1
|
Godoy-Vitorino F. Solutions to expand microbiome sciences in the Caribbean Region: an insider's perspective. Trends Microbiol 2025:S0966-842X(24)00321-4. [PMID: 39788811 DOI: 10.1016/j.tim.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/07/2024] [Accepted: 12/13/2024] [Indexed: 01/12/2025]
Abstract
The Caribbean harbors diverse genetic resources, yet microbiome research in the region remains poorly characterized. Addressing infrastructure and training challenges through collaborations and capacity building is vital. This article reflects on the obstacles facing microbiome research in the region and proposes solutions to ensure equitable participation in the global microbial research ecosystem.
Collapse
Affiliation(s)
- Filipa Godoy-Vitorino
- Department of Microbiology, University of Puerto Rico, School of Medicine, San Juan, Puerto Rico, 00936, PR, USA.
| |
Collapse
|
2
|
Wan B, Chen G, Poon ESK, Fung HS, Lau A, Sin SYW. Environmental factors and host sex influence the skin microbiota structure of Hong Kong newt (Paramesotriton hongkongensis) in a coldspot of chytridiomycosis in subtropical East Asia. Integr Zool 2024. [PMID: 38872359 DOI: 10.1111/1749-4877.12855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Chytridiomycosis, an infectious skin disease caused by the chytrid fungi, Batrachochytrium dendrobatidis and B. salamandrivorans, poses a significant threat to amphibian biodiversity worldwide. Antifungal bacteria found on the skin of chytrid-resistant amphibians could potentially provide defense against chytridiomycosis and lower mortality rates among resistant individuals. The Hong Kong newt (Paramesotriton hongkongensis) is native to East Asia, a region suspected to be the origin of chytrids, and has exhibited asymptomatic infection, suggesting a long-term coexistence with the chytrids. Therefore, the skin microbiota of this resistant species warrant investigation, along with other factors that can affect the microbiota. Among the 149 newts sampled in their natural habitats in Hong Kong, China, putative antifungal bacteria were found in all individuals. There were 314 amplicon sequence variants distributed over 25 genera of putative antifungal bacteria; abundant ones included Acinetobacter, Flavobacterium, and Novosphingobium spp. The skin microbiota compositions were strongly influenced by the inter-site geographical distances. Despite inter-site differences, we identified some core skin microbes across sites that could be vital to P. hongkongensis. The dominant cores included the family Comamonadaceae, family Chitinophagaceae, and class Betaproteobacteria. Moreover, habitat elevation and host sex also exhibited significant effects on skin microbiota compositions. The antifungal bacteria found on these newts offer an important resource for conservation against chytridiomycosis, such as developing probiotic treatments for susceptible species.
Collapse
Affiliation(s)
- Bowen Wan
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Guoling Chen
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Emily Shui Kei Poon
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Hon Shing Fung
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Anthony Lau
- Science Unit, Lingnan University, Hong Kong, China
| | - Simon Yung Wa Sin
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
3
|
Du Y, Wang X, Ashraf S, Tu W, Xi Y, Cui R, Chen S, Yu J, Han L, Gu S, Qu Y, Liu X. Climate match is key to predict range expansion of the world's worst invasive terrestrial vertebrates. GLOBAL CHANGE BIOLOGY 2024; 30:e17137. [PMID: 38273500 DOI: 10.1111/gcb.17137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 01/27/2024]
Abstract
Understanding the determinants of the range expansion of invasive alien species is crucial for developing effective prevention and control strategies. Nevertheless, we still lack a global picture of the potential factors influencing the invaded range expansion across taxonomic groups, especially for the world's worst invaders with high ecological and economic impacts. Here, by extensively collecting data on 363 distributional ranges of 19 of world's worst invasive terrestrial vertebrates across 135 invaded administrative jurisdictions, we observed remarkable variations in the range expansion across species and taxonomic groups. After controlling for taxonomic and geographic pseudoreplicates, model averaging analyses based on generalized additive mixed-effect models showed that species in invaded regions having climates more similar to those of their native ranges tended to undergo a larger range expansion. In addition, as proxies of propagule pressure and human-assisted transportation, the number of introduction events and the road network density were also important predictors facilitating the range expansion. Further variance partitioning analyses validated the predominant role of climate match in explaining the range expansion. Our study demonstrated that regions with similar climates to their native ranges could still be prioritized to prevent the spread of invasive species under the sustained global change.
