1
|
Vadakkan K, Sathishkumar K, Mapranathukaran VO, Ngangbam AK, Nongmaithem BD, Hemapriya J, Nair JB. Critical review on plant-derived quorum sensing signaling inhibitors in pseudomonas aeruginosa. Bioorg Chem 2024; 151:107649. [PMID: 39029321 DOI: 10.1016/j.bioorg.2024.107649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/21/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
Pseudomonas aeruginosa, a biofilm-forming organism with complex quorum mechanisms (Las, Rhl, PQS, and IQS), poses an imminent danger to the healthcare sector and renders current treatment options for chemotherapy ineffectual. The pathogen's diverse pathogenicity, antibiotic resistance, and biofilms make it difficult to eradicate it effectively. Quorum sensing, a complex system reliant on cell density, controls P. aeruginosa's pathogenesis. Quorum-sensing genes are key components of P. aeruginosa's pathogenic arsenal, and their expression determines how severe the spread of infection becomes. Over the past ten years, there has been a noticeable increase in the quest for and development of new antimicrobial medications. Quorum sensing may be an effective treatment for infections triggered by bacteria. Introducing quorum-sensing inhibitors as an anti-virulent strategy might be an intriguing therapeutic method that can be effectively employed along with current medications. Amongst the several speculated processes, a unique anti-virulence strategy using anti-quorum sensing and antibiofilm medications for targeting pseudomonal infestations seems to be at the forefront. Due to their noteworthy quorum quenching capabilities, biologically active phytochemicals have become more well-known in the realm of science in this context. Recent research showed how different phytochemical quorum quenching actions affect P. aeruginosa's QS-dependent pathogenicity. This review focuses on the most current data supporting the implementation of plant bio-actives to treat P.aeruginosa-associated diseases, as well as the benefits and future recommendationsof employing them in anti-virulence therapies as a supplementary drug development approach towards conventional antibiotic approaches.
Collapse
Affiliation(s)
- Kayeen Vadakkan
- Department of Biotechnology, St. Mary's College (Autonomous), Thrissur, Kerala 680020, India; Manipur International University, Imphal, Manipur 795140, India.
| | - Kuppusamy Sathishkumar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Thandalam, Chennai, Tamil Nadu 602105, India
| | | | | | | | - Janarthanam Hemapriya
- Department of Microbiology, DKM College for Women, Vellore, Tamil Nadu 632001, India
| | - Jyotsna B Nair
- Department of Biotechnology, JDT Islam College of Arts and Science, Vellimadukunnu, Kozhikode, Kerala 673012, India
| |
Collapse
|
2
|
Wu M, Ye X. Quercetin-4'-O-β-D-glucopyranoside inhibits podocyte injury by SIRT5-mediated desuccinylation of NEK7. Clin Exp Pharmacol Physiol 2024; 51:e13909. [PMID: 39038854 DOI: 10.1111/1440-1681.13909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/10/2024] [Accepted: 06/19/2024] [Indexed: 07/24/2024]
Abstract
Diabetic kidney disease (DKD) is a complication of diabetic mellitus. New treatments need to be developed. This study aimed to investigate the effects of quercetin-4'-O-β-D-glucopyranoside (QODG) on podocyte injury. Podocytes were cultured in high glucose (HG) medium, treated with QODG, and overexpressing or knocking down SIRT5. Oxidative stress indicators were assessed using corresponding kits. Pyroptosis was detected by flow cytometry and western blot analysis. Succinylation modification was detected using immunoprecipitation (IP) and western blot analysis. The interaction between NEK7 and NLRP3 was determined by co-IP. The results indicated that QODG inhibited oxidative stress and pyroptosis of podocytes induced by HG. Besides, QODG suppressed succinylation levels in HG-induced podocytes, with the upregulation of SIRT5. Knockdown of SIRT5 reversed the effects of QODG on oxidative stress and pyroptosis. Moreover, SIRT5 inhibited the succinylation of NEK7 and the interaction between NLRP3 and NEK7. In conclusion, QODG upregulates SIRT5 to inhibit the succinylation modification of NEK7, impedes the interaction between NEK7 and NLRP3, and then inhibits the pyroptosis and oxidative stress injury of podocytes under HG conditions. The findings suggested that QODG has the potential to treat DKD and explore a novel underlying mechanism of QODG function.
Collapse
Affiliation(s)
- Menghua Wu
- Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiaoli Ye
- Department of Party Building Office, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
3
|
Tang D, Lin Y, Yao H, Liu Y, Xi Y, Li M, Mao A. Effect of L-HSL on biofilm and motility of Pseudomonas aeruginosa and its mechanism. Appl Microbiol Biotechnol 2024; 108:418. [PMID: 39012538 PMCID: PMC11252199 DOI: 10.1007/s00253-024-13247-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/17/2024]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) biofilm formation is a crucial cause of enhanced antibiotic resistance. Quorum sensing (QS) is involved in regulating biofilm formation; QS inhibitors block the QS signaling pathway as a new strategy to address bacterial resistance. This study investigated the potential and mechanism of L-HSL (N-(3-cyclic butyrolactone)-4-trifluorophenylacetamide) as a QS inhibitor for P. aeruginosa. The results showed that L-HSL effectively inhibited the biofilm formation and dispersed the pre-formed biofilm of P. aeruginosa. The production of extracellular polysaccharides and the motility ability of P. aeruginosa were suppressed by L-HSL. C. elegans infection experiment showed that L-HSL was non-toxic and provided protection to C. elegans against P. aeruginosa infection. Transcriptomic analysis revealed that L-HSL downregulated genes related to QS pathways and biofilm formation. L-HSL exhibits a promising potential as a therapeutic drug for P. aeruginosa infection. KEY POINTS: • Chemical synthesis of N-(3-cyclic butyrolactone)-4-trifluorophenylacetamide, named L-HSL. • L-HSL does not generate survival pressure on the growth of P. aeruginosa and can inhibit the QS system. • KEGG enrichment analysis found that after L-HSL treatment, QS-related genes were downregulated.
Collapse
Affiliation(s)
- Deping Tang
- School of Biological & Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China
| | - Yanyan Lin
- School of Biological & Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China
| | - Huihui Yao
- School of Biological & Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China
| | - Yali Liu
- School of Biological & Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China
| | - Yanpeng Xi
- School of Biological & Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China
| | - Mengjiao Li
- School of Biological & Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China
| | - Aihong Mao
- Gansu Provincial Academic Institute for Medical Research, Lanzhou, 730050, Gansu, China.
| |
Collapse
|
4
|
Jayaraman S, Rajendhran N, Kannan MA, Ramasamy T. Quercetin disrupts biofilm formation and attenuates virulence of Aeromonas hydrophila. Arch Microbiol 2024; 206:326. [PMID: 38922407 DOI: 10.1007/s00203-024-04034-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024]
Abstract
Aeromonas hydrophila poses significant health and economic challenges in aquaculture owing to its pathogenicity and prevalence. Overuse of antibiotics has led to multidrug resistance and environmental pollution, necessitating alternative strategies. This study investigated the antibacterial and antibiofilm potentials of quercetin against A. hydrophila. Efficacy was assessed using various assays, including antibacterial activity, biofilm inhibition, specific growth time, hemolysis inhibition, autoaggregation, and microscopic evaluation. Additionally, docking analysis was performed to explore potential interactions between quercetin and virulence proteins of A. hydrophila, including proaerolysin, chaperone needle-subunit complex of the type III secretion system, and alpha-pore forming toxin (PDB ID: 1PRE, 2Q1K, 6GRK). Quercetin exhibited potent antibacterial activity with 21.1 ± 1.1 mm zone of inhibition at 1.5 mg mL-1. It also demonstrated significant antibiofilm activity, reducing biofilm formation by 46.3 ± 1.3% at the MIC and attenuating autoaggregation by 55.9 ± 1.5%. Hemolysis was inhibited by 41 ± 1.8%. Microscopic analysis revealed the disintegration of the A. hydrophila biofilm matrix. Docking studies indicated active hydrogen bond interactions between quercetin and the targeted virulence proteins with the binding energy -3.2, -5.6, and -5.1 kcal mol⁻1, respectively. These results suggest that quercetin is an excellent alternative to antibiotics for combating A. hydrophila infection in aquaculture. The multifaceted efficacy of quercetin in inhibiting bacterial growth, biofilm formation, virulence factors, and autoaggregation highlights the potential for aquaculture health and sustainability. Future research should delve into the precise mechanisms of action and explore synergistic combinations with other compounds for enhanced efficacy and targeted interventions.
Collapse
Affiliation(s)
- Sudharshini Jayaraman
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Nandhini Rajendhran
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Monika Adhilaxmi Kannan
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Thirumurugan Ramasamy
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India.
- Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, 610 005, India.
| |
Collapse
|
5
|
Zhang H, Zhang Z, Li J, Qin G. New Strategies for Biocontrol of Bacterial Toxins and Virulence: Focusing on Quorum-Sensing Interference and Biofilm Inhibition. Toxins (Basel) 2023; 15:570. [PMID: 37755996 PMCID: PMC10536320 DOI: 10.3390/toxins15090570] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/05/2023] [Accepted: 09/09/2023] [Indexed: 09/28/2023] Open
Abstract
The overuse of antibiotics and the emergence of multiple-antibiotic-resistant pathogens are becoming a serious threat to health security and the economy. Reducing antimicrobial resistance requires replacing antibiotic consumption with more biocontrol strategies to improve the immunity of animals and humans. Probiotics and medicinal plants have been used as alternative treatments or preventative therapies for a variety of diseases caused by bacterial infections. Therefore, we reviewed some of the anti-virulence and bacterial toxin-inhibiting strategies that are currently being developed; this review covers strategies focused on quenching pathogen quorum sensing (QS) systems, the disruption of biofilm formation and bacterial toxin neutralization. It highlights the probable mechanism of action for probiotics and medicinal plants. Although further research is needed before a definitive statement can be made on the efficacy of any of these interventions, the current literature offers new hope and a new tool in the arsenal in the fight against bacterial virulence factors and bacterial toxins.
