1
|
Abed Elrashid NA, Ali OI, Ibrahim ZM, El Sharkawy MA, Bin sheeha B, Amin WM. A Double-Blinded Randomized Controlled Trial: Can Pulsed Electromagnetic Field Therapy Be a Novel Method for Treating Chronic Rhinosinusitis? MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1868. [PMID: 39597053 PMCID: PMC11596204 DOI: 10.3390/medicina60111868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
Background and Objectives: Pulsed electromagnetic field (PEMF) therapy offers a promising approach to treating inflammatory diseases. Its notable anti-inflammatory and antimicrobial effects and enhancement of microcirculation in the nasal mucosa make it a valuable treatment option. Despite its potential, the use of PEMF for chronic rhinosinusitis (CRS) is still in its early stages, with limited exploration of its effectiveness. This study aimed to assess the impact of PEMF on alleviating symptoms such as fatigue, headaches, sinus opacifications, and ostiomeatal complex issues associated with CRS. Materials and Methods: Forty-seven patients of both genders with CRS, aged 19 to 40 years, were involved in this study. The participants were randomly assigned to either a magnetic or a control group. The magnetic group underwent a 10 min PEMF session with a 20-gauss magnetic field strength at 7 Hz thrice a week for a month. The control group received the same PEMF application as an inactive device. Before and after the intervention, researchers assessed fatigue levels with a visual analog fatigue scale (VAFS), headache intensity via a numerical pain-rating scale, and the status of sinus opacifications and ostiomeatal complex obstructions by computerized tomography (CT). Results: The study findings showed a significant reduction in fatigue and headache scores in the magnetic group compared to the control group (p < 0.05). Additionally, there was a notable improvement in sinus opacifications and ostiomeatal complex obstructions among participants who received PEMF therapy. Conclusions: PEMF therapy effectively reduces fatigue, headaches, and sinus opacifications in CRS patients, suggesting its potential for inclusion in CRS management guidelines to improve patient outcomes and quality of life. The results of this study indicate that PEMF represents a noninvasive and cost-effective approach for treating adults with mild-to-moderate CRS.
Collapse
Affiliation(s)
| | - Olfat Ibrahim Ali
- Physical Therapy Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia;
- Department of Basic Science for Physical Therapy, Faculty of Physical Therapy, Cairo University, Giza 12613, Egypt
| | - Zizi M. Ibrahim
- Department of Rehabilitation Sciences, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (Z.M.I.); (B.B.s.)
| | - Mohammed A. El Sharkawy
- Department of Otorhinolaryngology, Faculty of Medicine, Al-Azhar University, Cairo 11884, Egypt;
| | - Bodor Bin sheeha
- Department of Rehabilitation Sciences, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (Z.M.I.); (B.B.s.)
| | - Wafaa Mahmoud Amin
- Department of Physical Therapy, College of Nursing and Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
- Basic Science Department for Physical Therapy, Faculty of Physical Therapy, Cairo University, Giza 12613, Egypt
| |
Collapse
|
2
|
Mayer Y, Khoury J, Horwitz J, Ginesin O, Canullo L, Gabay E, Giladi HZ. A novel nonsurgical therapy for peri-implantitis using focused pulsed electromagnetic field: A pilot randomized double-blind controlled clinical trial. Bioelectromagnetics 2023; 44:144-155. [PMID: 37655846 DOI: 10.1002/bem.22481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/06/2023] [Accepted: 07/18/2023] [Indexed: 09/02/2023]
Abstract
Pulsed electromagnetic field (PEMF) therapy modulates the immune response and is successfully used in orthopedics to treat osteoarthritis and improve bone regeneration. This may suggest that this treatment may consequently reduce peri-implant soft tissue inflammation and marginal bone loss. To compare clinical, radiographic, and immunological results following nonsurgical treatment for peri-implantitis with or without PEMF therapy. Patients with peri-implantitis were included: pocket probing depth (PPD) between 6 and 8 mm with bleeding on probing (BOP); crestal bone loss between 3 and 5 mm. A novel healing abutment that contained active (test) or inactive (control) PEMF was connected. PEMF was administered via the abutment at exposure ratio of 1/500-1/5000, intensity: 0.05-0.5 mT, frequency: 10-50 kHz for 30 days. Nonsurgical mechanical implant surface debridement was performed. Patients were examined at baseline, 1 and 3 months. Clinical assessment included: plaque index, BOP, PPD, recession, and bone crest level which was radiography measured. Samples of peri-implant crevicular fluid were taken to analyze interleukin-1β (IL-1β). Twenty-three patients (34 implants; 19 control, 15 test) were included. At the follow-up, mean crestal bone loss was lower in the test group at 1 and 3 months (2.48 mm vs. 3.73 mm, p < 0.05 and 2.39 vs. 3.37, p < 0.01). IL-1β levels were also lower in the test group at 2 weeks (72.86 pg/mL vs. 111.7, p < 0.05). Within all the limitation of this preliminary study, the test group improved clinical parameters after a short-term period compared to the control group.
