1
|
Kennedy LC, Mattis AM, Boehm AB. You can bring plankton to fecal indicator organisms, but you cannot make the plankton graze: particle contribution to E. coli and MS2 inactivation in surface waters. mSphere 2024; 9:e0065624. [PMID: 39360835 PMCID: PMC11520309 DOI: 10.1128/msphere.00656-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 10/30/2024] Open
Abstract
Organisms that are associated with feces ("fecal indicator organisms") are monitored to assess the potential for fecal contamination of surface water bodies in the United States. However, the effect of the complex mixtures of chemicals and the natural microbial community within surface water ("particles") on fecal indicator organism persistence is not well characterized. We aimed to better understand how particles, including biological (e.g., potential grazers) and inert (e.g., minerals) types, affect the fecal indicator organisms Escherichia coli K-12 ("E. coli") and bacteriophage MS2 in surface waters. A gradient of particles captured by a 0.2-µm-pore-size filter ("large particles") was generated, and the additional particles and dissolved constituents that passed through the filter were deemed "small particles." We measured the ratio of MS2 and E. coli that survived over a 24-h incubation period for each condition (0%-1,000% large-particle concentration in raw water) and completed a linear regression that included large- and small-particle coefficients. Particles were characterized by quantifying plankton, total bacterial cells, and total solids. E. coli and MS2 persistence was not significantly affected by large particles, but small particles had an effect in most waters. Small particles in higher-salinity waters had the largest, negative effect on E. coli and MS2 survival ratios: Significant small-particle coefficients ranged from -1.7 to -5.5 day-1 in the marine waters and -0.89 to -3.2 day-1 in the fresh and estuarine waters. This work will inform remediation efforts for impaired surface water bodies.IMPORTANCEMany surface water bodies in the United States have organisms associated with fecal contamination that exceed regulatory standards and prevent safe recreation. The process to remediate impaired water bodies is complicated because these fecal indicator organisms are affected by the local environmental conditions. For example, the effect of particles in surface water on fecal indicator concentrations are difficult to quantify in a way that is comparable between studies and water bodies. We applied a method that overcomes this limitation to assess the effects of large particles, including natural plankton that could consume the seeded fecal indicator organisms. Even in environmental water samples with diverse communities of plankton present, no effect of large particles on fecal indicator concentrations was observed. These findings have implications for the interpretation and design of future studies, including that particle characterization of surface water may be necessary to assess the fate of fecal indicators.
Collapse
Affiliation(s)
- Lauren C. Kennedy
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California, USA
- Department of Civil Engineering, The University of Texas at El Paso, El Paso, Texas, USA
| | - Ava M. Mattis
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California, USA
| | - Alexandria B. Boehm
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California, USA
| |
Collapse
|
2
|
Navas SF, Klapp SHL. Impact of non-reciprocal interactions on colloidal self-assembly with tunable anisotropy. J Chem Phys 2024; 161:054908. [PMID: 39105552 DOI: 10.1063/5.0214730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/19/2024] [Indexed: 08/07/2024] Open
Abstract
Non-reciprocal (NR) effective interactions violating Newton's third law occur in many biological systems, but can also be engineered in synthetic, colloidal systems. Recent research has shown that such NR interactions can have tremendous effects on the overall collective behavior and pattern formation, but can also influence aggregation processes on the particle scale. Here, we focus on the impact of non-reciprocity on the self-assembly of a colloidal system (originally passive) with anisotropic interactions whose character is tunable by external fields. In the absence of non-reciprocity, that is, under equilibrium conditions, the colloids form square-like and hexagonal aggregates with extremely long lifetimes yet no large-scale phase separation [Kogler et al., Soft Matter 11, 7356 (2015)], indicating kinetic trapping. Here, we study, based on Brownian dynamics simulations in 2D, an NR version of this model consisting of two species with reciprocal isotropic, but NR anisotropic interactions. We find that NR induces an effective propulsion of particle pairs and small aggregates ("active colloidal molecules") forming at the initial stages of self-assembly, an indication of the NR-induced non-equilibrium. The shape and stability of these initial clusters strongly depend on the degree of anisotropy. At longer times, we find, for weak NR interactions, large (even system-spanning) clusters where single particles can escape and enter at the boundaries, in stark contrast to the small rigid aggregates appearing at the same time in the passive case. In this sense, weak NR shortcuts the aggregation. Increasing the degree of NR (and thus, propulsion), we even observe large-scale phase separation if the interactions are weakly anisotropic. In contrast, systems with strong NR and anisotropy remain essentially disordered. Overall, the NR interactions are shown to destabilize the rigid aggregates interrupting self-assembly and phase separation in the passive case, thereby helping the system to overcome kinetic barriers.
Collapse
Affiliation(s)
- Salman Fariz Navas
- Institute for Theoretical Physics, Technical University of Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| | - Sabine H L Klapp
- Institute for Theoretical Physics, Technical University of Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| |
Collapse
|
3
|
Asif A, Chen JS, Hussain B, Hsu GJ, Rathod J, Huang SW, Wu CC, Hsu BM. The escalating threat of human-associated infectious bacteria in surface aquatic resources: Insights into prevalence, antibiotic resistance, survival mechanisms, detection, and prevention strategies. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 265:104371. [PMID: 38851127 DOI: 10.1016/j.jconhyd.2024.104371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
Anthropogenic activities and climate change profoundly impact water quality, leading to a concerning increase in the prevalence and abundance of bacterial pathogens across diverse aquatic environments. This rise has resulted in a growing challenge concerning the safety of water sources, particularly surface waters and marine environments. This comprehensive review delves into the multifaceted challenges presented by bacterial pathogens, emphasizing threads to human health within ground and surface waters, including marine ecosystems. The exploration encompasses the intricate survival mechanisms employed by bacterial pathogens and the proliferation of antimicrobial resistance, largely driven by human-generated antibiotic contamination in aquatic systems. The review further addresses prevalent pathogenic bacteria, elucidating associated risk factors, exploring their eco-physiology, and discussing the production of potent toxins. The spectrum of detection techniques, ranging from conventional to cutting-edge molecular approaches, is thoroughly examined to underscore their significance in identifying and understanding waterborne bacterial pathogens. A critical aspect highlighted in this review is the imperative for real-time monitoring of biomarkers associated with waterborne bacterial pathogens. This monitoring serves as an early warning system, facilitating the swift implementation of action plans to preserve and protect global water resources. In conclusion, this comprehensive review provides fresh insights and perspectives, emphasizing the paramount importance of preserving the quality of aquatic resources to safeguard human health on a global scale.
Collapse
Affiliation(s)
- Aslia Asif
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan; Doctoral Program in Science, Technology, Environment, and Mathematics, National Chung Cheng University, Chiayi County, Taiwan
| | - Jung-Sheng Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Bashir Hussain
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan
| | - Gwo-Jong Hsu
- Division of Infectious Disease and Department of Internal Medicine, Chiayi Christian Hospital, Chiayi, Taiwan
| | - Jagat Rathod
- Department of Environmental Biotechnology, Gujarat Biotechnology University, Near Gujarat International Finance and Tec (GIFT)-City, Gandhinagar 382355, Gujarat, India
| | - Shih-Wei Huang
- Institute of Environmental Toxin and Emerging Contaminant, Cheng Shiu University, Kaohsiung, Taiwan; Center for Environmental Toxin and Emerging Contaminant Research, Cheng Shiu University, Kaohsiung, Taiwan
| | - Chin-Chia Wu
- Division of Colorectal Surgery, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan.
| |
Collapse
|
4
|
Zhou L, Tang T, Deng D, Wang Y, Pei D. Isolation and Electrochemical Analysis of a Facultative Anaerobic Electrogenic Strain Klebsiella sp. SQ-1. Pol J Microbiol 2024; 73:143-153. [PMID: 38676960 PMCID: PMC11192523 DOI: 10.33073/pjm-2024-013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/26/2024] [Indexed: 04/29/2024] Open
Abstract
Electricigens decompose organic matter and convert stored chemical energy into electrical energy through extracellular electron transfer. They are significant biocatalysts for microbial fuel cells with practical applications in green energy generation, effluent treatment, and bioremediation. A facultative anaerobic electrogenic strain SQ-1 is isolated from sludge in a biotechnology factory. The strain SQ-1 is a close relative of Klebsiella variicola. Multilayered biofilms form on the surface of a carbon electrode after the isolated bacteria are inoculated into a microbial fuel cell device. This strain produces high current densities of 625 μA cm-2 by using acetate as the carbon source in a three-electrode configuration. The electricity generation performance is also analyzed in a dual-chamber microbial fuel cell. It reaches a maximum power density of 560 mW m-2 when the corresponding output voltage is 0.59 V. The facultative strain SQ-1 utilizes hydrous ferric oxide as an electron acceptor to perform extracellular electricigenic respiration in anaerobic conditions. Since facultative strains possess better properties than anaerobic strains, Klebsiella sp. SQ-1 may be a promising exoelectrogenic strain for applications in microbial electrochemistry.
Collapse
Affiliation(s)
- Lei Zhou
- Henan Provincial Engineering Research Center for Development and Application of Characteristic Microorganism Resources, College of Biology and Food, Shangqiu Normal University, Shangqiu, PR China
| | - Tuoxian Tang
- Department of Biological Sciences, Virginia Tech, Blacksburg, USA
| | - Dandan Deng
- Henan Provincial Engineering Research Center for Development and Application of Characteristic Microorganism Resources, College of Biology and Food, Shangqiu Normal University, Shangqiu, PR China
| | - Yayue Wang
- Henan Provincial Engineering Research Center for Development and Application of Characteristic Microorganism Resources, College of Biology and Food, Shangqiu Normal University, Shangqiu, PR China
| | - Dongli Pei
- Henan Provincial Engineering Research Center for Development and Application of Characteristic Microorganism Resources, College of Biology and Food, Shangqiu Normal University, Shangqiu, PR China
| |
Collapse
|
5
|
Sharma A, Anurag, Kaur J, Kesharwani A, Parihar VK. Antimicrobial Potential of Polyphenols: An Update on Alternative for Combating Antimicrobial Resistance. Med Chem 2024; 20:576-596. [PMID: 38584534 DOI: 10.2174/0115734064277579240328142639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/29/2024] [Accepted: 03/14/2024] [Indexed: 04/09/2024]
Abstract
The last decade has encountered an increasing demand for plant-based natural antibiotics. This demand has led to more research-based investigations for natural sources of antimicrobial agents and published reports demonstrating that plant extracts are widely applied in modern medicine, reporting potential activity that may be due to polyphenol compounds. Interestingly, the effects of polyphenols on the sensitivity of bacteria to antibiotics have not been well-studied. Hence, the current review encompasses the prospective application of plant-based phenolic extracts from plants of Indian origin. The emergence of resistance to antimicrobial agents has increased the inefficacy of many antimicrobial drugs. Several strategies have been developed in recent times to overcome this issue. A combination of antimicrobial agents is employed for the failing antibiotics, which restores the desirable effect but may have toxicity-related issues. Phytochemicals such as some polyphenols have demonstrated their potent activity as antimicrobial agents of natural origin to work against resistance issues. These agents alone or in combination with certain antibiotics have been shown to enhance the antimicrobial activity against a spectrum of microbes. However, the information regarding the mechanisms and structure-activity relationships remains elusive. The present review also focuses on the possible mechanisms of natural compounds based on their structure- activity relationships for incorporating polyphenolic compounds in the drug-development processes. Besides this work, polyphenols could reduce drug dosage and may diminish the unhidden or hidden side effects of antibiotics. Pre-clinical findings have provided strong evidence that polyphenolic compounds, individually and in combination with already approved antibiotics, work well against the development of resistance. However, more studies must focus on in vivo results, and clinical research needs to specify the importance of polyphenol-based antibacterials in clinical trials.