Collapse
Affiliation(s)
- Hua Zhang
- Henan Key Laboratory of Ion Beam Bio-Engineering, College of Physics, Zhengzhou University, Zhengzhou 450000, China;
- School of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China;
| | - Zhen Zhang
- School of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China;
| | - Jing Li
- School of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China;
| | - Guangyong Qin
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450000, China;
| |
Collapse
|
6
|
Luo S, Kang X, Luo X, Li C, Wang G. Study on the inhibitory effect of quercetin combined with gentamicin on the formation of Pseudomonas aeruginosa and its bioenvelope. Microb Pathog 2023; 182:106274. [PMID: 37516213 DOI: 10.1016/j.micpath.2023.106274] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/13/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
OBJECTIVE The potential effects of quercetin and gentamicin combination on the bacteriostatic activity and biofilm formation of Pseudomonas aeruginosa (PA) were examined, and the findings provided a theoretical basis for the development of quercetin as a new biofilm inhibitor. METHODS The minimum inhibitory concentration (MIC) of eight PAs was determined by microdilution method and the partial inhibitory concentration index (FICI) of the combined drug was analyzed by micro-dilution method. Thereafter, the lowest film inhibitory concentration (MBIC) of quercetin and gentamicin alone and in combination was evaluated by crystal violet staining. Finally, scanning electron microscopy (SEM) and laser confocal microscopy (CLSM) were used to decipher the inhibitory effect of the combination on biofilm formation. OUTCOME The antibacterial activity of quercetin alone was relatively weak, but after combination with gentamicin, the antibacterial activity was significantly enhanced, as evident by FICI of 0.28 and 0.53 and manifested as synergistic or additive effect, which indicated that quercetin can enhance gentamicin antibacterial activity. The results of crystal violet staining revealed that quercetin and gentamicin alone exhibited a similar biofilm formation inhibitory effect, but the inhibitory effect was substantially weaker, and the antibiofilm activity was stronger and exhibited a dose-dependent response after the combination of the two with 1/2FICI. The results of scanning electron microscopy and laser confocal microscopy also showed that the treatment of PA biofilm after combining quercetin and gentamicin with 1/2FICI could completely destroy the spatial structure of the complete biofilm, significantly reduce the thickness of bacteria, and markedly reduce the proportion of viable bacteria in the membrane. CONCLUSION The combination of quercetin and gentamicin can effectively inhibit the formation of PA as well as its biofilm, and exhibit synergistic and additive effects.
Collapse
Affiliation(s)
- Shuangyan Luo
- School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Xinyun Kang
- School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Xiaofeng Luo
- School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Caixia Li
- School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Guiqin Wang
- School of Agriculture, Ningxia University, 750021, Yinchuan, China.
| |
Collapse
|
7
|
AlAjmi MF, Rehman MT, Hussain A. Celecoxib, Glipizide, Lapatinib, and Sitagliptin as potential suspects of aggravating SARS-CoV-2 (COVID-19) infection: a computational approach. J Biomol Struct Dyn 2022; 40:13747-13758. [PMID: 34709124 PMCID: PMC8567293 DOI: 10.1080/07391102.2021.1994013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
COVID-19 caused by SARS-CoV-2 has emerged as a potential threat to human life, especially to people suffering from chronic diseases. In this study, we investigated the ability of selected FDA-approved drugs to inhibit TACE (tumor necrosis factor α converting enzyme), which is responsible for the shedding of membrane-bound ACE2 (angiotensin-converting enzyme2) receptors into soluble ACE2. The inhibition of TACE would lead to an increased population of membrane-bound ACE2, which would facilitate ACE2-Spike protein interaction and viral entry. A total of 50 drugs prescribed in treating various chronic diseases in Saudi Arabia were screened by performing molecular docking using AutoDock4.2. Based on docking energy (≤ -9.00 kcal mol-1), four drugs (Celecoxib, Glipizide, Lapatinib, and Sitagliptin) were identified as potential inhibitors of TACE, with binding affinities up to 106-107 M-1. Analysis of the molecular docking suggests that these drugs were bound to TACE's catalytic domain and interact with the key residues such as His405, Glu406, and His415, which are involved in active site Zn2+ ion chelation. Molecular dynamics simulation was performed to confirm the stability of TACE-drugs complexes. RMSD (root mean square deviation), RMSF (root mean square fluctuation), Rg (radius of gyration), and SASA (solvent accessible surface area) were within the acceptable limits. Free energy calculations using Prime-MM/GBSA suggest that Celecoxib formed the most stable complex with TACE, followed by Glipizide, Sitagliptin, and Lapatinib. The finding of this study suggests a mechanism for drugs to aggravate SARS-CoV-2 infection and hence high mortality in patients suffering from chronic diseases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohamed F. AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia,CONTACT Md Tabish Rehman Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh11451, Saudi Arabia
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Effect of samarium oxide nanoparticles on virulence factors and motility of multi-drug resistant Pseudomonas aeruginosa. World J Microbiol Biotechnol 2022; 38:209. [PMID: 36040540 DOI: 10.1007/s11274-022-03384-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/09/2022] [Indexed: 10/14/2022]
Abstract
Biofilm formation and quorum sensing (QS) dependent virulence factors are considered the major causes of the emergence of drug resistance, therapeutic failure and development of Pseudomonas aeruginosa infections. This study aimed to investigate the effects of samarium oxide nanoparticles (Sm2O3NPs) on biofilm, virulence factors, and motility of multidrug-resistant P. aeruginosa. Sm2O3NPs were synthesized using curcumin and characterized by Transmission Electron Microscopy, X-ray diffractometer, Field Emission Scanning Electron Microscopy, and Energy-dispersive X-ray spectroscopy. Minimum inhibitory concentration (MIC) was determined using broth microdilution method. The antibiofilm potential of Sm2O3NPs was also evaluated by crystal violet staining and light microscopy examination. Then, the effect of sub-MICs concentrations of Sm2O3NPs on the proteolytic and hemolytic activities of P. aeruginosa was investigated. Finally, the effect of Sm2O3NPs on various types of motility including swarming, swimming, and twitching was studied. Our results showed that Sm2O3NPs significantly inhibited biofilm formation of P. aeruginosa by 49-61%. Additionally, sub-MICs concentrations of Sm2O3NPs effectively decreased virulence factors including pyocyanin (33-55%), protease (24-45%), and hemolytic activity (22-41%). Moreover, swarming, swimming, and twitching motility remarkably was reduced after exposure to the NPs. The findings of this work showed that Sm2O3NPs have a high potential in inhibiting QS-dependent virulence of P. aeruginosa, which could be considered for antibacterial chemotherapy after further characterization.
Collapse
|
9
|
Three New Xanthones from Hypericum scabrum and Their Quorum Sensing Inhibitory Activities against Chromobacterium violaceum. Molecules 2022; 27:molecules27175519. [PMID: 36080284 PMCID: PMC9458047 DOI: 10.3390/molecules27175519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Quorum sensing (QS) plays an important role in the production of virulence factors and pathogenicity in pathogenic bacteria and is, therefore, a hopeful target to fight against bacterial infections. During our search for natural QS inhibitors, two new xanthonolignoids (1 and 2), each existing as a racemic mixture, one new simple oxygenated xanthone (7), and eight known analogs (3–6, 8–11) were isolated from Hypericum scabrum Linn. Chiral separation of 1 yielded a pair of enantiomers 1a and 1b. The structures of these compounds were elucidated by spectroscopic analysis and ECD (electrostatic circular dichroism) calculations. All isolates were evaluated for their QS inhibitory activity against Chromobacterium violaceum. Both 9 and 10 exhibited the most potent QS inhibitory effects with minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 31.25 and 62.5 μM, respectively. Crystal violet staining was used to further evaluate the biofilm inhibition potential of compounds 7, 9 and 10, and the formation of biofilms increased with decreasing drug concentration in a classic dose-dependent manner. The results of a cytotoxicity assay revealed that compounds 7, 9 and 10 exhibited no cytotoxic activity on PC-12 cells at the tested concentration.
