1
|
Kim NE, Kim MJ, Park BJ, Kwon JW, Lee JM, Park JH, Song YJ. A DNA vaccine against GII.4 human norovirus VP1 induces blocking antibody production and T cell responses. Vaccine 2024; 42:1392-1400. [PMID: 38320930 DOI: 10.1016/j.vaccine.2024.01.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/15/2024] [Accepted: 01/25/2024] [Indexed: 02/08/2024]
Abstract
Human noroviruses (HuNoVs) are highly contagious and a leading cause of epidemics of acute gastroenteritis worldwide. Among the various HuNoV genotypes, GII.4 is the most prevalent cause of outbreaks. However, no vaccines have been approved for HuNoVs to date. DNA vaccines are proposed to serve as an ideal platform against HuNoV since they can be easily produced and customized to express target proteins. In this study, we constructed a CMV/R vector expressing a major structural protein, VP1, of GII.4 HuNoV (CMV/R-GII.4 HuNoV VP1). Transfection of CMV/R-GII.4 HuNoV VP1 into human embryonic kidney 293T (HEK293T) cells resulted in successful expression of VP1 proteins in vitro. Intramuscular or intradermal immunization of mice with the CMV/R-GII.4 HuNoV VP1 construct elicited the production of blocking antibodies and activation of T cell responses against GII.4 HuNoV VP1. Our collective data support the utility of CMV/R-GII.4 HuNoV VP1 as a promising DNA vaccine candidate against GII.4 HuNoV.
Collapse
Affiliation(s)
- Na-Eun Kim
- Department of Life Science, Gachon University, Seongnam-Si, South Korea
| | - Mun-Jin Kim
- Department of BioNano Technology, Gachon University, Seongnam-Si, South Korea
| | - Bum Ju Park
- Department of Life Science, Gachon University, Seongnam-Si, South Korea
| | - Jung Won Kwon
- Department of Life Science, Gachon University, Seongnam-Si, South Korea
| | - Jae Myun Lee
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Jung-Hwan Park
- Department of BioNano Technology, Gachon University, Seongnam-Si, South Korea
| | - Yoon-Jae Song
- Department of Life Science, Gachon University, Seongnam-Si, South Korea.
| |
Collapse
|
2
|
Bonura F, Filizzolo C, Pizzo M, Sanfilippo GL, Cacioppo F, Palazzotto E, Di Bernardo F, Collura A, Martella V, De Grazia S, Giammanco GM. Biological Specimen Banking as a Time Capsule to Explore the Temporal Dynamics of Norovirus Epidemiology. Viruses 2023; 15:2303. [PMID: 38140544 PMCID: PMC10747129 DOI: 10.3390/v15122303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/20/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Norovirus is recognised as a major cause of epidemic and sporadic acute gastroenteritis (AGE) in all age groups. Information on the genetic diversity of the noroviruses circulating in the 1980s and 1990s, before the development and adoption of dedicated molecular assays, is limited compared with the last decades. Between 1986 and 2020, uninterrupted viral surveillance was conducted in symptomatic children hospitalized with AGE in Palermo, Italy, providing a unique time capsule for exploring the epidemiological and evolutionary dynamics of enteric viruses. A total of 8433 stool samples were tested using real-time RT-PCR. All samples were stored at -20 or -80 °C until processing. In this 35-year long time span, noroviruses of genogroup II (GII) were detected in 15.6% of AGE requiring hospitalization, whilst GI noroviruses were detected in 1.4% of AGE. Overall, the predominant norovirus capsid (Cap) genotype was GII.4 (60.8%), followed by GII.3 (13.3%) and GII.2 (12.4%). Temporal replacement of the GII.4 Cap variants associated with different polymerase (Pol) types were observed over the study period. The chronology of emergence and circulation of the different GII.4 variants were consistent with data available in the literature. Also, for GII.3 and GII.2 NoVs, the circulation of different lineages/strains, differing in either the Cap or Pol genes or in both, was observed. This long-term study revealed the ability of noroviruses to continuously and rapidly modify their genomic makeup and highlights the importance of surveillance activities in vaccine design.
Collapse
Affiliation(s)
- Floriana Bonura
- Dipartimento di Scienze per la Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, Università di Palermo, Via del Vespro 133, 90127 Palermo, Italy; (C.F.); (M.P.); (G.L.S.); (F.C.); (E.P.); (S.D.G.); (G.M.G.)
| | - Chiara Filizzolo
- Dipartimento di Scienze per la Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, Università di Palermo, Via del Vespro 133, 90127 Palermo, Italy; (C.F.); (M.P.); (G.L.S.); (F.C.); (E.P.); (S.D.G.); (G.M.G.)
| | - Mariangela Pizzo
- Dipartimento di Scienze per la Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, Università di Palermo, Via del Vespro 133, 90127 Palermo, Italy; (C.F.); (M.P.); (G.L.S.); (F.C.); (E.P.); (S.D.G.); (G.M.G.)
| | - Giuseppa L. Sanfilippo
- Dipartimento di Scienze per la Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, Università di Palermo, Via del Vespro 133, 90127 Palermo, Italy; (C.F.); (M.P.); (G.L.S.); (F.C.); (E.P.); (S.D.G.); (G.M.G.)
| | - Federica Cacioppo
- Dipartimento di Scienze per la Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, Università di Palermo, Via del Vespro 133, 90127 Palermo, Italy; (C.F.); (M.P.); (G.L.S.); (F.C.); (E.P.); (S.D.G.); (G.M.G.)
| | - Emilia Palazzotto
- Dipartimento di Scienze per la Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, Università di Palermo, Via del Vespro 133, 90127 Palermo, Italy; (C.F.); (M.P.); (G.L.S.); (F.C.); (E.P.); (S.D.G.); (G.M.G.)
| | - Francesca Di Bernardo
- Unità Operativa di Microbiologia e Virologia, Ospedale Civico e di Cristina, ARNAS, 90129 Palermo, Italy; (F.D.B.); (A.C.)
| | - Antonina Collura
- Unità Operativa di Microbiologia e Virologia, Ospedale Civico e di Cristina, ARNAS, 90129 Palermo, Italy; (F.D.B.); (A.C.)
| | - Vito Martella
- Dipartimento di Sanità Pubblica e Zootecnia, Università Aldo Moro di Bari, 70010 Valenzano, Italy;
| | - Simona De Grazia
- Dipartimento di Scienze per la Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, Università di Palermo, Via del Vespro 133, 90127 Palermo, Italy; (C.F.); (M.P.); (G.L.S.); (F.C.); (E.P.); (S.D.G.); (G.M.G.)
| | - Giovanni M. Giammanco
- Dipartimento di Scienze per la Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, Università di Palermo, Via del Vespro 133, 90127 Palermo, Italy; (C.F.); (M.P.); (G.L.S.); (F.C.); (E.P.); (S.D.G.); (G.M.G.)
| |
Collapse
|
3
|
Chen Q, Ma J, Gao L, Xian R, Wei K, Shi A, Yuan F, Cao M, Zhao Y, Jin M, Kuai W. Determination and analysis of whole genome sequence of recombinant GII.6[P7] norovirus in Ningxia, China. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 115:105499. [PMID: 37734510 DOI: 10.1016/j.meegid.2023.105499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023]
Abstract
While the GII.4 norovirus was the predominant genotype, non-GII.4 genotype was increasingly focused since the non-GII.4 genotype caused regional epidemics. In this study, the detection rate was16.51% (183/1108) in Ningxia from January to December 2020. Among identified genotypes, GII.4[P31] and GII.4[P16] were the dominant genotypes (n = 20 and 18, respectively) while GII.6[P7] was the main type (n = 6) in non-GII.4 strains which was mainly detected in from May to July. The whole genome sequences of the norovirus diarrhea samples identified as GII.6 [P7] with Ct ≤ 30 collected in 2020 were determined. In this study, the complete genome sequences of norovirus strains PL20-044 and QTX20-071 were identified and analyzed phylogenetically. Phylogenetic analysis of the ORF1and ORF2 regions showed that these strains evolved from the GII·P7-GII.6 strains detected in recent years from different country. The results showed that PL20-044 had intra-type recombination with GII·P7-GII.6c and GII·P7-GII.6a, while QTX20-071 had intre-type recombination within GII·P7-GII.6a. The evolutionary rates of the RdRp gene region of the GII·P7 genotype and the VP1 gene region of the GII.6 genotype were 2.91 × 10-3 (95%HPDs2.32-3.51 × 10-3) and 2.61 × 10-3 (95%HPDs2.14-3.11 × 10-3) substitutions/site/year, respectively. Comparative analysis of the amino acid mutation sites in VP1 with the GII·P7-GII.6a strains before 1997, the later detected strains have changed in aa131 and aa354. Moreover, PL20-044 strains showed special mutations at aa316 and aa395. These results help to understand the norovirus genotype circulating in the human population in Ningxia, and discover the evolutionary characteristics of the GII·P7-GII.6 strain.