Collapse
Affiliation(s)
- Yuanbao Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xuyu Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Ecology, Lanzhou University, Lanzhou, Gansu Province, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Sadia Ashraf
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weishan Tu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Yonghong Xi
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ruina Cui
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shengnan Chen
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan Province, China
| | - Jiajie Yu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lixia Han
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Shimin Gu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yanhua Qu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuan Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Grbin D, Geček S, Miljanović A, Pavić D, Hudina S, Žučko J, Rieder J, Pisano SRR, Adrian-Kalchhauser I, Bielen A. Comparison of exoskeleton microbial communities of co-occurring native and invasive crayfish species. J Invertebr Pathol 2023; 201:107996. [PMID: 37783231 DOI: 10.1016/j.jip.2023.107996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/04/2023]
Abstract
Host-associated microbial communities are an important determinant of individual fitness and have recently been highlighted as one of the factors influencing the success of invasive species. Invasive hosts introduce their microbes into the new environment, and then both the host and its associated microbes enter into a series of interactions with the native macroscopic and microscopic biota. As these processes are largely unexplored, we aimed to compare the exoskeletal microbial communities of co-occurring and phylogenetically related crayfish: the native narrow-clawed crayfish Pontastacus leptodactylus and the invasive signal crayfish Pacifastacus leniusculus from the recently invaded Korana River, Croatia. The results of high-throughput 16S rRNA sequencing showed that the exoskeletal microbiome of both species is very diverse, significantly influenced by the local environment and dominated by low abundance bacterial families from the phylum Proteobacteria. Furthermore, the exoskeletal microbiomes of the crayfish species differed significantly in the composition and abundance of Amplicon Sequence Variants (ASVs), suggesting that they are to some extent shaped by species-specific intrinsic factors, despite sharing a common habitat. However, over 95% of the bacterial genera associated with the exoskeleton were detected in the exoskeleton samples of both native and invasive crayfish. We paid particular attention to two known crayfish pathogens, Aphanomyces astaci and Saprolegnia parasitica, and find that both species carry low amounts of both pathogens. On the side, we find that a non-standard ddPCR protocol outperforms standard qPCR test for A. astaci under low concentration conditions. Taken together, our results indicate the possibility of bidirectional mixing and homogenisation of exoskeleton microbiome. As such, they can serve as a baseline in future detangling of the processes that act together to shape the microbiomes of co-occuring native and invasive congeners during biological invasions.
Collapse
Affiliation(s)
- Dorotea Grbin
- Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia; Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia.
| | - Sunčana Geček
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Anđela Miljanović
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia.
| | - Dora Pavić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia.
| | - Sandra Hudina
- Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia.
| | - Jurica Žučko
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia.
| | - Jessica Rieder
- Institute for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland; Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland; Swiss Institute of Bioinformatics, Quartier Sorge - Batiment Amphipole, 1015 Lausanne, Switzerland.
| | - Simone R R Pisano
- Institute for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland.
| | - Irene Adrian-Kalchhauser
- Institute for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland.
| | - Ana Bielen
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia.