Collapse
|
10
|
The Derived Components of Gnaphalium hypoleucum DC. Reduce Quorum Sensing of Chromobacterium violaceum. Molecules 2022; 27:molecules27154881. [PMID: 35956830 PMCID: PMC9369693 DOI: 10.3390/molecules27154881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Gnaphalium hypoleucum DC. was first recorded in the Chinese National Pharmacopoeia “Yi Plant Medicine”. There is no detailed report on its main components’ activity in suppressing the quorum sensing activity (QS) of bacteria. Our study aimed to screen the main components in extracts of G. hypoleucum DC. in order to measure their effects on bacterial QS activity and to explore specific quorum sensing mechanisms that are affected by G. hypoleucum DC. extracts. Crude extracts of G. hypoleucum DC. contained significant amounts of two compounds shown to inhibit bacterial QS activity, namely apigenin and luteolin. Apigenin and luteolin in crude extracts of G. hypoleucum DC. showed substantial inhibition of pigment formation, biofilm production, and motility in Chromobacterium violaceum ATCC 12472 compared to the effects of other phytochemicals from G. hypoleucum DC. Apigenin and luteolin exhibited a strong QS inhibitory effect on C. violaceum, interfering with the violacein pigment biosynthesis by downregulating the vioB, vioC, and vioD genes. In the presence of signal molecules, the QS effect is prevented, and the selected compounds can still inhibit the production of the characteristic purple pigment in C. violaceum. Based on qualitative and quantitative research using genomics and bioinformatics, we concluded that apigenin and luteolin in crude extracts of G. hypoleucum DC can interfere with the generation of QS in C. violaceum by downregulating the vioB, vioC, and vioD genes. Indeed, G. hypoleucum DC. is used for the treatment of bacterial infections, and this research provides new ideas and potential alternative uses for medicinal plants.
Collapse
|
11
|
Orfali R, Perveen S, AlAjmI MF, Ghaffar S, Rehman MT, AlanzI AR, Gamea SB, Essa Khwayri M. Antimicrobial Activity of Dihydroisocoumarin Isolated from Wadi Lajab Sediment-Derived Fungus Penicillium chrysogenum: In Vitro and In Silico Study. Molecules 2022; 27:molecules27113630. [PMID: 35684566 PMCID: PMC9182410 DOI: 10.3390/molecules27113630] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
Antibiotic resistance is considered a major health concern globally. It is a fact that the clinical need for new antibiotics was not achieved until now. One of the most commonly prescribed classes of antibiotics is β-Lactam antibiotics. However, most bacteria have developed resistance against β-Lactams by producing enzymes β-Lactamase or penicillinase. The discovery of new β-Lactamase inhibitors as new antibiotics or antibiotic adjuvants is essential to avoid future catastrophic pandemics. In this study, five dihydroisocoumarin: 6-methoxy mellein (1); 5,6-dihydroxymellein (2); 6-hydroxymellein (3); 4-chloro-6-hydroxymellein (4) and 4-chloro-5,6-di-hydroxymellein (5) were isolated from Wadi Lajab sediment-derived fungus Penicillium chrysogenum, located 15 km northwest of Jazan, KSA. The elucidation of the chemical structures of the isolated compounds was performed by analysis of their NMR, MS. Compounds 1–5 were tested for antibacterial activities against Gram-positive and Gram-negative bacteria. All of the compounds exhibited selective antibacterial activity against Gram-positive bacteria Staphylococcus aureus and Bacillus licheniformis except compound 3. The chloro-dihydroisocoumarin derivative, compound 4, showed potential antimicrobial activities against all of the tested strains with the MIC value between 0.8–5.3 μg/mL followed by compound 5, which exhibited a moderate inhibitory effect. Molecular docking data showed good affinity with the isolated compounds to β-Lactamase enzymes of bacteria; NDM-1, CTX-M, OXA-48. This work provides an effective strategy for compounds to inhibit bacterial growth or overcome bacterial resistance.
Collapse
Affiliation(s)
- Raha Orfali
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (M.F.A.); (S.G.); (M.T.R.); (A.R.A.); (S.B.G.); (M.E.K.)
- Correspondence: (R.O.); or (S.P.)
| | - Shagufta Perveen
- Department of Chemistry, School of Computer, Mathematical and Natural Sciences, Morgan State University, Baltimore, MD 21251, USA
- Correspondence: (R.O.); or (S.P.)
| | - Mohamed Fahad AlAjmI
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (M.F.A.); (S.G.); (M.T.R.); (A.R.A.); (S.B.G.); (M.E.K.)
| | - Safina Ghaffar
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (M.F.A.); (S.G.); (M.T.R.); (A.R.A.); (S.B.G.); (M.E.K.)
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (M.F.A.); (S.G.); (M.T.R.); (A.R.A.); (S.B.G.); (M.E.K.)
| | - Abdullah R. AlanzI
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (M.F.A.); (S.G.); (M.T.R.); (A.R.A.); (S.B.G.); (M.E.K.)
| | - Saja Bane Gamea
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (M.F.A.); (S.G.); (M.T.R.); (A.R.A.); (S.B.G.); (M.E.K.)
| | - Mona Essa Khwayri
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (M.F.A.); (S.G.); (M.T.R.); (A.R.A.); (S.B.G.); (M.E.K.)
| |
Collapse
|
12
|
Bouyahya A, Chamkhi I, Balahbib A, Rebezov M, Shariati MA, Wilairatana P, Mubarak MS, Benali T, El Omari N. Mechanisms, Anti-Quorum-Sensing Actions, and Clinical Trials of Medicinal Plant Bioactive Compounds against Bacteria: A Comprehensive Review. Molecules 2022; 27:1484. [PMID: 35268585 PMCID: PMC8911727 DOI: 10.3390/molecules27051484] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 01/18/2023] Open
Abstract
Bacterial strains have developed an ability to resist antibiotics via numerous mechanisms. Recently, researchers conducted several studies to identify natural bioactive compounds, particularly secondary metabolites of medicinal plants, such as terpenoids, flavonoids, and phenolic acids, as antibacterial agents. These molecules exert several mechanisms of action at different structural, cellular, and molecular levels, which could make them candidates or lead compounds for developing natural antibiotics. Research findings revealed that these bioactive compounds can inhibit the synthesis of DNA and proteins, block oxidative respiration, increase membrane permeability, and decrease membrane integrity. Furthermore, recent investigations showed that some bacterial strains resist these different mechanisms of antibacterial agents. Researchers demonstrated that this resistance to antibiotics is linked to a microbial cell-to-cell communication system called quorum sensing (QS). Consequently, inhibition of QS or quorum quenching is a promising strategy to not only overcome the resistance problems but also to treat infections. In this respect, various bioactive molecules, including terpenoids, flavonoids, and phenolic acids, exhibit numerous anti-QS mechanisms via the inhibition of auto-inducer releases, sequestration of QS-mediated molecules, and deregulation of QS gene expression. However, clinical applications of these molecules have not been fully covered, which limits their use against infectious diseases. Accordingly, the aim of the present work was to discuss the role of the QS system in bacteria and its involvement in virulence and resistance to antibiotics. In addition, the present review summarizes the most recent and relevant literature pertaining to the anti-quorum sensing of secondary metabolites and its relationship to antibacterial activity.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Genomic Center of Human Pathologies, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Imane Chamkhi
- Centre GEOPAC, Laboratoire de Geobiodiversite et Patrimoine Naturel, Université Mohammed V de Rabat, Institut Scientifique de Rabat, Rabat 10106, Morocco;
- Agrobiosciences Program, University Mohammed VI Polytechnic, Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Abdelaali Balahbib
- Laboratory of Biodiversity, Ecology and Genome, Faculty of Sciences, Mohammed V University, Rabat 10106, Morocco;
| | - Maksim Rebezov
- Department of Scientific Research, V. M. Gorbatov Federal Research Center for Food Systems, 26 Talalikhina St., 109316 Moscow, Russia;
- Biophotonics Center, Prokhorov General Physics Institute of the Russian Academy of Science, 119991 Moscow, Russia
- Department of Scientific Research, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), 109004 Moscow, Russia;
| | - Mohammad Ali Shariati
- Department of Scientific Research, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), 109004 Moscow, Russia;
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | | | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Safi 46030, Morocco;
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V. University in Rabat, B.P. 6203, Rabat 10000, Morocco;
| |
Collapse
|
13
|
Zheng S, Zhang Z, Ma J, Qu Q, God'spowe B, Qin Y, Chen X, Li LU, Zhou D, Ding W, Li Y. CD-g-CS nanoparticles for enhanced antibiotic treatment of Staphylococcus xylosus infection. Microb Biotechnol 2022; 15:535-547. [PMID: 34180582 PMCID: PMC8867972 DOI: 10.1111/1751-7915.13870] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 06/02/2021] [Accepted: 06/06/2021] [Indexed: 11/30/2022] Open
Abstract
Staphylococcus xylosus (S. xylosus)-induced cow mastitis is an extremely serious clinical problem. However, antibiotic therapy does not successfully treat S. xylosus infection because these bacteria possess a strong biofilm formation ability, which significantly reduces the efficacy of antibiotic treatments. In this study, we developed ceftiofur-loaded chitosan grafted with β-cyclodextrins (CD-g-CS) nanoparticles (CT-NPs) using host-guest interaction. These positively charged nanoparticles improved bacterial internalization, thereby significantly improving the effectiveness of antibacterial treatments for planktonic S. xylosus. Moreover, CT-NPs effectively inhibited biofilm formation and eradicated mature biofilms. After mammary injection in a murine model of S. xylosus-induced mastitis, CT-NPs significantly reduced bacterial burden and alleviated inflammation, thereby achieving optimized therapeutic efficiency for S. xylosus infection. In conclusion, this treatment strategy could improve the efficiency of antibiotic therapeutics and shows great potential in the treatment of S. xylosus infections.
