1
|
Da Fonseca Ferreira A, Lehmann A, Grard T, Roquigny R, Le Bris C. Genetic diversity and virulence gene profiling of Vibrio harveyi in a vibriosis-affected European seabass (Dicentrarchus labrax) aquaculture tank. MARINE POLLUTION BULLETIN 2025; 212:117553. [PMID: 39824128 DOI: 10.1016/j.marpolbul.2025.117553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/18/2024] [Accepted: 01/09/2025] [Indexed: 01/20/2025]
Abstract
Aquaculture is crucial for meeting global seafood demand; however, intensification often leads to the development of bacterial diseases that threaten productivity. Dicentrarchus labrax, a key species in European aquaculture, is highly vulnerable to vibriosis, primarily caused by Vibrio harveyi. This study investigates genetic diversity of V. harveyi isolates collected from a seabass tank affected by vibriosis. Sampling from biofilm and water environments yielded 946 bacterial isolates, of which 56 were identified as V. harveyi using MALDI-TOF MS. ERIC-PCR genotyping revealed four distinct profiles. Despite observing variability in the presence of the 80 virulence genes tested, the overall genetic variation among these profiles was not pronounced. The aim of this study was to determine if the presence of any V. harveyi environmental genotype profile could be used as an early predictor of vibriosis outbreak. Notably, no single environmental genotypic profile was linked to this latter. These findings suggest that the presence of virulence genes alone may not predict disease outbreaks, thus underscoring the need for future research on environmental and transcriptional factors that influences the virulence and pathogenicity to improve disease control in aquaculture systems.
Collapse
Affiliation(s)
- A Da Fonseca Ferreira
- Univ. Littoral Côte d'Opale, UMRt 1158 BioEcoAgro, USC ANSES, INRAE, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège, Junia, F-62200 Boulogne-sur-Mer, France
| | - A Lehmann
- Univ. Littoral Côte d'Opale, UMRt 1158 BioEcoAgro, USC ANSES, INRAE, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège, Junia, F-62200 Boulogne-sur-Mer, France
| | - T Grard
- Univ. Littoral Côte d'Opale, UMRt 1158 BioEcoAgro, USC ANSES, INRAE, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège, Junia, F-62200 Boulogne-sur-Mer, France
| | - R Roquigny
- Univ. Littoral Côte d'Opale, UMRt 1158 BioEcoAgro, USC ANSES, INRAE, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège, Junia, F-62200 Boulogne-sur-Mer, France
| | - C Le Bris
- Univ. Littoral Côte d'Opale, UMRt 1158 BioEcoAgro, USC ANSES, INRAE, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège, Junia, F-62200 Boulogne-sur-Mer, France.
| |
Collapse
|
2
|
Yan J, Zhang Z, Shi H, Xue X, Li A, Ding P, Guo X, Wang J, Wang Y, Cao B. Transcriptome Analysis Reveals Cross-Talk between the Flagellar Transcriptional Hierarchy and Secretion System in Plesiomonas shigelloides. Int J Mol Sci 2024; 25:7375. [PMID: 39000482 PMCID: PMC11242183 DOI: 10.3390/ijms25137375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Plesiomonas shigelloides, a Gram-negative bacillus, is the only member of the Enterobacteriaceae family able to produce polar and lateral flagella and cause gastrointestinal and extraintestinal illnesses in humans. The flagellar transcriptional hierarchy of P. shigelloides is currently unknown. In this study, we identified FlaK, FlaM, FliA, and FliAL as the four regulators responsible for polar and lateral flagellar regulation in P. shigelloides. To determine the flagellar transcription hierarchy of P. shigelloides, the transcriptomes of the WT and ΔflaK, ΔflaM, ΔfliA, and ΔfliAL were carried out for comparison in this study. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) and luminescence screening assays were used to validate the RNA-seq results, and the Electrophoretic Mobility Shift Assay (EMSA) results revealed that FlaK can directly bind to the promoters of fliK, fliE, flhA, and cheY, while the FlaM protein can bind directly to the promoters of flgO, flgT, and flgA. Meanwhile, we also observed type VI secretion system (T6SS) and type II secretion system 2 (T2SS-2) genes downregulated in the transcriptome profiles, and the killing assay revealed lower killing abilities for ΔflaK, ΔflaM, ΔfliA, and ΔfliAL compared to the WT, indicating that there was a cross-talk between the flagellar hierarchy system and bacterial secretion system. Invasion assays also showed that ΔflaK, ΔflaM, ΔfliA, and ΔfliAL were less effective in infecting Caco-2 cells than the WT. Additionally, we also found that the loss of flagellar regulators causes the differential expression of some of the physiological metabolic genes of P. shigelloides. Overall, this study aims to reveal the transcriptional hierarchy that controls flagellar gene expression in P. shigelloides, as well as the cross-talk between motility, virulence, and physiological and metabolic activity, laying the groundwork for future research into P. shigelloides' coordinated survival in the natural environment and the mechanisms that infect the host.