Collapse
Affiliation(s)
- Alok Sharma
- Department of Pharmaceutical Technology, MIET, Meerut (UP), 250005, India
| | - Anurag
- Department of Pharmaceutical Technology, MIET, Meerut (UP), 250005, India
| | - Jasleen Kaur
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, 226002, UP, India
| | - Anuradha Kesharwani
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Hajipur, 844102, Hajipur, India
| | - Vipan Kumar Parihar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Hajipur, 844102, Hajipur, India
| |
Collapse
|
6
|
Bulannga RB, Schmidt S. Two Predators, One Prey - the Interaction Between Bacteriophage, Bacterivorous Ciliates, and Escherichia coli. MICROBIAL ECOLOGY 2023; 86:1620-1631. [PMID: 36723682 DOI: 10.1007/s00248-022-02163-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
Bacterivorous ciliates and lytic bacteriophages are two major predators in aquatic environments, competing for the same type of prey. This study investigated the possible interaction of these different microorganisms and their influence on the activity of each other. Therefore, two bacterivorous ciliates, Paramecium sp. RB1 and Tetrahymena sp. RB2, were used as representative ciliates; a T4-like Escherichia coli targeting lytic bacteriophage as a model virus; and E. coli ATCC 25922 as a susceptible bacterial host and prey. The growth of the two ciliates with E. coli ATCC 25922 as prey was affected by the presence of phage particles. The grazing activity of the two ciliates resulted in more than a 99% reduction of the phage titer and bacterial cell numbers. However, viable phage particles were recovered from individual washed cells of the two ciliates after membrane filtration. Therefore, ciliates such as Paramecium sp. RB1 and Tetrahymena sp. RB2 can remove bacteriophages present in natural and artificial waters by ingesting the viral particles and eliminating bacterial host cells required for viral replication. The ingestion of phage particles may marginally contribute to the nutrient supply of the ciliates. However, the interaction of phage particles with ciliate cells may contribute to the transmission of bacteriophages in aquatic environments.
Collapse
Affiliation(s)
- Rendani Bridghette Bulannga
- Discipline of Microbiology, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Pietermaritzburg, 3209, South Africa
| | - Stefan Schmidt
- Discipline of Microbiology, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Pietermaritzburg, 3209, South Africa.
| |
Collapse
|
7
|
Alkhalil SS. The role of bacteriophages in shaping bacterial composition and diversity in the human gut. Front Microbiol 2023; 14:1232413. [PMID: 37795308 PMCID: PMC10546012 DOI: 10.3389/fmicb.2023.1232413] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/17/2023] [Indexed: 10/06/2023] Open
Abstract
The microbiota of the gut has continued to co-evolve alongside their human hosts conferring considerable health benefits including the production of nutrients, drug metabolism, modulation of the immune system, and playing an antagonistic role against pathogen invasion of the gastrointestinal tract (GIT). The gut is said to provide a habitat for diverse groups of microorganisms where they all co-habit and interact with one another and with the immune system of humans. Phages are bacterial parasites that require the host metabolic system to replicate via the lytic or lysogenic cycle. The phage and bacterial populations are regarded as the most dominant in the gut ecosystem. As such, among the various microbial interactions, the phage-bacteria interactions, although complex, have been demonstrated to co-evolve over time using different mechanisms such as predation, lysogenic conversion, and phage induction, alongside counterdefense by the bacterial population. With the help of models and dynamics of phage-bacteria interactions, the complexity behind their survival in the gut ecosystem was demystified, and their roles in maintaining gut homeostasis and promoting the overall health of humans were elucidated. Although the treatment of various gastrointestinal infections has been demonstrated to be successful against multidrug-resistant causative agents, concerns about this technique are still very much alive among researchers owing to the potential for phages to evolve. Since a dearth of knowledge exists regarding the use of phages for therapeutic purposes, more studies involving experimental models and clinical trials are needed to widen the understanding of bacteria-phage interactions and their association with immunological responses in the gut of humans.
Collapse
Affiliation(s)
- Samia S. Alkhalil
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Muthuvelu KS, Ethiraj B, Pramnik S, Raj NK, Venkataraman S, Rajendran DS, Bharathi P, Palanisamy E, Narayanan AS, Vaidyanathan VK, Muthusamy S. Biopreservative technologies of food: an alternative to chemical preservation and recent developments. Food Sci Biotechnol 2023; 32:1337-1350. [PMID: 37457405 PMCID: PMC10348988 DOI: 10.1007/s10068-023-01336-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 07/18/2023] Open
Abstract
Despite centuries of developing strategies to prevent food-associated illnesses, food safety remains a significant concern, even with multiple technological advancements. Consumers increasingly seek less processed and naturally preserved food options. One promising approach is food biopreservation, which uses natural antimicrobials found in food with a long history of safe consumption and can help reduce the reliance on chemically synthesized food preservatives. The hurdle technology method that combines multiple antimicrobial strategies is often used to improve the effectiveness of food biopreservation. This review attempts to provide a research summary on the utilization of lactic acid bacteria, bacteriocins, endolysins, bacteriophages, and biopolymers helps in the improvement of the shelf-life of food and lower the risk of food-borne pathogens throughout the food supply chain. This review also aims to evaluate current technologies that successfully employ the aforementioned preservatives to address obstacles in food biopreservation.
Collapse
Affiliation(s)
- Kirupa Sankar Muthuvelu
- Bioprocess and Bioproducts Special Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Erode, Tamil Nadu 638 401 India
| | - Baranitharan Ethiraj
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600077 India
| | - Shreyasi Pramnik
- Integrated Bioprocessing Laboratory, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Tamil Nadu 603203 India
| | - N. Keerthish Raj
- Integrated Bioprocessing Laboratory, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Tamil Nadu 603203 India
| | - Swethaa Venkataraman
- Integrated Bioprocessing Laboratory, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Tamil Nadu 603203 India
| | - Devi Sri Rajendran
- Integrated Bioprocessing Laboratory, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Tamil Nadu 603203 India
| | - Priyadharshini Bharathi
- Integrated Bioprocessing Laboratory, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Tamil Nadu 603203 India
| | - Elakiya Palanisamy
- Bioprocess and Bioproducts Special Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Erode, Tamil Nadu 638 401 India
| | - Anusri Sathiya Narayanan
- Bioprocess and Bioproducts Special Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Erode, Tamil Nadu 638 401 India
| | - Vinoth Kumar Vaidyanathan
- Integrated Bioprocessing Laboratory, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Tamil Nadu 603203 India
| | - Shanmugaprakash Muthusamy
- Downstream Processing Laboratory, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, India
| |
Collapse
|
9
|
Olive M, Daraspe J, Genoud C, Kohn T. Uptake without inactivation of human adenovirus type 2 by Tetrahymena pyriformis ciliates. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023. [PMID: 37376996 DOI: 10.1039/d3em00116d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Human adenoviruses are ubiquitous contaminants of surface water. Indigenous protists may interact with adenoviruses and contribute to their removal from the water column, though the associated kinetics and mechanisms differ between protist species. In this work, we investigated the interaction of human adenovirus type 2 (HAdV2) with the ciliate Tetrahymena pyriformis. In co-incubation experiments in a freshwater matrix, T. pyriformis was found to efficiently remove HAdV2 from the aqueous phase, with ≥4 log10 removal over 72 hours. Neither sorption onto the ciliate nor secreted compounds contributed to the observed loss of infectious HAdV2. Instead, internalization was shown to be the dominant removal mechanism, resulting in the presence of viral particles inside food vacuoles of T. pyriformis, as visualized by transmission electron microscopy. The fate of HAdV2 once ingested was scrutinized and no evidence of virus digestion was found over the course of 48 hours. This work shows that T. pyriformis can exert a dual role in microbial water quality: while they remove infectious adenovirus from the water column, they can also accumulate infectious viruses.
Collapse
Affiliation(s)
- Margot Olive
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Jean Daraspe
- Electron Microscopy Facility, Faculty of Biology and Medicine, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Christel Genoud
- Electron Microscopy Facility, Faculty of Biology and Medicine, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Tamar Kohn
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
10
|
Luo J, Chu X, Jie J, Sun Y, Guan Q, Li D, Luo ZQ, Song L. Acinetobacter baumannii Kills Fungi via a Type VI DNase Effector. mBio 2023; 14:e0342022. [PMID: 36625573 PMCID: PMC9973263 DOI: 10.1128/mbio.03420-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 01/11/2023] Open
Abstract
Many Gram-negative bacteria deploy a type VI secretion system (T6SS) to inject toxins into target cells to promote their survival and replication in complex environments. Here, we report that Acinetobacter baumannii uses its T6SS to kill fungi and that the effector TafE (ACX60_15365) is responsible for such killing. Although ectopically expressed TafE is toxic to both Escherichia coli and Saccharomyces cerevisiae, deletion of tafE only affects the antifungal activity of A. baumannii. We demonstrate that TafE is a DNase capable of targeting the nuclei of yeast cells and that an Ntox15 domain is essential for its ability to degrade DNA. Furthermore, our findings show that A. baumannii is protected from the toxicity of TafE by elaborating the immunity protein TaeI (ACX60_15360), which antagonizes the activity of the effector by direct binding. The discovery of A. baumannii T6SS effectors capable of killing multiple taxonomically distinct microbes has shed light on a mechanism of the high-level fitness of this pathogen in environments characterized by scarce nutrients and the potential presence of diverse microorganisms. IMPORTANCE Acinetobacter baumannii is an increasing important nosocomial pathogen that is difficult to combat due to its ability to survive in harsh environments and the emergence of isolates that are resistant to multiple antibiotics. A better understanding of the mechanism underlying the toughness of A. baumannii may identify its Achilles' heel, which will facilitate the development of novel preventive and treatment measures. In this study, our findings show that A. baumannii kills fungi with the DNase effector TafE injected into competitor cells by its type VI secretion system. A. baumannii is protected from the activity of TafE by the immunity protein TaeI, which inactivates the effector by direct binding. Our results suggest that inactivation of its T6SS or effectors may reduce the fitness of A. baumannii and increase the effectiveness of treatment by means such as antibiotics. Furthermore, our finding suggests that targeted degradation of TaeI may be an effective strategy to kill A. baumannii.