Collapse
Affiliation(s)
- Qian Chen
- Ningxia Center for Disease Prevention and Control, Yinchuan 750004, China; School of Public Health, Ningxia Medical University, Yinchuan 750001, China
| | - Jiangtao Ma
- Ningxia Center for Disease Prevention and Control, Yinchuan 750004, China.
| | - Lei Gao
- Ningxia Center for Disease Prevention and Control, Yinchuan 750004, China; School of Public Health, Ningxia Medical University, Yinchuan 750001, China
| | - Ran Xian
- Ningxia Center for Disease Prevention and Control, Yinchuan 750004, China; School of Public Health, Ningxia Medical University, Yinchuan 750001, China
| | - Kaixin Wei
- Ningxia Center for Disease Prevention and Control, Yinchuan 750004, China; School of Public Health, Ningxia Medical University, Yinchuan 750001, China
| | - Anqi Shi
- Ningxia Center for Disease Prevention and Control, Yinchuan 750004, China; School of Public Health, Ningxia Medical University, Yinchuan 750001, China
| | - Fang Yuan
- Ningxia Center for Disease Prevention and Control, Yinchuan 750004, China
| | - Min Cao
- Ningxia Center for Disease Prevention and Control, Yinchuan 750004, China
| | - Yu Zhao
- School of Public Health, Ningxia Medical University, Yinchuan 750001, China
| | - Miao Jin
- National Institute for Viral Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102211, China
| | - Wenhe Kuai
- Ningxia Center for Disease Prevention and Control, Yinchuan 750004, China
| |
Collapse
|
4
|
Lin SC, Bai GH, Lin PC, Chen CY, Hsu YH, Lee YC, Chen SY. Molecular and Genetics-Based Systems for Tracing the Evolution and Exploring the Mechanisms of Human Norovirus Infections. Int J Mol Sci 2023; 24:ijms24109093. [PMID: 37240438 DOI: 10.3390/ijms24109093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Human noroviruses (HuNoV) are major causes of acute gastroenteritis around the world. The high mutation rate and recombination potential of noroviruses are significant challenges in studying the genetic diversity and evolution pattern of novel strains. In this review, we describe recent advances in the development of technologies for not only the detection but also the analysis of complete genome sequences of noroviruses and the future prospects of detection methods for tracing the evolution and genetic diversity of human noroviruses. The mechanisms of HuNoV infection and the development of antiviral drugs have been hampered by failure to develop the infectious virus in a cell model. However, recent studies have demonstrated the potential of reverse genetics for the recovery and generation of infectious viral particles, suggesting the utility of this genetics-based system as an alternative for studying the mechanisms of viral infection, such as cell entry and replication.
Collapse
Affiliation(s)
- Sheng-Chieh Lin
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
- Division of Allergy, Asthma, and Immunology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Geng-Hao Bai
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei City 10002, Taiwan
| | - Pei-Chun Lin
- Division of Pediatric Gastroenterology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Chung-Yung Chen
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan City 32023, Taiwan
- Center for Nanotechnology, Institute of Biomedical Technology, Chung Yuan Christian University, Taoyuan City 32023, Taiwan
| | - Yi-Hsiang Hsu
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Yuan-Chang Lee
- Department of Infectious Diseases, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
- Department of Infectious Diseases, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Shih-Yen Chen
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
- Division of Pediatric Gastroenterology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei City 11031, Taiwan
| |
Collapse
|
5
|
Zhou N, Huang Y, Zhou L, Li M, Jin H. Molecular Evolution of RNA-Dependent RNA Polymerase Region in Norovirus Genogroup I. Viruses 2023; 15:166. [PMID: 36680206 PMCID: PMC9861054 DOI: 10.3390/v15010166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/06/2023] Open
Abstract
Norovirus is the leading viral agent of gastroenteritis in humans. RNA-dependent RNA polymerase (RdRp) is essential in the replication of norovirus RNA. Here, we present a comprehensive evolutionary analysis of the norovirus GI RdRp gene. Our results show that the norovirus GI RdRp gene can be divided into three groups, and that the most recent common ancestor was 1484. The overall evolutionary rate of GI RdRp is 1.821 × 10-3 substitutions/site/year. Most of the amino acids of the GI RdRp gene were under negative selection, and only a few positively selected sites were recognized. Amino acid substitutions in the GI RdRp gene accumulated slowly over time. GI.P1, GI.P3 and GI.P6 owned the higher evolutionary rates. GI.P11 and GI.P13 had the faster accumulation rate of amino acid substitutions. GI.P2, GI.P3, GI.P4, GI.P6 and GI.P13 presented a strong linear evolution. These results reveal that the norovirus GI RdRp gene evolves conservatively, and that the molecular evolutionary characteristics of each P-genotype are diverse. Sequencing in RdRp and VP1 of norovirus should be advocated in the surveillance system to explore the effect of RdRp on norovirus activity.
Collapse
Affiliation(s)
- Nan Zhou
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing 210009, China
| | - Yue Huang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing 210009, China
| | - Lu Zhou
- Department of Acute Infectious Diseases, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Mingma Li
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing 210009, China
| | - Hui Jin
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing 210009, China
| |
Collapse
|
6
|
Chen Y, Wu Q, Li G, Li H, Li W, Li H, Qin L, Zheng H, Liu C, Hou M, Liu L. Identification and genetic characterization of a minor norovirus genotype, GIX.1[GII.P15], from China. BMC Genom Data 2022; 23:50. [PMID: 35794533 PMCID: PMC9261040 DOI: 10.1186/s12863-022-01066-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
Background Human noroviruses, single-stranded RNA viruses in the family Caliciviridae, are a leading cause of nonbacterial acute gastroenteritis in people of all ages worldwide. Despite three decades of genomic sequencing and epidemiological norovirus studies, full-length genome analyses of the non-epidemic or minor norovirus genotypes are rare and genomic regions other than ORF2 and 3′-end of ORF1 have been largely understudied, which hampers a better understanding of the evolutionary mechanisms of emergence of new strains. In this study, we detected a rare norovirus genotype, GIX.1[GII.P15], in a vomit sample of a 60 year old woman with acute gastroenteritis using Raji cells and sequenced the complete genome. Results Using electron microscopy, a morphology of spherical and lace-like appearance of norovirus virus particles with a diameter of approximately 30 nm were observed. Phylogenetic analysis of VP1 and the RdRp region indicated that the KMN1 strain could be genotyped as GIX.1[GII.P15]. In addition, the VP1 region of KMN1 strain had 94.15% ± 3.54% percent nucleotide identity (PNI) compared to 26 genomic sequences available in GenBank, indicating a higher degree similarity between KMN1 and other GIX.1[GII.P15] strains. Further analysis of the full genome sequence of KMN1 strain showed that a total of 96 nucleotide substitutions (63 in ORF1, 25 in ORF2, and 8 in ORF3) were found across the genome compared with the consensus sequence of GIX.1[GII.P15] genome, and 6 substitutions caused amino acid changes (4 in ORF1, 1 in ORF2, and 1 in ORF3). However, only one nucleotide substitution results in the amino acid change (P302S) in the VP1 protein and the site was located near one of the predicted conformational B epitopes on the dimer structure. Conclusions The genomic information of the new GIX.1[GII.P15] strain KMN1, which was identified in Kunming, China could provide helpful insights for the study of the genetic evolution of the virus. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-022-01066-6.
Collapse
|
7
|
Lee CC, Chiu CH, Lee HY, Tsai CN, Chen CL, Chen SY. Clinical and virological characteristics of viral shedding in children with norovirus gastroenteritis. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2022; 55:1188-1194. [PMID: 34758910 DOI: 10.1016/j.jmii.2021.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 10/05/2021] [Accepted: 10/20/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND The correlation between the clinical manifestations and fecal viral load of norovirus (NoV) infection remains unknown. METHODS We established a SYBR® Green-based real-time quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) method to quantify NoV and then sequenced its genomes from the feces of patients admitted at the Chang Gung Memorial Hospital from 2017 to 2018. RESULTS NoV GII.4 Sydney (n = 21, 36.2%) and GII.P16-GII.2 (n = 19, 32.8%), the two predominant genotypes found among 58 isolates, were closely related to the Taiwan variant 2012a cluster in the VP1 region and genotypes of China strain. An increase in viral load could be observed on Day 3 following the onset of NoV infection. The viral load then declined rapidly from days 10-15 but remained high for >1 month in a severe combined immunodeficiency patient. Significantly longer shedding was found in patients with fever (p = 0.03) or infected by the GII.4 Sydney strain (p < 0.01). CONCLUSION The qRT-PCR-mediated method proposed in this work could quantify the viral load in patients with NoV infection. Significant viral shedding over a period of 2 weeks in children with acute gastroenteritis and >1 month in an immunodeficient patient was observed. Significantly longer shedding could be correlated with infection by the GII.4 Sydney strain and febrile patients.