Collapse
Affiliation(s)
- Yaniv Mayer
- Department of Periodontology, School of Graduate Dentistry, Rambam Health Care Campus (RHCC), Haifa, Israel
- Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Juan Khoury
- Department of Periodontology, School of Graduate Dentistry, Rambam Health Care Campus (RHCC), Haifa, Israel
| | - Jacob Horwitz
- Department of Periodontology, School of Graduate Dentistry, Rambam Health Care Campus (RHCC), Haifa, Israel
- Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ofir Ginesin
- Department of Periodontology, School of Graduate Dentistry, Rambam Health Care Campus (RHCC), Haifa, Israel
- Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Luigi Canullo
- Department of Surgical Sciences (DISC), Division of Prosthodontics and Implant Prosthodontics, University of Genoa, Genova, Italy
| | - Eran Gabay
- Department of Periodontology, School of Graduate Dentistry, Rambam Health Care Campus (RHCC), Haifa, Israel
- Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Hadar Z Giladi
- Department of Periodontology, School of Graduate Dentistry, Rambam Health Care Campus (RHCC), Haifa, Israel
- Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
3
|
Pulsed Electromagnetic Fields Disrupt Staphylococcus epidermidis Biofilms and Enhance the Antibiofilm Efficacy of Antibiotics. Microbiol Spectr 2022; 10:e0194922. [PMID: 36314923 PMCID: PMC9769884 DOI: 10.1128/spectrum.01949-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Staphylococcus epidermidis is implicated in a multitude of human infections and is one of the major causes of clinical infections in hospitals, especially at surgical sites and on indwelling medical devices, such as orthopedic implants. These infections are especially dangerous because of the S. epidermidis propensity to form biofilms, which increases resistance to antibiotics and the natural immune response. This study investigated pulsed electromagnetic fields (PEMF) as a potential treatment to combat such infections, as PEMF exposure was expected to disrupt the electrostatic forces that adhere staphylococcal cells to surfaces and to one another. To test the effect of PEMF on biofilms, S. epidermidis cultures were exposed to PEMF at various durations either during the growth phase or after a full biofilm had formed. In addition, cells were exposed to PEMF and concomitant antibiotic treatment. Biofilm viability was quantified by both crystal violet and alamarBlue assays and scanning electron microscopy. The results demonstrated that PEMF significantly inhibited biofilm formation and disrupted preformed biofilms in vitro while also showing synergistic biofilm inhibition when combined with antibiotics. These combined results indicate that PEMF should be considered a promising novel technique for treating S. epidermidis biofilm infections and undergo further testing in vivo. IMPORTANCE Antibiotic resistance and biofilm infections are major issues in health care because of the lack of a successful treatment modality and poor patient outcomes. These infections are a particular issue following orthopedic surgery or trauma wherein an infection may form on an orthopedic implant or patient's bone. The presented study demonstrates that pulsed electromagnetic fields may be a promising novel treatment for such infections and can overcome the medical challenges presented by biofilm formation. Furthermore, the effects demonstrated are even greater when combining pulsed electromagnetic field therapy with traditional antibiotics.
Collapse
|
4
|
Kranjc M, Dermol-Černe J, Potočnik T, Novickij V, Miklavčič D. High-Intensity Pulsed Electromagnetic Field-Mediated Gene Electrotransfection In Vitro. Int J Mol Sci 2022; 23:ijms23179543. [PMID: 36076938 PMCID: PMC9455820 DOI: 10.3390/ijms23179543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
A high-intensity pulsed electromagnetic field (HI-PEMF) is a non-invasive and non-contact delivery method and may, as such, have an advantage over gene electrotransfer mediated by conventional electroporation using contact electrodes. Due to the limited number of in vitro studies in the field of gene electrotransfection by HI-PEMF, we designed experiments to investigate and demonstrate the feasibility of such a technique for the non-viral delivery of genetic material into cells in vitro. We first showed that HI-PEMF causes DNA adsorption to the membrane, a generally accepted prerequisite step for successful gene electrotransfection. We also showed that HI-PEMF can induce gene electrotransfection as the application of HI-PEMF increased the percentage of GFP-positive cells for two different combinations of pDNA size and concentration. Furthermore, by measuring the uptake of larger molecules, i.e., fluorescently labelled dextrans of three different sizes, we showed endocytosis to be a possible mechanism for introducing large molecules into cells by HI-PEMF.
Collapse
Affiliation(s)
- Matej Kranjc
- Faculty of Electrical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Janja Dermol-Černe
- Faculty of Electrical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Tjaša Potočnik
- Faculty of Electrical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Vitalij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, 03227 Vilnius, Lithuania
| | - Damijan Miklavčič
- Faculty of Electrical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
5
|
Markowska-Szczupak A, Wesołowska A, Borowski T, Sołoducha D, Paszkiewicz O, Kordas M, Rakoczy R. Effect of pine essential oil and rotating magnetic field on antimicrobial performance. Sci Rep 2022; 12:9712. [PMID: 35690675 PMCID: PMC9188566 DOI: 10.1038/s41598-022-13908-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/30/2022] [Indexed: 11/15/2022] Open
Abstract
This work presents the results ofa study which concerns the influence of rotating magnetic field (RMF) on the antibacterial performance of commercial pine essential oil. A suspension of essential oil in saline solution and Escherichia coli were exposed to the rotating magnetic Afield (the frequency of electrical current supplied by a RMF generator f = 1–50 Hz; the averaged values of magnetic induction in the cross-section of the RMF generator B = 13.13 to − 19.92 mT, time of exposure t = 160 min, temperature of incubation 37 °C). The chemical composition of pine (Pinus sylvestris L.) essential oil was determined by gas chromatography coupled with mass spectrometry (GC–MS). The main constituents were α-pinene (28.58%), β-pinene (17.79%), δ-3-carene (14.17%) and limonene (11.58%). The present study indicates the exposition to the RMF, as compared to the unexposed controls causing an increase in the efficacy of antibacterial properties of pine oil. We have shown that rotating magnetic fields (RMF) at a frequency, f, between 25 Hz to and 50 Hz increased the antimicrobial efficiency of oil a concentration lower than 50%.
Collapse
Affiliation(s)
- Agata Markowska-Szczupak
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065, Szczecin, Poland.