| |
Collapse
|
5
|
Leonhardt F, Keller A, Arranz Aveces C, Ernst R. From Alien Species to Alien Communities: Host- and Habitat-Associated Microbiomes in an Alien Amphibian. MICROBIAL ECOLOGY 2023; 86:2373-2385. [PMID: 37233803 PMCID: PMC10640505 DOI: 10.1007/s00248-023-02227-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/20/2023] [Indexed: 05/27/2023]
Abstract
Alien species can host diverse microbial communities. These associated microbiomes may be important in the invasion process and their analysis requires a holistic community-based approach. We analysed the skin and gut microbiome of Eleutherodactylus johnstonei from native range populations in St Lucia and exotic range populations in Guadeloupe, Colombia, and European greenhouses along with their respective environmental microbial reservoir through a 16S metabarcoding approach. We show that amphibian-associated and environmental microbial communities can be considered as meta-communities that interact in the assembly process. High proportions of bacteria can disperse between frogs and environment, while respective abundances are rather determined by niche effects driven by the microbial community source and spatial environmental properties. Environmental transmissions appeared to have higher relevance for skin than for gut microbiome composition and variation. We encourage further experimental studies to assess the implications of turnover in amphibian-associated microbial communities and potentially invasive microbiota in the context of invasion success and impacts. Within this novel framework of "nested invasions," (meta-)community ecology thinking can complement and widen the traditional perspective on biological invasions.
Collapse
Affiliation(s)
- Franziska Leonhardt
- Faculty of Biology, Technical University of Dresden, 01062, Dresden, Germany.
- Museum of Zoology, Senckenberg Natural History Collections Dresden, Königsbrücker Landstraße 159, 01109, Dresden, Germany.
| | - Alexander Keller
- Faculty of Biology, Ludwig-Maximilians-University of Munich, Geschwister-Scholl-Platz 1, 80539, München, Germany
| | - Clara Arranz Aveces
- Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, 70173, Stuttgart, Germany
| | - Raffael Ernst
- Faculty of Biology, Technical University of Dresden, 01062, Dresden, Germany.
- Museum of Zoology, Senckenberg Natural History Collections Dresden, Königsbrücker Landstraße 159, 01109, Dresden, Germany.
| |
Collapse
|
6
|
García-Amado MA, Rudolf CA, Fuentes-Fuentes MDM, Chorna N, Martínez LM, Godoy-Vitorino F. Bacterial composition along the digestive tract of the Horned Screamer ( Anhima cornuta), a tropical herbivorous bird. PeerJ 2023; 11:e14805. [PMID: 36815987 PMCID: PMC9933741 DOI: 10.7717/peerj.14805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/05/2023] [Indexed: 02/15/2023] Open
Abstract
Background The Horned Screamer (Anhima cornuta) is an herbivorous bird that inhabits wetlands of the South American tropical region. We hypothesize that due to its herbivorous niche, its digestive tract compartments may have bacteria specialized in fermenting complex plant carbohydrates. To test this hypothesis, we compared the bacterial communities along the gastrointestinal tract (GIT) of a Horned Screamer captured in Venezuela. Methods Samples were taken from tissues and content of the proventriculus and the small intestine (considered for this study as upper GIT), and the large intestine and cecum (lower GIT). The bacterial community was characterized by sequencing the V4 region of the 16S rRNA gene. Bioinformatic analysis was performed using QIIME, QIITA and Microbiome Analyst. The association between microbial taxonomy and function was analyzed using their Greengenes OTU IDs and a custom KEGG BRITE hierarchical tree and visualized with BURRITO. Results The Screamer's gastrointestinal microbiota was composed by seven phyla being Firmicutes and Bacteroidetes the most predominant. The dominant taxa in the upper GIT were Helicobacter, Vibrio, Enterobacter, Acinetobacter and Staphylococcus. The dominant taxa in the lower GIT were Oribacterium, Blautia, Roseburia, Ruminococcus, Desulfovibrio, Intestinimonas, Marvinbryantia and Parabacteroides. Complete degradation of cellulose to the end-products acetate, propanoate, butanoate and acetoacetate was found in the upper and lower GIT without significant differences. Conclusion Our study confirmed changes in bacterial community composition throughout the GIT of the Horned Screamer primarily associated with the production of metabolic end-products of carbohydrate digestion essential for the fermentation of the herbivorous diet.