Collapse
Affiliation(s)
- Junxiang Yan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin 300457, China
| | - Zixu Zhang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin 300457, China
| | - Hongdan Shi
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin 300457, China
| | - Xinke Xue
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin 300457, China
| | - Ang Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Peng Ding
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin 300457, China
| | - Xi Guo
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin 300457, China
| | - Jinzhong Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin 300457, China
| | - Ying Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin 300457, China
| | - Boyang Cao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin 300457, China
| |
Collapse
|
3
|
Tian Z, Xiang F, Peng K, Qin Z, Feng Y, Huang B, Ouyang P, Huang X, Chen D, Lai W, Geng Y. The cAMP Receptor Protein (CRP) of Vibrio mimicus Regulates Its Bacterial Growth, Type II Secretion System, Flagellum Formation, Adhesion Genes, and Virulence. Animals (Basel) 2024; 14:437. [PMID: 38338079 PMCID: PMC10854923 DOI: 10.3390/ani14030437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/12/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Vibrio mimicus is a serious pathogen in aquatic animals, resulting in significant economic losses. The cAMP receptor protein (CRP) often acts as a central regulator in highly pathogenic pathogens. V. mimicus SCCF01 is a highly pathogenic strain isolated from yellow catfish; the crp gene deletion strain (Δcrp) was constructed by natural transformation to determine whether this deletion affects the virulence phenotypes. Their potential molecular connections were revealed by qRT-PCR analysis. Our results showed that the absence of the crp gene resulted in bacterial and colony morphological changes alongside decreases in bacterial growth, hemolytic activity, biofilm formation, enzymatic activity, motility, and cell adhesion. A cell cytotoxicity assay and animal experiments confirmed that crp contributes to V. mimicus pathogenicity, as the LD50 of the Δcrp strain was 73.1-fold lower compared to the WT strain. Moreover, qRT-PCR analysis revealed the inhibition of type II secretion system genes, flagellum genes, adhesion genes, and metalloproteinase genes in the deletion strain. This resulted in the virulence phenotype differences described above. Together, these data demonstrate that the crp gene plays a core regulatory role in V. mimicus virulence and pathogenicity.
Collapse
Affiliation(s)
- Ziqi Tian
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Z.T.); (F.X.); (K.P.); (Z.Q.); (Y.F.); (B.H.); (P.O.); (W.L.)
| | - Fei Xiang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Z.T.); (F.X.); (K.P.); (Z.Q.); (Y.F.); (B.H.); (P.O.); (W.L.)
- Agricultural and Rural Bureau of Zhongjiang County, Deyang 618100, China
| | - Kun Peng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Z.T.); (F.X.); (K.P.); (Z.Q.); (Y.F.); (B.H.); (P.O.); (W.L.)
| | - Zhenyang Qin
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Z.T.); (F.X.); (K.P.); (Z.Q.); (Y.F.); (B.H.); (P.O.); (W.L.)
| | - Yang Feng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Z.T.); (F.X.); (K.P.); (Z.Q.); (Y.F.); (B.H.); (P.O.); (W.L.)
| | - Bowen Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Z.T.); (F.X.); (K.P.); (Z.Q.); (Y.F.); (B.H.); (P.O.); (W.L.)