Collapse
Affiliation(s)
- Si‐Di Zheng
- College of Veterinary MedicineNortheast Agricultural UniversityHarbin, Heilongjiang150030China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical DevelopmentHarbin, Heilongjiang150030China
| | - Zhi‐Yun Zhang
- College of Veterinary MedicineNortheast Agricultural UniversityHarbin, Heilongjiang150030China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical DevelopmentHarbin, Heilongjiang150030China
| | - Jin‐Xin Ma
- College of Veterinary MedicineNortheast Agricultural UniversityHarbin, Heilongjiang150030China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical DevelopmentHarbin, Heilongjiang150030China
| | - Qian‐Wei Qu
- College of Veterinary MedicineNortheast Agricultural UniversityHarbin, Heilongjiang150030China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical DevelopmentHarbin, Heilongjiang150030China
| | - Bello‐Onaghise God'spowe
- College of Veterinary MedicineNortheast Agricultural UniversityHarbin, Heilongjiang150030China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical DevelopmentHarbin, Heilongjiang150030China
| | - Yue Qin
- College of Veterinary MedicineNortheast Agricultural UniversityHarbin, Heilongjiang150030China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical DevelopmentHarbin, Heilongjiang150030China
| | - Xue‐Ying Chen
- College of Veterinary MedicineNortheast Agricultural UniversityHarbin, Heilongjiang150030China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical DevelopmentHarbin, Heilongjiang150030China
| | - LU Li
- College of Life ScienceNortheast Agricultural UniversityHarbin, Heilongjiang150030China
| | - Dong‐Fang Zhou
- School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Wen‐Ya Ding
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical DevelopmentHarbin, Heilongjiang150030China
- School of PharmacyGuangxi University of Chinese MedicineNanning530200China
| | - Yan‐Hua Li
- College of Veterinary MedicineNortheast Agricultural UniversityHarbin, Heilongjiang150030China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical DevelopmentHarbin, Heilongjiang150030China
| |
Collapse
|
14
|
Bastaki SMA, Ojha S, Kalasz H, Adeghate E. Chemical constituents and medicinal properties of Allium species. Mol Cell Biochem 2021; 476:4301-4321. [PMID: 34420186 DOI: 10.1007/s11010-021-04213-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 06/21/2021] [Indexed: 11/24/2022]
Abstract
Allium species, belonging to Alliaceae family, are among the oldest cultivated vegetables used as food. Garlic, onions, leeks and chives, which belong to this family, have been reported to have medicinal properties. The Allium species constituents have been shown to have antibacterial and antioxidant activities, and, in addition, other biological properties. These activities are related to their rich organosulfur compounds. These organosulfur compounds are believed to prevent the development of cancer, cardiovascular, neurological, diabetes, liver diseases as well as allergy and arthritis. There have also been reports on toxicities of these compounds. The major active compounds of Allium species includes, diallyl disulfide, diallyl trisulfide, diallyl sulfide, dipropyl disulfide, dipropyl trisulfide, 1-propenylpropyl disulfide, allyl methyl disulfide and dimethyl disulfide. The aim of this review is to focus on a variety of experimental and clinical reports on the effectiveness, toxicities and possible mechanisms of actions of the active compounds of garlic, onions, leek and chives.
Collapse
Affiliation(s)
- Salim M A Bastaki
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE.
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE
| | - Huba Kalasz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1445 Budapest, Hungary
| | - E Adeghate
- Department of Anatomy, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, UAE
| |
Collapse
|
15
|
Zhao XX, Lin FJ, Li H, Li HB, Wu DT, Geng F, Ma W, Wang Y, Miao BH, Gan RY. Recent Advances in Bioactive Compounds, Health Functions, and Safety Concerns of Onion ( Allium cepa L.). Front Nutr 2021; 8:669805. [PMID: 34368207 PMCID: PMC8339303 DOI: 10.3389/fnut.2021.669805] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/28/2021] [Indexed: 12/19/2022] Open
Abstract
Onion (Allium cepa L.) is a common vegetable, widely consumed all over the world. Onion contains diverse phytochemicals, including organosulfur compounds, phenolic compounds, polysaccharides, and saponins. The phenolic and sulfur-containing compounds, including onionin A, cysteine sulfoxides, quercetin, and quercetin glucosides, are the major bioactive constituents of onion. Accumulated studies have revealed that onion and its bioactive compounds possess various health functions, such as antioxidant, antimicrobial, anti-inflammatory, anti-obesity, anti-diabetic, anticancer, cardiovascular protective, neuroprotective, hepatorenal protective, respiratory protective, digestive system protective, reproductive protective, and immunomodulatory properties. Herein, the main bioactive compounds in onion are summarized, followed by intensively discussing its major health functions as well as relevant molecular mechanisms. Moreover, the potential safety concerns about onion contamination and the ways to mitigate these issues are also discussed. We hope that this paper can attract broader attention to onion and its bioactive compounds, which are promising ingredients in the development of functional foods and nutraceuticals for preventing and managing certain chronic diseases.
Collapse
Affiliation(s)
- Xin-Xin Zhao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Fang-Jun Lin
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, United States
| | - Hang Li
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering and Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering and Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China
| | - Wei Ma
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Yu Wang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Bao-He Miao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Ren-You Gan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering and Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China
| |
Collapse
|
16
|
Mu Y, Zeng H, Chen W. Quercetin Inhibits Biofilm Formation by Decreasing the Production of EPS and Altering the Composition of EPS in Staphylococcus epidermidis. Front Microbiol 2021; 12:631058. [PMID: 33763049 PMCID: PMC7982815 DOI: 10.3389/fmicb.2021.631058] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/26/2021] [Indexed: 11/25/2022] Open
Abstract
Staphylococcus epidermidis is an opportunistic pathogen, and its biofilm formation ability is an important virulent factor. Quercetin, a typical flavonoid ubiquitously used in dietary supplementation, is known for its antioxidant property, but its anti-biofilm activity against S. epidermidis remains unknown. In this study, the anti-biofilm activity of quercetin was investigated using S. epidermidis ATCC35984, a strong biofilm-positive strain. An attempt was made to disclose the mechanisms of the anti-biofilm activity of quercetin. S. epidermidis exhibited a less cell surface hydrophobicity after quercetin treatment. Also, quercetin effectively inhibited S. epidermidis cells from adhering to the glass slides. Quercetin downregulated the intercellular adhesion (ica) locus and then polysaccharide intercellular adhesin (PIA) production was reduced. Therefore, S. epidermidis cells became less hydrophobic, which supported quercetin’s anti-biofilm effect. Our study suggests that quercetin from plants be given further attention as a potential anti-biofilm agent against the biofilm formation of S. epidermidis, even biofilm infections of other bacteria.
Collapse
Affiliation(s)
- Yongqi Mu
- Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Tarim University, Alar, China.,College of Life Sciences, Tarim University, Alar, China
| | - Hong Zeng
- Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Tarim University, Alar, China.,College of Life Sciences, Tarim University, Alar, China
| | - Wei Chen
- Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Tarim University, Alar, China.,College of Life Sciences, Tarim University, Alar, China.,College of Animal Sciences Tarim University, Alar, China.,Key Laboratory of Tarim Animal Husbandry and Science Technology of Xinjiang Production and Construction Corps, Tarim University, Alar, China.,Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control of Xinjiang Production and Construction Corps, Tarim University, Alar, China
| |
Collapse
|
17
|
Meena H, Mishra R, Ranganathan S, Sarma VV, Ampasala DR, Siddhardha B. Attenuation of quorum sensing mediated virulence factors production and biofilm formation in Pseudomonas aeruginosa PAO1 by Colletotrichum gloeosporioides HM3. Microb Pathog 2021; 151:104723. [PMID: 33460747 DOI: 10.1016/j.micpath.2020.104723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/24/2020] [Accepted: 12/27/2020] [Indexed: 11/18/2022]
Abstract
Signal dependent microbial communication in Pseudomonas aeruginosa PAO1 is a typical phenomenon mediated by acyl homo-serine lactone molecules that helps in developing biofilm and enhance antibiotic resistance. Microbial sources provide insight to the hidden treasure of secondary metabolites, and these structurally diversified chemical motifs can be used as antimicrobial and anti-infective agents. In the present study, endophytic fungus, Colletotrichum gloeosporioides HM3 isolated from Carica papaya leaves was explored for anti-infective potential against P. aeruginosa PAO1. The crude extract of C. gloeosporioides HM3 displayed bacteriostatic effect on P. aeruginosa PAO1 growth at 750 μg/ml concentration. A significant decline was observed in the production of quorum sensing regulated virulence factors, i.e. 56.32%, 62.54%, and 66.67% of pyocyanin, chitinase, and elastase enzyme, respectively. A drastic reduction in pathogenic determinant behaviour after treatment with crude extract of C. gloeosporioides HM3 i.e. EPS, rhamnolipid, and HCN production was noted. Light microscopy and CLSM analysis revealed that fungal extract treatment has reduced bacterial ability to form dense biofilm architecture. In silico analysis demonstrated the binding efficiency of bioactive compound, 4-(2,3-dimethoxybenzylidene)-3-methyl-1-(4-nitrophenyl)-2-pyrazolin-5-one, which is equipotent to the natural ligand and displayed a docking score of -5.436 kcal/mol with QS transcriptional regulator (LasR). Whereas the compound Acetamide, n-[tetrahydro-3-(phenylmethyl) thieno [3,4-d]thiazol-2 (3 h)-ylidene]-, s,s-dioxide exhibits a docking score of -4.088 kcal/mol (LasR) and -1.868 kcal/mol (RhlR) with cognate receptor proteins. Henceforth, the research report suggests C. gloeosporioides HM3 derived metabolites could be considered as a potential inhibitors of QS regulated virulence factors and biofilm production in P. aeruginosa PAO1.