Collapse
Affiliation(s)
- Chung-Chan Lee
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| | - Hao-Yuan Lee
- Department of Nursing, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan; Department of Pediatrics, Wei Gong Memorial Hospital, Miaoli, Taiwan; School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, Taiwan.
| | - Chi-Neu Tsai
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| | - Chyi-Liang Chen
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| | - Shih-Yen Chen
- Division of Pediatric Gastroenterology, Department of Pediatrics, Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan.
| |
Collapse
|
8
|
Zheng GL, Zhu ZX, Cui JL, Yu JM. Evolutionary Analyses of Emerging GII.2[P16] and GII.4 Sydney [P16] Noroviruses. Virus Evol 2022; 8:veac030. [PMID: 35450165 PMCID: PMC9019527 DOI: 10.1093/ve/veac030] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/22/2022] [Accepted: 03/30/2022] [Indexed: 11/14/2022] Open
Abstract
GII.2[P16] and GII.4 Sydney [P16] are currently the two predominant norovirus genotypes. This study sought to clarify their evolutionary patterns by analyzing the major capsid VP1 and RNA-dependent RNA polymerase (RdRp) genes. Sequence diversities were analyzed at both nucleotide and amino acid levels. Selective pressures were evaluated with the Hyphy package in different models. Phylogenetic trees were constructed by the maximum likelihood method from full VP1 sequences, and evolutionary rates were estimated by the Bayesian Markov Chain Monte Carlo approach. The results showed that (1) several groups of tightly linked mutations between the RdRp and VP1 genes were detected in the GII.2[P16] and GII.4[P16] noroviruses, and most of these mutations were synonymous, which may lead to a better viral fitness to the host; (2) although the pattern of having new GII.4 variants every 2–4 years has been broken, both the pre- and the post-2015 Sydney VP1 had comparable evolutionary rates to previously epidemic GII.4 variants, and half of the major antigenic sites on GII.4 Sydney had residue substitutions and several caused obvious changes in the carbohydrate-binding surface that may potentially alter the property of the virus; and (3) GII.4 Sydney variants during 2018–21 showed geographical specificity in East Asia, South Asia, and North America; the antigenic sites of GII.2 are strictly conserved, but the GII.2 VP1 chronologically evolved into nine different sublineages over time, with sublineage IX being the most prevalent one since 2018. This study suggested that both VP1 and RdRp of the GII.2[P16] and GII.4 Sydney [P16] noroviruses exhibited different evolutionary directions. GII.4[P16] is likely to generate potential novel epidemic variants by accumulating mutations in the P2 domain, similar to previously epidemic GII.4 variants, while GII.2[P16] has conserved predicted antigenicity and may evolve by changing the properties of nonstructural proteins, such as polymerase replicational fidelity and efficiency. This study expands the understanding of the evolutionary dynamics of GII.2[P16] and GII.4[P16] noroviruses and may predict the emergence of new variants.
Collapse
Affiliation(s)
- Guo-li Zheng
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Zheng-xi Zhu
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Jia-le Cui
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Jie-mei Yu
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
9
|
Suzuki Y. Estimating antigenic distances between GII.4 human norovirus strains. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2021.101492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Wang J, Jin M, Zhang H, Zhu Y, Yang H, Yao X, Chen L, Meng J, Hu G, He Y, Duan Z. Norovirus GII.2[P16] strain in Shenzhen, China: a retrospective study. BMC Infect Dis 2021; 21:1122. [PMID: 34717565 PMCID: PMC8556823 DOI: 10.1186/s12879-021-06746-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/29/2021] [Indexed: 11/11/2022] Open
Abstract
Background Norovirus (NoV) is the main cause of non-bacterial acute gastroenteritis (AGE) outbreaks worldwide. From September 2015 through August 2018, 203 NoV outbreaks involving 2500 cases were reported to the Shenzhen Center for Disease Control and Prevention. Methods Faecal specimens for 203 outbreaks were collected and epidemiological data were obtained through the AGE outbreak surveillance system in Shenzhen. Genotypes were determined by sequencing analysis. To gain a better understanding of the evolutionary characteristics of NoV in Shenzhen, molecular evolution and mutations were evaluated based on time-scale evolutionary phylogeny and amino acid mutations. Results A total of nine districts reported NoV outbreaks and the reported NoV outbreaks peaked from November to March. Among the 203 NoV outbreaks, 150 were sequenced successfully. Most of these outbreaks were associated with the NoV GII.2[P16] strain (45.3%, 92/203) and occurred in school settings (91.6%, 186/203). The evolutionary rates of the RdRp region and the VP1 sequence were 2.1 × 10–3 (95% HPD interval, 1.7 × 10–3–2.5 × 10–3) substitutions/site/year and 2.7 × 10–3 (95% HPD interval, 2.4 × 10–3–3.1 × 10–3) substitutions/site/year, respectively. The common ancestors of the GII.2[P16] strain from Shenzhen and GII.4 Sydney 2012[P16] diverged from 2011 to 2012. The common ancestors of the GII.2[P16] strain from Shenzhen and previous GII.2[P16] (2010–2012) diverged from 2003 to 2004. The results of amino acid mutations showed 6 amino acid substitutions (*77E, R750K, P845Q, H1310Y, K1546Q, T1549A) were found only in GII.4 Sydney 2012[P16] and the GII.2[P16] recombinant strain. Conclusions This study illustrates the molecular epidemiological patterns in Shenzhen, China, from September 2015 to August 2018 and provides evidence that the epidemic trend of GII.2[P16] recombinant strain had weakened and the non-structural proteins of the recombinant strain might have played a more significant role than VP1. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06746-9.
Collapse
Affiliation(s)
- Jing Wang
- Wuhan Wuchang Hospital, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China.,Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Miao Jin
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center Control and Prevention, Beijing, 102206, China
| | - Hailong Zhang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Yanan Zhu
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Hong Yang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Xiangjie Yao
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Long Chen
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Jun Meng
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Guifang Hu
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yaqing He
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China.
| | - Zhaojun Duan
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center Control and Prevention, Beijing, 102206, China
| |
Collapse
|
11
|
Prevalence and Evolution of Noroviruses between 1966 and 2019, Implications for Vaccine Design. Pathogens 2021; 10:pathogens10081012. [PMID: 34451477 PMCID: PMC8400007 DOI: 10.3390/pathogens10081012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/28/2022] Open
Abstract
Noroviruses (NoVs), a group of single-stranded RNA viruses causing epidemic acute gastroenteritis in humans, are highly diverse, consisting of multiple genogroups with >30 genotypes. Their continual evolutions make NoV vaccine design and development difficult. Here, we report a study of NoV sequences obtained from a population-based diarrhea surveillance in Zhengding County of Hebei Province spanning from 2001 to 2019 and those available in the GenBank database from 1966 to 2019. NoV genotypes and/or variants that may evade immunity were screened and identified based on primary and conformational structures for vaccine design. We selected 366, 301, 139, 74 and 495 complete VP1-coding nucleotide sequences representing the predominant genotypes of GII.4, GII.2, GII.3, GII.6 and GII.17, respectively. A total of 16 distinct GII.4 variants were identified, showing a typical linear evolutionary pattern of variant replacement, while only 1–4 variants of the other genotypes were found to co-circulate over the 40–50-year period without typical variant replacement. The vaccine strain GII.4c is close to variant Sydney_2012 (0.053) in their primary structure, but they are distinct at epitopes A and E in conformations. Our data suggested GII.4 variant Sydney_2012, GII.2 variant A, a GII.3 strain, GII.6 variants B and C and GII.17 variant D are primary candidate strains for NoV vaccine development.
