifying interactions between the bacteria and phagocytic cells and in the production of a previously unknown glycolipid family.
Collapse
Affiliation(s)
- Violaine Dubois
- Université de Versailles Saint Quentin en Yvelines, INSERM UMR1173, 78000 Versailles, France
| | - Albertus Viljoen
- CNRS UMR 9004, Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, 34293 Montpellier, France
| | - Laura Laencina
- Université de Versailles Saint Quentin en Yvelines, INSERM UMR1173, 78000 Versailles, France
| | - Vincent Le Moigne
- Université de Versailles Saint Quentin en Yvelines, INSERM UMR1173, 78000 Versailles, France
| | - Audrey Bernut
- CNRS UMR 9004, Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, 34293 Montpellier, France
| | - Faustine Dubar
- Université de Lille, CNRS UMR 8576, Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Mickaël Blaise
- CNRS UMR 9004, Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, 34293 Montpellier, France
| | - Jean-Louis Gaillard
- Université de Versailles Saint Quentin en Yvelines, INSERM UMR1173, 78000 Versailles, France
- Assistance Publique-Hôpitaux de Paris, Groupement Hospitalier Universitaire Paris Ile de France Ouest, Hôpital Raymond Poincaré, Hôpital Ambroise Paré, 92380 Garches, Boulogne Billancourt, France
| | - Yann Guérardel
- Université de Lille, CNRS UMR 8576, Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Laurent Kremer
- CNRS UMR 9004, Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, 34293 Montpellier, France
- INSERM, Institut de Recherche en Infectiologie de Montpellier, 34293 Montpellier, France
| | - Jean-Louis Herrmann
- Université de Versailles Saint Quentin en Yvelines, INSERM UMR1173, 78000 Versailles, France;
- Assistance Publique-Hôpitaux de Paris, Groupement Hospitalier Universitaire Paris Ile de France Ouest, Hôpital Raymond Poincaré, Hôpital Ambroise Paré, 92380 Garches, Boulogne Billancourt, France
| | | |
Collapse
|
23
|
Lefebvre C, Boulon R, Ducoux M, Gavalda S, Laval F, Jamet S, Eynard N, Lemassu A, Cam K, Bousquet MP, Bardou F, Burlet-Schiltz O, Daffé M, Quémard A. HadD, a novel fatty acid synthase type II protein, is essential for alpha- and epoxy-mycolic acid biosynthesis and mycobacterial fitness. Sci Rep 2018; 8:6034. [PMID: 29662082 PMCID: PMC5902629 DOI: 10.1038/s41598-018-24380-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 04/03/2018] [Indexed: 02/05/2023] Open
Abstract
Mycolic acids (MAs) have a strategic location within the mycobacterial envelope, deeply influencing its architecture and permeability, and play a determinant role in the pathogenicity of mycobacteria. The fatty acid synthase type II (FAS-II) multienzyme system is involved in their biosynthesis. A combination of pull-downs and proteomics analyses led to the discovery of a mycobacterial protein, HadD, displaying highly specific interactions with the dehydratase HadAB of FAS-II. In vitro activity assays and homology modeling showed that HadD is, like HadAB, a hot dog folded (R)-specific hydratase/dehydratase. A hadD knockout mutant of Mycobacterium smegmatis produced only the medium-size alpha’-MAs. Data strongly suggest that HadD is involved in building the third meromycolic segment during the late FAS-II elongation cycles, leading to the synthesis of the full-size alpha- and epoxy-MAs. The change in the envelope composition induced by hadD inactivation strongly altered the bacterial fitness and capacities to aggregate, assemble into colonies or biofilms and spread by sliding motility, and conferred a hypersensitivity to the firstline antimycobacterial drug rifampicin. This showed that the cell surface properties and the envelope integrity were greatly affected. With the alarmingly increasing case number of nontuberculous mycobacterial diseases, HadD appears as an attractive target for drug development.