Collapse
Affiliation(s)
- María Alexandra García-Amado
- Laboratorio de Fisiología Gastrointestinal, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Miranda, Venezuela
| | - Carla A. Rudolf
- Laboratorio de Fisiología Gastrointestinal, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Miranda, Venezuela
| | | | - Nataliya Chorna
- Biochemistry Department, University of Puerto Rico School of Medicine, San Juan, PR, Puerto Rico
| | | | - Filipa Godoy-Vitorino
- Microbiology Department, University of Puerto Rico, School of Medicine, San Juan, Puerto Rico
| |
Collapse
|
7
|
Weitzman CL, Kaestli M, Rose A, Hudson CM, Gibb K, Brown GP, Shine R, Christian K. Geographic variation in bacterial assemblages on cane toad skin is influenced more by local environments than by evolved changes in host traits. Biol Open 2023; 12:286922. [PMID: 36745034 PMCID: PMC9932784 DOI: 10.1242/bio.059641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/16/2023] [Indexed: 02/07/2023] Open
Abstract
Bacterial assemblages on amphibian skin may play an important role in protecting hosts against infection. In hosts that occur over a range of environments, geographic variation in composition of bacterial assemblages might be due to direct effects of local factors and/or to evolved characteristics of the host. Invasive cane toads (Rhinella marina) are an ideal candidate to evaluate environmental and genetic mechanisms, because toads have evolved major shifts in physiology, morphology, and behavior during their brief history in Australia. We used samples from free-ranging toads to quantify site-level differences in bacterial assemblages and a common-garden experiment to see if those differences disappeared when toads were raised under standardised conditions at one site. The large differences in bacterial communities on toads from different regions were not seen in offspring raised in a common environment. Relaxing bacterial clustering to operational taxonomic units in place of amplicon sequence variants likewise revealed high similarity among bacterial assemblages on toads in the common-garden study, and with free-ranging toads captured nearby. Thus, the marked geographic divergence in bacterial assemblages on wild-caught cane toads across their Australian invasion appears to result primarily from local environmental effects rather than evolved shifts in the host.
Collapse
Affiliation(s)
- Chava L. Weitzman
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT 0909, Australia,Author for correspondence ()
| | - Mirjam Kaestli
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT 0909, Australia
| | - Alea Rose
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT 0909, Australia
| | - Cameron M. Hudson
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Karen Gibb
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT 0909, Australia
| | - Gregory P. Brown
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Richard Shine
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Keith Christian
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT 0909, Australia
| |
Collapse
|
8
|
Rodríguez-Barreras R, Dominicci-Maura A, Tosado-Rodríguez EL, Godoy-Vitorino F. The Epibiotic Microbiota of Wild Caribbean Sea Urchin Spines Is Species Specific. Microorganisms 2023; 11:391. [PMID: 36838357 PMCID: PMC9966300 DOI: 10.3390/microorganisms11020391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Caribbean sea urchins are marine invertebrates that have experienced a decline over the years. Studies on sea urchins have focused primarily on the microbiome of the coelomic fluid or the gut microbiota. In this study, the epibiota community associated with four wild Caribbean sea urchin species, Lytechinus variegatus, Echinometra lucunter, Tripneustes ventricosus, and Diadema antillarum, was characterized for the first time. Using 57 sea urchin animal samples, we evaluated the influence of animal species, trophic niches, and geographical location on the composition of the epibiotic microbiota. We found significant differences in the bacterial biota among species and trophic niches, but not among geographical locations. L. variegatus exhibited the highest alpha diversity with high dominance of Fusobacteria, Planctomycetes, and Cyanobacteria, whereas T. ventricosus and D. antillarum were dominated by Firmicutes. T. ventricosus inhabiting the seagrass biotope dominated by Thalassia testudinum meadows had mostly Endozoicomonas. In contrast, samples located in the reef (dominated by corals and other reef builders) had a higher abundance of Kistimonas and Photobacterium. Our findings confirm that the epibiotic microbiota is species-specific, but also niche-dependent, revealing the trophic networks emerging from the organic matter being recycled in the seagrass and reef niches. As echinoids are important grazers of benthic communities, their microbiota will likely influence ecosystem processes.