Collapse
Affiliation(s)
- Himani Meena
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Rashmi Mishra
- Fungal Biotechnology Lab, Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Sampathkumar Ranganathan
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - V Venkateswara Sarma
- Fungal Biotechnology Lab, Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Dinakara Rao Ampasala
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Busi Siddhardha
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India.
| |
Collapse
|
18
|
Husain FM, Perveen K, Qais FA, Ahmad I, Alfarhan AH, El-Sheikh MA. Naringin inhibits the biofilms of metallo-β-lactamases (MβLs) producing Pseudomonas species isolated from camel meat. Saudi J Biol Sci 2021; 28:333-341. [PMID: 33424314 PMCID: PMC7785451 DOI: 10.1016/j.sjbs.2020.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 11/06/2022] Open
Abstract
Food producing animals harbouring bacteria carrying drug resistance genes especially the metallo-beta-lactamase (MBL) pose high risk for the human population. In addition, formation of biofilm by these drug resistant pathogens represents major threat to food safety and public health. In this study, metallo-β-lactamases (MβLs) producing Pseudomonas spp. from camel meat were isolated and assessed for their biofilm formation. Further, in vitro and in silico studies were performed to study the effect of flavone naringin on biofilm formation against isolated Pseudomonas spp. A total of 55% isolates were found to produce metallo-β-lactamase enzyme. Naringin mitigated biofilm formation of Pseudomonas isolates up to 57%. Disturbed biofilm architecture and reduced the colonization of bacteria on glass was observed under scanning electron microscope (SEM) and confocal laser scanning microscope (CLSM). The biofilm related traits such as exopolysaccharides (EPS) and alginate production was also reduced remarkably in the presence of naringin. Eradication of preformed biofilms (32–60%) was also observed at the respective 0.50 × MICs. Molecular docking revealed that naringin showed strong affinity towards docked proteins with binding energy ranging from −8.6 to −8.8 kcal mol−1. Presence of metallo-β-lactamase producers indicates that camel meat could be possible reservoir of drug-resistant Pseudomonas species of clinical importance. Naringin was successful in inhibiting biofilm formation as well as eradicating the preformed biofilms and demonstrated strong binding affinity towards biofilm associated protein. Thus, it is envisaged that naringin could be exploited as food preservative especially against the biofilm forming food-borne Pseudomonas species and is a promising prospect for the treatment of biofilm based infections.
Collapse
Affiliation(s)
- Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Kahkashan Perveen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Faizan Abul Qais
- Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, India
| | - Iqbal Ahmad
- Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, India
| | - Ahmed H Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed A El-Sheikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
19
|
Mu Y, Zeng H, Chen W. Okanin in Coreopsis tinctoria Nutt is a major quorum-sensing inhibitor against Chromobacterium violaceum. JOURNAL OF ETHNOPHARMACOLOGY 2020; 260:113017. [PMID: 32464313 DOI: 10.1016/j.jep.2020.113017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/24/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Coreopsis tinctoria Nutt has various medical and functional properties and its flower is widely used as health-care tea to decrease blood glucose and to lower blood lipids. However, the quorum sensing (QS) inhibition activity of Coreopsis tinctoria Nutt flower remains unclear. AIM OF THE STUDY To assess inhibitory activity against quorum sensing by Chromobacterium violaceum, to identify the chemical composition of the extracts and to disclose the action mechanism of separated compound. MATERIAL AND METHODS Violacein inhibition assays were performed in 96-wells microplates. The compounds extracted from Coreopsis tinctoria Nutt flower were separated and purified by various chromatography techniques. Respectively, thin layer chromatography (TLC, GF254), mass spectrometer (Agilent 1100 Series LC/MSD Trap SL), Medium-pressure automatic purification system (Buscisepacore C 620, Switzerland), High performance liquid chromatography (HPLC, Shimadzu LC-20AD, Japan), Liquid preparation Chromatography (Waters2545, USA). The chemical structures were identified by nuclear magnetic resonance (NMR, Bruker AV-500, Germany) technique. The inhibitory mechanism of okanin against C. violaceum quorum sensing was detected by quantitative real-time PCR (qRT-PCR). RESULTS Quorum sensing regulates production of bacterial virulence factors, thereby making it an intriguing target for attenuating bacterial pathogenicity. In this study, anti-QS activity of Coreopsis tinctoria Nutt methanol fraction (CTM) was investigated against C. violaceum ATCC12472. CTM showed an inhibitory effect on the QS-mediated virulence factors production such as violacein in C. violaceum without effect on growth rate. Also, okanin was isolated from CTM and its potential of anti-QS was confirmed after observing a significant reduction of violacein production in C. violaceum. An attempt was made to assess the effect of okanin on vioABCDE expression in C. violaceum to disclose acting mechanisms. CONCLUSIONS The results of this study contribute to validate an inhibitory effect of Coreopsis tinctoria Nutt flower on quorum sensing by Chromobacterium violaceum and to determine the compound responsible for inhibition. Also, the inhibitory effect was achieved in tandem with the down-regulation of vio operon.
Collapse
Affiliation(s)
- Yongqi Mu
- Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production & Construction Corps/College of Life Sciences, China.
| | - Hong Zeng
- Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production & Construction Corps/College of Life Sciences, China.
| | - Wei Chen
- Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production & Construction Corps/College of Life Sciences, China; College of Animal Sciences/Key Laboratory of Tarim Animal Husbandry & Science Technology of Xinjiang Production & Construction Corps, Tarim University, Alar, 86-843300, China.
| |
Collapse
|
20
|
Kothari D, Lee WD, Kim SK. Allium Flavonols: Health Benefits, Molecular Targets, and Bioavailability. Antioxidants (Basel) 2020; 9:E888. [PMID: 32961762 PMCID: PMC7555649 DOI: 10.3390/antiox9090888] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 12/14/2022] Open
Abstract
Allium species are revered worldwide as vegetables, condiments, and spices as well as the therapeutic agents in traditional medicine. The bioactive compounds in alliums mainly include organosulfur compounds, polyphenols, dietary fibers, and saponins. Flavonoids, particularly flavonols from alliums, have been demonstrated to have the antioxidant, anticancer, hypolipidemic, anti-diabetic, cardioprotective, neuroprotective, and antimicrobial activities. However, flavonols are mostly characterized from onions and have not been comprehensively reviewed across different species. This article therefore focuses on flavonol profiles from different Allium species, their health effects, underlying molecular mechanisms, and bioavailability. Intriguingly, the functional health effects of flavonols were mainly ascribed to their antioxidant and anti-inflammatory activities involving a cascade of multiple signaling pathways. Although the Allium-derived flavonols offer tremendous potential in preventing chronic disease risks, in-depth studies are needed to translate their clinical application.
Collapse
Affiliation(s)
| | | | - Soo-Ki Kim
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea; (D.K.); (W.-D.L.)
| |
Collapse
|
21
|
Mansuri A, Lokhande K, Kore S, Gaikwad S, Nawani N, Swamy KV, Junnarkar M, Pawar S. Antioxidant, anti-quorum sensing, biofilm inhibitory activities and chemical composition of Patchouli essential oil: in vitro and in silico approach. J Biomol Struct Dyn 2020; 40:154-165. [PMID: 32838699 DOI: 10.1080/07391102.2020.1810124] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The interest in naturally occurring essential oils from medicinal plants has increased extremely over the last decade markedly because they possess antimicrobial and antioxidant protective properties against different chronic diseases. Extensive survival of drug-resistant infectious bacteria depends on quorum sensing (QS) signaling network which raises the need for alternative antibacterial compounds. The aim of this study was to examine the phytochemical compounds of patchouli essential oil (PEO) and to assess its antioxidant activity. Antioxidant studies estimated by 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging method showed that the PEO has effective antioxidant activity (IC50 19.53 µg/mL). QS inhibitory activity of PEO was examined by employing the biosensor strain, Chromobacterium violaceum CV12472. At sub-lethal concentrations, PEO potentially reduced the QS regulated violacein synthesis in CV12472 without inhibiting its cell proliferation. Moreover, it also effectively reduced the production of some QS regulated virulence factors and biofilm development in P. aeruginosa PAO1 without hindering its growth. Phytochemical analysis of PEO was done by GC/MS technique. Molecular docking of PEO major compounds with QS (LasR and FabI) and biofilm regulator proteins (MvfR and Sialidase) of PAO1 was evaluated. These phytocompounds showed potential hydrogen binding interactions with these proteins. The overall results, in vitro and in silico, suggest that PEO could be applied as biocontrol agent against antibiotic resistance pathogens. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Afrin Mansuri
- Microbial Diversity Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Kiran Lokhande
- Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Supriya Kore
- Microbial Diversity Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Swapnil Gaikwad
- Microbial Diversity Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Neelu Nawani
- Microbial Diversity Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - K Venkateswara Swamy
- Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Manisha Junnarkar
- Microbial Diversity Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Sarika Pawar
- Microbial Diversity Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| |
Collapse
|
22
|
Controlled Fermentation Using Autochthonous Lactobacillus plantarum Improves Antimicrobial Potential of Chinese Chives against Poultry Pathogens. Antibiotics (Basel) 2020; 9:antibiotics9070386. [PMID: 32645847 PMCID: PMC7400581 DOI: 10.3390/antibiotics9070386] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 12/21/2022] Open
Abstract
Chinese chives (CC) are rich in several antimicrobial constituents including organosulfur compounds, phenolics, and saponins, among others. Herein, we fermented CC juice using an autochthonous isolate, Lactobacillus plantarum having antimicrobial effects against poultry pathogens toward formulating an antimicrobial feed additive. Following 24 h of fermentation, the antimicrobial and antiviral activities of CC juice were significantly enhanced against poultry pathogens. However, the antioxidant activity of CC juice was significantly decreased following fermentation. Meanwhile, the compositional changes of CC juice following fermentation were also investigated. The total polyphenol, thiol, and allicin contents were significantly decreased in L. plantarum 24 h-fermented CC juice (LpCC) extract; however, total flavonoids increased significantly following fermentation. The untargeted metabolite profiling of nonfermented CC juice (NCC) and LpCC extracts was carried out using the ultra-high-performance liquid chromatography-linear trap quadrupole-orbitrap-tandem mass spectrometry (UHPLC-LTQ-Orbitrap-MS/MS) followed by multivariate analyses. The score plots of principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) based on UHPLC-LTQ-Orbitrap-MS/MS datasets displayed a clear segregation between the LpCC and NCC samples, which suggests their marked metabolomic disparity. Based on the multivariate analysis, we selected 17 significantly discriminant metabolites belonging to the different chemical classes including alkaloid, flavonols, saponins, fatty acids, amino acids, and organic acids. Notably, the flavonols including the glycosides of quercetin, kaempferol, and isorhamnetin as well as the saponins displayed significantly higher relative abundance in LpCC as compared with NCC. This study provides useful insights for the development of a fermented CC juice based antimicrobial feed additive to combat poultry infections.