Collapse
Affiliation(s)
- Cyril Lefebvre
- Département Tuberculose & Biologie des Infections, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France
| | - Richard Boulon
- Département Tuberculose & Biologie des Infections, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France
| | - Manuelle Ducoux
- Département Biologie Structurale & Biophysique, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France
| | - Sabine Gavalda
- Département Tuberculose & Biologie des Infections, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France
| | - Françoise Laval
- Département Tuberculose & Biologie des Infections, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France
| | - Stevie Jamet
- Département Tuberculose & Biologie des Infections, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France
| | - Nathalie Eynard
- Département Tuberculose & Biologie des Infections, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France
| | - Anne Lemassu
- Département Tuberculose & Biologie des Infections, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France
| | - Kaymeuang Cam
- Département Tuberculose & Biologie des Infections, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France
| | - Marie-Pierre Bousquet
- Département Biologie Structurale & Biophysique, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France
| | - Fabienne Bardou
- Département Tuberculose & Biologie des Infections, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France
| | - Odile Burlet-Schiltz
- Département Biologie Structurale & Biophysique, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France
| | - Mamadou Daffé
- Département Tuberculose & Biologie des Infections, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France
| | - Annaïk Quémard
- Département Tuberculose & Biologie des Infections, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France.
| |
Collapse
|
24
|
Abstract
Nontuberculous mycobacteria (NTM) include species that colonize human epithelia, as well as species that are ubiquitous in soil and aquatic environments. NTM that primarily inhabit soil and aquatic environments include the Mycobacterium avium complex (MAC, M. avium and Mycobacterium intracellulare) and the Mycobacterium abscessus complex (MABSC, M. abscessus subspecies abscessus, massiliense, and bolletii), and can be free-living, biofilm-associated, or amoeba-associated. Although NTM are rarely pathogenic in immunocompetent individuals, those who are immunocompromised - due to either an inherited or acquired immunodeficiency - are highly susceptible to NTM infection (NTMI). Several characteristics such as biofilm formation and the ability of select NTM species to form distinct colony morphotypes all may play a role in pathogenesis not observed in the related, well-characterized pathogen Mycobacterium tuberculosis The recognition of different morphotypes of NTM has been established and characterized since the 1950s, but the mechanisms that underlie colony phenotype change and subsequent differences in pathogenicity are just beginning to be explored. Advances in genomic analysis have led to progress in identifying genes important to the pathogenesis and persistence of MAC disease as well as illuminating genetic aspects of different colony morphotypes. Here we review recent literature regarding NTM ecology and transmission, as well as the factors which regulate colony morphotype and pathogenicity.
Collapse
Affiliation(s)
- Tiffany A Claeys
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Richard T Robinson
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
25
|
Nonphotodynamic Roles of Methylene Blue: Display of Distinct Antimycobacterial and Anticandidal Mode of Actions. J Pathog 2018; 2018:3759704. [PMID: 29666708 PMCID: PMC5831920 DOI: 10.1155/2018/3759704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/22/2017] [Accepted: 12/31/2017] [Indexed: 12/12/2022] Open
Abstract
Significance of methylene blue (MB) in photodynamic therapy against microbes is well established. Previously, we have reported the antifungal potential of MB against Candida albicans. The present study attempts to identify additional antimicrobial effect of MB against another prevalent human pathogen, Mycobacterium tuberculosis (MTB). We explored that MB is efficiently inhibiting the growth of Mycobacterium at 15.62 μg/ml albeit in bacteriostatic manner similar to its fungistatic nature. We uncovered additional cell surface phenotypes (colony morphology and cell sedimentation rate) which were impaired only in Mycobacterium. Mechanistic insights revealed that MB causes energy dependent membrane perturbation in both C. albicans and Mycobacterium. We also confirmed that MB leads to enhanced reactive oxygen species generation in both organisms that could be reversed upon antioxidant supplementation; however, DNA damage could only be observed in Mycobacterium. We provided evidence that although biofilm formation was disrupted in both organisms, cell adherence to human epithelial cells was inhibited only in Mycobacterium. Lastly, RT-PCR results showed good correlation with the biochemical assay. Together, apart from the well-established role of MB in photodynamic therapy, this study provides insights into the distinct antimicrobial mode of actions in two significant human pathogens, Candida and Mycobacterium, which can be extrapolated to improve our understanding of finding novel therapeutic options.