Collapse
Affiliation(s)
- Jingjing Luo
- Department of Respiratory Medicine, Center for Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Zoonotic Diseases, The First Hospital of Jilin University, Changchun, China
| | - Xiao Chu
- Department of Respiratory Medicine, Center for Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Zoonotic Diseases, The First Hospital of Jilin University, Changchun, China
| | - Jing Jie
- Department of Respiratory Medicine, Center for Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Zoonotic Diseases, The First Hospital of Jilin University, Changchun, China
| | - Yu Sun
- The First Hospital of Jilin University, Changchun, China
| | - Qingtian Guan
- The First Hospital of Jilin University, Changchun, China
| | - Dan Li
- Department of Respiratory Medicine, Center for Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Zoonotic Diseases, The First Hospital of Jilin University, Changchun, China
| | - Zhao-Qing Luo
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Lei Song
- Department of Respiratory Medicine, Center for Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Zoonotic Diseases, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
11
|
Korajkic A, McMinn BR, Harwood VJ. The Effect of Protozoa Indigenous to Lakewater and Wastewater on Decay of Fecal Indicator Bacteria and Coliphage. Pathogens 2023; 12:pathogens12030378. [PMID: 36986300 PMCID: PMC10053992 DOI: 10.3390/pathogens12030378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Fecal indicator bacteria (FIB: Escherichia coli and enterococci) are used to assess recreational water quality. Viral indicators (i.e., somatic and F+ coliphage), could improve the prediction of viral pathogens in recreational waters, however, the impact of environmental factors, including the effect of predatory protozoa source, on their survival in water is poorly understood. We investigated the effect of lakewater or wastewater protozoa, on the decay (decreasing concentrations over time) of culturable FIB and coliphages under sunlight and shaded conditions. FIB decay was generally greater than the coliphages and was more rapid when indicators were exposed to lake vs. wastewater protozoa. F+ coliphage decay was the least affected by experimental variables. Somatic coliphage decayed fastest in the presence of wastewater protozoa and sunlight, though their decay under shaded conditions was-10-fold less than F+ after 14 days. The protozoa source consistently contributed significantly to the decay of FIB, and somatic, though not the F+ coliphage. Sunlight generally accelerated decay, and shade reduced somatic coliphage decay to the lowest level among all the indicators. Differential responses of FIB, somatic, and F+ coliphages to environmental factors support the need for studies that address the relationship between the decay of coliphages and viral pathogens under environmentally relevant conditions.
Collapse
Affiliation(s)
- Asja Korajkic
- United States Environmental Protection Agency, 26W Martin Luther King Jr. Drive, Cincinnati, OH 45268, USA
- Correspondence: ; Tel.: +1-513-569-7306
| | - Brian R. McMinn
- United States Environmental Protection Agency, 26W Martin Luther King Jr. Drive, Cincinnati, OH 45268, USA
| | - Valerie J. Harwood
- Department of Integrative Biology, University of South Florida, 4202 E Fowler Avenue, Tampa, FL 33620, USA
| |
Collapse
|
12
|
Biofilm ecology associated with dental caries: Understanding of microbial interactions in oral communities leads to development of therapeutic strategies targeting cariogenic biofilms. ADVANCES IN APPLIED MICROBIOLOGY 2023; 122:27-75. [PMID: 37085193 DOI: 10.1016/bs.aambs.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
A biofilm is a sessile community characterized by cells attached to the surface and organized into a complex structural arrangement. Dental caries is a biofilm-dependent oral disease caused by infection with cariogenic pathogens, such as Streptococcus mutans, and associated with frequent exposure to a sugar-rich diet and poor oral hygiene. The virulence of cariogenic biofilms is often associated with the spatial organization of S. mutans enmeshed with exopolysaccharides on tooth surfaces. However, in the oral cavity, S. mutans does not act alone, and several other microbes contribute to cariogenic biofilm formation. Microbial communities in cariogenic biofilms are spatially organized into complex structural arrangements of various microbes and extracellular matrices. The balance of microbiota diversity with reduced diversity and a high proportion of acidogenic-aciduric microbiota within the biofilm is closely related to the disease state. Understanding the characteristics of polymicrobial biofilms and the association of microbial interactions within the biofilm (e.g., symbiosis, cooperation, and competition) in terms of their potential role in the pathogenesis of oral disease would help develop new strategies for interventions in virulent biofilm formation.
Collapse
|
13
|
Matthewman C, Narin A, Huston H, Hopkins CE. Systems to model the personalized aspects of microbiome health and gut dysbiosis. Mol Aspects Med 2022; 91:101115. [PMID: 36104261 DOI: 10.1016/j.mam.2022.101115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/03/2022] [Indexed: 01/17/2023]
Abstract
The human gut microbiome is a complex and dynamic microbial entity that interacts with the environment and other parts of the body including the brain, heart, liver, and immune system. These multisystem interactions are highly conserved from invertebrates to humans, however the complexity and diversity of human microbiota compositions often yield a context that is unique to each individual. Yet commonalities remain across species, where a healthy gut microbiome will be rich in symbiotic commensal biota while an unhealthy gut microbiota will be experiencing abnormal blooms of pathobiont bacteria. In this review we discuss how omics technologies can be applied in a personalized approach to understand the microbial crosstalk and microbial-host interactions that affect the delicate balance between eubiosis and dysbiosis in an individual gut microbiome. We further highlight the strengths of model organisms in identifying and characterizing these conserved synergistic and/or pathogenic host-microbe interactions. And finally, we touch upon the growing area of personalized therapeutic interventions targeting gut microbiome.
Collapse
|
14
|
Evaluation of the Marine Bacterial Population in the Great Bitter Lake, Egypt, as a Source of Antimicrobial Secondary Metabolites. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8070309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The ecological uniqueness of the Great Bitter Lake ecosystem makes its bacterial population interesting for investigation. Here, we present the first trial to evaluate the biosynthetic capacity of the bacterial population at the lake as a source of novel antimicrobials. We collected different samples from various locations throughout the lake including the oxic sediment, anoxic sediment, shore water, and off-shore water. We modified a molecular approach to compare and choose the samples with the highest bacterial biosynthetic capacity by quantifying the polyketide synthase gene clusters in their total community DNA. Furthermore, we screened the bacterial isolates recovered from these samples and their metabolic extracts for antimicrobial activity. We tried to tentatively investigate the identity of the active metabolites by PCR screening and LC–MS. The bacterial population in the oxic sediment had the highest biosynthetic capacity compared to other sample types. Four active Bacillus isolates were identified. The isolated Bacillus species were expected to produce numerous probable bioactive metabolites encoded by biosynthetic gene clusters related to the polyketide synthases (either individual or hybrid with non-ribosomal peptide synthetase), such as Bacillomycin D, Iturin A, Bacilosarcin B, Bacillcoumacin G and Macrolactin (N and G). These results suggest that the under-explored bacterial community of the Great Bitter Lake has a prospective biosynthetic capacity and can be a promising source for novel antibiotics.
Collapse
|
15
|
Becher J, Englisch C, Griebler C, Bayer P. Groundwater fauna downtown - Drivers, impacts and implications for subsurface ecosystems in urban areas. JOURNAL OF CONTAMINANT HYDROLOGY 2022; 248:104021. [PMID: 35605354 DOI: 10.1016/j.jconhyd.2022.104021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/07/2022] [Accepted: 05/01/2022] [Indexed: 06/15/2023]
Abstract
Groundwater fauna (stygofauna) comprises organisms that have adapted to the dark subterranean environment over a course of thousands and millions of years, typically having slow metabolisms and long life cycles. They are crucial players in the groundwater of oxygenic aquifers, and contribute to various ecosystem services. Today's knowledge of their sensitivity to anthropogenic impacts is incomplete and a critical analysis of the general relevance of local findings is lacking. In this review, we focus on those areas with the highest interference between humans and stygofauna: cities. Here is where local pollution by various contaminants and heat strongly stresses the unique groundwater ecosystems. It is demonstrated that it is difficult to discern the influence of individual factors from the findings reported in field studies, and to extrapolate laboratory results to field conditions. The effects of temperature increase and chemical pollution vary strongly between tested species and test conditions. In general, previous findings indicate that heating, especially in the long-term, will increase mortality, and less adapted species are at risk of vanishing from their habitats. The same may be true for salinity caused by road de-icing in cold urban areas. Furthermore, high sensitivities were shown for ammonium, which will probably be even more pronounced with rising temperatures resulting in altered biodiversity patterns. Toxicity of heavy metals, for a variety of invertebrates, increases with time and chronic exposure. Our current knowledge reveals diverse potential impacts on groundwater fauna by urban pollution, but our insights gained so far can only be validated by standardized and long-term test concepts.