Collapse
Affiliation(s)
- Ruber Rodríguez-Barreras
- Department of Biology, University of Puerto Rico, Mayagüez Campus, P.O. Box 9000, Mayagüez 00681-9000, Puerto Rico
| | - Anelisse Dominicci-Maura
- Department of Microbiology, University of Puerto Rico School of Medicine, Guillermo Arbona Main Building, San Juan 00936-5067, Puerto Rico
| | - Eduardo L. Tosado-Rodríguez
- Department of Microbiology, University of Puerto Rico School of Medicine, Guillermo Arbona Main Building, San Juan 00936-5067, Puerto Rico
| | - Filipa Godoy-Vitorino
- Department of Microbiology, University of Puerto Rico School of Medicine, Guillermo Arbona Main Building, San Juan 00936-5067, Puerto Rico
| |
Collapse
|
9
|
González JA, Griffith E, Chen-Camaño R, Henao-Martínez AF, Franco-Paredes C, Ortega Y, Pinto D, Suárez Sancho JA. Severe cutaneous reaction caused by rubbing the toad Rinella horribilis as a folk remedy in rural Panama. Travel Med Infect Dis 2022; 52:102539. [PMID: 36596402 DOI: 10.1016/j.tmaid.2022.102539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/18/2022] [Accepted: 12/28/2022] [Indexed: 01/02/2023]
Affiliation(s)
- José Anel González
- Department of Internal Medicine, Division of Infectious Disease, Irma De Lourdes Tzanetatos Memorial Hospital, Social Security System, Panama City, Panama
| | - Edgardo Griffith
- El Valle Amphibian Conservation Center Foundation, El Valle de Anton, Cocle, Panama
| | - Roderick Chen-Camaño
- Clinical Research Unit, Department of Virology and Biotechnology, Gorgas Memorial Institute for Health Studies, Panama City, Panama
| | - Andrés F Henao-Martínez
- Department of Medicine, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora-Colorado, USA
| | - Carlos Franco-Paredes
- Hospital Infantil de Mexico, Federico Gomez, Mexico; and Department of Microbiology, Immunology, and Pathology, Colorado State University, USA
| | - Yahir Ortega
- Department of Internal Medicine, Irma De Lourdes Tzanetatos Memorial Hospital, Social Security System, Panama City, Panama
| | - Douglas Pinto
- Department of Pathology, Division of Cytology, Irma De Lourdes Tzanetatos Memorial Hospital, Social Security System, Panama City, Panama
| | - José Antonio Suárez Sancho
- Clinical Research Unit, Gorgas Memorial Institute for Health Studies, Panama City, Panama; National Researcher II, National Research System, National Secretaria for Science, Technology and Innovation, Panama City, Panama.
| |
Collapse
|
10
|
Rodríguez-Barreras R, Tosado-Rodríguez EL, Godoy-Vitorino F. Trophic niches reflect compositional differences in microbiota among Caribbean sea urchins. PeerJ 2021; 9:e12084. [PMID: 34540373 PMCID: PMC8415288 DOI: 10.7717/peerj.12084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/07/2021] [Indexed: 11/20/2022] Open
Abstract
Sea urchins play a critical role in marine ecosystems, as they actively participate in maintaining the balance between coral and algae. We performed the first in-depth survey of the microbiota associated with four free-living populations of Caribbean sea urchins: Lytechinus variegatus, Echinometra lucunter, Tripneustes ventricosus, and Diadema antillarum. We compared the influence of the collection site, echinoid species and trophic niche to the composition of the microbiota. This dataset provides a comprehensive overview to date, of the bacterial communities and their ecological relevance associated with sea urchins in their natural environments. A total of sixty-samples, including surrounding reef water and seagrass leaves underwent 16S rRNA gene sequencing (V4 region) and high-quality reads were analyzed with standard bioinformatic approaches. While water and seagrass were dominated by Cyanobacteria such as Prochlorococcus and Rivularia respectively, echinoid gut samples had dominant Bacteroidetes, Proteobacteria and Fusobacteria. Propionigenium was dominant across all species' guts, revealing a host-associated composition likely responsive to the digestive process of the animals. Beta-diversity analyses showed significant differences in community composition among the three collection sites, animal species, and trophic niches. Alpha diversity was significantly higher among L. variegatus samples compared to the other species. L. variegatus also displayed an increased abundance of Planctomycetes and Cyanobacterial OTUs. The bacterial community of this herbivorous echinoid reflected similarities to the microfilm community found on Thalassia testudinum leaves; a very abundant seagrass and its main food resource. The results of this study elaborate on the microbial ecology of four important Caribbean echinoids, confirming that selection on the microbial community is trophic-niche dependent.