| | - Aneta Wesołowska
- Department of Organic and Physical Chemistry, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065, Szczecin, Poland
| | - Tomasz Borowski
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065, Szczecin, Poland
| | - Dawid Sołoducha
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065, Szczecin, Poland
| | - Oliwia Paszkiewicz
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065, Szczecin, Poland
| | - Marian Kordas
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065, Szczecin, Poland
| | - Rafał Rakoczy
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065, Szczecin, Poland
| |
Collapse
|
6
|
Ciecholewska-Juśko D, Żywicka A, Junka A, Woroszyło M, Wardach M, Chodaczek G, Szymczyk-Ziółkowska P, Migdał P, Fijałkowski K. The effects of rotating magnetic field and antiseptic on in vitro pathogenic biofilm and its milieu. Sci Rep 2022; 12:8836. [PMID: 35614186 PMCID: PMC9132948 DOI: 10.1038/s41598-022-12840-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/16/2022] [Indexed: 11/09/2022] Open
Abstract
The application of various magnetic fields for boosting the efficacy of different antimicrobial molecules or in the character of a self-reliant antimicrobial agent is considered a promising approach to eradicating bacterial biofilm-related infections. The purpose of this study was to analyze the phenomenon of increased activity of octenidine dihydrochloride-based antiseptic (OCT) against Staphylococcus aureus and Pseudomonas aeruginosa biofilms in the presence of the rotating magnetic field (RMF) of two frequencies, 5 and 50 Hz, in the in vitro model consisting of stacked agar discs, placed in increasing distance from the source of the antiseptic solution. The biofilm-forming cells' viability and morphology as well as biofilm matrix structure and composition were analyzed. Also, octenidine dihydrochloride permeability through biofilm and porous agar obstacles was determined for the RMF-exposed versus unexposed settings. The exposure to RMF or OCT apart did not lead to biofilm destruction, contrary to the setting in which these two agents were used together. The performed analyses revealed the effect of RMF not only on biofilms (weakening of cell wall/membranes, disturbed morphology of cells, altered biofilm matrix porosity, and composition) but also on its milieu (altered penetrability of octenidine dihydrochloride through biofilm/agar obstacles). Our results suggest that the combination of RMF and OCT can be particularly promising in eradicating biofilms located in such areas as wound pockets, where physical obstacles limit antiseptic activity.
Collapse
Affiliation(s)
- Daria Ciecholewska-Juśko
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Szczecin, Piastów 45, 70-311, Szczecin, Poland
| | - Anna Żywicka
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Szczecin, Piastów 45, 70-311, Szczecin, Poland
| | - Adam Junka
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Medical University of Wroclaw, Borowska 211a, 50-534, Wrocław, Poland.
| | - Marta Woroszyło
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Szczecin, Piastów 45, 70-311, Szczecin, Poland
| | - Marcin Wardach
- Faculty of Electrical Engineering, West Pomeranian University of Technology, Szczecin, Sikorskiego 37, 70-313, Szczecin, Poland
| | - Grzegorz Chodaczek
- Laboratory of Confocal Microscopy, Łukasiewicz Research Network-PORT Polish Center for Technology Development, Stabłowicka 147, 54-066, Wrocław, Poland
| | - Patrycja Szymczyk-Ziółkowska
- Centre for Advanced Manufacturing Technologies (CAMT/FPC), Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Łukasiewicza 5, 50-371, Wrocław, Poland
| | - Paweł Migdał
- Department of Environment, Hygiene and Animal Welfare, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 38C, 51-630, Wrocław, Poland
| | - Karol Fijałkowski
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Szczecin, Piastów 45, 70-311, Szczecin, Poland.
| |
Collapse
|
7
|
Mohamed AF, Nasr M, Amer ME, Abuamara TMM, Abd-Elhay WM, Kaabo HF, Matar EER, El Moselhy LE, Gomah TA, Deban MAEF, Shebl RI. Anticancer and antibacterial potentials induced post short-term exposure to electromagnetic field and silver nanoparticles and related pathological and genetic alterations: in vitro study. Infect Agent Cancer 2022; 17:4. [PMID: 35120563 PMCID: PMC8817517 DOI: 10.1186/s13027-022-00416-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Resistance to antibiotics and anticancer therapy is a serious global health threat particularly in immunosuppressed cancer patients. Current study aimed to estimate the antibacterial and anticancer potentials of short-term exposure to extremely low frequency electromagnetic field (ELF-EMF) and silver nanoparticles (AgNPs) either in sole or combined form. METHODS Antibacterial activity was evaluated via determination of the bacterial viable count reduction percentage following exposure, whereas their ability to induce apoptosis in breast cancer (MCF-7) cell line was detected using annexin V-fluorescein isothiocyanate and cell cycle analysis. Also, oxidative stress potential and molecular profile were investigated. RESULTS ELF-EMF and AgNPs significantly (p < 0.01) reduced K. pneumonia viable count of compared to that of S. aureus in a time dependent manner till reaching 100% inhibition when ELF-EMF was applied in combination to 10 µM/ml AgNPs for 2 h. Apoptosis induction was obvious following exposure to either ELF-EMF or AgNPs, however their apoptotic potential was intensified when applied in combination recording significantly (p < 0.001) induced apoptosis as indicated by elevated level of MCF-7 cells in the Pre G1 phase compared to control. S phase arrest and accumulation of cells in G2/M phase was observed following exposure to AgNPs and EMF, respectively. Up-regulation in the expression level of p53, iNOS and NF-kB genes as well as down-regulation of Bcl-2 and miRNA-125b genes were detected post treatment. CONCLUSIONS The antibacterial and anticancer potentials of these agents might be related to their ability to induce oxidative stress, suggesting their potentials as novel candidates for controlling infections and triggering cancer cells towards self-destruction.
Collapse
Affiliation(s)
- Aly Fahmy Mohamed
- International Center for Training and Advanced Researches (ICTAR-Egypt), Cairo, Egypt
| | - Mohamed Nasr
- Histology Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Mohamed E Amer
- Histology Department, Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| | - Tamer M M Abuamara
- Histology Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Wagih M Abd-Elhay
- Histology Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Hassan Fathy Kaabo
- Histology Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Emad Eldin R Matar
- Pathology Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Laila E El Moselhy
- Histology Department, Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| | | | | | - Rania Ibrahim Shebl
- Microbiology and Immunology Department, Faculty of Pharmacy, Ahram Canadian University (ACU), 4th Industrial Zone, Banks Complex, 6th October City, Cairo, Egypt.