Collapse
|
12
|
Motoya T, Nagata N, Kashimura R, Ohashi K, Saito A, Osawa S, Goto K, Iwama S, Yanaoka T, Okayama K, Hirai S, Sugai T, Murakami K, Ishioka T, Ryo A, Katayama K, Kimura H. A Longitudinal Study on Enteric Virus Contamination in Bivalves along the Coast of Ibaraki Prefecture, Japan. J Food Prot 2021; 84:946-952. [PMID: 33411914 DOI: 10.4315/jfp-20-353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/17/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT During the 2014 to 2018 seasons, we conducted a longitudinal study involving enteric virus surveillance in bivalves, including natural oysters and clams harvested in Ibaraki Prefecture, Japan. Some norovirus (NoV) contaminations were detected in natural oysters, whereas no enteric virus was found in clams. NoVs detected in oysters were of the genotypes GII.4 and GII.6, both of which are closely related genetically to the NoV strains prevalent in humans. We found low level of enteric virus contamination in bivalves collected along the coast of Ibaraki Prefecture. The possibility of food poisoning caused by these viruses appears low, and few cases of infectious disease have been observed in the surrounding area. The harvest timing was more related to contamination quantity than the harvest area in many enteric viruses. Our results highlight that contamination of bivalves by enteric viruses may depend upon the prevalence of human diarrhea and illness. HIGHLIGHTS
Collapse
Affiliation(s)
- Takumi Motoya
- Ibaraki Prefectural Institute of Public Health, Ibaraki, Japan
| | - Noriko Nagata
- Ibaraki Prefectural Institute of Public Health, Ibaraki, Japan
| | - Ryo Kashimura
- Ibaraki Prefectural Institute of Public Health, Ibaraki, Japan
| | - Keiko Ohashi
- Ibaraki Prefectural Institute of Public Health, Ibaraki, Japan
| | - Aoi Saito
- Ibaraki Prefectural Institute of Public Health, Ibaraki, Japan
| | - Shuichi Osawa
- Ibaraki Prefectural Institute of Public Health, Ibaraki, Japan
| | - Keiko Goto
- Ibaraki Prefectural Institute of Public Health, Ibaraki, Japan
| | - Sadaki Iwama
- Ibaraki Prefectural Institute of Public Health, Ibaraki, Japan
| | | | - Kaori Okayama
- Gunma Paz University Graduate School of Health Science, Gunma, Japan
| | - Shinichiro Hirai
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Toshiyuki Sugai
- Division of Nursing Science, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Koichi Murakami
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Taisei Ishioka
- Faculty of Agriculture, Takasaki University of Health and Welfare, Gunma, Japan
| | - Akihide Ryo
- Department of Molecular Biodefence Research, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Kazuhiko Katayama
- Laboratory of Viral Infection I, Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan
| | - Hirokazu Kimura
- Gunma Paz University Graduate School of Health Science, Gunma, Japan.,Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Molecular Biodefence Research, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| |
Collapse
|
13
|
Castells M, Cristina J, Colina R. Evolutionary history and spatiotemporal dynamic of GIII norovirus: From emergence to classification in four genotypes. Transbound Emerg Dis 2021; 69:1872-1879. [PMID: 34038622 DOI: 10.1111/tbed.14168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/25/2021] [Indexed: 01/09/2023]
Abstract
Noroviruses belong to a genetically diverse group of viruses infecting a wide range of mammalian host species, and those detected in cattle and sheep are classified within genogroup III (GIII). The current classification of norovirus in genogroups and genotypes is based on phylogenetic clustering and average distances within and between these phylogenetic clusters; however, the classification studies have been focused mainly on human norovirus, being GIII norovirus relegated. Due to the increasing number of studies on GIII norovirus, the need of an updated and extensive classification is evident. The aim of this study was to update the classification of norovirus within GIII, to describe the emergence of a circulating recombinant strain, and to reconstruct the evolutionary history of this genogroup. Two P-types (GIII.P1-2) and four genotypes (GIII.1-4) were described. For the genogroup GIII, the evolutionary rate estimated was 2.78E-3 s/s/y (95%HPD, 1.79E-3 s/s/y-3.78E-3 s/s/y), and the tMRCA was estimated around 1500 (95%HPD, 1247-1688). Despite the long history of this genogroup, the genotypes detected at present emerged in the last 100 years. Interestingly, most of the recombinant GIII.2P[1] strains detected worldwide were originated from a single recombination event and this recombinant strain was later dispersed through the world. Finally, our results indicate that a scenario of genotypes replacement through the time is highly probable.
Collapse
Affiliation(s)
- Matías Castells
- Laboratorio de Virología Molecular, Centro Universitario Regional Litoral Norte, Sede Salto, Universidad de la República, Salto, Uruguay
| | - Juan Cristina
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Rodney Colina
- Laboratorio de Virología Molecular, Centro Universitario Regional Litoral Norte, Sede Salto, Universidad de la República, Salto, Uruguay
| |
Collapse
|
14
|
Xu M, Lu F, Lyu C, Wu Q, Zhang J, Tian P, Xue L, Xu T, Wang D. Broad-range and effective detection of human noroviruses by colloidal gold immunochromatographic assay based on the shell domain of the major capsid protein. BMC Microbiol 2021; 21:22. [PMID: 33430771 PMCID: PMC7798207 DOI: 10.1186/s12866-020-02084-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Human noroviruses (HuNoVs) are a major cause of nonbacterial gastroenteritis in all age groups worldwide. HuNoVs can be detected in vitro using molecular assays such as RT-PCR and RT-qPCR. However, these molecular-based techniques require special equipment, unique reagents, experienced personnel, and extended time to obtain results. Besides, the diversity of viral genotypes is high. Therefore, methods that are rapid, broad-range and effective in the detection of HuNoVs are desiderated for screening the feces or vomit of infected people during outbreaks. RESULTS In this study, a colloidal-gold-based immunochromatographic assay (ICA) was developed for effective detection of HuNoVs in clinical samples. Monoclonal antibodies (MAbs) against the shell (S) domain in the major capsid protein of HuNoVs were used in the ICA. The limitations of detection for HuNoVs in clinical samples were 1.2 × 106 genomic copies per gram of stool sample (gc/g) and 4.4 × 105 gc/g for genogroup I and II (GI and GII) HuNoVs, respectively. A total of 122 clinical samples were tested for HuNoVs by ICA and compared against RT-qPCR. The relative sensitivity, specificity and agreement of ICA was 84.2% (95% CI: 83.6-84.8%), 100.0% (95% CI: 98.5-100.0%) and 87.7% (95% CI: 85.6-89.8%), respectively. No cross-reaction with other common enteric viruses or bacteria was observed. The ICA detected a broad range of genotypes, including GI.1, GI.3, GI.4, GI.6, GI.14, GII.2, GII.3, GII.4, GII.6, GII.13, and GII.17 HuNoVs. CONCLUSIONS This study demonstrates that ICA targeting the S domain of VP1 is a promising candidate for effectively identifying the different genotypes of HuNoVs in clinical samples with high sensitivity and specificity.
Collapse
Affiliation(s)
- Meng Xu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Feifeng Lu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chenang Lyu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, 510070, China
| | - Jumei Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, 510070, China
| | - Peng Tian
- Western Regional Research Center, Agricultural Research Service-United States Department of Agriculture, Produce Safety and Microbiology Research Unit, Albany, CA, 94706, USA.
| | - Liang Xue
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, 510070, China
| | - Ting Xu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dapeng Wang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
15
|
Nonthabenjawan N, Boonyos P, Phattanawiboon B, Towayunanta W, Chuntrakool K, Ngaopravet K, Ruchusatsawat K, Uppapong B, Sangkitporn S, Mekada E, Matsuura Y, Tatsumi M, Mizushima H. Identification of GII.14[P7] norovirus and its genomic mutations from a case of long-term infection in a post-symptomatic individual. INFECTION GENETICS AND EVOLUTION 2020; 86:104612. [PMID: 33137471 DOI: 10.1016/j.meegid.2020.104612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 11/17/2022]
Abstract
Norovirus is a leading cause of acute gastroenteritis worldwide. Norovirus shedding typically lasts one week to one month after the onset of diarrhea in immunocompetent hosts. The occurrence of mutations in the genome during infection has contributed to the evolution of norovirus. It has been suggested that genomic mutations in the P2-domain of capsid protein VP1, the major antigenic site for virus clearance, are involved in the evasion of host immunity and prolonged shedding of norovirus. In our previous study, we found a case of long-term shedding of GII.14 norovirus in a post-symptomatic immunocompetent individual that lasted about three months. In this study, we characterized the genomic sequence of the GII.14 strain to gain insight into the context of long-term shedding. By sequencing a 4.8 kb region of the genome corresponding to half of ORF1 and the entire ORF2 and ORF3, which encode several non-structural proteins and the structural proteins VP1 and VP2, the GII.14 strain was found to be classified as recombinant GII.14[P7]. Six point-mutations occurred during the three-month period of infection in a time-dependent manner in the genomic regions encoding RNA-dependent RNA polymerase, VP1, and VP2. Three of the six mutations were sense mutations, but no amino acid substitution was identified in the P2-domain of VP1. These results suggest that there is a mechanism by which long-term shedding of norovirus occurs in immunocompetent individuals independent of P2-domain mutations.