Collapse
|
26
|
Llorens-Fons M, Julián E, Luquin M, Pérez-Trujillo M. Molecule confirmation and structure characterization of pentatriacontatrienyl mycolate in Mycobacterium smegmatis. Chem Phys Lipids 2018; 212:138-143. [PMID: 29291384 DOI: 10.1016/j.chemphyslip.2017.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/15/2017] [Accepted: 12/26/2017] [Indexed: 12/01/2022]
Abstract
Mycobacterium smegmatis is often used to study the different components of mycobacterial cell wall. Mycolic acids are important components of mycobacterial cell wall that have been associated with virulence. Recently, a novel lipid containing mycolic acids has been described in M. smegmatis. However, some uncertainties regarding the structure of this molecule named mycolate ester wax have been reported. The objective of this work was to perform an in depth structural study of this molecule for its precise characterization. Using 1H and 13C NMR spectroscopy, the molecular structure of mycolate ester wax found in M. smegmatis has been elucidated. The characterization was complemented with MS analyses. This molecule is formed by a carbon chain with three methyl substituted olefinic units and a mycolate structure with trans double bonds and cis cyclopropane rings. The present molecular study will facilitate the detection and identification of pentatriacontatrienyl mycolate in future studies by the performance of a simple 1D 1H NMR experiment.
Collapse
Affiliation(s)
- Marta Llorens-Fons
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Barcelona, Spain
| | - Esther Julián
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Barcelona, Spain
| | - Marina Luquin
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Barcelona, Spain.
| | - Míriam Pérez-Trujillo
- Servei de Ressonància Magnètica Nuclear i Departament de Química, Facultat de Ciències i Biociències, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|
27
|
Wolber JM, Urbanek BL, Meints LM, Piligian BF, Lopez-Casillas IC, Zochowski KM, Woodruff PJ, Swarts BM. The trehalose-specific transporter LpqY-SugABC is required for antimicrobial and anti-biofilm activity of trehalose analogues in Mycobacterium smegmatis. Carbohydr Res 2017; 450:60-66. [PMID: 28917089 DOI: 10.1016/j.carres.2017.08.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/03/2017] [Accepted: 08/03/2017] [Indexed: 12/26/2022]
Abstract
Mycobacteria, including the bacterial pathogen that causes human tuberculosis, possess distinctive pathways for synthesizing and utilizing the non-mammalian disaccharide trehalose. Trehalose metabolism is essential for mycobacterial viability and has been linked to in vitro biofilm formation, which may bear relevance to in vivo drug tolerance. Previous research has shown that some trehalose analogues bearing modifications at the 6-position inhibit growth of various mycobacterial species. In this work, 2-, 5-, and 6-position-modified trehalose analogues were synthesized using our previously reported one-step chemoenzymatic method and shown to inhibit growth and biofilm formation in the two-to three-digit micromolar range in Mycobacterium smegmatis. The trehalose-specific ABC transporter LpqY-SugABC was essential for antimicrobial and anti-biofilm activity, suggesting that inhibition by monosubstituted trehalose analogues requires cellular uptake and does not proceed via direct action on extracellular targets such as antigen 85 acyltransferases or trehalose dimycolate hydrolase. Although the potency of the described compounds in in vitro growth and biofilm assays is moderate, this study reports the first trehalose-based mycobacterial biofilm inhibitors and reinforces the concept of exploiting unique sugar uptake pathways to deliver inhibitors and other chemical cargo to mycobacteria.
Collapse
Affiliation(s)
- Jeffrey M Wolber
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859, United States
| | - Bailey L Urbanek
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859, United States
| | - Lisa M Meints
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859, United States
| | - Brent F Piligian
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859, United States
| | - Irene C Lopez-Casillas
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859, United States
| | - Kailey M Zochowski
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859, United States
| | - Peter J Woodruff
- Department of Chemistry, University of Southern Maine, Portland, ME 04104, United States
| | - Benjamin M Swarts
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859, United States.
| |
Collapse
|