| |
Collapse
|
8
|
Woroszyło M, Ciecholewska-Juśko D, Junka A, Drozd R, Wardach M, Migdał P, Szymczyk-Ziółkowska P, Styburski D, Fijałkowski K. Rotating Magnetic Field Increases β-Lactam Antibiotic Susceptibility of Methicillin-Resistant Staphylococcus aureus Strains. Int J Mol Sci 2021; 22:ijms222212397. [PMID: 34830278 PMCID: PMC8618647 DOI: 10.3390/ijms222212397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022] Open
Abstract
Methicillin-resistant strains of Staphylococcus aureus (MRSA) have developed resistance to most β-lactam antibiotics and have become a global health issue. In this work, we analyzed the impact of a rotating magnetic field (RMF) of well-defined and strictly controlled characteristics coupled with β-lactam antibiotics against a total of 28 methicillin-resistant and sensitive S. aureus strains. The results indicate that the application of RMF combined with β-lactam antibiotics correlated with favorable changes in growth inhibition zones or in minimal inhibitory concentrations of the antibiotics compared to controls unexposed to RMF. Fluorescence microscopy indicated a drop in the relative number of cells with intact cell walls after exposure to RMF. These findings were additionally supported by the use of SEM and TEM microscopy, which revealed morphological alterations of RMF-exposed cells manifested by change of shape, drop in cell wall density and cytoplasm condensation. The obtained results indicate that the originally limited impact of β-lactam antibiotics in MRSA is boosted by the disturbances caused by RMF in the bacterial cell walls. Taking into account the high clinical need for new therapeutic options, effective against MRSA, the data presented in this study have high developmental potential and could serve as a basis for new treatment options for MRSA infections.
Collapse
Affiliation(s)
- Marta Woroszyło
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland; (M.W.); (D.C.-J.); (R.D.)
| | - Daria Ciecholewska-Juśko
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland; (M.W.); (D.C.-J.); (R.D.)
| | - Adam Junka
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Medical University of Wroclaw, Borowska 211a, 50-534 Wrocław, Poland
- Laboratory of Microbiology, Łukasiewicz Research Network–PORT Polish Center for Technology Development, 54-066 Wrocław, Poland
- Correspondence: (A.J.); (K.F.); Tel.: +48-88-922-93-41 (A.J.); +48-91-449-6714 (K.F.)
| | - Radosław Drozd
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland; (M.W.); (D.C.-J.); (R.D.)
| | - Marcin Wardach
- Faculty of Electrical Engineering, West Pomeranian University of Technology in Szczecin, Sikorskiego 37, 70-313 Szczecin, Poland;
| | - Paweł Migdał
- Department of Environment, Hygiene and Animal Welfare, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 38C, 51-630 Wrocław, Poland;
| | - Patrycja Szymczyk-Ziółkowska
- Centre for Advanced Manufacturing Technologies (CAMT/FPC), Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Łukasiewicza 5, 50-371 Wrocław, Poland;
| | - Daniel Styburski
- Laboratory of Chromatography and Mass Spectroscopy, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland;
| | - Karol Fijałkowski
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland; (M.W.); (D.C.-J.); (R.D.)
- Correspondence: (A.J.); (K.F.); Tel.: +48-88-922-93-41 (A.J.); +48-91-449-6714 (K.F.)
| |
Collapse
|
9
|
Woroszyło M, Ciecholewska-Juśko D, Junka A, Wardach M, Chodaczek G, Dudek B, Fijałkowski K. The Effect of Rotating Magnetic Field on Susceptibility Profile of Methicillin-Resistant Staphylococcus aureus Strains Exposed to Activity of Different Groups of Antibiotics. Int J Mol Sci 2021; 22:ijms222111551. [PMID: 34768983 PMCID: PMC8583794 DOI: 10.3390/ijms222111551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/05/2022] Open
Abstract
Methicillin-resistant strains of Staphylococcus aureus (MRSA) have become a global issue for healthcare systems due to their resistance to most β-lactam antibiotics, frequently accompanied by resistance to other classes of antibiotics. In this work, we analyzed the impact of combined use of rotating magnetic field (RMF) with various classes of antibiotics (β-lactams, glycopeptides, macrolides, lincosamides, aminoglycosides, tetracyclines, and fluoroquinolones) against nine S. aureus strains (eight methicillin-resistant and one methicillin-sensitive). The results indicated that the application of RMF combined with antibiotics interfering with cell walls (particularly with the β-lactam antibiotics) translate into favorable changes in staphylococcal growth inhibition zones or in minimal inhibitory concentration values compared to the control settings, which were unexposed to RMF. As an example, the MIC value of cefoxitin was reduced in all MRSA strains by up to 42 times. Apart from the β-lactams, the reduced MIC values were also found for erythromycin, clindamycin, and tetracycline (three strains), ciprofloxacin (one strain), gentamicin (six strains), and teicoplanin (seven strains). The results obtained with the use of in vitro biofilm model confirm that the disturbances caused by RMF in the bacterial cell walls increase the effectiveness of the antibiotics towards MRSA. Because the clinical demand for new therapeutic options effective against MRSA is undisputable, the outcomes and conclusions drawn from the present study may be considered an important road into the application of magnetic fields to fight infections caused by methicillin-resistant staphylococci.
Collapse
Affiliation(s)
- Marta Woroszyło
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland; (M.W.); (D.C.-J.)
| | - Daria Ciecholewska-Juśko
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland; (M.W.); (D.C.-J.)
| | - Adam Junka
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Medical University of Wroclaw, Borowska 211a, 50-534 Wrocław, Poland
- Laboratory of Microbiology, Łukasiewicz Research Network—PORT Polish Center for Technology Development, 54-066 Wrocław, Poland
- Correspondence: (A.J.); (K.F.); Tel.: +48-88-922-9341 (A.J.); +48-91-449-6714 (K.F.)
| | - Marcin Wardach
- Faculty of Electrical Engineering, West Pomeranian University of Technology in Szczecin, Sikorskiego 37, 70-313 Szczecin, Poland;
| | - Grzegorz Chodaczek
- Laboratory of Confocal Microscopy, Łukasiewicz Research Network—PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wrocław, Poland;
| | - Bartłomiej Dudek
- Department of Microbiology, Institute of Genetics and Microbiology, University of Wrocław, Stanisława Przybyszewskiego 63, 51-148 Wrocław, Poland;
| | - Karol Fijałkowski
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland; (M.W.); (D.C.-J.)