Collapse
Affiliation(s)
- Nutthawan Nonthabenjawan
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections, Nonthaburi, Thailand
| | - Patcharaporn Boonyos
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections, Nonthaburi, Thailand
| | - Benjarat Phattanawiboon
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections, Nonthaburi, Thailand
| | | | | | | | - Kriangsak Ruchusatsawat
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Ballang Uppapong
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Somchai Sangkitporn
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Eisuke Mekada
- Research and Education Promotion Foundation, Bangkok, Thailand
| | - Yoshiharu Matsuura
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Masashi Tatsumi
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections, Nonthaburi, Thailand
| | - Hiroto Mizushima
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections, Nonthaburi, Thailand.
| |
Collapse
|
16
|
Ruis C, Lindesmith LC, Mallory ML, Brewer-Jensen PD, Bryant JM, Costantini V, Monit C, Vinjé J, Baric RS, Goldstein RA, Breuer J. Preadaptation of pandemic GII.4 noroviruses in unsampled virus reservoirs years before emergence. Virus Evol 2020; 6:veaa067. [PMID: 33381305 PMCID: PMC7751145 DOI: 10.1093/ve/veaa067] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The control of re-occurring pandemic pathogens requires understanding the origins of new pandemic variants and the factors that drive their global spread. This is especially important for GII.4 norovirus, where vaccines under development offer promise to prevent hundreds of millions of annual gastroenteritis cases. Previous studies have hypothesized that new GII.4 pandemic viruses arise when previously circulating pandemic or pre-pandemic variants undergo substitutions in antigenic regions that enable evasion of host population immunity, as described by conventional models of antigenic drift. In contrast, we show here that the acquisition of new genetic and antigenic characteristics cannot be the proximal driver of new pandemics. Pandemic GII.4 viruses diversify and spread over wide geographical areas over several years prior to simultaneous pandemic emergence of multiple lineages, indicating that the necessary sequence changes must have occurred before diversification, years prior to pandemic emergence. We confirm this result through serological assays of reconstructed ancestral virus capsids, demonstrating that by 2003, the ancestral 2012 pandemic strain had already acquired the antigenic characteristics that allowed it to evade prevailing population immunity against the previous 2009 pandemic variant. These results provide strong evidence that viral genetic changes are necessary but not sufficient for GII.4 pandemic spread. Instead, we suggest that it is changes in host population immunity that enable pandemic spread of an antigenically preadapted GII.4 variant. These results indicate that predicting future GII.4 pandemic variants will require surveillance of currently unsampled reservoir populations. Furthermore, a broadly acting GII.4 vaccine will be critical to prevent future pandemics.
Collapse
Affiliation(s)
- Christopher Ruis
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Lisa C Lindesmith
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Michael L Mallory
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | | | - Josephine M Bryant
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Veronica Costantini
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Christopher Monit
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Jan Vinjé
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Richard A Goldstein
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Judith Breuer
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
- Department of Microbiology, Virology and Infection Control, Great Ormond Street Hospital for Children, London, UK
| |
Collapse
|
17
|
Saito M, Tsukagoshi H, Ishigaki H, Aso J, Ishii H, Okayama K, Ryo A, Ishioka T, Kuroda M, Saruki N, Katayama K, Kimura H. Molecular evolution of the capsid ( VP1) region in human norovirus genogroup II genotype 3. Heliyon 2020; 6:e03835. [PMID: 32395646 PMCID: PMC7205756 DOI: 10.1016/j.heliyon.2020.e03835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/07/2019] [Accepted: 04/21/2020] [Indexed: 12/13/2022] Open
Abstract
Norovirus GII.3 has been suggested to be a prevalent genotype in patients with acute gastroenteritis. However, the genetic properties of the VP1 region encoding the major GII.3 antigen remain unclear. Here, we performed molecular evolutionary analyses of the GII.3 VP1 region detected in various countries. We performed time-scaled phylogenetic analyses, selective pressure analyses, phylogenetic distance analyses, and conformational epitope analyses. The time-scaled phylogenetic tree showed that an ancestor of the GII.3 VP1 region diverged from the common ancestors of the GII.6, GII.11, GII.18, and GII.19 approximately 70 years ago with relatively low divergence. The evolutionary rate of the GII.3 VP1 region was rapid (4.82 × 10−3 substitutions/site/year). Furthermore, one positive site and many negative selection sites were observed in the capsid protein. These results suggest that the GII.3 VP1 region rapidly evolved with antigenic variations.
Collapse
Affiliation(s)
- Mariko Saito
- Gunma Prefectural Institute of Public Health and Environmental Sciences, 378 Kamioki-machi, Maebashi-shi, Gunma 371-0052, Japan
| | - Hiroyuki Tsukagoshi
- Gunma Prefectural Institute of Public Health and Environmental Sciences, 378 Kamioki-machi, Maebashi-shi, Gunma 371-0052, Japan
| | - Hirotaka Ishigaki
- Department of Health Science, Gunma Paz University Graduate School of Health Sciences, 1-7-1 Tonyamachi, Takasaki-shi, Gunma 370-0006, Japan
| | - Jumpei Aso
- Department of Health Science, Gunma Paz University Graduate School of Health Sciences, 1-7-1 Tonyamachi, Takasaki-shi, Gunma 370-0006, Japan
- Kyorin University Hospital, 6-20-2 Shinkawa, Mitaka-shi, Tokyo 181-8611, Japan
| | - Haruyuki Ishii
- Kyorin University Hospital, 6-20-2 Shinkawa, Mitaka-shi, Tokyo 181-8611, Japan
| | - Kaori Okayama
- Department of Health Science, Gunma Paz University Graduate School of Health Sciences, 1-7-1 Tonyamachi, Takasaki-shi, Gunma 370-0006, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University School of Medicine, 3-9 Fukuura, Yokohama-shi, Kanagawa 236-0004, Japan
| | - Taisei Ishioka
- Department of Health Science, Gunma Paz University Graduate School of Health Sciences, 1-7-1 Tonyamachi, Takasaki-shi, Gunma 370-0006, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Nobuhiro Saruki
- Gunma Prefectural Institute of Public Health and Environmental Sciences, 378 Kamioki-machi, Maebashi-shi, Gunma 371-0052, Japan
| | - Kazuhiko Katayama
- Laboratory of Viral Infection I, Kitasato Institute for Life Sciences Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hirokazu Kimura
- Department of Health Science, Gunma Paz University Graduate School of Health Sciences, 1-7-1 Tonyamachi, Takasaki-shi, Gunma 370-0006, Japan
- Department of Microbiology, Yokohama City University School of Medicine, 3-9 Fukuura, Yokohama-shi, Kanagawa 236-0004, Japan
- Corresponding author.
| |
Collapse
|
18
|
Hosmillo M, Chaudhry Y, Nayak K, Sorgeloos F, Koo BK, Merenda A, Lillestol R, Drumright L, Zilbauer M, Goodfellow I. Norovirus Replication in Human Intestinal Epithelial Cells Is Restricted by the Interferon-Induced JAK/STAT Signaling Pathway and RNA Polymerase II-Mediated Transcriptional Responses. mBio 2020; 11:e00215-20. [PMID: 32184238 PMCID: PMC7078467 DOI: 10.1128/mbio.00215-20] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 02/06/2023] Open
Abstract
Human noroviruses (HuNoV) are a leading cause of viral gastroenteritis worldwide and a significant cause of morbidity and mortality in all age groups. The recent finding that HuNoV can be propagated in B cells and mucosa-derived intestinal epithelial organoids (IEOs) has transformed our ability to dissect the life cycle of noroviruses. Using transcriptome sequencing (RNA-Seq) of HuNoV-infected intestinal epithelial cells (IECs), we have found that replication of HuNoV in IECs results in interferon (IFN)-induced transcriptional responses and that HuNoV replication in IECs is sensitive to IFN. This contrasts with previous studies that suggested that the innate immune response may play no role in the restriction of HuNoV replication in immortalized cells. We demonstrated that inhibition of Janus kinase 1 (JAK1)/JAK2 enhanced HuNoV replication in IECs. Surprisingly, targeted inhibition of cellular RNA polymerase II-mediated transcription was not detrimental to HuNoV replication but instead enhanced replication to a greater degree than blocking of JAK signaling directly. Furthermore, we demonstrated for the first time that IECs generated from genetically modified intestinal organoids, engineered to be deficient in the interferon response, were more permissive to HuNoV infection. Taking the results together, our work revealed that IFN-induced transcriptional responses restrict HuNoV replication in IECs and demonstrated that inhibition of these responses mediated by modifications of the culture conditions can greatly enhance the robustness of the norovirus culture system.IMPORTANCE Noroviruses are a major cause of gastroenteritis worldwide, and yet the challenges associated with their growth in culture have greatly hampered the development of therapeutic approaches and have limited our understanding of the cellular pathways that control infection. Here, we show that human intestinal epithelial cells, which represent the first point of entry of human noroviruses into the host, limit virus replication by induction of innate responses. Furthermore, we show that modulating the ability of intestinal epithelial cells to induce transcriptional responses to HuNoV infection can significantly enhance human norovirus replication in culture. Collectively, our findings provide new insights into the biological pathways that control norovirus infection but also identify mechanisms that enhance the robustness of norovirus culture.