Collapse
Affiliation(s)
- Julia Becher
- Martin Luther University Halle-Wittenberg, Institute of Geosciences and Geography, Department of Applied Geology, Von-Seckendorff-Platz 3, 06120 Halle, Germany.
| | - Constanze Englisch
- University of Vienna, Department of Functional and Evolutionary Ecology, Division of Limnology, Djerassiplatz 1, 1030 Vienna, Austria
| | - Christian Griebler
- University of Vienna, Department of Functional and Evolutionary Ecology, Division of Limnology, Djerassiplatz 1, 1030 Vienna, Austria
| | - Peter Bayer
- Martin Luther University Halle-Wittenberg, Institute of Geosciences and Geography, Department of Applied Geology, Von-Seckendorff-Platz 3, 06120 Halle, Germany
| |
Collapse
|
16
|
Olive M, Moerman F, Fernandez-Cassi X, Altermatt F, Kohn T. Removal of Waterborne Viruses by Tetrahymena pyriformis Is Virus-Specific and Coincides with Changes in Protist Swimming Speed. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4062-4070. [PMID: 35258957 PMCID: PMC8988290 DOI: 10.1021/acs.est.1c05518] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 05/20/2023]
Abstract
Biological treatment of waterborne viruses, specifically grazing of viruses by protists, can enhance microbial water quality while avoiding the production of toxic byproducts and high energy costs. However, tangible applications are limited by the lack of understanding of the underlying mechanisms. Here, we examined the feeding behavior of Tetrahymena pyriformis ciliates on 13 viruses, including bacteriophages, enteric viruses, and respiratory viruses. Significant differences in virus removal by T. pyriformis were observed, ranging from no removal (Qbeta, coxsackievirus B5) to ≥2.7 log10 (JC polyomavirus) after 48 h of co-incubation of the protist with the virus. Removal rates were conserved even when protists were co-incubated with multiple viruses simultaneously. Video analysis revealed that the extent of virus removal was correlated with an increase in the protists' swimming speed, a behavioral trait consistent with the protists' response to the availability of food. Protistan feeding may be driven by a virus' hydrophobicity but was independent of virus size or the presence of a lipid envelope.
Collapse
Affiliation(s)
- Margot Olive
- Laboratory
of Environmental Chemistry, School of Architecture, Civil and Environmental
Engineering (ENAC), Ecole Polytechnique
Federale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Felix Moerman
- Department
of Aquatic Ecology, EAWAG, Swiss Federal
Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
- Department
of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Xavier Fernandez-Cassi
- Laboratory
of Environmental Chemistry, School of Architecture, Civil and Environmental
Engineering (ENAC), Ecole Polytechnique
Federale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Florian Altermatt
- Department
of Aquatic Ecology, EAWAG, Swiss Federal
Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
- Department
of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Tamar Kohn
- Laboratory
of Environmental Chemistry, School of Architecture, Civil and Environmental
Engineering (ENAC), Ecole Polytechnique
Federale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
17
|
Wang H, Kaletta J, Kaschuba S, Klitzke S, Chorus I, Griebler C. Attachment, re-mobilization, and inactivation of bacteriophage MS2 during bank filtration following simulation of a high virus load and an extreme rain event. JOURNAL OF CONTAMINANT HYDROLOGY 2022; 246:103960. [PMID: 35066264 DOI: 10.1016/j.jconhyd.2022.103960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/02/2022] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Viruses, including human pathogenic viruses, can persist in water. For producing drinking water from surface water via bank filtration, natural attenuation capacities and the fate of viruses during the passage of aquatic sediments are of particular interest. Moreover, the increasing frequency of extreme hydrological events necessitate re-evaluation of the sustainability and efficacy of processes removing viruses. For this purpose, we performed bank sediment filtration experiments using a mesocosm in a technical-scale experimental facility that simulates a field situation under more tightly controlled conditions. We used the bacteriophage MS2 as a surrogate for enteric viruses to study the transport of different viral loads through the bank sediment. Additionally, we simulated a heavy rain event to investigate the re-mobilization of initially attached virus particles. We quantified the abundance of infectious MS2 phages by plaque assay and the total number of MS2 particles by qPCR. Also, we differentiated pore water concentrations by depths of the sediment column and investigated attachment to the sediment matrix at the end of the individual experimental phases. Bank filtration over a vertical distance of 80 cm through sandy sediment revealed a virus removal efficiency of 0.8 log10 for total MS2 particles and 1.7 log10 for infectious MS2 particles, with an initial phage concentration of 1.84 × 108 gene copies mL-1. A low load of infectious MS2 (1.9 × 106 plaque forming units mL-1) resulted in a greater removal efficiency (3.0 log10). The proportion of infectious MS2 phages of the total MS2 particle mass steadily decreased over time, i.e., in the course of individual breakthrough curves and with sediment depth. The simulated pulse of rainwater caused a front of low ionic strength water which resulted in pronounced phage remobilization. The high proportion of infectious MS2 among the detached phages indicated that attachment to the sediment matrix may substantially conserve virus infectivity. Therefore, the re-mobilization of previously attached viruses owing to hydrological extremes should be considered in water quality assessment and monitoring schemes.
Collapse
Affiliation(s)
- He Wang
- University of Vienna, Department of Functional and Evolutionary Ecology, Division of Limnology, Djerassiplatz 1, 1030 Vienna, Austria
| | - Judith Kaletta
- Helmholtz Zentrum München, Institute of Groundwater Ecology, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Sigrid Kaschuba
- Helmholtz Zentrum München, Institute of Environmental Medicine, Neusaesser Strasse 47, 86165 Augsburg, Germany
| | - Sondra Klitzke
- German Environment Agency, Section II 3.1 "Protection of Drinking Water Resources", Schichauweg 58, 12307 Berlin, Germany
| | - Ingrid Chorus
- German Environment Agency, Section II 3.1 "Protection of Drinking Water Resources", Schichauweg 58, 12307 Berlin, Germany
| | - Christian Griebler
- University of Vienna, Department of Functional and Evolutionary Ecology, Division of Limnology, Djerassiplatz 1, 1030 Vienna, Austria.
| |
Collapse
|
18
|
FERCHICHI S, FATNASSI N, DHAOUADI A, ATTIA EL HILI H. [The hazards of SARS-COV-2 for aquatic ecosystems]. MEDECINE TROPICALE ET SANTE INTERNATIONALE 2022; 2:mtsi.v2i1.2022.228. [PMID: 35685840 PMCID: PMC9128476 DOI: 10.48327/mtsi.v2i1.2022.228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 02/14/2022] [Indexed: 11/24/2022]
Abstract
Introduction The current COVID-19 pandemic is due to a new emerging coronavirus SARS-CoV-2, belonging to the Coronaviridae family and to the Orthocoronavirinae subfamily. This virus was first reported in December 2019 in China. Although reported by several countries in several animal species, COVID-19 is a disease transmitted from human to human. Moreover, SARS-CoV-2 virus and its RNA were detected in body excretions besides saliva, such as urine and fecal matter discharged into sewage. Bibliographic review Within this framework, this article aims to synthesize the bibliographical reviews on SARS-CoV-2 in aquatic environment. It will underline the generalities on SARS-CoV-2, the possible sources of potential contaminations of SARS-CoV-2 in water environment, the viability of SARS-CoV-2 in aquatic environment, the receptive species and the impacts of SARS-CoV-2 on the aquatic ecosystems. Conclusion We compile key information about SARS-CoV-2 that are considered important to remember and highlight the importance of further research in this area in order to assess the hazards of SARS-CoV-2 on aquatic ecosystems.
Collapse
Affiliation(s)
- Salma FERCHICHI
- Centre national de veille zoosanitaire, 33 avenue Charles Nicolle, Tunis, Tunisie
| | - Naouel FATNASSI
- Centre national de veille zoosanitaire, 33 avenue Charles Nicolle, Tunis, Tunisie
| | - Anissa DHAOUADI
- Centre national de veille zoosanitaire, 33 avenue Charles Nicolle, Tunis, Tunisie
| | - Hédia ATTIA EL HILI
- Centre national de veille zoosanitaire, 33 avenue Charles Nicolle, Tunis, Tunisie
| |
Collapse
|
19
|
Wang H, Knabe D, Engelhardt I, Droste B, Rohns HP, Stumpp C, Ho J, Griebler C. Dynamics of pathogens and fecal indicators during riverbank filtration in times of high and low river levels. WATER RESEARCH 2022; 209:117961. [PMID: 34923443 DOI: 10.1016/j.watres.2021.117961] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/25/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Riverbank filtration is an established and quantitatively important approach to mine high-quality raw water for drinking water production. Bacterial fecal indicators are routinely used to monitor hygienic raw water quality, however, their applicability in viral contamination has been questioned repeatedly. Additionally, there are concerns that the increasing frequency and intensity of meteorological and hydrological events, i.e., heavy precipitation and droughts leading to high and low river levels, may impair riverbank filtration performance. In this study, we explored the removal of adenovirus compared with several commonly used bacterial and viral water quality indicators during different river levels. In a seasonal study, water from the Rhine River, a series of groundwater monitoring wells, and a production well were regularly collected and analyzed for adenovirus, coliphages, E. coli, C. perfringens, coliform bacteria, the total number of prokaryotic cells (TCC), and the number of virus-like particles (TVPC) using molecular and cultivation-based assays. Additionally, basic physico-chemical parameters, including temperature, pH, dissolved organic carbon, and nutrients, were measured. The highest log10 reduction during the >72 m of riverbank filtration from the river channel to the production well was observed for coliforms (>3.7 log10), followed by E. coli (>3.4 log10), somatic coliphages (>3.1 log10), C. perfringens (>2.5 log10), and F+ coliphages (>2.1 log10) at high river levels. Adenovirus decreased by 1.6-3.1 log units in the first monitoring well (>32 m) and was not detected in further distant wells. The highest removal efficiency of adenovirus and most other viral and bacterial fecal indicators was achieved during high river levels, which were characterized by increased numbers of pathogens and indicators. During low river levels, coliforms and C. perfringens were occasionally present in raw water at the production well. Adenovirus, quantified via droplet digital PCR, correlated with E. coli, somatic coliphages, TCC, TVPC, pH, and DOC at high river levels. At low river levels, adenoviruses correlated with coliforms, TVPC, pH, and water travel time. We conclude that although standard fecal indicators are insufficient for assessing hygienic raw water quality, a combination of E. coli, coliforms and somatic coliphages can assess riverbank filtration performance in adenovirus removal. Furthermore, effects of extreme hydrological events should be studied on an event-to-event basis at high spatial and temporal resolutions. Finally, there is an urgent need for a lower limit of detection for pathogenic viruses in natural waters. Preconcentration of viral particles from larger water volumes (>100 L) constitutes a promising strategy.