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Z.T.); (F.X.); (K.P.); (Z.Q.); (Y.F.); (B.H.); (P.O.); (W.L.)
| | - Xiaoli Huang
- Department of Aquaculture, Sichuan Agricultural University, Chengdu 611130, China; (X.H.); (D.C.)
| | - Defang Chen
- Department of Aquaculture, Sichuan Agricultural University, Chengdu 611130, China; (X.H.); (D.C.)
| | - Weimin Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Z.T.); (F.X.); (K.P.); (Z.Q.); (Y.F.); (B.H.); (P.O.); (W.L.)
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Z.T.); (F.X.); (K.P.); (Z.Q.); (Y.F.); (B.H.); (P.O.); (W.L.)
| |
Collapse
|
4
|
Nuttall RA, Moisander PH. Vibrio cyclitrophicus population-specific biofilm formation and epibiotic growth on marine copepods. Environ Microbiol 2023; 25:2534-2548. [PMID: 37612139 DOI: 10.1111/1462-2920.16483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 07/31/2023] [Indexed: 08/25/2023]
Abstract
Vibrio spp. form a part of the microbiome of copepods-an abundant component of marine mesozooplankton. The biological mechanisms of the Vibrio-copepod association are largely unknown. In this study we compared biofilm formation of V. cyclitrophicus isolated from copepods (L-strains related to other particle-associated strains) and closely related strains originating from seawater (S-strains), and visualized and quantified their attachment and growth on copepods. The S- and L-strains formed similar biofilms in the presence of complete sea salts, suggesting previously unknown biofilm mechanisms in the S-strains. No biofilms formed if sodium chloride was present as the only salt but added calcium significantly enhanced biofilms in the L-strains. GFP-L-strain cells attached to live copepods at higher numbers than the S-strains, suggesting distinct mechanisms, potentially including calcium, support their colonization of copepods. The cells grew on live copepods after attachment, demonstrating that copepods sustain epibiotic V. cyclitrophicus growth in situ. The results demonstrate that in spite of their 99.1% average nucleotide identity, these V. cyclitrophicus strains have a differential capacity to colonize marine copepods. The introduced V. cyclitrophicus-A. tonsa model could be informative in future studies on Vibrio-copepod association.
Collapse
Affiliation(s)
- Ryan A Nuttall
- Department of Biology, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts, USA
| | - Pia H Moisander
- Department of Biology, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts, USA
| |
Collapse
|
5
|
Jiang G, Li Y, Zhang J, Li W, Dang W, Zhang W. Proteomic analysis of the initial wake up of vibrio splendidus persister cells. World J Microbiol Biotechnol 2023; 39:116. [PMID: 36918451 DOI: 10.1007/s11274-023-03559-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/27/2023] [Indexed: 03/16/2023]
Abstract
Vibrio splendidus is a ubiquitous pathogen that causes various diseases in aquaculture with a wide range of hosts. In our previous studies, we showed that L-glutamic acid was the optimal carbon source that could revive V. splendidus persister cells. In our present study, single cell observation under microscopy showed that V. splendidus could revive using L-glutamic acid as carbon source. A proteomic analysis was carried out to further illustrate the initial wake up of persister cells with L-glutamic acid. To collect the initially revived cells, SDS-PAGE was used to determine the revived time. The total proteins from the persister cells and the revived cells were analyzed using LC‒MS/MS. A total of 106 proteins, including 42 downregulated proteins and 64 upregulated proteins, were identified. GO analysis of the differentially expressed proteins (DEPs) showed that biological processes, including protein complex assembly, protein oligomerization, and arginine metabolism; cellular components, including extracellular membrane, plasma membrane and ribosome; and molecular functions, including the activities of arginine binding and structural constituent of ribosome, were enriched. KEGG analysis showed that lipopolysaccharide biosynthesis, porphyrin and chlorophyll metabolism, and peptidoglycan biosynthesis were upregulated, while the ribosome was downregulated. This is the first time to study the initial wake up of persister cells based on proteomic analysis, and the results revealed the main pathways involved in the early resuscitation of V. splendidus persister cells.