Collapse
Affiliation(s)
- Myra Hosmillo
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Yasmin Chaudhry
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Komal Nayak
- Department of Paediatrics, University of Cambridge, Cambridge, United Kingdom
| | - Frederic Sorgeloos
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Bon-Kyoung Koo
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| | - Alessandra Merenda
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Reidun Lillestol
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Lydia Drumright
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Matthias Zilbauer
- Department of Paediatrics, University of Cambridge, Cambridge, United Kingdom
| | - Ian Goodfellow
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
19
|
Chen C, Wu B, Zhang H, Li KF, Liu R, Wang HL, Yan JB. Molecular evolution of GII.P17-GII.17 norovirus associated with sporadic acute gastroenteritis cases during 2013-2018 in Zhoushan Islands, China. Virus Genes 2020; 56:279-287. [PMID: 32065329 DOI: 10.1007/s11262-020-01744-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 02/10/2020] [Indexed: 12/13/2022]
Abstract
In this study, we investigated the molecular characteristics and spatio-temporal dynamics of GII.P17-GII.17 norovirus in Zhoushan Islands during 2013-2018. We collected 1849 samples from sporadic acute gastroenteritis patients between January 2013 and August 2018 in Zhoushan Islands, China. Among the 1849 samples, 134 (7.24%) samples were positive for human norovirus (HuNoV). The complete sequence of GII.17 VP1 gene was amplified from 31 HuNoV-positive samples and sequenced. A phylogenetic tree was constructed based on the full-length sequence of the VP1 gene. Phylogenetic analysis revealed that the GII.17 genotype detected during 2014-2018 belongs to the new GII.17 Kawasaki variant. Divergence analysis revealed that the time of the most recent common ancestor (TMRCA) of GII.17 in Zhoushan Islands was estimated to be between 1997 and 1998. The evolutionary rate of the VP1 gene of the GII.17 genotype norovirus was 1.14 × 10-3 (95% HPD: 0.62-1.73 × 10-3) nucleotide substitutions/site/year. The spatio-temporal diffusion analysis of the GII.17 genotype identified Hong Kong as the epicenter for GII.17 dissemination. The VP1 gene sequence of Zhoushan Island isolates correlated with that of Hong Kong and Japan isolates.
Collapse
Affiliation(s)
- Can Chen
- Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China.,Jiangxi Province Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, 330006, Jiangxi, China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affifiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Bing Wu
- Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China
| | - Hui Zhang
- Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China
| | - Ke-Feng Li
- Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China
| | - Rong Liu
- Jiangxi Province Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Hong-Ling Wang
- Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China. .,Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China.
| | - Jian-Bo Yan
- Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China. .,Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China. .,Jiangxi Province Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
20
|
Aso J, Kimura H, Ishii H, Saraya T, Kurai D, Matsushima Y, Nagasawa K, Ryo A, Takizawa H. Molecular Evolution of the Fusion Protein ( F) Gene in Human Respirovirus 3. Front Microbiol 2020; 10:3054. [PMID: 32010105 PMCID: PMC6974460 DOI: 10.3389/fmicb.2019.03054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/18/2019] [Indexed: 01/07/2023] Open
Abstract
To elucidate the evolution of human respirovirus 3 (HRV3), we performed detailed genetic analyses of the F gene (full-length) detected from hundreds of HRV3 strains obtained from various geographic regions. First, we performed time-scaled evolutionary analyses using the Bayesian Markov chain Monte Carlo method. Then, we performed analyses of phylodynamics, similarity, phylogenetic distance, selective pressure, and conformational B-cell epitope with the F-protein structural analyses. Time-scaled phylogenetic tree showed that the common ancestor of HRV3 and bovine respirovirus 3 diverged over 300 years ago and subdivided it into three major clusters and four subclusters during the most recent 100 years. The overall evolutionary rate was approximately 10-3 substitutions/site/year. Indigenous similarity was seen in the present strains, and the mean phylogenetic distance were 0.033. Many negative selection sites were seen in the ectodomain. The conformational epitopes did not correspond to the neutralizing antibody binding sites. These results suggest that the HRV3 F gene is relatively conserved and restricted in this diversity to preserve the protein function, although these strains form many branches on the phylogenetic tree. Furthermore, HRV3 reinfection may be responsible for discordances between the conformational epitopes and the neutralizing antibody binding sites of the F protein. These findings contribute to a better understanding of HRV3 virology.
Collapse
Affiliation(s)
- Jumpei Aso
- Department of Respiratory Medicine, School of Medicine, Kyorin University, Tokyo, Japan
| | - Hirokazu Kimura
- Department of Health Science, Graduate School of Health Science, Gunma Paz University, Gunma, Japan.,Department of Microbiology, School of Medicine, Yokohama City University, Kanagawa, Japan
| | - Haruyuki Ishii
- Department of Respiratory Medicine, School of Medicine, Kyorin University, Tokyo, Japan
| | - Takeshi Saraya
- Department of Respiratory Medicine, School of Medicine, Kyorin University, Tokyo, Japan
| | - Daisuke Kurai
- Department of General Medicine, Division of Infectious Diseases, School of Medicine, Kyorin University, Tokyo, Japan
| | - Yuki Matsushima
- Division of Virology, Kawasaki City Institute for Public Health, Kanagawa, Japan
| | - Koo Nagasawa
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Akihide Ryo
- Department of Microbiology, School of Medicine, Yokohama City University, Kanagawa, Japan
| | - Hajime Takizawa
- Department of Respiratory Medicine, School of Medicine, Kyorin University, Tokyo, Japan
| |
Collapse
|
21
|
Ozaki K, Matsushima Y, Nagasawa K, Aso J, Saraya T, Yoshihara K, Murakami K, Motoya T, Ryo A, Kuroda M, Katayama K, Kimura H. Molecular Evolution of the Protease Region in Norovirus Genogroup II. Front Microbiol 2020; 10:2991. [PMID: 31993031 PMCID: PMC6971112 DOI: 10.3389/fmicb.2019.02991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/10/2019] [Indexed: 11/13/2022] Open
Abstract
Noroviruses are a major cause of viral epidemic gastroenteritis in humans worldwide. The protease (Pro) encoded in open reading frame 1 (ORF1) is an essential enzyme for proteolysis of the viral polyprotein. Although there are some reports regarding the evolutionary analysis of norovirus GII-encoding genes, there are few reports focused on the Pro region. We analyzed the molecular evolution of the Pro region of norovirus GII using bioinformatics approaches. A time-scaled phylogenetic tree of the Pro region constructed using a Bayesian Markov chain Monte Carlo method indicated that the common ancestor of GII diverged from GIV around 1680 CE [95% highest posterior density (HPD), 1607-1749]. The GII Pro region emerged around 1752 CE (95%HPD, 1707-1794), forming three further lineages. The evolutionary rate of GII Pro region was estimated at more than 10-3 substitutions/site/year. The distribution of the phylogenetic distances of each genotype differed, and showed genetic diversity. Mapping of the negative selection and substitution sites of the Pro structure showed that the substitution sites in the Pro protein were mostly produced under neutral selection in positions structurally adjacent to the active sites for proteolysis, whereas negative selection was observed in residues distant from the active sites. The phylodynamics of GII.P4, GII.P7, GII.P16, GII.P21, and GII.P31 indicated that their effective population sizes increased during the period from 2005 to 2016 and the increase in population size was almost consistent with the collection year of these genotypes. These results suggest that the Pro region of the norovirus GII evolved rapidly, but under no positive selection, with a high genetic divergence, similar to that of the RNA-dependent RNA polymerase (RdRp) region and the VP1 region of noroviruses.
Collapse
Affiliation(s)
- Keita Ozaki
- Graduate School of Health Sciences, Gunma Paz University, Takasaki, Japan
- Niitaka Co., Ltd., Osaka, Japan
| | - Yuki Matsushima
- Division of Virology, Kawasaki City Institute for Public Health, Kawasaki, Japan
| | | | - Jumpei Aso
- Department of Respiratory Medicine, Kyorin University School of Medicine, Mitaka, Japan
| | - Takeshi Saraya
- Department of Respiratory Medicine, Kyorin University School of Medicine, Mitaka, Japan
| | - Keisuke Yoshihara
- Department of Pediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Koichi Murakami
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Musashimurayama, Japan
| | - Takumi Motoya
- Ibaraki Prefectural Institute of Public Health, Mito, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Shinjuku, Japan
| | - Kazuhiko Katayama
- Laboratory of Viral Infection I, Graduate School of Infection Control Sciences, Kitasato Institute for Life Sciences, Kitasato University, Minato, Japan
| | - Hirokazu Kimura
- Graduate School of Health Sciences, Gunma Paz University, Takasaki, Japan
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama, Japan
| |
Collapse
|
22
|
Abstract
Over the past decade, frozen fruits have been a major vehicle of foodborne illnesses mainly attributed to norovirus (NoV) and hepatitis A virus (HAV) infections. Fresh produce may acquire viral contamination by direct contact with contaminated surface, water or hands, and is then frozen without undergoing proper decontamination. Due to their structural integrity, foodborne viruses are able to withstand hostile conditions such as desiccation and freezing, and endure for a long period of time without losing their infectivity. Additionally, these foods are often consumed raw or undercooked, which increases the risk of infection. Herein, we searched published literature and databases of reported outbreaks as well as the databases of news articles for the viral outbreaks associated with the consumption of frozen produce between January 2008 and December 2018; recorded the worldwide distribution of these outbreaks; and analysed the implication of consumption of different types of contaminated frozen food. In addition, we have briefly discussed the factors that contribute to an increased risk of foodborne viral infection following the consumption of frozen produce. Our results revealed that frozen fruits, especially berries and pomegranate arils, contributed to the majority of the outbreaks, and that most outbreaks were reported in industrialised countries.