Collapse
|
23
|
Ahmed MZ, Muteeb G, Khan S, Alqahtani AS, Somvanshi P, Alqahtani MS, Ameta KL, Haque S. Identifying novel inhibitor of quorum sensing transcriptional regulator (SdiA) of Klebsiella pneumoniae through modelling, docking and molecular dynamics simulation. J Biomol Struct Dyn 2020; 39:3594-3604. [PMID: 32401149 DOI: 10.1080/07391102.2020.1767209] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this study, attempts have been made to identify novel inhibitor(s) of SdiA (a homolog of LuxR transcription regulator) of Klebseilla pneumoniae using various computational techniques. 4LFU was used as a template to model the structure of SdiA. ProCheck, Verify3D, Ramachandran plot scores and ProSA-Web confirmed the good quality of the model as the root mean square deviation (RMSD) between SdiA model, and 4LFU template was estimated to be 0.21 Å. The secondary structural contents of SdiA model were predicted using PDBsum. The only binding site of SdiA was identified (area = 523.083 Å2 and volume = 351.044 Å3) using CASTp. Molecular docking at three different levels [high throughput virtual screening, standard-precision (SP) and extra-precision (XP) dockings] with increasingly stringent conditions was performed using Glide on Selleck's express pick library (L3600). A total of 61 ligands were found to bind with high affinities to the active site of SdiA. Further, the effect of solvent on protein-ligand interaction was evaluated by performing molecular mechanics-general born surface area (Prime/MM-GBSA). On the basis of Prime/MM-GBSA score, molecular dynamics simulation (50 ns) was performed on the ligand (WAY-390139-A) showing lowest binding energy to confirm the stability of protein-ligand complex. Docking energy and the corresponding binding affinity of WAY-390139-A towards SdiA were estimated to be -13.005 kcal mol-1 and 3.46 × 109 M-1, respectively. Our results confirm that WAY-390139-A binds at the autoinducer binding site of SdiA with high affinity and stability and can be further exploited as potential drug against K. pneumoniae after experimental validation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohammad Z Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ghazala Muteeb
- Department of Nursing, College of Applied Medical Sciences, King Faisal University, Saudi Arabia
| | - Saif Khan
- Department of Basic Medical and Dental Science, College of Dentistry, University of Ha'il, Ha'il, Saudi Arabia
| | - Ali S Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Pallavi Somvanshi
- Department of Biotechnology, TERI School of Advanced Studies, Plot No. 10, Institutional Area, Vasant Kunj, India
| | - Mohammed S Alqahtani
- Departmental of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Keshav Lalit Ameta
- Department of Chemistry, Mody University of Science and Technology, Lakshmangarh, Rajasthan, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
24
|
Cosa S, Rakoma JR, Yusuf AA, Tshikalange TE. Calpurnia aurea (Aiton) Benth Extracts Reduce Quorum Sensing Controlled Virulence Factors in Pseudomonas aeruginosa. Molecules 2020; 25:E2283. [PMID: 32413961 PMCID: PMC7287703 DOI: 10.3390/molecules25102283] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/30/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa is the causative agent of several life-threatening human infections. Like many other pathogens, P. aeruginosa exhibits quorum sensing (QS) controlled virulence factors such as biofilm during disease progression, complicating treatment with conventional antibiotics. Thus, impeding the pathogen's QS circuit appears as a promising alternative strategy to overcome pseudomonas infections. In the present study, Calpurnia aurea were evaluated for their antibacterial (minimum inhibitory concentrations (MIC)), anti-quorum sensing/antivirulence (AQS), and antibiofilm potential against P. aeruginosa. AQS and antivirulence (biofilm formation, swimming, and swarming motility) activities of plant extracts were evaluated against Chromobacterium violaceum and P. aeruginosa, respectively. The in vitro AQS potential of the individual compounds were validated using in silico molecular docking. Acetone and ethanolic extracts of C. aurea showed MIC at 1.56 mg/mL. The quantitative violacein inhibition (AQS) assay showed ethyl acetate extracts as the most potent at a concentration of 1 mg/mL. GCMS analysis of C. aurea revealed 17 compounds; four (pentadecanol, dimethyl terephthalate, terephthalic acid, and methyl mannose) showed potential AQS through molecular docking against the CviR protein of C. violaceum. Biofilm of P. aeruginosa was significantly inhibited by ≥60% using 1-mg/mL extract of C. aurea. Confocal laser scanning microscopy correlated the findings of crystal violet assay with the extracts significantly altering the swimming motility. C. aurea extracts reduced the virulence of pseudomonas, albeit in a strain- and extract-specific manner, showing their suitability for the identification of lead compounds with QS inhibitory potential for the control of P. aeruginosa infections.
Collapse
Affiliation(s)
- Sekelwa Cosa
- Division of Microbiology, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa;
| | - Jostina R. Rakoma
- Division of Microbiology, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa;
| | - Abdullahi A. Yusuf
- Social Insects Research Group, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield Pretoria 0028, South Africa;
| | | |
Collapse
|
25
|
Food color 'Azorubine' interferes with quorum sensing regulated functions and obliterates biofilm formed by food associated bacteria: An in vitro and in silico approach. Saudi J Biol Sci 2020; 27:1080-1090. [PMID: 32256169 PMCID: PMC7105693 DOI: 10.1016/j.sjbs.2020.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/16/2019] [Accepted: 01/06/2020] [Indexed: 11/20/2022] Open
Abstract
Quorum sensing (QS) plays a crucial role in different stages of biofilm development, virulence production, and subsequently to the growth of bacteria in food environments. Biofilm mediated spoilage of food is one of the ongoing challenge faced by the food industry worldwide as it incurs substantial economic losses and leads to various health issues. In the present investigation, we studied the interference of quorum sensing, its regulated virulence functions, and biofilm in food-associated bacteria by colorant azorubine. In vitro bioassays demonstrated significant inhibition of QS and its coordinated virulence functions in Chromobacterium violaceum 12472 (violacein) and Pseudomonas aeruginosa PAO1 (elastase, protease, pyocyanin, and alginate). Further, the decrease in the production EPS (49–63%) and swarming motility (61–83%) of the pathogens was also recorded at sub-MICs. Azorubine demonstrated broad-spectrum biofilm inhibitory potency (50–65%) against Chromobacterium violaceum, Pseudomonas aeruginosa, E. coli O157:H7, Serratia marcescens, and Listeria monocytogenes. ROS generation due to the interaction between bacteria and azorubine could be responsible for the biofilm inhibitory action of the food colorant. Findings of the in vitro studies were well supported by molecular docking and simulation analysis of azorubine and QS virulence proteins. Azorubine showed strong binding to PqsA as compared to other virulent proteins (LasR, Vfr, and QscR). Thus, it is concluded that azorubine is a promising candidate to ensure food safety by curbing the menace of bacterial QS and biofilm-based spoilage of food and reduce economic losses.
Collapse
|
26
|
Shaw E, Wuest WM. Virulence attenuating combination therapy: a potential multi-target synergy approach to treat Pseudomonas aeruginosa infections in cystic fibrosis patients. RSC Med Chem 2020; 11:358-369. [PMID: 33479641 PMCID: PMC7580779 DOI: 10.1039/c9md00566h] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/06/2020] [Indexed: 12/15/2022] Open
Abstract
The World Health Organization considers the discovery of new treatments for P. aeruginosa a top priority. Virulence attenuating combination therapy (VACT) is a pragmatic strategy to improve bacterial clearance, repurpose outmoded antibiotics, improve drug efficacy at lower doses, and reduce the evolution of resistance. In vitro and in vivo studies have shown that adding a quorum sensing inhibitor or an extracellular polymeric substance repressor to classical antibiotics synergistically improves antipseudomonal activity. This review highlights why VACT could specifically benefit cystic fibrosis patients harboring chronic P. aeruginosa infections, outlines the current landscape of synergistic combinations between virulence-targeting small-molecules and anti-pseudomonal drugs, and suggests future directions for VACT research.