Collapse
Affiliation(s)
- He Wang
- University of Vienna, Department of Functional and Evolutionary Ecology, Division of Limnology, Djerassiplatz 1, 1030 Vienna, Austria
| | - Dustin Knabe
- Technische Universität Berlin, Institute for Applied Geosciences, Chair for Hydrogeology, Ernst-Reuter-Platz 1, 10587 Berlin, Germany
| | - Irina Engelhardt
- Technische Universität Berlin, Institute for Applied Geosciences, Chair for Hydrogeology, Ernst-Reuter-Platz 1, 10587 Berlin, Germany
| | - Björn Droste
- Waterwork Düsseldorf, Himmelgeister Strasse 325, 40225 Düsseldorf, Germany
| | - Hans-Peter Rohns
- Waterwork Düsseldorf, Himmelgeister Strasse 325, 40225 Düsseldorf, Germany
| | - Christine Stumpp
- University of Natural Resources and Life Sciences, Vienna, Institute for Soil Physics and Rural Water Management, Muthgasse 18, 1190 Vienna, Austria
| | - Johannes Ho
- DVGW-Technologiezentrum Wasser (TZW), Karlsruher Straße 84, D-76139 Karlsruhe, Germany
| | - Christian Griebler
- University of Vienna, Department of Functional and Evolutionary Ecology, Division of Limnology, Djerassiplatz 1, 1030 Vienna, Austria.
| |
Collapse
|
20
|
Albright MBN, Louca S, Winkler DE, Feeser KL, Haig SJ, Whiteson KL, Emerson JB, Dunbar J. Solutions in microbiome engineering: prioritizing barriers to organism establishment. THE ISME JOURNAL 2022; 16:331-338. [PMID: 34420034 PMCID: PMC8776856 DOI: 10.1038/s41396-021-01088-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023]
Abstract
Microbiome engineering is increasingly being employed as a solution to challenges in health, agriculture, and climate. Often manipulation involves inoculation of new microbes designed to improve function into a preexisting microbial community. Despite, increased efforts in microbiome engineering inoculants frequently fail to establish and/or confer long-lasting modifications on ecosystem function. We posit that one underlying cause of these shortfalls is the failure to consider barriers to organism establishment. This is a key challenge and focus of macroecology research, specifically invasion biology and restoration ecology. We adopt a framework from invasion biology that summarizes establishment barriers in three categories: (1) propagule pressure, (2) environmental filtering, and (3) biotic interactions factors. We suggest that biotic interactions is the most neglected factor in microbiome engineering research, and we recommend a number of actions to accelerate engineering solutions.
Collapse
Affiliation(s)
| | - Stilianos Louca
- Department of Biology, University of Oregon, Eugene, OR, USA
| | - Daniel E Winkler
- United States Geological Survey, Southwest Biological Science Center, Moab, UT, USA
| | - Kelli L Feeser
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Sarah-Jane Haig
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Katrine L Whiteson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - Joanne B Emerson
- Department of Plant Pathology, University of California, Davis, CA, USA
| | - John Dunbar
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| |
Collapse
|
21
|
Hussain MS, Vashist A, Kumar M, Taneja NK, Gautam US, Dwivedi S, Tyagi JS, Gupta RK. Anti-mycobacterial activity of heat and pH stable high molecular weight protein(s) secreted by a bacterial laboratory contaminant. Microb Cell Fact 2022; 21:15. [PMID: 35093096 PMCID: PMC8799974 DOI: 10.1186/s12934-022-01743-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 01/13/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Tuberculosis currently stands as the second leading cause of deaths worldwide due to single infectious agent after Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The current challenges of drug resistance in tuberculosis highlight an urgent need to develop newer anti-mycobacterial compounds. In the present study, we report the serendipitous discovery of a bacterial laboratory contaminant (LC-1) exhibiting a zone of growth inhibition on an agar plate seeded with Mycobacterium tuberculosis. RESULTS We utilized microbiological, biochemical and biophysical approaches to characterize LC-1 and anti-mycobacterial compound(s) in its secretome. Based on 16S rRNA sequencing and BIOLOG analysis, LC-1 was identified as Staphylococcus hominis, a human bacterial commensal. Anti-mycobacterial activity was initially found in 30 kDa retentate that was obtained by ultrafiltration of culture filtrate (CF). SDS-PAGE analysis of peak fractions obtained by size exclusion chromatography of 30 kDa retentate confirmed the presence of high molecular weight (≥ 30 kDa) proteins. Peak fraction-1 (F-1) exhibited inhibitory activity against M. bovis BCG, but not against M. smegmatis, E. coli and S. aureus. The active fraction F-1 was inactivated by treatment with Proteinase K and α-chymotrypsin. However, it retained its anti-mycobacterial activity over a wide range of heat and pH treatment. The anti-mycobacterial activity of F-1 was found to be maintained even after a long storage (~12 months) at - 20 °C. Mass spectrometry analysis revealed that the identified peptide masses do not match with any previously known bacteriocins. CONCLUSIONS The present study highlights the anti-mycobacterial activity of high molecular weight protein(s) present in culture filtrate of LC-1, which may be tested further to target M. tuberculosis. The heat and pH stability of these proteins add to their characteristics as therapeutic proteins and may contribute to their long shelf life. LC-1 being a human commensal can be tested in future for its potential as a probiotic to treat tuberculosis.
Collapse
Affiliation(s)
- Md Sajid Hussain
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, 201306, India
- School of Vocational Studies and Applied Sciences, Gautam Buddha University, Greater Noida, Uttar Pradesh, 201306, India
| | - Atul Vashist
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, 110029, India.
- Department of Infection & Immunology, Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, 121001, India.
| | - Mahadevan Kumar
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, 110029, India
- Department of Microbiology, Bharati Vidyapeeth University, Medical College, Pune, 411043, India
| | - Neetu Kumra Taneja
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, 110029, India
- Department of Basic and Applied Sciences, NIFTEM, Sonipat, Haryana, 131028, India
| | - Uma Shankar Gautam
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, 110029, India
- School of Medicine, Duke University, Durham, NC, 27710, USA
| | - Seema Dwivedi
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, 201306, India
| | - Jaya Sivaswami Tyagi
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Rajesh Kumar Gupta
- School of Vocational Studies and Applied Sciences, Gautam Buddha University, Greater Noida, Uttar Pradesh, 201306, India.
| |
Collapse
|
22
|
Giometto A, Nelson DR, Murray AW. Antagonism between killer yeast strains as an experimental model for biological nucleation dynamics. eLife 2021; 10:e62932. [PMID: 34866571 PMCID: PMC8730724 DOI: 10.7554/elife.62932] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
Antagonistic interactions are widespread in the microbial world and affect microbial evolutionary dynamics. Natural microbial communities often display spatial structure, which affects biological interactions, but much of what we know about microbial antagonism comes from laboratory studies of well-mixed communities. To overcome this limitation, we manipulated two killer strains of the budding yeast Saccharomyces cerevisiae, expressing different toxins, to independently control the rate at which they released their toxins. We developed mathematical models that predict the experimental dynamics of competition between toxin-producing strains in both well-mixed and spatially structured populations. In both situations, we experimentally verified theory's prediction that a stronger antagonist can invade a weaker one only if the initial invading population exceeds a critical frequency or size. Finally, we found that toxin-resistant cells and weaker killers arose in spatially structured competitions between toxin-producing strains, suggesting that adaptive evolution can affect the outcome of microbial antagonism in spatial settings.
Collapse
Affiliation(s)
- Andrea Giometto
- School of Civil and Environmental Engineering, Cornell UniversityIthacaUnited States
- Department of Physics, Harvard UniversityCambridgeUnited States
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - David R Nelson
- Department of Physics, Harvard UniversityCambridgeUnited States
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
- John A Paulson School of Engineering and Applied Sciences, Harvard UniversityCambridgeUnited States
| | - Andrew W Murray
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| |
Collapse
|
23
|
Unravel the Local Complexity of Biological Environments by MALDI Mass Spectrometry Imaging. Int J Mol Sci 2021; 22:ijms222212393. [PMID: 34830273 PMCID: PMC8623934 DOI: 10.3390/ijms222212393] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/07/2021] [Accepted: 11/14/2021] [Indexed: 11/30/2022] Open
Abstract
Classic metabolomic methods have proven to be very useful to study functional biology and variation in the chemical composition of different tissues. However, they do not provide any information in terms of spatial localization within fine structures. Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI MSI) does and reaches at best a spatial resolution of 0.25 μm depending on the laser setup, making it a very powerful tool to analyze the local complexity of biological samples at the cellular level. Here, we intend to give an overview of the diversity of the molecules and localizations analyzed using this method as well as to update on the latest adaptations made to circumvent the complexity of samples. MALDI MSI has been widely used in medical sciences and is now developing in research areas as diverse as entomology, microbiology, plant biology, and plant–microbe interactions, the rhizobia symbiosis being the most exhaustively described so far. Those are the fields of interest on which we will focus to demonstrate MALDI MSI strengths in characterizing the spatial distributions of metabolites, lipids, and peptides in relation to biological questions.
Collapse
|
24
|
Mazioti AA, Vasquez MI, Vyrides I. Comparison of different cultures and culturing conditions for the biological deterioration of organic load from real saline bilge wastewater: microbial diversity insights and ecotoxicity assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:36506-36522. [PMID: 33709312 DOI: 10.1007/s11356-021-13153-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Bilge wastewater is a high strength, typically saline wastewater, originating from operation of ships. In this study, the treatment of real bilge wastewater was tested using pure isolated aerobic strains and mixed cultures (aerobic and anaerobic). The Chemical Oxygen Demand (COD) and ecotoxicity decrease were monitored over time, while the microbial dynamics alterations in mixed cultures were also recorded. The isolated strains Pseudodonghicola xiamenensis, Halomonas alkaliphila and Vibrio antiquaries were shown to significantly biodegrade bilge wastewater. Reasonable COD removal rates were achieved by aerobic mixed cultures (59%, 9 days), while anaerobic mixed cultures showed lower performance (34%, 51 days). The genus Pseudodonghicola was identified as dominant under aerobic conditions both in the mixed cultures and in the control sample (raw wastewater), after exposure to bilge wastewater, demonstrating natural proliferation of the genus and potential contribution to COD reduction. Biodegradation rates were higher when initial organic load was high, while the toxicity of raw wastewater partially decreased after treatment.