Collapse
Affiliation(s)
- Guohua Jiang
- Key Laboratory of Aquacultral Biotechnology Ministry of Education, Ningbo University, 169 Qixingnan Road, Beilun District, Ningbo, 315832, People's Republic of China
- School of Marine Sciences, Ningbo University, 169 Qixingnan Road, Beilun District, Ningbo, 315832, People's Republic of China
| | - Ya Li
- Key Laboratory of Aquacultral Biotechnology Ministry of Education, Ningbo University, 169 Qixingnan Road, Beilun District, Ningbo, 315832, People's Republic of China
- School of Marine Sciences, Ningbo University, 169 Qixingnan Road, Beilun District, Ningbo, 315832, People's Republic of China
| | - Jinxia Zhang
- Key Laboratory of Aquacultral Biotechnology Ministry of Education, Ningbo University, 169 Qixingnan Road, Beilun District, Ningbo, 315832, People's Republic of China
- School of Marine Sciences, Ningbo University, 169 Qixingnan Road, Beilun District, Ningbo, 315832, People's Republic of China
| | - Weisheng Li
- Key Laboratory of Aquacultral Biotechnology Ministry of Education, Ningbo University, 169 Qixingnan Road, Beilun District, Ningbo, 315832, People's Republic of China
- School of Marine Sciences, Ningbo University, 169 Qixingnan Road, Beilun District, Ningbo, 315832, People's Republic of China
| | - Wei Dang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China
| | - Weiwei Zhang
- Key Laboratory of Aquacultral Biotechnology Ministry of Education, Ningbo University, 169 Qixingnan Road, Beilun District, Ningbo, 315832, People's Republic of China.
- School of Marine Sciences, Ningbo University, 169 Qixingnan Road, Beilun District, Ningbo, 315832, People's Republic of China.
| |
Collapse
|
6
|
Fu H, Yu P, Liang W, Kan B, Peng X, Chen L. Virulence, Resistance, and Genomic Fingerprint Traits of Vibrio cholerae Isolated from 12 Species of Aquatic Products in Shanghai, China. Microb Drug Resist 2020; 26:1526-1539. [PMID: 33156741 PMCID: PMC7757592 DOI: 10.1089/mdr.2020.0269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Vibrio cholerae is a waterborne bacterium and can cause epidemic cholera disease worldwide. Continuous monitoring of V. cholerae contamination in aquatic products is imperative for assuring food safety. In this study, we determined virulence, antimicrobial susceptibility, heavy metal tolerance, and genomic fingerprints of 370 V. cholerae isolates recovered from 12 species of commonly consumed aquatic products collected from July to September of 2018 in Shanghai, China. Among the species, Leiocassis longirostris, Ictalurus punetaus, Ophiocephalus argus Cantor, and Pelteobagrus fulvidraco were for the first time detected for V. cholerae. Toxin genes ctxAB, tcpA, ace, and zot were absent from all the V. cholerae isolates. However, high occurrence of virulence-associated genes was detected, such as hapA (82.7%), hlyA (81.4%), rtxCABD (81.4%, 24.3%, 80.3%, and 80.8%, respectively), and tlh (80.5%). Approximately 62.2% of the 370 V. cholerae isolates exhibited resistance to streptomycin, followed by ampicillin (60.3%), rifampicin (53.8%), trimethoprim (38.4%), and sulfamethoxazole-trimethoprim (37.0%). Moreover, ∼57.6% of the isolates showed multidrug resistant phenotypes with 57 resistance profiles, which was significantly different among the 12 species (multiple antimicrobial resistance index, p < 0.001). Meanwhile, high incidence of tolerance to heavy metals Hg2+ (69.5%), Ni2+ (32.4%), and Cd2+ (30.8%) was observed among the isolates. The enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR)-based fingerprinting profiles classified the 370 V. cholerae isolates into 239 different ERIC-genotypes, which demonstrated diverse genomic variation among the isolates. Overall, the results in this study meet the increasing need of food safety risk assessment of aquatic products.