Collapse
Affiliation(s)
- Elana Shaw
- Department of Chemistry , Emory University , 1515 Dickey Drive , Atlanta , Georgia 30322 , USA .
| | - William M Wuest
- Department of Chemistry , Emory University , 1515 Dickey Drive , Atlanta , Georgia 30322 , USA .
- Emory Antibiotic Resistance Center , Emory University School of Medicine , 201 Dowman Drive , Atlanta , Georgia 30322 , USA
| |
Collapse
|
27
|
Froes TQ, Baldini RL, Vajda S, Castilho MS. Structure-based Druggability Assessment of Anti-virulence Targets from Pseudomonas aeruginosa. Curr Protein Pept Sci 2020; 20:1189-1203. [PMID: 31038064 DOI: 10.2174/1389203720666190417120758] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/12/2019] [Accepted: 02/28/2019] [Indexed: 11/22/2022]
Abstract
Antimicrobial Resistance (AMR) represents a serious threat to health and the global economy. However, interest in antibacterial drug development has decreased substantially in recent decades. Meanwhile, anti-virulence drug development has emerged as an attractive alternative to fight AMR. Although several macromolecular targets have been explored for this goal, their druggability is a vital piece of information that has been overlooked. This review explores this subject by showing how structure- based freely available in silico tools, such as PockDrug and FTMap, might be useful for designing novel inhibitors of the pyocyanin biosynthesis pathway and improving the potency/selectivity of compounds that target the Pseudomonas aeruginosa quorum sensing mechanism. The information provided by hotspot analysis, along with binding site features, reveals novel druggable targets (PhzA and PhzS) that remain largely unexplored. However, it also highlights that in silico druggability prediction tools have several limitations that might be overcome in the near future. Meanwhile, anti-virulence drug targets should be assessed by complementary methods, such as the combined use of FTMap/PockDrug, once the consensus druggability classification reduces the risk of wasting resources on undruggable proteins.
Collapse
Affiliation(s)
- Thamires Q Froes
- Programa de Pos-Graduacao em Biotecnologia da Universidade Estadual de Feira de Santana, Feira de Santana, BA, Brazil.,aculdade de Farmácia da Universidade Federal da Bahia, Bahia, Salvador, BA, Brazil
| | - Regina L Baldini
- Departamento de Bioquimica, Instituto de Quimica, Universidade de Sao Paulo. Sao Paulo, SP, Brazil
| | - Sandor Vajda
- College of Engineering, Boston University, Boston, MA, United States
| | - Marcelo S Castilho
- Programa de Pos-Graduacao em Biotecnologia da Universidade Estadual de Feira de Santana, Feira de Santana, BA, Brazil.,aculdade de Farmácia da Universidade Federal da Bahia, Bahia, Salvador, BA, Brazil.,College of Engineering, Boston University, Boston, MA, United States
| |
Collapse
|
28
|
Qu Q, Wang J, Cui W, Zhou Y, Xing X, Che R, Liu X, Chen X, Bello-Onaghise G, Dong C, Li Z, Li X, Li Y. In vitro activity and In vivo efficacy of Isoliquiritigenin against Staphylococcus xylosus ATCC 700404 by IGPD target. PLoS One 2019; 14:e0226260. [PMID: 31860659 PMCID: PMC6924684 DOI: 10.1371/journal.pone.0226260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/23/2019] [Indexed: 12/16/2022] Open
Abstract
Staphylococcus xylosus (S. xylosus) is a type of coagulase-negative Staphylococcus, which was previously considered as non-pathogenic. However, recent studies have linked it with cases of mastitis in cows. Isoliquiritigenin (ISL) is a bioactive compound with pharmacological functions including antibacterial activity. In this study, we evaluated the effect of ISL on S. xylosus in vitro and in vivo. The MIC of ISL against S. xylosus was 80 μg/mL. It was observed that sub-MICs of ISL (1/2MIC, 1/4MIC, 1/8MIC) significantly inhibited the formation of S. xylosus biofilm in vitro. Previous studies have observed that inhibiting imidazole glycerol phosphate dehydratase (IGPD) concomitantly inhibited biofilm formation in S. xylosus. So, we designed experiments to target the formation of IGPD or inhibits its activities in S. xylosus ATCC 700404. The results indicated that the activity of IGPD and its histidine content decreased significantly under 1/2 MIC (40 μg/mL) ISL, and the expression of IGPD gene (hisB) and IGPD protein was significantly down-regulated. Furthermore, Bio-layer interferometry experiments showed that ISL directly interacted with IGPD protein (with strong affinity; KD = 234 μM). In addition, molecular docking was used to predict the binding mode of ISL and IGPD. In vivo tests revealed that, ISL significantly reduced TNF-α and IL-6 levels, mitigated the destruction of the mammary glands and reversed the production of inflammatory cells in mice. The results of the study suggest that, ISL may inhibit S. xylosus growth by acting on IGPD, which can be used as a target protein to treat infections caused by S. xylosus.
Collapse
Affiliation(s)
- Qianwei Qu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, P. R. China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang, P. R. China
| | - Jinpeng Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, P. R. China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang, P. R. China
| | - Wenqiang Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, P. R. China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang, P. R. China
| | - Yonghui Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, P. R. China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang, P. R. China
| | - Xiaoxu Xing
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, P. R. China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang, P. R. China
| | - Ruixiang Che
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, P. R. China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang, P. R. China
| | - Xin Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, P. R. China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang, P. R. China
| | - Xueying Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, P. R. China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang, P. R. China
| | - God’spower Bello-Onaghise
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, P. R. China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang, P. R. China
| | - Chunliu Dong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, P. R. China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang, P. R. China
| | - Zhengze Li
- Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, P. R. China
| | - Xiubo Li
- Feed Research Institute Chinese Academy of Agricultural Science, Harbin, Heilongjiang, P. R. China
| | - Yanhua Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, P. R. China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang, P. R. China
- * E-mail:
| |
Collapse
|
29
|
Khan JM, Malik A, Rehman T, AlAjmi MF, Alamery SF, Alghamdi OHA, Khan RH, Odeibat HAM, Fatima S. Alpha-cyclodextrin turns SDS-induced amyloid fibril into native-like structure. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Parvez MK, Al-Dosari MS, Alam P, Rehman M, Alajmi MF, Alqahtani AS. The anti-hepatitis B virus therapeutic potential of anthraquinones derived from Aloe vera. Phytother Res 2019; 33:2960-2970. [PMID: 31410907 DOI: 10.1002/ptr.6471] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 06/24/2019] [Accepted: 07/15/2019] [Indexed: 12/13/2022]
Abstract
Although the approved hepatitis B virus (HBV)-polymerase inhibitors (e.g., lamivudine) often lead to drug-resistance, several natural products have shown promising efficacies. Though Aloe vera (AV) gel and its constituents are shown inhibitors of many viruses, their anti-HBV activity still remains elusive. We therefore, tested the anti-HBV potential of AV extract and its anthraquinones in hepatoma cells, including molecular docking, high-performance thin layer chromatography (HPTLC), and cytochrome P450 (CYP3A4) activation analyses. Our anti-HBV assays (HBsAg/HBeAg Elisa) showed maximal inhibition of viral antigens production by aloe-emodin (~83%) > chrysophanol (~62%) > aloin B (~61%) > AV extract (~37%) in HepG2.2.15 cells. Interestingly, the effect of aloe-emodin was comparable with lamivudine (~86%). Moreover, sequential treatment with lamivudine (pulse) followed by aloe-emodin (chase) enhanced the efficacy of monotherapy by ~12%. Docking (AutoDock Vina) of the anthraquinones indicated strong interactions with HBV-polymerase residues that formed stable complexes with high Gibbs's free energy. Further, identification of aloe-emodin and aloin B by validated HPTLC in AV extract strongly endorsed its anti-HBV potential. In addition, our luciferase-reporter gene assay of transfected HepG2 cells showed moderate induction of CYP3A4 by aloe-emodin. In conclusion, this is the first report on anti-HBV potential of AV-derived anthraquinones, possibly via HBV-polymerase inhibition. Of these, although aloin B exhibits novel antiviral effect, aloe-emodin appears as the most promising anti-HBV natural drug with CYP3A4 activating property towards its enhanced therapeutic efficacy.