Collapse
|
23
|
Matsushima Y, Mizukoshi F, Sakon N, Doan YH, Ueki Y, Ogawa Y, Motoya T, Tsukagoshi H, Nakamura N, Shigemoto N, Yoshitomi H, Okamoto-Nakagawa R, Suzuki R, Tsutsui R, Terasoma F, Takahashi T, Sadamasu K, Shimizu H, Okabe N, Nagasawa K, Aso J, Ishii H, Kuroda M, Ryo A, Katayama K, Kimura H. Evolutionary Analysis of the VP1 and RNA-Dependent RNA Polymerase Regions of Human Norovirus GII.P17-GII.17 in 2013-2017. Front Microbiol 2019; 10:2189. [PMID: 31611853 PMCID: PMC6777354 DOI: 10.3389/fmicb.2019.02189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/05/2019] [Indexed: 01/05/2023] Open
Abstract
Human norovirus (HuNoV) GII.P17-GII.17 (Kawasaki2014 variant) reportedly emerged in 2014 and caused gastroenteritis outbreaks worldwide. To clarify the evolution of both VP1 and RNA-dependent RNA polymerase (RdRp) regions of GII.P17-GII.17, we analyzed both global and novel Japanese strains detected during 2013-2017. Time-scaled phylogenetic trees revealed that the ancestral GII.17 VP1 region diverged around 1949, while the ancestral GII.P17 RdRp region diverged around 2010. The evolutionary rates of the VP1 and RdRp regions were estimated at ~2.7 × 10-3 and ~2.3 × 10-3 substitutions/site/year, respectively. The phylogenetic distances of the VP1 region exhibited no overlaps between intra-cluster and inter-cluster peaks in the GII.17 strains, whereas those of the RdRp region exhibited a unimodal distribution in the GII.P17 strains. Conformational epitope positions in the VP1 protein of the GII.P17-GII.17 strains were similar, although some substitutions, insertions and deletions had occurred. Strains belonging to the same cluster also harbored substitutions around the binding sites for the histo-blood group antigens of the VP1 protein. Moreover, some amino acid substitutions were estimated to be near the interface between monomers and the active site of the RdRp protein. These results suggest that the GII.P17-GII.17 virus has produced variants with the potential to alter viral antigenicity, host-binding capability, and replication property over the past 10 years.
Collapse
Affiliation(s)
- Yuki Matsushima
- Division of Virology, Kawasaki City Institute for Public Health, Kawasaki, Japan
| | - Fuminori Mizukoshi
- Department of Microbiology, Tochigi Prefectural Institute of Public Health and Environmental Science, Utsunomiya, Japan
| | - Naomi Sakon
- Department of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Yen Hai Doan
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama, Japan
| | - Yo Ueki
- Department of Microbiology, Miyagi Prefectural Institute of Public Health and Environment, Sendai, Japan
| | - Yasutaka Ogawa
- Division of Virology, Saitama Institute of Public Health, Saitama, Japan
| | - Takumi Motoya
- Ibaraki Prefectural Institute of Public Health, Mito, Japan
| | - Hiroyuki Tsukagoshi
- Gunma Prefectural Institute of Public Health and Environmental Sciences, Maebashi, Japan
| | | | - Naoki Shigemoto
- Hiroshima Prefectural Technology Research Institute Public Health and Environment Center, Hiroshima, Japan
| | - Hideaki Yoshitomi
- Fukuoka Institute of Health and Environmental Sciences, Dazaifu, Japan
| | | | - Rieko Suzuki
- Kanagawa Prefectural Institute of Public Health, Chigasaki, Japan
| | - Rika Tsutsui
- Aomori Prefecture Public Health and Environment Center, Aomori, Japan
| | - Fumio Terasoma
- Wakayama Prefectural Research Center of Environment and Public Health, Wakayama, Japan
| | - Tomoko Takahashi
- Iwate Prefectural Research Institute for Environmental Sciences and Public Health, Morioka, Japan
| | - Kenji Sadamasu
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Shinjuku, Japan
| | - Hideaki Shimizu
- Division of Virology, Kawasaki City Institute for Public Health, Kawasaki, Japan
| | - Nobuhiko Okabe
- Division of Virology, Kawasaki City Institute for Public Health, Kawasaki, Japan
| | | | - Jumpei Aso
- Graduate School of Health Sciences, Gunma Paz University, Takasaki, Japan
- Department of Respiratory Medicine, Kyorin University School of Medicine, Mitaka, Japan
| | - Haruyuki Ishii
- Department of Respiratory Medicine, Kyorin University School of Medicine, Mitaka, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Musashimurayama, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
| | - Kazuhiko Katayama
- Laboratory of Viral Infection I, Kitasato Institute for Life Sciences, Graduate School of Infection Control Sciences, Kitasato University, Minato, Japan
| | - Hirokazu Kimura
- Graduate School of Health Sciences, Gunma Paz University, Takasaki, Japan
- Department of Microbiology, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
24
|
Motoya T, Umezawa M, Saito A, Goto K, Doi I, Fukaya S, Nagata N, Ikeda Y, Okayama K, Aso J, Matsushima Y, Ishioka T, Ryo A, Sasaki N, Katayama K, Kimura H. Variation of human norovirus GII genotypes detected in Ibaraki, Japan, during 2012-2018. Gut Pathog 2019; 11:26. [PMID: 31143245 PMCID: PMC6533662 DOI: 10.1186/s13099-019-0303-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/02/2019] [Indexed: 12/13/2022] Open
Abstract
Background Human norovirus (HuNoV) is the major cause of viral acute gastroenteritis for all age groups in various countries. HuNoV GII in particular accounted for the majority of norovirus outbreaks, among which GII.4 caused repeated outbreaks for a long time. Besides GII.4, other norovirus genotypes, GII.2, GII.6, and GII.17, have also been prevalent in various contexts in recent years, but few detailed epidemiological studies of them have been performed and are poorly understood. We thus conducted an epidemiological analysis of HuNoV GII in Ibaraki Prefecture, Japan, by performing surveillance in the six seasons from September 2012 to August 2018. Results HuNoV GI occurred almost sporadically for all genotypes; however, each genotype of GII exhibited its typical epidemiological characteristics. Although the number of outbreaks of GII.4 decreased season by season, it reemerged in 2017/2018 season. The timing of the epidemic peak in terms of number of cases for GII.17 differed from that for the other genotypes. The patients age with GII.2 and GII.6 were younger and outbreak of GII.17 occurred frequently as food poisoning. Namely, the primarily infected outbreak group differed for each genotype of HuNoV GII. Moreover, the viral load of patients differed according to the genotype. Conclusions Various HuNoV genotypes including GII.2, GII.4, GII.6, and GII.17 were shown to be associated with various types of outbreak sites (at childcare and educational facilities, involving cases of food poisoning, and at elderly nursing homes) in this study. These genotypes emerged in recent years, and their prevalence patterns differed from each other. Moreover, differences in outbreak sites and viral load of patients among the genotypes were identified.
Collapse
Affiliation(s)
- Takumi Motoya
- Ibaraki Prefectural Institute of Public Health, Ibaraki, Japan.,2Faculty of Veterinary Medicine, Kitasato University, Aomori, Japan
| | | | - Aoi Saito
- Ibaraki Prefectural Institute of Public Health, Ibaraki, Japan
| | - Keiko Goto
- Ibaraki Prefectural Institute of Public Health, Ibaraki, Japan
| | - Ikuko Doi
- Ibaraki Prefectural Institute of Public Health, Ibaraki, Japan
| | - Setsuko Fukaya
- Ibaraki Prefectural Institute of Public Health, Ibaraki, Japan
| | - Noriko Nagata
- Ibaraki Prefectural Institute of Public Health, Ibaraki, Japan
| | - Yoshiaki Ikeda
- Ibaraki Prefectural Institute of Public Health, Ibaraki, Japan
| | - Kaori Okayama
- Gunma Paz University Graduate School of Health Science, Gunma, 370-0006 Japan
| | - Jumpei Aso
- Gunma Paz University Graduate School of Health Science, Gunma, 370-0006 Japan.,4Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Yuki Matsushima
- Kawasaki City Institute for Public Health, Kawasaki, Kanagawa Japan
| | | | - Akihide Ryo
- 7Department of Molecular Biodefence Research, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Nobuya Sasaki
- 2Faculty of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Kazuhiko Katayama
- 8Laboratory of Viral Infection I, Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan
| | - Hirokazu Kimura
- Gunma Paz University Graduate School of Health Science, Gunma, 370-0006 Japan.,7Department of Molecular Biodefence Research, Yokohama City University Graduate School of Medicine, Kanagawa, Japan.,9Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
25
|
The coordinating role of the human norovirus minor capsid protein VP2 is essential to functional change and nuclear localization of the major capsid protein VP1. Arch Virol 2019; 164:1173-1180. [PMID: 30810804 DOI: 10.1007/s00705-019-04192-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 01/30/2019] [Indexed: 01/27/2023]
Abstract
Global outbreaks of norovirus (NOV) gastroenteritis are associated with the most prevalent genotype, GII.4. Mutations in the protruding domain 2 (P2 domain) of the norovirus major capsid protein (VP1) result in the emergence of various NOV variants, however, it is unclear whether the minor capsid protein (VP2) also affects the generation of VP1 variants. In this study, using a human 293T expression system, we investigated the interactions of VP1 and VP2 of three GII.4 strains, focusing on the changes in expression and cellular localization. We found that co-transfection with VP1 and VP2 leads to a significant increase in expression of both proteins compared to that in cells transfected with VP1 or VP2 alone. In contrast to VP1 expressed in the absence of VP2, which was dispersed throughout the cytosol, VP2 expressed in the absence of VP1 was found to be located in the nucleus. This could be attributed to a predicted specific nuclear localization signal found in this gene. When both proteins were expressed, VP1 was found together with VP2 in the nucleus. These results thus suggest that the VP2 of GII.4 NOVs affects the function and cellular location of VP1 and that, with the cooperation of VP2, VP1 could play a critical role in affecting cell functions by impairing the downstream transcriptional signaling and chromatin remodeling in the cell nuclei.