Collapse
Affiliation(s)
| | - Eduardo L Tosado-Rodríguez
- Microbiology and Medical Zoology, School of Medicine, University of Puerto Rico, School of Medicine, San Juan, Puerto Rico, USA
| | - Filipa Godoy-Vitorino
- Microbiology and Medical Zoology, School of Medicine, University of Puerto Rico, School of Medicine, San Juan, Puerto Rico, USA
| |
Collapse
|
11
|
Santos B, Bletz MC, Sabino-Pinto J, Cocca W, Fidy JFS, Freeman KL, Kuenzel S, Ndriantsoa S, Noel J, Rakotonanahary T, Vences M, Crottini A. Characterization of the microbiome of the invasive Asian toad in Madagascar across the expansion range and comparison with a native co-occurring species. PeerJ 2021; 9:e11532. [PMID: 34249488 PMCID: PMC8247705 DOI: 10.7717/peerj.11532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 05/07/2021] [Indexed: 12/19/2022] Open
Abstract
Biological invasions are on the rise, with each invader carrying a plethora of associated microbes. These microbes play important, yet poorly understood, ecological roles that can include assisting the hosts in colonization and adaptation processes or as possible pathogens. Understanding how these communities differ in an invasion scenario may help to understand the host's resilience and adaptability. The Asian common toad, Duttaphrynus melanostictus is an invasive amphibian, which has recently established in Madagascar and is expected to pose numerous threats to the native ecosystems. We characterized the skin and gut bacterial communities of D. melanostictus in Toamasina (Eastern Madagascar), and compared them to those of a co-occurring native frog species, Ptychadena mascareniensis, at three sites where the toad arrived in different years. Microbial composition did not vary among sites, showing that D. melanostictus keeps a stable community across its expansion but significant differences were observed between these two amphibians. Moreover, D. melanostictus had richer and more diverse communities and also harboured a high percentage of total unique taxa (skin: 80%; gut: 52%). These differences may reflect the combination of multiple host-associated factors including microhabitat selection, skin features and dietary preferences.