Collapse
Affiliation(s)
- Aikaterini A Mazioti
- Department of Chemical Engineering, Cyprus University of Technology, 30 Archibishop Kyprianos str, 3036, Limassol, Cyprus
| | - Marlen I Vasquez
- Department of Chemical Engineering, Cyprus University of Technology, 30 Archibishop Kyprianos str, 3036, Limassol, Cyprus
| | - Ioannis Vyrides
- Department of Chemical Engineering, Cyprus University of Technology, 30 Archibishop Kyprianos str, 3036, Limassol, Cyprus.
| |
Collapse
|
25
|
Eisfeld C, van der Wolf JM, van Breukelen BM, Medema G, Velstra J, Schijven JF. Die-off of plant pathogenic bacteria in tile drainage and anoxic water from a managed aquifer recharge site. PLoS One 2021; 16:e0250338. [PMID: 33951075 PMCID: PMC8099070 DOI: 10.1371/journal.pone.0250338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/05/2021] [Indexed: 11/19/2022] Open
Abstract
Managed aquifer recharge (MAR) can provide irrigation water and overcome water scarcity in agriculture. Removal of potentially present plant pathogens during MAR is essential to prevent crop diseases. We studied the die-off of three plant pathogenic bacteria in water microcosms with natural or filtered tile drainage water (TDW) at 10 and 25°C and with natural anoxic aquifer water (AW) at 10°C from a MAR site. These bacteria were: Ralstonia solanacearum (bacterial wilt), and the soft rot Pectobacteriaceae (SRP) Dickeya solani and Pectobacterium carotovorum sp. carotovorum (soft rot, blackleg). They are present in surface waters and cause destructive crop diseases worldwide which have been linked to contaminated irrigation water. Nevertheless, little is known about the survival of the SRP in aqueous environments and no study has investigated the persistence of R. solanacearum under natural anoxic conditions. We found that all bacteria were undetectable in 0.1 mL samples within 19 days under oxic conditions in natural TDW at 10°C, using viable cell counting, corresponding to 3-log10 reduction by die-off. The SRP were no longer detected within 6 days at 25°C, whereas R. solanacearum was detectable for 25 days. Whereas in anoxic natural aquifer water at 10°C, the bacterial concentrations declined slower and the detection limit was reached within 56 days. Finally, we modelled the inactivation curves with a modified Weibull model that can simulate different curve shapes such as shoulder phenomena in the beginning and long tails reflecting persistent bacterial populations. The non-linear model was shown to be a reliable tool to predict the die-off of the analysed plant pathogenic bacteria, suggesting its further application to other pathogenic microorganisms in the context of microbial risk assessment.
Collapse
Affiliation(s)
- Carina Eisfeld
- Faculty of Civil Engineering and Geosciences, Department of Water Management, Delft University of Technology, Delft, The Netherlands
| | | | - Boris M. van Breukelen
- Faculty of Civil Engineering and Geosciences, Department of Water Management, Delft University of Technology, Delft, The Netherlands
| | - Gertjan Medema
- Faculty of Civil Engineering and Geosciences, Department of Water Management, Delft University of Technology, Delft, The Netherlands
- KWR Watercycle Research Institute, Nieuwegein, The Netherlands
| | | | - Jack F. Schijven
- Department of Earth Sciences, Environmental Hydrogeology Group, Utrecht University, Utrecht, The Netherlands
- Department of Statistics, Informatics and Modelling, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| |
Collapse
|
26
|
Qian H, Hou C, Liao H, Wang L, Han S, Peng S, Chen W, Huang Q, Luo X. The species evenness of "prey" bacteria correlated with Bdellovibrio-and-like-organisms (BALOs) in the microbial network supports the biomass of BALOs in a paddy soil. FEMS Microbiol Ecol 2021; 96:5911575. [PMID: 32975583 DOI: 10.1093/femsec/fiaa195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 09/23/2020] [Indexed: 11/14/2022] Open
Abstract
To seek how soil biotic and abiotic factors which might shape the Bdellovibrio-and-like-organisms community, we sampled paddy soils under different fertilization treatments including fertilization without nitrogen (Control), the nitrogen use treatment (N) and the nitrogen overuse one (HNK) at three rice growing stages. The abundances of BALOs were impacted by the rice-growing stages but not the fertilization treatments. The abundances of Bdellovibrionaceae-like were positively associated with soil moisture, which showed a negative relationship with Bacteriovoracaceae-like bacteria. High-throughput sequencing analysis of the whole bacterial community revealed that the α-diversity of BALOs was not correlated with any soil properties data. Network analysis detected eight families directly linked to BALOs, namely, Pseudomonadaceae, Peptostreptococcaceae, Flavobacteriaceae, Sediment-4, Verrucomicrobiaceae, OM27, Solirubrobacteraceae and Roseiflexaceae. The richness and composition of OTUs in the eight families were correlated with different soil properties, while the evenness of them had a positive effect on the predicted BALO biomass. These results highlighted that the bottom-up control of BALOs in paddy soil at least partially relied on the changes of soil water content and the diversity of bacteria directly linked to BALOs in the microbial network.
Collapse
Affiliation(s)
- Hang Qian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunli Hou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Liao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Li Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Shun Han
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shaobing Peng
- Crop Physiology and Production Center (CPPC), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuesong Luo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
27
|
Godoy MG, Kibenge MJT, Kibenge FSB. SARS-CoV-2 transmission via aquatic food animal species or their products: A review. AQUACULTURE (AMSTERDAM, NETHERLANDS) 2021; 536:736460. [PMID: 33564203 PMCID: PMC7860939 DOI: 10.1016/j.aquaculture.2021.736460] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 05/06/2023]
Abstract
Outbreaks of COVID-19 (coronavirus disease 2019) have been reported in workers in fish farms and fish processing plants arising from person-to-person transmission, raising concerns about aquatic animal food products' safety. A better understanding of such incidents is important for the aquaculture industry's sustainability, particularly with the global trade in fresh and frozen aquatic animal food products where contaminating virus could survive for some time. Despite a plethora of COVID-19-related scientific publications, there is a lack of reports on the risk of contact with aquatic food animal species or their products. This review aimed to examine the potential for Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) contamination and the potential transmission via aquatic food animals or their products and wastewater effluents. The extracellular viability of SARS-CoV-2 and how the virus is spread are reviewed, supporting the understanding that contaminated cold-chain food sources may introduce SAR-CoV-2 via food imports although the virus is unlikely to infect humans through consumption of aquatic food animals or their products or drinking water; i.e., SARS-CoV-2 is not a foodborne virus and should not be managed as such but instead through strong, multifaceted public health interventions including physical distancing, rapid contact tracing, and testing, enhanced hand and respiratory hygiene, frequent disinfection of high-touch surfaces, isolation of infected workers and their contacts, as well as enhanced screening protocols for international seafood trade.
Collapse
Affiliation(s)
- Marcos G Godoy
- Centro de Investigaciones Biológicas Aplicadas (CIBA), Lago Panguipulli 1390, Puerto Montt, Chile
- Laboratorio de Biotecnología Aplicada, Facultad de Medicina Veterinaria, Sede De La Patagonia, Lago Panguipulli 1390, Puerto Montt, 5480000, Chile
- Doctorado en Acuicultura. Programa Cooperativo Universidad de Chile, Universidad Católica del Norte, Pontificia Universidad Católica de Valparaíso, Chile
| | - Molly J T Kibenge
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave., Charlottetown, P.E.I., C1A 4P3, Canada
| | - Frederick S B Kibenge
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave., Charlottetown, P.E.I., C1A 4P3, Canada
| |
Collapse
|
28
|
Chen Y, Shen W, Wang B, Zhao X, Su L, Kong M, Li H, Zhang S, Li J. Occurrence and fate of antibiotics, antimicrobial resistance determinants and potential human pathogens in a wastewater treatment plant and their effects on receiving waters in Nanjing, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111371. [PMID: 32979719 DOI: 10.1016/j.ecoenv.2020.111371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 05/23/2023]
Abstract
Antibiotics, antimicrobial resistance determinants and human pathogens are new types of environmental pollutants that pose a great threat to human health. Wastewater treatment plants (WWTPs) are important sources of novel pollutants; however, few studies have investigated their impact on surrounding natural water. Therefore, this study used a WWTP as the entry point to explore WWTP removal efficiency of antibiotics, antimicrobial resistance determinants and human pathogens and further analyze the impact of WWTP effluent on receiving waters. The investigated WWTP had a good removal effect on fluoroquinolones, macrolides, lincomycin, sulfanilamide, tetracycline and chloramphenicol antibiotics in wastewater, and the concentration of antibiotics in the WWTP's effluent was reduced by >80% relative to the influent. In addition to cmlA, the effect of the WWTP on antimicrobial resistance determinants removal was poor, although the effluent from the WWTP had no effect on the abundance of antimicrobial resistance determinants in the receiving water. However, with the dilution of receiving water, the abundance of antimicrobial resistance determinants gradually decreased. The WWTP could reduce the abundance of bacteria by 1000 times from influent water to effluent water. The major bacteria in the influent and effluent were Bacteroidetes and Proteobacteria. After effluent is discharged into receiving water, Cyanobacteria proliferate in large quantities, which can affect the microbial structure in the environment.The abundance of Acinetobacter, which was the predominant potential human pathogen in local wastewater, decreased dramatically after wastewater treatment. We also conducted an ecological risk assessment of the antibiotics identified and found that the ecological risk AZM and CLR posed to aquatic organisms was high. Overall, we identified the efficiency of WWTP control of antibiotics, antimicrobial resistance determinants and potential human pathogens and the impact of WWTP effluent on receiving water and provided data to support the control of the investigated pollutants.
Collapse
Affiliation(s)
- Yu Chen
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 5500254, China; Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Weitao Shen
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China; Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Bo Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Xin Zhao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Lianghu Su
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Ming Kong
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Hui Li
- Inner Mongolia Baogang Group Environmental Engineering Research Institute Limited Company, Baotou, 014010, China
| | - Shenghu Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China.
| | - Jiang Li
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 5500254, China.
| |
Collapse
|
29
|
Guzman JPMD, De las Alas TPL, Lucban MC, Sevilla CEC. Green tea ( Camellia sinensis) extract inhibits biofilm formation in acyl homoserine lactone-producing, antibiotic-resistant Morganella morganii isolated from Pasig River, Philippines. Heliyon 2020; 6:e05284. [PMID: 33134581 PMCID: PMC7586116 DOI: 10.1016/j.heliyon.2020.e05284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 08/12/2020] [Accepted: 10/14/2020] [Indexed: 12/25/2022] Open
Abstract
The drastic development of urban districts around the world has caused changes in the environment, specifically on metropolitan waterways such as the Pasig River in the Philippines. These significant changes resulted in diversity of microorganisms and their mechanisms employed such as antibiotic resistance and their communication system or quorum sensing (QS). In this study, four bacterial isolates from Pasig River, identified as Aeromonas salmonicida, Acinetobacter sp., Morganella morganii, and Citrobacter freundii, were observed to employ short-chain acyl homoserine lactone (AHL) as their signalling molecule based on in vitro assays using the biosensor strain Chromobacterium violaceum CV026. Furthermore, M. morganii isolate was shown to be resistant to chloramphenicol. This poses a significant threat not just to public health but also to the aquatic life present in the river. Thus, green tea (Camellia sinensis) extract was tested for its capability to inhibit in vitro biofilm formation in M. morganii, as well as the short-chain acyl homoserine lactone QS system using C. violaceum ATCC 12472. Results showed that the extract significantly (p < 0.05) inhibited biofilm formation in M. morganii at as low as 62.5 μg/mL (31.55%). Increasing the concentration (500 μg/mL) did not significantly (p > 0.05) enhance the activity (41.21%). Furthermore, the extract also inhibited pigmentation in C. violaceum ATCC 12472, suggesting QS inhibition. This study adds into record the production of short-chain AHLs by Aeromonas salmonicida, Acinetobacter sp., Morganella morganii, and Citrobacter freundii, as well as the potential of green tea extract as inhibitor of biofilm formation in antibiotic-resistant M. morganii possibly through QS inhibition.