Collapse
Affiliation(s)
- Huiyu Fu
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, Shanghai, People's Republic of China
| | - Pan Yu
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, Shanghai, People's Republic of China
| | - Weili Liang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Biao Kan
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Xu Peng
- Archaea Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Lanming Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, Shanghai, People's Republic of China
| |
Collapse
|
7
|
Toxigenic Vibrio cholerae evolution and establishment of reservoirs in aquatic ecosystems. Proc Natl Acad Sci U S A 2020; 117:7897-7904. [PMID: 32229557 PMCID: PMC7149412 DOI: 10.1073/pnas.1918763117] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The spread of cholera in the midst of an epidemic is largely driven by direct transmission from person to person, although it is well-recognized that Vibrio cholerae is also capable of growth and long-term survival in aquatic ecosystems. While prior studies have shown that aquatic reservoirs are important in the persistence of the disease on the Indian subcontinent, an epidemiological view postulating that locally evolving environmental V. cholerae contributes to outbreaks outside Asia remains debated. The single-source introduction of toxigenic V. cholerae O1 in Haiti, one of the largest outbreaks occurring this century, with 812,586 suspected cases and 9,606 deaths reported through July 2018, provided a unique opportunity to evaluate the role of aquatic reservoirs and assess bacterial transmission dynamics across environmental boundaries. To this end, we investigated the phylogeography of both clinical and aquatic toxigenic V. cholerae O1 isolates and show robust evidence of the establishment of aquatic reservoirs as well as ongoing evolution of V. cholerae isolates from aquatic sites. Novel environmental lineages emerged from sequential population bottlenecks, carrying mutations potentially involved in adaptation to the aquatic ecosystem. Based on such empirical data, we developed a mixed-transmission dynamic model of V. cholerae, where aquatic reservoirs actively contribute to genetic diversification and epidemic emergence, which underscores the complexity of transmission pathways in epidemics and endemic settings and the need for long-term investments in cholera control at both human and environmental levels.
Collapse
|
8
|
Hounmanou YMG, Leekitcharoenphon P, Hendriksen RS, Dougnon TV, Mdegela RH, Olsen JE, Dalsgaard A. Surveillance and Genomics of Toxigenic Vibrio cholerae O1 From Fish, Phytoplankton and Water in Lake Victoria, Tanzania. Front Microbiol 2019; 10:901. [PMID: 31114556 PMCID: PMC6503148 DOI: 10.3389/fmicb.2019.00901] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/09/2019] [Indexed: 12/29/2022] Open
Abstract
The occurrence of toxigenic Vibrio cholerae O1 during a non- outbreak period in Lake Victoria was studied and genetic characteristics for environmental persistence and relatedness to pandemic strains were assessed. We analyzed 360 samples of carps, phytoplankton and water collected in 2017 during dry and rainy seasons in the Tanzanian basin of Lake Victoria. Samples were tested using PCR (ompW and ctxA) with DNA extracted from bacterial isolates and samples enriched in alkaline peptone water. Isolates were screened with polyvalent antiserum O1 followed by antimicrobial susceptibility testing. Whole genome sequencing and bioinformatics tools were employed to investigate the genomic characteristics of the isolates. More V. cholerae positive samples were recovered by PCR when DNA was obtained from enriched samples than from isolates (69.0% vs. 21.3%, p < 0.05), irrespectively of season. We identified ten V. cholerae O1 among 22 ctxA-positive isolates. Further studies are needed to serotype the remaining ctxA-positive non-O1 strains. Sequenced strains belonged to El Tor atypical biotype of V. cholerae O1 of MLST ST69 harboring the seventh pandemic gene. Major virulence genes, ctxA, ctxB, zot, ace, tcpA, hlyA, rtxA, ompU, toxR, T6SS, alsD, makA and pathogenicity islands VPI-1, VPI-2, VSP-1, and VSP-2 were found in all strains. The strains contained Vibrio polysaccharide biosynthesis enzymes, the mshA gene and two-component response regulator proteins involved in stress response and autoinducers for quorum sensing and biofilm