Collapse
Affiliation(s)
- Bárbara Santos
- Cibio, Research Centre in Biodiversity and Genetic Resources, InBio, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, Portugal, Porto, Portugal
| | - Molly C Bletz
- Department of Biology, University of Massachussetts Boston, Boston, MA, USA
| | - Joana Sabino-Pinto
- Zoological Institute, Braunschweig University of Technology, Mendelssohnstr. 4, Germany, Braunschweig, Germany
| | - Walter Cocca
- Cibio, Research Centre in Biodiversity and Genetic Resources, InBio, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, Portugal, Porto, Portugal
| | | | - Karen Lm Freeman
- Madagascar Fauna and Flora Group, BP 442, 501 Toamasina, Madagascar, Toamasina, Madagascar
| | - Sven Kuenzel
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, Germany, Plön, Germany
| | - Serge Ndriantsoa
- Amphibian Survival Alliance c/o Durrell Wildlife Conservation Trust, Madagascar Programme, Lot II Y 49 J 12 Ampasanimalo, BP 8511 101 Antananarivo, Madagascar, Antananarivo, Madagascar
| | - Jean Noel
- Madagascar Fauna and Flora Group, BP 442, 501 Toamasina, Madagascar, Toamasina, Madagascar
| | - Tsanta Rakotonanahary
- Amphibian Survival Alliance c/o Durrell Wildlife Conservation Trust, Madagascar Programme, Lot II Y 49 J 12 Ampasanimalo, BP 8511 101 Antananarivo, Madagascar, Antananarivo, Madagascar
| | - Miguel Vences
- Zoological Institute, Braunschweig University of Technology, Mendelssohnstr. 4, Germany, Braunschweig, Germany
| | - Angelica Crottini
- Cibio, Research Centre in Biodiversity and Genetic Resources, InBio, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, Portugal, Porto, Portugal
| |
Collapse
|
12
|
Rebollar EA, Martínez-Ugalde E, Orta AH. The Amphibian Skin Microbiome and Its Protective Role Against Chytridiomycosis. HERPETOLOGICA 2020. [DOI: 10.1655/0018-0831-76.2.167] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Eria A. Rebollar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Emanuel Martínez-Ugalde
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Alberto H. Orta
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| |
Collapse
|
13
|
Bernardo-Cravo AP, Schmeller DS, Chatzinotas A, Vredenburg VT, Loyau A. Environmental Factors and Host Microbiomes Shape Host-Pathogen Dynamics. Trends Parasitol 2020; 36:616-633. [PMID: 32402837 DOI: 10.1016/j.pt.2020.04.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 04/11/2020] [Accepted: 04/11/2020] [Indexed: 12/18/2022]
Abstract
Microorganisms are increasingly recognized as ecosystem-relevant components because they affect the population dynamics of hosts. Functioning at the interface of the host and pathogen, skin and gut microbiomes are vital components of immunity. Recent work reveals a strong influence of biotic and abiotic environmental factors (including the environmental microbiome) on disease dynamics, yet the importance of the host-host microbiome-pathogen-environment interaction has been poorly reflected in theory. We use amphibians and the disease chytridiomycosis caused by the fungal pathogen Batrachochytrium dendrobatidis to show how interactions between host, host microbiome, pathogen, and the environment all affect disease outcome. Our review provides new perspectives that improve our understanding of disease dynamics and ecology by incorporating environmental factors and microbiomes into disease theory.
Collapse
Affiliation(s)
- Adriana P Bernardo-Cravo
- ECOLAB, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France; Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Dirk S Schmeller
- ECOLAB, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| | - Antonis Chatzinotas
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, Permoserstrasse 15, 04318, Leipzig, Germany; Leipzig University, Institute of Biology, Johannisallee 21-23, 04103 Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany
| | - Vance T Vredenburg
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | - Adeline Loyau
- ECOLAB, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France; Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Alte Fischerhütte 2, Stechlin, D-16775, Germany
| |
Collapse
|
14
|
Cao Y, Cui K, Pan H, Wu J, Wang L. The impact of multiple climatic and geographic factors on the chemical defences of Asian toads (Bufo gargarizans Cantor). Sci Rep 2019; 9:17236. [PMID: 31754241 PMCID: PMC6872595 DOI: 10.1038/s41598-019-52641-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/18/2019] [Indexed: 11/08/2022] Open
Abstract
Chemical defences are widespread in nature, yet we know little about whether and how climatic and geographic factors affect their evolution. In this study, we investigated the natural variation in the concentration and composition of the main bufogenin toxin in adult Asian toads (Bufo gargarizans Cantor) captured in twenty-two regions. Moreover, we explored the relative importance of eight climatic factors (average temperature, maximum temperature, minimum temperature, average relative humidity, 20-20 time precipitation, maximum continuous precipitation, maximum ground temperature, and minimum ground temperature) in regulating toxin production. We found that compared to toads captured from central and southwestern China, toads from eastern China secreted higher concentrations of cinobufagin (CBG) and resibufogenin (RBG) but lower concentrations of telocinobufagin (TBG) and cinobufotalin (CFL). All 8 climatic variables had significant effects on bufogenin production (ri>0.5), while the plastic response of bufogenin toxin to various climate factors was highly variable. The most important climatic driver of total bufogenin production was precipitation: the bufogenin concentration increased with increasing precipitation. This study indicated that the evolution of phenotypic plasticity in chemical defences may depend at least partly on the geographic variation of defensive toxins and their climatic context.