Collapse
Affiliation(s)
- John Paul Matthew D. Guzman
- The Graduate School, University of Santo Tomas, Manila, Philippines
- Environment and Biotechnology Division, Industrial Technology Development Institute, Department of Science and Technology, Taguig City, Philippines
| | - Trisha Pamela L. De las Alas
- The Graduate School, University of Santo Tomas, Manila, Philippines
- Globetek Science Foundation, Inc., Makati City, Philippines
| | - Margie C. Lucban
- The Graduate School, University of Santo Tomas, Manila, Philippines
| | - Christine Eden C. Sevilla
- The Graduate School, University of Santo Tomas, Manila, Philippines
- Service Laboratory, Food and Nutrition Research Institute, Department of Science and Technology, Taguig City, Philippines
| |
Collapse
|
30
|
Carratalà A, Bachmann V, Julian TR, Kohn T. Adaptation of Human Enterovirus to Warm Environments Leads to Resistance against Chlorine Disinfection. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11292-11300. [PMID: 32875801 DOI: 10.1021/acs.est.0c03199] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sunlight, temperature, and microbial grazing are among the environmental factors promoting the inactivation of viral pathogens in surface waters. Globally, these factors vary across time and space. The persistence of viral pathogens, and ultimately their ecology and dispersion, hinges on their ability to withstand the environmental conditions encountered. To understand how virus populations evolve under changing environmental conditions, we experimentally adapted echovirus 11 (E11) to four climate regimes. Specifically, we incubated E11 in lake water at 10 and 30 °C and in the presence and absence of sunlight. Temperature was the main driver of adaptation, resulting in an increased thermotolerance of the 30 °C adapted populations, whereas the 10 °C adapted strains were rapidly inactivated at higher temperatures. This finding is consistent with a source-sink model in which strains emerging in warm climates can persist in temperate regions, but not vice versa. A microbial risk assessment revealed that the enhanced thermotolerance increases the length of time in which there is an elevated probability of illness associated with swimming in contaminated water. Notably, 30 °C-adapted viruses also exhibited an increased tolerance toward disinfection by free chlorine. Viruses adapting to warm environments may thus become harder to eliminate by common disinfection strategies.
Collapse
Affiliation(s)
- Anna Carratalà
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Virginie Bachmann
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Timothy R Julian
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf8600, Switzerland
- Swiss Tropical and Public Health Institute, Basel 4051, Switzerland
- University of Basel, Basel 4051, Switzerland
| | - Tamar Kohn
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
31
|
Bedoya K, Hoyos O, Zurek E, Cabarcas F, Alzate JF. Annual microbial community dynamics in a full-scale anaerobic sludge digester from a wastewater treatment plant in Colombia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 726:138479. [PMID: 32305756 DOI: 10.1016/j.scitotenv.2020.138479] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 05/23/2023]
Abstract
Anaerobic digestion is a microbe-driven process widely applied to treat activated sludge from municipal wastewater treatment plants. It is one of the most efficient solutions for sludge reduction along with biogas production. However, the knowledge of the microbial consortium involved in this process is still unknown in full-scale anaerobic digesters from Latin America. This study aimed to elucidate the dynamics of the microbial community of a full-scale anaerobic digester for a year using 16S rDNA amplicon sequencing with the Illumina Miseq platform. The results showed fluctuations in the frequencies of dominant phyla with a decrease of Proteobacteria and Bacteroidetes after a temporary suspension of anaerobic digester. The core community was affiliated with bacterial phyla Firmicutes, Actinobacteria, Proteobacteria, and Chloroflexi. The core community was represented by 154 OTUs that accounted for 74% of all the processed reads. The Anaerolineaceae family, within Chloroflexi phylum, was the most frequently observed taxonomic group in all samples analyzed. Despite the microbial fluctuations, the biogas production was stable over the studied year (average 66% methane production), which might indicate a functional redundancy in the microbial consortium.
Collapse
Affiliation(s)
- Katherine Bedoya
- Centro Nacional de Secuenciación Genómica - CNSG, Universidad de Antioquia, Medellín, Antioquia, Colombia
| | - Oladier Hoyos
- Empresas Públicas de Medellín-EPM, Medellín, Antioquia, Colombia
| | | | - Felipe Cabarcas
- Centro Nacional de Secuenciación Genómica - CNSG, Universidad de Antioquia, Medellín, Antioquia, Colombia; Sistemas Embebidos e Inteligencia Computacional - SISTEMIC, Facultad de Ingeniería, Universidad de Antioquia, Medellín, Antioquia, Colombia
| | - Juan F Alzate
- Centro Nacional de Secuenciación Genómica - CNSG, Universidad de Antioquia, Medellín, Antioquia, Colombia.
| |
Collapse
|
32
|
On the Coronaviruses and Their Associations with the Aquatic Environment and Wastewater. WATER 2020. [DOI: 10.3390/w12061598] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The outbreak of Coronavirus Disease 2019 (COVID-19), a severe respiratory disease caused by betacoronavirus SARS-CoV-2, in 2019 that further developed into a pandemic has received an unprecedented response from the scientific community and sparked a general research interest into the biology and ecology of Coronaviridae, a family of positive-sense single-stranded RNA viruses. Aquatic environments, lakes, rivers and ponds, are important habitats for bats and birds, which are hosts for various coronavirus species and strains and which shed viral particles in their feces. It is therefore of high interest to fully explore the role that aquatic environments may play in coronavirus spread, including cross-species transmissions. Besides the respiratory tract, coronaviruses pathogenic to humans can also infect the digestive system and be subsequently defecated. Considering this, it is pivotal to understand whether wastewater can play a role in their dissemination, particularly in areas with poor sanitation. This review provides an overview of the taxonomy, molecular biology, natural reservoirs and pathogenicity of coronaviruses; outlines their potential to survive in aquatic environments and wastewater; and demonstrates their association with aquatic biota, mainly waterfowl. It also calls for further, interdisciplinary research in the field of aquatic virology to explore the potential hotspots of coronaviruses in the aquatic environment and the routes through which they may enter it.
Collapse
|
33
|
Control of Waterborne Human Viruses by Indigenous Bacteria and Protists Is Influenced by Temperature, Virus Type, and Microbial Species. Appl Environ Microbiol 2020; 86:AEM.01992-19. [PMID: 31732569 DOI: 10.1128/aem.01992-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/04/2019] [Indexed: 11/20/2022] Open
Abstract
Human viruses are ubiquitous contaminants in surface waters, where they can persist over extended periods of time. Among the factors governing their environmental persistence, the control (removal or inactivation) by microorganisms remains poorly understood. Here, we determined the contribution of indigenous bacteria and protists to the decay of human viruses in surface waters. Incubation of echovirus 11 (E11) in freshwater from Lake Geneva and seawater from the Mediterranean Sea led to a 2.5-log10 reduction in the infectious virus concentration within 48 h at 22°C, whereas E11 was stable in sterile controls. The observed virus reduction was attributed to the action of both bacteria and protists in the biologically active matrices. The effect of microorganisms on viruses was temperature dependent, with a complete inhibition of microbial virus control in lake water at temperatures of ≤16°C. Among three protist isolates tested (Paraphysomonas sp., Uronema marinum, and Caecitellus paraparvulus), Caecitellus paraparvulus was particularly efficient at controlling E11 (2.1-log10 reduction over 4 days with an initial protist concentration of 103 cells ml-1). In addition, other viruses (human adenovirus type 2 and bacteriophage H6) exhibited different grazing kinetics than E11, indicating that the efficacy of antiviral action also depended on the type of virus. In conclusion, indigenous bacteria and protists in lake water and seawater can modulate the persistence of E11. These results pave the way for further research to understand how microorganisms control human viral pathogens in aquatic ecosystems and to exploit this process as a treatment solution to enhance microbial water safety.IMPORTANCE Waterborne human viruses can persist in the environment, causing a risk to human health over long periods of time. In this work, we demonstrate that in both freshwater and seawater environments, indigenous bacteria and protists can graze on waterborne viruses and thereby reduce their persistence. We furthermore demonstrate that the efficiency of the grazing process depends on temperature, virus type, and protist species. These findings may facilitate the design of biological methods for the disinfection of water and wastewater.
Collapse
|
34
|
Singh MK, Maurya A, Kumar S. Bioaugmentation for the treatment of waterborne pathogen contamination water. WATERBORNE PATHOGENS 2020. [PMCID: PMC7153333 DOI: 10.1016/b978-0-12-818783-8.00010-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Bioaugmentation is an eco-friendly and economically viable approach for enhanced degradation of pollutants and pathogens by addition of pregrown microbe or microbial cocultures in the medium. Microorganisms from different ecological conditions and engineered microbes capable to produce versatile enzymes and bioproducts are added to native microbial population for in situ treatment of wastewater. Bacterial pathogen borne in wastewater is an important concern for public health because they are not only associated with environmental damage, morbidity, and mortality but also cause economic loss connected with physical and chemical methods in wastewater treatment. Bacteriophages are natural killer of bacteria; they can be used as an alternative, cost-effective, biological method for waterborne bacterial pathogen control. Legionella pneumophila is the most tracked waterborne pathogen requiring specific treatment conditions because despite of biocides use, they are able to persist in water supplies with the help of multispecies biofilms and phagocytic protists. This type of pathogens can be biologically controlled through native complex communities fight for nutrients by means of antagonistic molecules as war weapons. Bioinoculation of heterotrophic bacterial strains in different wastewater treatment systems improves the process of pathogenic bacteria removal. The antagonist substances produced by the inoculated strains are responsible for bacterial pathogen inactivation.