- Correspondence: (A.J.); (K.F.); Tel.: +48-88-922-9341 (A.J.); +48-91-449-6714 (K.F.)
| |
Collapse
|
10
|
Storozhuk L, Besenhard MO, Mourdikoudis S, LaGrow AP, Lees MR, Tung LD, Gavriilidis A, Thanh NTK. Stable Iron Oxide Nanoflowers with Exceptional Magnetic Heating Efficiency: Simple and Fast Polyol Synthesis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45870-45880. [PMID: 34541850 DOI: 10.1021/acsami.1c12323] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Magnetically induced hyperthermia has reached a milestone in medical nanoscience and in phase III clinical trials for cancer treatment. As it relies on the heat generated by magnetic nanoparticles (NPs) when exposed to an external alternating magnetic field, the heating ability of these NPs is of paramount importance, so is their synthesis. We present a simple and fast method to produce iron oxide nanostructures with excellent heating ability that are colloidally stable in water. A polyol process yielded biocompatible single core nanoparticles and nanoflowers. The effect of parameters such as the precursor concentration, polyol molecular weight as well as reaction time was studied, aiming to produce NPs with the highest possible heating rates. Polyacrylic acid facilitated the formation of excellent nanoheating agents iron oxide nanoflowers (IONFs) within 30 min. The progressive increase of the size of the NFs through applying a seeded growth approach resulted in outstanding enhancement of their heating efficiency with intrinsic loss parameter up to 8.49 nH m2 kgFe-1. The colloidal stability of the NFs was maintained when transferring to an aqueous solution via a simple ligand exchange protocol, replacing polyol ligands with biocompatible sodium tripolyphosphate to secure the IONPs long-term colloidal stabilization.
Collapse
Affiliation(s)
- Liudmyla Storozhuk
- Biophysics Group, Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, United Kingdom
| | - Maximilian O Besenhard
- Department of Chemical Engineering, University College London, London WC1E 7JE, United Kingdom
| | - Stefanos Mourdikoudis
- Biophysics Group, Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, United Kingdom
| | - Alec P LaGrow
- International Iberian Nanotechnology Laboratory, Braga 4715-330, Portugal
| | - Martin R Lees
- Superconductivity and Magnetism Group, Physics Department, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Le Duc Tung
- Biophysics Group, Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, United Kingdom
| | - Asterios Gavriilidis
- Department of Chemical Engineering, University College London, London WC1E 7JE, United Kingdom
| | - Nguyen Thi Kim Thanh
- Biophysics Group, Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, United Kingdom
| |
Collapse
|
11
|
Nowak M, Barańska-Rybak W. Nanomaterials as a Successor of Antibiotics in Antibiotic-Resistant, Biofilm Infected Wounds? Antibiotics (Basel) 2021; 10:antibiotics10080941. [PMID: 34438991 PMCID: PMC8389008 DOI: 10.3390/antibiotics10080941] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 07/28/2021] [Accepted: 08/01/2021] [Indexed: 11/26/2022] Open
Abstract
Chronic wounds are a growing problem for both society and patients. They generate huge costs for treatment and reduce the quality of life of patients. The greatest challenge when treating a chronic wound is prolonged infection, which is commonly caused by biofilm. Biofilm makes bacteria resistant to individuals’ immune systems and conventional treatment. As a result, new treatment options, including nanomaterials, are being tested and implemented. Nanomaterials are particles with at least one dimension between 1 and 100 nM. Lipids, liposomes, cellulose, silica and metal can be carriers of nanomaterials. This review’s aim is to describe in detail the mode of action of those molecules that have been proven to have antimicrobial effects on biofilm and therefore help to eradicate bacteria from chronic wounds. Nanoparticles seem to be a promising treatment option for infection management, which is essential for the final stage of wound healing, which is complete wound closure.
Collapse
|
12
|
Raza S, Matuła K, Karoń S, Paczesny J. Resistance and Adaptation of Bacteria to Non-Antibiotic Antibacterial Agents: Physical Stressors, Nanoparticles, and Bacteriophages. Antibiotics (Basel) 2021; 10:435. [PMID: 33924618 PMCID: PMC8070485 DOI: 10.3390/antibiotics10040435] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/02/2021] [Accepted: 04/08/2021] [Indexed: 12/14/2022] Open
Abstract
Antimicrobial resistance is a significant threat to human health worldwide, forcing scientists to explore non-traditional antibacterial agents to support rapid interventions and combat the emergence and spread of drug resistant bacteria. Many new antibiotic-free approaches are being developed while the old ones are being revised, resulting in creating unique solutions that arise at the interface of physics, nanotechnology, and microbiology. Specifically, physical factors (e.g., pressure, temperature, UV light) are increasingly used for industrial sterilization. Nanoparticles (unmodified or in combination with toxic compounds) are also applied to circumvent in vivo drug resistance mechanisms in bacteria. Recently, bacteriophage-based treatments are also gaining momentum due to their high bactericidal activity and specificity. Although the number of novel approaches for tackling the antimicrobial resistance crisis is snowballing, it is still unclear if any proposed solutions would provide a long-term remedy. This review aims to provide a detailed overview of how bacteria acquire resistance against these non-antibiotic factors. We also discuss innate bacterial defense systems and how bacteriophages have evolved to tackle them.
Collapse
Affiliation(s)
| | | | | | - Jan Paczesny
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (S.R.); (K.M.); (S.K.)
| |
Collapse
|
13
|
Juncker RB, Lazazzera BA, Billi F. The use of functionalized nanoparticles to treat Staphylococcus aureus-based surgical-site infections: a systematic review. J Appl Microbiol 2021; 131:2659-2668. [PMID: 33735514 DOI: 10.1111/jam.15075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 01/24/2023]
Abstract
Staphylococcus aureus-based surgical site infections have become the leading cause of failure for total joint arthroplasty operations and remain a major issue across surgical specialties. Moreover, S. aureus-based infections are becoming drastically more difficult to treat due to the development of antibiotic resistant strains and due to the bacteria's propensity to produce biofilms. The emergence of highly resistant S. aureus infections has created the need for a novel antimicrobial treatment. Functionalized nanoparticles have recently been suggested as being a viable option to fill this void due to their strong antimicrobial and antibiofilm properties. However, said research remains a novel and developing field. The presented systematic review aimed to synthesize the best and most recent evidence available to accurately direct new research towards a viable treatment mechanism. In doing so, the authors performed a comprehensive literature search as directed by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The results showed that nanoparticles-particularly those including an iron-oxide component or acidic capping agent-are a viable treatment for S. aureus infections both in vivo and in vitro, and show even greater efficacy when combined with exposure to a magnetic field and irradiation.