Collapse
Affiliation(s)
- Mohammad K Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed S Al-Dosari
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Perwez Alam
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - MdTabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed F Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ali S Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
31
|
Quecan BXV, Santos JTC, Rivera MLC, Hassimotto NMA, Almeida FA, Pinto UM. Effect of Quercetin Rich Onion Extracts on Bacterial Quorum Sensing. Front Microbiol 2019; 10:867. [PMID: 31105665 PMCID: PMC6492534 DOI: 10.3389/fmicb.2019.00867] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/04/2019] [Indexed: 01/08/2023] Open
Abstract
Quorum sensing (QS) regulates bacterial gene expression and studies suggest quercetin, a flavonol found in onion, as a QS inhibitor. There are no studies showing the anti-QS activity of plants containing quercetin in its native glycosylated forms. This study aimed to evaluate the antimicrobial and anti-QS potential of organic extracts of onion varieties and its representative phenolic compounds quercetin aglycone and quercetin 3-β-D-glucoside in the QS model bacteria Chromobacterium violaceum ATCC 12472, Pseudomonas aeruginosa PAO1, and Serratia marcescens MG1. Three phenolic extracts were obtained: red onion extract in methanol acidified with 2.5% acetic acid (RO-1), white onion extract in methanol (WO-1) and white onion extract in methanol ammonium (WO-2). Quercetin 4-O-glucoside and quercetin 3,4-O-diglucoside were identified as the predominant compounds in both onion varieties using HPLC-DAD and LC-ESI-MS/MS. However, quercetin aglycone, cyanidin 3-O-glucoside and quercetin glycoside were identified only in RO-1. The three extracts showed minimum inhibitory concentration (MIC) values equal to or above 125 μg/ml of dried extract. Violacein production was significantly reduced by RO-1 and quercetin aglycone, but not by quercetin 3-β-D-glucoside. Motility in P. aeruginosa PAO1 was inhibited by RO-1, while WO-2 inhibited S. marcescens MG1 motility only in high concentration. Quercetin aglycone and quercetin 3-β-D-glucoside were effective at inhibiting motility in P. aeruginosa PAO1 and S. marcescens MG1. Surprisingly, biofilm formation was not affected by any extracts or the quercetins tested at sub-MIC concentrations. In silico studies suggested a better interaction and placement of quercetin aglycone in the structures of the CviR protein of C. violaceum ATCC 12472 than the glycosylated compound which corroborates the better inhibitory effect of the former over violacein production. On the other hand, the two quercetins were well placed in the AHLs binding pockets of the LasR protein of P. aeruginosa PAO1. Overall onion extracts and quercetin presented antimicrobial activity, and interference on QS regulated production of violacein and swarming motility.
Collapse
Affiliation(s)
- B. X. V. Quecan
- Food Research Center (FoRC), Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - J. T. C. Santos
- Food Research Center (FoRC), Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - M. L. C. Rivera
- Food Research Center (FoRC), Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - N. M. A. Hassimotto
- Food Research Center (FoRC), Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - F. A. Almeida
- Department of Nutrition, Federal University of Juiz de Fora, Governador Valadares, Brazil
| | - U. M. Pinto
- Food Research Center (FoRC), Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
32
|
Al-Yousef HM, Sheikh IA. β-Sitosterol derived compound from onion husks non-polar fraction reduces quorum sensing controlled virulence and biofilm production. Saudi Pharm J 2019; 27:664-672. [PMID: 31297021 PMCID: PMC6598451 DOI: 10.1016/j.jsps.2019.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 04/01/2019] [Indexed: 11/06/2022] Open
Abstract
Quorum sensing is an important regulatory factor of P. aeruginosa virulence induction such as BF, motility, formations of proteases, pyocyanin, and some toxins. The aim of the current study is to detect the effect of the pet.ether extract from onion husk and compound drive from it on quorum sensing and virulence formations of P. aeruginosa. Quorum sensing inhibiting effect of the pet.ether extract of onion husk and a compound drive from it, was evaluated by C. violaceum reporter using dilution method as well as an antioxidant by using DPPH. The efficacious of: Quorum sensing inhibiting on pet.ether fraction and compound derived from it, were investigated for their activities toward biofilm and pyocyanin synthesis as well as motility from P. aeruginosa. The pet.ether fraction and compound derived from it of onion husk exhibited potent antimicrobial, antioxidant and Quorum sensing inhibiting effects. The pet.ether fraction and compound derived from it possesses significant reduction on pyocyanin and biofilm induction of P. aeruginosa. Moreover, they significantly inhibited swimming motilities of P. aeruginosa. For the first time, our study showed the medical importance of Allium cepa L. as antimicrobial, antioxidant as well as Quorum sensing inhibiting and virulence suppressors of P. aeruginosa. Thus, these might emphasized on Allium cepa L as a natural source for attenuating toxins of the Pseudomonas.
Collapse
Affiliation(s)
- Hanan M Al-Yousef
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ishfaq Ahmad Sheikh
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
33
|
Parvez MK, Tabish Rehman M, Alam P, Al-Dosari MS, Alqasoumi SI, Alajmi MF. Plant-derived antiviral drugs as novel hepatitis B virus inhibitors: Cell culture and molecular docking study. Saudi Pharm J 2019; 27:389-400. [PMID: 30976183 PMCID: PMC6439212 DOI: 10.1016/j.jsps.2018.12.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 12/23/2018] [Indexed: 02/06/2023] Open
Abstract
Despite high anti-HBV efficacies, while the nucleoside analogs (e.g., lamivudine) lead to the emergence of drug-resistance, interferons (e.g., IFN-α causes adverse side-effects. Comparatively, various natural or plant products have shown similar or even better efficacy. Hence, new antiviral strategies must focus not only on synthetic molecules but also on potential natural compounds. In this report, we have combined the in vitro cell culture and in silico molecular docking methods to assess the novel anti-HBV activity and delineate the inhibitory mechanism of selected plant-derived pure compounds of different classes. Of the tested (2.5-50 μg/ml) twelve non-cytotoxic compounds, ten (10 μg/ml) were found to maximally inhibit HBsAg production at day 5. Compared to quercetin (73%), baccatin III (71%), psoralen (67%), embelin (65%), menisdaurin (64%) and azadirachtin (62%) that showed high inhibition of HBeAg synthesis, lupeol (52%), rutin (47%), β-sitosterol (43%) and hesperidin (41%) had moderate efficacies against HBV replication. Further assessment of quercetin in combination with the highly active compounds, enhanced its anti-HBV activity up to 10%. Being the most important drug target, a 3-D structure of HBV polymerase (Pol/RT) was modeled and docked with the active compounds, including lamivudine as standard. Docking of lamivudine indicated strong interaction with the modeled HBV Pol active-site residues that formed stable complex (∆G = -5.2 kcal/mol). Similarly, all the docked antiviral compounds formed very stable complexes with HBV Pol (∆G = -6.1 to -9.3 kcal/mol). Taken together, our data suggest the anti-HBV potential of the tested natural compounds as novel viral Pol/RT inhibitors.
Collapse
Affiliation(s)
- Mohammad K. Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Perwez Alam
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | | | | | | |
Collapse
|
34
|
Qais FA, Khan MS, Ahmad I. Broad-spectrum quorum sensing and biofilm inhibition by green tea against gram-negative pathogenic bacteria: Deciphering the role of phytocompounds through molecular modelling. Microb Pathog 2019; 126:379-392. [DOI: 10.1016/j.micpath.2018.11.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/17/2018] [Accepted: 11/22/2018] [Indexed: 01/08/2023]
|
35
|
Husain FM, Ahmad I, Khan FI, Al-Shabib NA, Baig MH, Hussain A, Rehman MT, Alajmi MF, Lobb KA. Seed Extract of Psoralea corylifolia and Its Constituent Bakuchiol Impairs AHL-Based Quorum Sensing and Biofilm Formation in Food- and Human-Related Pathogens. Front Cell Infect Microbiol 2018; 8:351. [PMID: 30410871 PMCID: PMC6211212 DOI: 10.3389/fcimb.2018.00351] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 09/14/2018] [Indexed: 01/18/2023] Open
Abstract
The emergence of multi-drug resistance in pathogenic bacteria in clinical settings as well as food-borne infections has become a serious health concern. The problem of drug resistance necessitates the need for alternative novel therapeutic strategies to combat this menace. One such approach is targeting the quorum-sensing (QS) controlled virulence and biofilm formation. In this study, we first screened different fractions of Psoralea corylifolia (seed) for their anti-QS property in the Chromobacterium violaceum 12472 strain. The methanol fraction was found to be the most active fraction and was selected for further bioassays. At sub-inhibitory concentrations, the P. corylifolia methanol fraction (PCMF) reduced QS-regulated virulence functions in C. violaceum CVO26 (violacein); Pseudomonas aeruginosa (elastase, protease, pyocyanin, chitinase, exopolysaccharides (EPS), and swarming motility), A. hydrophila (protease, EPS), and Serratia marcescens (prodigiosin). Biofilm formation in all the test pathogens was reduced significantly (p ≤ 0.005) in a concentration-dependent manner. The β-galactosidase assay showed that the PCMF at 1,000 μg/ml downregulated las-controlled transcription in PAO1. In vivo studies with C. elegans demonstrated increased survival of the nematodes after treatment with the PCMF. Bakuchiol, a phytoconstituent of the extract, demonstrated significant inhibition of QS-regulated violacein production in C. violaceum and impaired biofilm formation in the test pathogens. The molecular docking results suggested that bakuchiol efficiently binds to the active pockets of LasR and RhlR, and the complexes were stabilized by several hydrophobic interactions. Additionally, the molecular dynamics simulation of LasR, LasR-bakuchiol, RhlR, and RhlR-bakuchiol complexes for 50 ns revealed that the binding of bakuchiol to LasR and RhlR was fairly stable. The study highlights the anti-infective potential of the PCMF and bakuchiol instead of bactericidal or bacteriostatic action, as the extract targets QS-controlled virulence and the biofilm.
Collapse
Affiliation(s)
- Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia.,Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, India
| | - Iqbal Ahmad
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Faez Iqbal Khan
- Department of Chemistry, Rhodes University, Grahamstown, South Africa
| | - Nasser A Al-Shabib
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | | | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed F Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Kevin A Lobb
- Department of Chemistry, Rhodes University, Grahamstown, South Africa
| |
Collapse
|