Collapse
|
35
|
Fillinger L, Hug K, Trimbach AM, Wang H, Kellermann C, Meyer A, Bendinger B, Griebler C. The D-A-(C) index: A practical approach towards the microbiological-ecological monitoring of groundwater ecosystems. WATER RESEARCH 2019; 163:114902. [PMID: 31362215 DOI: 10.1016/j.watres.2019.114902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/17/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Groundwater is not only a vital resource, but also one of the largest terrestrial aquatic ecosystems on Earth. However, to date, ecological criteria are often not considered in routine groundwater monitoring, mainly because of the lack of suitable ecological assessment tools. Prokaryotic microorganisms are ubiquitous in groundwater ecosystems even under the harshest conditions, making them ideal bioindicators for ecological monitoring. We have developed a simple, inexpensive approach that enables ecological groundwater monitoring based on three microbiological parameters that can be easily integrated into existing routine monitoring practices: prokaryotic cell density (D) measured by flow cytometry; activity (A) measured as prokaryotic intracellular ATP concentrations using a simple cell-lysis-luminescence assay; and, as an optional parameter, the bioavailable carbon (C) measured as the concentration of assimilable organic carbon in a simple batch growth assay. We analyzed data for three case studies of different disturbances representing some of the main threats to groundwater ecosystems, i.e. organic contamination with hydrocarbons, surface water intrusion, and agricultural land use. For all three disturbances, disturbed samples could be reliably distinguished from undisturbed samples based on a single index value obtained from multivariate outlier analyses of the microbial variables. We could show that this multivariate approach allowed for a significantly more sensitive and reliable detection of disturbed samples compared to separate univariate outlier analyses of the measured variables. Furthermore, a comparison of non-contaminated aquifers from nine different regions across Germany revealed distinct multivariate signatures along the three microbial variables, which should be considered when applying our approach in practice. In essence, our approach offers a practical tool for the detection of disturbances of groundwater ecosystems based on microbial parameters which can be seamlessly extended in the future by additional parameters for higher sensitivity as well as flexibility.
Collapse
Affiliation(s)
- Lucas Fillinger
- Helmholtz Zentrum München, Institute of Groundwater Ecology, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Katrin Hug
- Helmholtz Zentrum München, Institute of Groundwater Ecology, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Anne Madeleine Trimbach
- Hamburg University of Technology, DVGW Research Centre TUHH, Am Schwarzenberg-Campus 3, 21073, Hamburg, Germany
| | - He Wang
- Helmholtz Zentrum München, Institute of Groundwater Ecology, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Claudia Kellermann
- Helmholtz Zentrum München, Institute of Groundwater Ecology, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Astrid Meyer
- Helmholtz Zentrum München, Institute of Groundwater Ecology, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Bernd Bendinger
- Hamburg University of Technology, DVGW Research Centre TUHH, Am Schwarzenberg-Campus 3, 21073, Hamburg, Germany
| | - Christian Griebler
- Helmholtz Zentrum München, Institute of Groundwater Ecology, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
| |
Collapse
|
36
|
Abstract
Fecal microorganisms can enter water bodies in diverse ways, including runoff, sewage discharge, and direct fecal deposition. Once in water, the microorganisms experience conditions that are very different from intestinal habitats. The transition from host to aquatic environment may lead to rapid inactivation, some degree of persistence, or growth. Microorganisms may remain planktonic, be deposited in sediment, wash up on beaches, or attach to aquatic vegetation. Each of these habitats offers a panoply of different stressors or advantages, including UV light exposure, temperature fluctuations, salinity, nutrient availability, and biotic interactions with the indigenous microbiota (e.g., predation and/or competition). The host sources of fecal microorganisms are likewise numerous, including wildlife, pets, livestock, and humans. Most of these microorganisms are unlikely to affect human health, but certain taxa can cause waterborne disease. Others signal increased probability of pathogen presence, e.g., the fecal indicator bacteria Escherichia coli and enterococci and bacteriophages, or act as fecal source identifiers (microbial source tracking markers). The effects of environmental factors on decay are frequently inconsistent across microbial species, fecal sources, and measurement strategies (e.g., culture versus molecular). Therefore, broad generalizations about the fate of fecal microorganisms in aquatic environments are problematic, compromising efforts to predict microbial decay and health risk from contamination events. This review summarizes the recent literature on decay of fecal microorganisms in aquatic environments, recognizes defensible generalizations, and identifies knowledge gaps that may provide particularly fruitful avenues for obtaining a better understanding of the fates of these organisms in aquatic environments.
Collapse
|
37
|
Hirano H, Takemoto K. Difficulty in inferring microbial community structure based on co-occurrence network approaches. BMC Bioinformatics 2019; 20:329. [PMID: 31195956 PMCID: PMC6567618 DOI: 10.1186/s12859-019-2915-1] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/27/2019] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Co-occurrence networks-ecological associations between sampled populations of microbial communities inferred from taxonomic composition data obtained from high-throughput sequencing techniques-are widely used in microbial ecology. Several co-occurrence network methods have been proposed. Co-occurrence network methods only infer ecological associations and are often used to discuss species interactions. However, validity of this application of co-occurrence network methods is currently debated. In particular, they simply evaluate using parametric statistical models, even though microbial compositions are determined through population dynamics. RESULTS We comprehensively evaluated the validity of common methods for inferring microbial ecological networks through realistic simulations. We evaluated how correctly nine widely used methods describe interaction patterns in ecological communities. Contrary to previous studies, the performance of the co-occurrence network methods on compositional data was almost equal to or less than that of classical methods (e.g., Pearson's correlation). The methods described the interaction patterns in dense and/or heterogeneous networks rather inadequately. Co-occurrence network performance also depended upon interaction types; specifically, the interaction patterns in competitive communities were relatively accurately predicted while those in predator-prey (parasitic) communities were relatively inadequately predicted. CONCLUSIONS Our findings indicated that co-occurrence network approaches may be insufficient in interpreting species interactions in microbiome studies. However, the results do not diminish the importance of these approaches. Rather, they highlight the need for further careful evaluation of the validity of these much-used methods and the development of more suitable methods for inferring microbial ecological networks.
Collapse
Affiliation(s)
- Hokuto Hirano
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka, 820-8502, Japan
| | - Kazuhiro Takemoto
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka, 820-8502, Japan.
| |
Collapse
|
38
|
Pinheiro MDO, Bols NC. Activation of an Aquareovirus, Chum Salmon Reovirus (CSV), by the Ciliates Tetrahymena thermophila and T. canadensis. J Eukaryot Microbiol 2018; 65:694-704. [PMID: 29505174 DOI: 10.1111/jeu.12514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/16/2018] [Accepted: 02/21/2018] [Indexed: 01/29/2023]
Abstract
For the first time, ciliates have been found to activate rather than inactivate a virus, chum salmon reovirus (CSV). Activation was seen as an increase in viral titre upon incubation of CSV at 22 °C with Tetrahymena canadenesis and two strains of T. thermophila: wild type (B1975) and a temperature conditional mutant for phagocytosis (NP1). The titre increase was not likely due to replication because CSV had no visible effects on the ciliates and no vertebrate virus has ever been shown unequivocally to replicate in ciliates. When incubated with B1975 and NP1 at 30 °C, CSV was activated only by B1975. Therefore, activation required CSV internalization because at 30 °C only B1975 exhibited phagocytosis. CSV replicated in fish cells at 18 to 26 °C but not at 30 °C. Collectively, these observations point to CSV activation being distinct from replication. Activation is attributed to the CSV capsid being modified in the ciliate phagosomal-lysosomal system and released in a more infectious form. When allowed to swim in CSV-infected fish cell cultures, collected, washed, and transferred to uninfected cultures, T. canadensis caused a CSV infection. Overall the results suggest that ciliates could have roles in the environmental dissemination of some fish viral diseases.
Collapse
Affiliation(s)
- Marcel D O Pinheiro
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Niels C Bols
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
39
|
Huber I, Potapova K, Kuhn A, Schmidt H, Hinrichs J, Rohde C, Beyer W. 1st German Phage Symposium-Conference Report. Viruses 2018; 10:v10040158. [PMID: 29596346 PMCID: PMC5923452 DOI: 10.3390/v10040158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 03/23/2018] [Accepted: 03/25/2018] [Indexed: 12/12/2022] Open
Abstract
In Germany, phage research and application can be traced back to the beginning of the 20th century. However, with the triumphal march of antibiotics around the world, the significance of bacteriophages faded in most countries, and respective research mainly focused on fundamental questions and niche applications. After a century, we pay tribute to the overuse of antibiotics that led to multidrug resistance and calls for new strategies to combat pathogenic microbes. Against this background, bacteriophages came into the spotlight of researchers and practitioners again resulting in a fast growing “phage community”. In October 2017, part of this community met at the 1st German Phage Symposium to share their knowledge and experiences. The participants discussed open questions and challenges related to phage therapy and the application of phages in general. This report summarizes the presentations given, highlights the main points of the round table discussion and concludes with an outlook for the different aspects of phage application.
Collapse
Affiliation(s)
- Irene Huber
- Hohenheim Research Center for Health Sciences, University of Hohenheim, 70599 Stuttgart, Germany.
| | - Katerina Potapova
- Hohenheim Research Center for Health Sciences, University of Hohenheim, 70599 Stuttgart, Germany.
| | - Andreas Kuhn
- Hohenheim Research Center for Health Sciences, University of Hohenheim, 70599 Stuttgart, Germany.
- Institute of Microbiology, University of Hohenheim, 70599 Stuttgart, Germany.
| | - Herbert Schmidt
- Hohenheim Research Center for Health Sciences, University of Hohenheim, 70599 Stuttgart, Germany.
- Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany.
| | - Jörg Hinrichs
- Hohenheim Research Center for Health Sciences, University of Hohenheim, 70599 Stuttgart, Germany.
- Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany.
| | - Christine Rohde
- Leibniz-Institute DSMZ—German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany.
| | - Wolfgang Beyer
- Hohenheim Research Center for Health Sciences, University of Hohenheim, 70599 Stuttgart, Germany.
- Institute of Animal Sciences, University of Hohenheim, 70599 Stuttgart, Germany.
| |
Collapse
|