Collapse
Affiliation(s)
- R B Juncker
- UCLA Department of Orthopaedic Surgery, David Geffen School of Medicine, Los Angeles, CA, USA.,UCLA Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, Los Angeles, CA, USA
| | - B A Lazazzera
- UCLA Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, Los Angeles, CA, USA
| | - F Billi
- UCLA Department of Orthopaedic Surgery, David Geffen School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
14
|
Novickij V, Stanevičienė R, Gruškienė R, Badokas K, Lukša J, Sereikaitė J, Mažeika K, Višniakov N, Novickij J, Servienė E. Inactivation of Bacteria Using Bioactive Nanoparticles and Alternating Magnetic Fields. NANOMATERIALS 2021; 11:nano11020342. [PMID: 33573001 PMCID: PMC7911490 DOI: 10.3390/nano11020342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/18/2021] [Accepted: 01/26/2021] [Indexed: 12/19/2022]
Abstract
Foodborne pathogens are frequently associated with risks and outbreaks of many diseases; therefore, food safety and processing remain a priority to control and minimize these risks. In this work, nisin-loaded magnetic nanoparticles were used and activated by alternating 10 and 125 mT (peak to peak) magnetic fields (AMFs) for biocontrol of bacteria Listeria innocua, a suitable model to study the inactivation of common foodborne pathogen L. monocytogenes. It was shown that L. innocua features high resistance to nisin-based bioactive nanoparticles, however, application of AMFs (15 and 30 min exposure) significantly potentiates the treatment resulting in considerable log reduction of viable cells. The morphological changes and the resulting cellular damage, which was induced by the synergistic treatment, was confirmed using scanning electron microscopy. The thermal effects were also estimated in the study. The results are useful for the development of new methods for treatment of the drug-resistant foodborne pathogens to minimize the risks of invasive infections. The proposed methodology is a contactless alternative to the currently established pulsed-electric field-based treatment in food processing.
Collapse
Affiliation(s)
- Vitalij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, 03227 Vilnius, Lithuania;
- Correspondence: (V.N.); (E.S.)
| | - Ramunė Stanevičienė
- Laboratory of Genetics, Nature Research Centre, 08412 Vilnius, Lithuania; (R.S.); (J.L.)
| | - Rūta Gruškienė
- Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania; (R.G.); (J.S.)
| | - Kazimieras Badokas
- Institute of Photonics and Nanotechnology, Vilnius University, 10257 Vilnius, Lithuania;
| | - Juliana Lukša
- Laboratory of Genetics, Nature Research Centre, 08412 Vilnius, Lithuania; (R.S.); (J.L.)
| | - Jolanta Sereikaitė
- Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania; (R.G.); (J.S.)
| | - Kęstutis Mažeika
- Center for Physical Sciences and Technology, 02300 Vilnius, Lithuania;
| | - Nikolaj Višniakov
- Faculty of Mechanics, Vilnius Gediminas Technical University, 03224 Vilnius, Lithuania;
| | - Jurij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, 03227 Vilnius, Lithuania;
| | - Elena Servienė
- Laboratory of Genetics, Nature Research Centre, 08412 Vilnius, Lithuania; (R.S.); (J.L.)
- Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania; (R.G.); (J.S.)
- Correspondence: (V.N.); (E.S.)
| |
Collapse
|
15
|
Tian Y, Cai R, Yue T, Gao Z, Yuan Y, Wang Z. Application of nanostructures as antimicrobials in the control of foodborne pathogen. Crit Rev Food Sci Nutr 2021; 62:3951-3968. [PMID: 33427486 DOI: 10.1080/10408398.2021.1871586] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Foodborne pathogens are the main cause of human foodborne diseases and pose a serious threat to food safety. The control of them has always been a significant issue in food industry. With good biocompatibility and stability, nanomaterials display excellent bactericidal properties against many kinds of bacteria. In this review, the generation and application of nanostructures as antibacterial in the control of foodborne pathogens was summarized. The antibacterial effects of photocatalytic and contact bacteriostatic nanomaterials agents were mainly introduced. The influence factors and mechanisms of nanomaterials on the inactivation of foodborne pathogens were displayed. The photocatalytic nanostructured bacteriostatic agents can produce reactive oxygen species (ROS) and lead to charge transfer, which result in damaging of cell wall and leakage of small molecules under light irradiation. In addition, metals and metal oxide nanoparticles can kill bacterial cells by releasing metal ions, forming ROS and electrostatic interaction with cell membrane. Besides, the synergistic action of nanoparticles with natural antibacterial agents can improve the stability of these agents and their bactericidal performance. These current researches provided a broader idea for the control of microorganisms in food.
Collapse
Affiliation(s)
- Yu Tian
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.,Ministry of Agriculture, Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Yangling, Shaanxi, China.,National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling, Shaanxi, China
| | - Rui Cai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.,Ministry of Agriculture, Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Yangling, Shaanxi, China.,National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling, Shaanxi, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.,Ministry of Agriculture, Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Yangling, Shaanxi, China.,National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling, Shaanxi, China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.,Ministry of Agriculture, Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Yangling, Shaanxi, China.,National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling, Shaanxi, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.,Ministry of Agriculture, Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Yangling, Shaanxi, China.,National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling, Shaanxi, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.,Ministry of Agriculture, Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Yangling, Shaanxi, China.,National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling, Shaanxi, China
| |
Collapse
|
16
|
Qian J, Zhang M, Dai C, Huo S, Ma H. Transcriptomic analysis of Listeria monocytogenes under pulsed magnetic field treatment. Food Res Int 2020; 133:109195. [DOI: 10.1016/j.foodres.2020.109195] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 02/06/2023]
|
17
|
Abstract
Advances of nanotechnology led to the development of nanoparticulate systems with many advantages due to their unique physicochemical properties. The use of iron-oxide magnetic nanoparticles (IOMNPs) in pharmaceutical areas increased in the last few decades. This article reviews the conceptual information about iron oxides, magnetic nanoparticles, methods of IOMNP synthesis, properties useful for pharmaceutical applications, advantages and disadvantages, strategies for nanoparticle assemblies, and uses in the production of drug delivery, hyperthermia, theranostics, photodynamic therapy, and as an antimicrobial. The encapsulation, coating, or dispersion of IOMNPs with biocompatible material(s) can avoid the aggregation, biodegradation, and alterations from the original state and also enable entrapping the bioactive agent on the particle via adsorption or covalent attachment. IOMNPs show great potential for target drug delivery, improving the therapy as a consequence of a higher drug effect using lower concentrations, thus reducing side effects and toxicity. Different methodologies allow IOMNP synthesis, resulting in different structures, sizes, dispersions, and surface modifications. These advantages support their utilization in pharmaceutical applications, and getting suitable drug release control on the target tissues could be beneficial in several clinical situations, such as infections, inflammations, and cancer. However, more toxicological clinical investigations about IOMNPs are necessary.