Collapse
Affiliation(s)
- Yueting Cao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Keke Cui
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hongye Pan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jiheng Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Longhu Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
15
|
Bie J, Liu X, Zhang X, Wang H. Detection and comparative analysis of cutaneous bacterial communities of farmed and wild Rana dybowskii (Amphibia: Anura). THE EUROPEAN ZOOLOGICAL JOURNAL 2019. [DOI: 10.1080/24750263.2019.1683627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- J. Bie
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - X. Liu
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - X. Zhang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - H. Wang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
16
|
Abarca JG, Vargas G, Zuniga I, Whitfield SM, Woodhams DC, Kerby J, McKenzie VJ, Murillo-Cruz C, Pinto-Tomás AA. Assessment of Bacterial Communities Associated With the Skin of Costa Rican Amphibians at La Selva Biological Station. Front Microbiol 2018; 9:2001. [PMID: 30233511 PMCID: PMC6129598 DOI: 10.3389/fmicb.2018.02001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 08/08/2018] [Indexed: 12/15/2022] Open
Abstract
Amphibian skin is a suitable environment for rich communities of microorganisms, both beneficial and detrimental to the host. The amphibian cutaneous microbiota has been hypothesized to play an important role as symbionts, protecting their hosts against disease. Costa Rica has one of the most diverse assemblages of amphibians in the world and we know very little about the microbiota of these tropical animals. For comparison with other studies, we explore the diversity of the skin bacterial communities employing16S rRNA amplicon sequencing of swab samples from twelve species of frogs at La Selva Biological Station in Sarapiquí, Heredia province. The predominant phylum detected in our studies was Proteobacteria, followed by Bacteroidetes and Actinobacteria, with these three phyla representing 89.9% of the total bacterial taxa. At the family level, Sphingobacteriaceae and Comamonadaceae were highly represented among samples. Our results suggest that host species and host family are significant predictors of the variation in microbiota composition. This study helps set the foundation for future research about microbiota composition and resilience to unfavorable conditions, leading to improvement in managing strategies for endangered amphibian species.
Collapse
Affiliation(s)
- Juan G. Abarca
- Centro de Investigación en Estructuras Microscópicas, Universidad de Costa Rica, San Pedro, Costa Rica
| | - Gabriel Vargas
- Department of the Geophysical Sciences, University of Chicago, Chicago, IL, United States
| | - Ibrahim Zuniga
- Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San Pedro, Costa Rica
- Centro de Investigación en Biología Celular y Molecular, Universidad de Costa Rica, San Pedro, Costa Rica
| | - Steven M. Whitfield
- Department of Conservation and Research, Zoo Miami, Miami, FL, United States
| | - Douglas C. Woodhams
- Department of Biology, University of Massachusetts, Boston, MA, United States
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Jacob Kerby
- Department of Biology, University of South Dakota, Vermillion, SD, United States
| | - Valerie J. McKenzie
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Boulder, CO, United States
| | - Catalina Murillo-Cruz
- Centro de Investigación en Estructuras Microscópicas, Universidad de Costa Rica, San Pedro, Costa Rica
- Centro de Investigación en Biología Celular y Molecular, Universidad de Costa Rica, San Pedro, Costa Rica
| | - Adrián A. Pinto-Tomás
- Centro de Investigación en Estructuras Microscópicas, Universidad de Costa Rica, San Pedro, Costa Rica
- Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San Pedro, Costa Rica
- Centro de Investigación en Biología Celular y Molecular, Universidad de Costa Rica, San Pedro, Costa Rica
| |
Collapse
|