Collapse
|
26
|
Ozaki K, Matsushima Y, Nagasawa K, Motoya T, Ryo A, Kuroda M, Katayama K, Kimura H. Molecular Evolutionary Analyses of the RNA-Dependent RNA Polymerase Region in Norovirus Genogroup II. Front Microbiol 2018; 9:3070. [PMID: 30619155 PMCID: PMC6305289 DOI: 10.3389/fmicb.2018.03070] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/28/2018] [Indexed: 12/13/2022] Open
Abstract
Noroviruses are the leading cause of viral gastroenteritis in humans across the world. RNA-dependent RNA polymerase (RdRp) plays a critical role in the replication of the viral genome. Although there have been some reports on a limited number of genotypes with respect to the norovirus evolution of the RdRp region, no comprehensive molecular evolution examination of the norovirus GII genotype has yet been undertaken. Therefore, we conducted an evolutionary analysis of the 25 genotypes of the norovirus GII RdRp region (full-length), collected globally using different bioinformatics technologies. The time-scaled phylogenetic tree, generated using the Bayesian Markov Chain Monte Carlo (MCMC) method, indicated that the common ancestor of GII diverged from GIV around 1443 CE [95% highest posterior density (HPD), 1336–1542]. The GII RdRp region emerged around 1731 CE (95% HPD, 1703–1757), forming three lineages. The evolutionary rate of the RdRp region of the norovirus GII strains was estimated at over 10−3 substitutions/site/year. The evolutionary rates were significantly distinct in each genotype. The composition of the phylogenetic distances differed among the strains for each genotype. Furthermore, we mapped the negative selection sites on the RdRp protein and many of these were predicted in the GII.P4 RdRp proteins. The phylodynamics of GII.P4, GII.P12, GII.P16, and GII.Pe showed that their effective population sizes increased during the period from 2003 to 2014. Our results cumulatively suggest that the RdRp region of the norovirus GII rapidly and uniquely evolved with a high divergence similar to that of the norovirus VP1 gene.
Collapse
Affiliation(s)
- Keita Ozaki
- Graduate School of Health Sciences, Gunma Paz University, Takasaki, Japan.,Niitaka Co., Ltd., Osaka, Japan
| | - Yuki Matsushima
- Division of Virology, Kawasaki City Institute for Public Health, Kawasaki, Japan
| | - Koo Nagasawa
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takumi Motoya
- Ibaraki Prefectural Institute of Public Health, Mito, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazuhiko Katayama
- Laboratory of Viral Infection I, Kitasato Institute for Life Sciences Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Hirokazu Kimura
- Graduate School of Health Sciences, Gunma Paz University, Takasaki, Japan.,Department of Microbiology, Yokohama City University School of Medicine, Yokohama, Japan
| |
Collapse
|
27
|
Petronella N, Ronholm J, Suresh M, Harlow J, Mykytczuk O, Corneau N, Bidawid S, Nasheri N. Genetic characterization of norovirus GII.4 variants circulating in Canada using a metagenomic technique. BMC Infect Dis 2018; 18:521. [PMID: 30333011 PMCID: PMC6191920 DOI: 10.1186/s12879-018-3419-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/27/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Human norovirus is the leading cause of viral gastroenteritis globally, and the GII.4 has been the most predominant genotype for decades. This genotype has numerous variants that have caused repeated epidemics worldwide. However, the molecular evolutionary signatures among the GII.4 variants have not been elucidated throughout the viral genome. METHOD A metagenomic, next-generation sequencing method, based on Illumina RNA-Seq, was applied to determine norovirus sequences from clinical samples. RESULTS Herein, the obtained deep-sequencing data was employed to analyze full-genomic sequences from GII.4 variants prevailing in Canada from 2012 to 2016. Phylogenetic analysis demonstrated that the majority of these sequences belong to New Orleans 2009 and Sydney 2012 strains, and a recombinant sequence was also identified. Genome-wide similarity analyses implied that while the capsid gene is highly diverse among the isolates, the viral protease and polymerase genes remain relatively conserved. Numerous amino acid substitutions were observed at each putative antigenic epitope of the VP1 protein, whereas few amino acid changes were identified in the polymerase protein. Co-infection with other enteric RNA viruses was investigated and the astrovirus genome was identified in one of the samples. CONCLUSIONS Overall this study demonstrated the application of whole genome sequencing as an important tool in molecular characterization of noroviruses.
Collapse
Affiliation(s)
- Nicholas Petronella
- Biostatistics and Modeling Division, Bureau of Food Surveillance and Science Integration, Food Directorate, Health Canada Ottawa, Ottawa, ON, Canada
| | - Jennifer Ronholm
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Montreal, QC, Canada.,Department of Animal Sciences, Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Montreal, QC, Canada
| | - Menka Suresh
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
| | - Jennifer Harlow
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
| | - Oksana Mykytczuk
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
| | - Nathalie Corneau
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
| | - Sabah Bidawid
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
| | - Neda Nasheri
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada.
| |
Collapse
|
28
|
Chen C, Yan JB, Wang HL, Li P, Li KF, Wu B, Zhang H. Molecular epidemiology and spatiotemporal dynamics of norovirus associated with sporadic acute gastroenteritis during 2013-2017, Zhoushan Islands, China. PLoS One 2018; 13:e0200911. [PMID: 30021022 PMCID: PMC6051660 DOI: 10.1371/journal.pone.0200911] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 07/04/2018] [Indexed: 11/28/2022] Open
Abstract
A total of 1 590 fecal swabs and stool samples from sporadic acute gastroenteritis patients of all ages were collected from January 2013 to March 2018 in the Zhoushan Islands, China, with 99 (6.23%) samples subsequently identified as human norovirus (HuNoV) positive. Phylogenetic analysis of partial RdRp and VP1 gene regions identified 10 genotypes of the GII genogroup and 3 genotypes of the GI genogroup. The predominant genotype was GII.P17-GII.17 (42.86%, 33/77), followed by GII.Pe-GII.4_Sydney 2012 (24.68%, 19/77) and GII.P16-GII.2 (12.96%, 10/77). However, the prevailing genotype in the Zhoushan Islands has shifted on three separate occasions. The GII.Pe-GII.4_Sydney_2012 strain was dominant in 2013-2014, the GII.P17-17 strain was dominant in 2015-2016, and the GII.P16-GII.2 strain was dominant in 2017. Divergence analysis showed that the re-emerging GII.P16-GII.2 strains clustered with the Japanese 2010-2012 GII.P16-GII.2 strains, and the time of the most recent common ancestor was estimated to have occurred in 2012 to 2013. The evolutionary rates of the RdRp gene region of the GII.P16 genotype and the VP1 gene region of the GII.2 genotype were 2.64 × 10(-3) (95% HPD interval, 2.17-3.08 × 10(-3)) and 3.36 × 10(-3) (95% HPD interval, 2.66-4.04 × 10(-3)) substitutions/site/year, respectively. The migration pattern of the HuNoV GII.2 genotype in China demonstrated that the re-emerging GII.P16-GII.2 strains were first introduced into Hong Kong from Japan, and then spread from Hong Kong to other coastal areas. Our results also showed that the GII.P16-GII.2 strains in the Zhoushan Islands were likely introduced from Jiangsu Province, China, in 2016.
Collapse
Affiliation(s)
- Can Chen
- Department of Public Health, Nanchang University, Nanchang, Jiangxi Province, China
- Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China
| | - Jian-Bo Yan
- Department of Public Health, Nanchang University, Nanchang, Jiangxi Province, China
- Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China
| | - Hong-Ling Wang
- Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China
| | - Peng Li
- Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China
| | - Ke-Feng Li
- Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China
| | - Bing Wu
- Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China
| | - Hui Zhang
- Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China
| |
Collapse
|