Collapse
|
18
|
Vallet-Regí M, González B, Izquierdo-Barba I. Nanomaterials as Promising Alternative in the Infection Treatment. Int J Mol Sci 2019; 20:E3806. [PMID: 31382674 PMCID: PMC6696612 DOI: 10.3390/ijms20153806] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 02/01/2023] Open
Abstract
Both the prevalence of antibiotic resistance and the increased biofilm-associated infections are boosting the demand for new advanced and more effective treatment for such infections. In this sense, nanotechnology offers a ground-breaking platform for addressing this challenge. This review shows the current progress in the field of antimicrobial inorganic-based nanomaterials and their activity against bacteria and bacterial biofilm. Herein, nanomaterials preventing the bacteria adhesion and nanomaterials treating the infection once formed are presented through a classification based on their functionality. To fight infection, nanoparticles with inherent antibacterial activity and nanoparticles acting as nanovehicles are described, emphasizing the design of the carrier nanosystems with properties targeting the bacteria and the biofilm.
Collapse
Affiliation(s)
- María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Unidad de Química Inorgánica y Bioinorgánica, Universidad Complutense de Madrid. Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12. Plaza Ramón y Cajal s/n, Madrid 28040, Spain.
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid 28040, Spain.
| | - Blanca González
- Departamento de Química en Ciencias Farmacéuticas, Unidad de Química Inorgánica y Bioinorgánica, Universidad Complutense de Madrid. Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12. Plaza Ramón y Cajal s/n, Madrid 28040, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid 28040, Spain
| | - Isabel Izquierdo-Barba
- Departamento de Química en Ciencias Farmacéuticas, Unidad de Química Inorgánica y Bioinorgánica, Universidad Complutense de Madrid. Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12. Plaza Ramón y Cajal s/n, Madrid 28040, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid 28040, Spain
| |
Collapse
|
19
|
Song Z, Niu C, Wu H, Wei J, Zhang Y, Yue T. Transcriptomic Analysis of the Molecular Mechanisms Underlying the Antibacterial Activity of IONPs@pDA-Nisin Composites toward Alicyclobacillus acidoterrestris. ACS APPLIED MATERIALS & INTERFACES 2019; 11:21874-21886. [PMID: 31185568 DOI: 10.1021/acsami.9b02990] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A simple and no-drug resistance antibacterial method was developed by the synthesis of heat-stable and pH-tolerant nisin-loaded iron oxide nanoparticles polydopamine (IONPs@pDA) composites. The composites had a crystal structure and diameters of 25 ± 3 nm, with a saturation magnetization ( Ms) of 43.7995 emu g-1. Nisin was successfully conjugated onto the IONPs@pDA nanoparticles, as evinced by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analyses. The novel synthesized material showed good performance in reducing Alicyclobacillus acidoterrestris, a common food spoilage bacterium that represents a significant problem for the food industry. Treatment of A. acidoterrestris cells with composites resulted in membrane damage, as observed by live/dead staining and scanning electron microscopy and transmission electron microscopy analyses. Further, the composites exhibited highly efficient antibacterial activity against cells in only 5 min. Transcriptomic sequencing of culture RNA pools after exposure to composites resulted in a total of 334 differentially expressed genes that were primarily associated with transcriptional regulation, energy metabolism, membrane transporters, membrane and cell wall syntheses, and cell motility. Thus, these results suggested that changes in transcriptional regulation caused by aggregated composites on target cells led to major changes in homeostasis that manifested by decreased energy metabolism, pore formation in the membrane, and repressed cell wall synthesis. Concomitantly, cell motility and sporulation activities were both repressed, and finally, intracellular substances flowed out of leaky cells. The proposed biocontrol method represents a novel means to control microorganisms without inducing drug resistance. Further, these results provide novel insights into the molecular mechanisms underlying the antibacterial activity of composites against microorganisms.
Collapse
Affiliation(s)
- Zihan Song
- College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling) , Ministry of Agriculture , Yangling 712100 , China
- National Engineering Research Center of Agriculture Integration Test (Yangling) , Yangling 712100 , China
| | - Chen Niu
- College of Food Science & Engineering , Northwest University Xian , Xian 710069 , Shaanxi , PR China
| | - Hao Wu
- College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , China
| | - Jianping Wei
- College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling) , Ministry of Agriculture , Yangling 712100 , China
- National Engineering Research Center of Agriculture Integration Test (Yangling) , Yangling 712100 , China
| | - Yuxiang Zhang
- College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling) , Ministry of Agriculture , Yangling 712100 , China
- National Engineering Research Center of Agriculture Integration Test (Yangling) , Yangling 712100 , China
| | - Tianli Yue
- College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling) , Ministry of Agriculture , Yangling 712100 , China
- National Engineering Research Center of Agriculture Integration Test (Yangling) , Yangling 712100 , China
- College of Food Science & Engineering , Northwest University Xian , Xian 710069 , Shaanxi , PR China
| |
Collapse
|
20
|
Verma R, Sahu R, Singh DD, Egbo TE. A CRISPR/Cas9 based polymeric nanoparticles to treat/inhibit microbial infections. Semin Cell Dev Biol 2019; 96:44-52. [PMID: 30986568 DOI: 10.1016/j.semcdb.2019.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/11/2019] [Indexed: 12/17/2022]
Abstract
The latest breakthrough towards the adequate and decisive methods of gene editing tools provided by CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeat/CRISPR Associated System), has been repurposed into a tool for genetically engineering eukaryotic cells and now considered as the major innovation in gene-related disorders. Nanotechnology has provided an alternate way to overcome the conventional problems where methods to deliver therapeutic agents have failed. The use of nanotechnology has the potential to safe-side the CRISPR/Cas9 components delivery by using customized polymeric nanoparticles for safety and efficacy. The pairing of two (CRISPR/Cas9 and nanotechnology) has the potential for opening new avenues in therapeutic use. In this review, we will discuss the most recent advances in developing nanoparticle-based CRISPR/Cas9 gene editing cargo delivery with a focus on several polymeric nanoparticles including fabrication proposals to combat microbial infections.