formation. They carried the SXT integrative conjugative element with phenotypic and genotypic resistance to aminoglycoside, sulfamethoxazole, trimethoprim, phenicol, and quinolones. Strains contained a multidrug efflux pump component and were resistant to toxic compounds with copper homeostasis and cobalt-zinc-cadmium resistance proteins. The environmental strains belonged to the third wave of the seventh pandemic and most are genetically closely related to recent outbreak strains from Tanzania, Kenya, and Uganda with as low as three SNPs difference. Some strains have persisted longer in the environment and were more related to older outbreak strains in the region. V. cholerae O1 of outbreak potential seem to persist in Lake Victoria through interactions with fish and phytoplankton supported by the optimum water parameters and intrinsic genetic features enhancing survival in the aquatic environment.
Collapse
Affiliation(s)
- Yaovi M Gildas Hounmanou
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pimlapas Leekitcharoenphon
- National Food Institute, WHO Collaborating Center for Antimicrobial Resistance in Food Borne Pathogens and Genomics and European Union Reference Laboratory for Antimicrobial Resistance, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Rene S Hendriksen
- National Food Institute, WHO Collaborating Center for Antimicrobial Resistance in Food Borne Pathogens and Genomics and European Union Reference Laboratory for Antimicrobial Resistance, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Tamegnon V Dougnon
- Research Unit in Applied Microbiology and Pharmacology of Natural Substances, Laboratory of Research in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, Cotonou, Benin
| | - Robinson H Mdegela
- Department of Veterinary Medicine and Public Health, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| | - John E Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Dalsgaard
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Chen XP, Ali L, Wu LY, Liu C, Gang CX, Huang QF, Ruan JH, Bao SY, Rao YP, Yu D. Biofilm Formation Plays a Role in the Formation of Multidrug-Resistant Escherichia coli Toward Nutrients in Microcosm Experiments. Front Microbiol 2018; 9:367. [PMID: 29552003 PMCID: PMC5840168 DOI: 10.3389/fmicb.2018.00367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 02/16/2018] [Indexed: 01/08/2023] Open
Abstract
In this study, microcosms were established to determine the effect of nitrogen (N) and phosphorus (P) on the multidrug resistance and biofilm-forming abilities of Escherichia coli. The expression of biofilm-formation-related genes was detected to establish correlations between genotype and phenotype. Different concentrations of N and P were added to make one control group and four treatment groups. The glass tube method was used to determine biofilm-forming capabilities. Real-time PCR was used to detect the mRNA abundance of six biofilm-formation-related genes in E. coli. No resistant strains were isolated from the control group; meanwhile, multidrug resistance rates were high in the treatment groups. Expression of the biofilm-associated genes luxS, flhD, fliA, motA, and fimH was detected in all treatment groups; however, there was no expression of mqsR. The expression of luxS, flhD, fliA, motA, and fimH significantly correlated with the concentration of N and P, as well as with the appearance and duration of multidrug resistance in different groups. Overall, the results of this study suggest that biofilm-forming ability plays a key role in the formation of multidrug resistance in E. coli after the addition of N and P to a microcosm.
Collapse
Affiliation(s)
- Xiu P Chen
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liaqat Ali
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China.,Department of Biosciences, Faculty of Sciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Li-Yun Wu
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Can Liu
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chen X Gang
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qi F Huang
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jing H Ruan
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Song Y Bao
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yun P Rao
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - DaoJin Yu
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|