Collapse
Affiliation(s)
- Richa Verma
- Center for Nanobiotechnology Research, Department of Biological Sciences, Alabama State University, Montgomery, AL, 36104, USA
| | - Rajnish Sahu
- Center for Nanobiotechnology Research, Department of Biological Sciences, Alabama State University, Montgomery, AL, 36104, USA
| | - Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University, Jaipur, Rajasthan, 303002, India
| | - Timothy E Egbo
- Department of Biological Sciences, College of Science Technology Engineering and Mathematics, Alabama State University, Montgomery, AL, 36104, USA.
| |
Collapse
|
21
|
Novickij V, Zinkevičienė A, Stanevičienė R, Gruškienė R, Servienė E, Vepštaitė-Monstavičė I, Krivorotova T, Lastauskienė E, Sereikaitė J, Girkontaitė I, Novickij J. Inactivation of Escherichia coli Using Nanosecond Electric Fields and Nisin Nanoparticles: A Kinetics Study. Front Microbiol 2018; 9:3006. [PMID: 30619116 PMCID: PMC6299027 DOI: 10.3389/fmicb.2018.03006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/20/2018] [Indexed: 01/24/2023] Open
Abstract
Nisin is a recognized bacteriocin widely used in food processing, however, being ineffective against gram-negative bacteria and in complex food systems. As a result, the research of methods that have cell wall–permeabilizing activity is required. In this study, electroporation to trigger sensitization of gram-negative bacteria to nisin-loaded pectin nanoparticles was used. As a model microorganism, bioluminescent strain of E. coli was introduced. Inactivation kinetics using nanosecond pulsed electric fields (PEFs) and nisin nanoparticles have been studied in a broad range (100–900 ns, 10–30 kV/cm) of pulse parameters. As a reference, the microsecond range protocols (100 μs × 8) have been applied. It was determined that the 20–30 kV/cm electric field with pulse duration ranging from 500 to 900 ns was sufficient to cause significant permeabilization of E. coli to trigger a synergistic response with the nisin treatment. The kinetics of the inactivation was studied with a time resolution of 2.5 min, which provided experimental evidence that the efficacy of nisin-based treatment can be effectively controlled in time using PEF. The results and the proposed methodology for rapid detection of bacteria inactivation rate based on bioluminescence may be useful in the development and optimization of protocols for PEF-based treatments.
Collapse
Affiliation(s)
- Vitalij Novickij
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Auksė Zinkevičienė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | | | - Rūta Gruškienė
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Elena Servienė
- Laboratory of Genetics, Nature Research Centre, Vilnius, Lithuania.,Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | | | - Tatjana Krivorotova
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Vilnius, Lithuania.,Institute of Chemistry, Vilnius University, Vilnius, Lithuania
| | - Eglė Lastauskienė
- Institute of Biosciences, Life Sciences Centre, Vilnius University, Vilnius, Lithuania
| | - Jolanta Sereikaitė
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Irutė Girkontaitė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Jurij Novickij
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Vilnius, Lithuania.,Institute for Telecommunications, Vilnius Gediminas Technical University, Vilnius, Lithuania
| |
Collapse
|
22
|
Novickij V, Zinkevičienė A, Perminaitė E, Čėsna R, Lastauskienė E, Paškevičius A, Švedienė J, Markovskaja S, Novickij J, Girkontaitė I. Non-invasive nanosecond electroporation for biocontrol of surface infections: an in vivo study. Sci Rep 2018; 8:14516. [PMID: 30266920 PMCID: PMC6162327 DOI: 10.1038/s41598-018-32783-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/14/2018] [Indexed: 12/20/2022] Open
Abstract
Invasive infections caused by drug-resistant bacteria are frequently responsible for fatal sepsis, morbidity and mortality rates. In this work, we propose a new methodology based on nanosecond high frequency electric field bursts, which enables successful eradication of bacteria in vivo. High frequency (15 kHz) 15–25 kV/cm 300–900 ns pulsing bursts were used separately and in combination with acetic acid (0.1–1%) to treat Pseudomonas aeruginosa in a murine model. Acetic acid 1% alone was effective resulting in almost 10-fold reduction of bacteria viability, however combination of nanosecond electric field and acetic acid 1% treatment was the most successful showing almost full eradication (0.01% survival compared to control) of the bacteria in the contaminated area. The short duration of the pulses (sub-microsecond) and high frequency (kHz range) of the burst enabled reduction of the muscle contractions to barely detectable level while the proposed applicators ensured predominantly topical treatment, without electroporation of deeper tissues. The results of our study have direct application for treatment of wounds and ulcers when chemical treatment is no longer effective.
Collapse
Affiliation(s)
- Vitalij Novickij
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Vilnius, Lithuania.
| | - Auksė Zinkevičienė
- State Research Institute Centre for Innovative Medicine, Department of Immunology, Vilnius, Lithuania
| | - Emilija Perminaitė
- State Research Institute Centre for Innovative Medicine, Department of Immunology, Vilnius, Lithuania
| | - Robertas Čėsna
- State Research Institute Centre for Innovative Medicine, Department of Immunology, Vilnius, Lithuania
| | - Eglė Lastauskienė
- Institute of Biosciences, Life Sciences Centre, Vilnius University, Vilnius, Lithuania
| | | | - Jurgita Švedienė
- Laboratory of Biodeterioration Research, Nature Research Centre, Vilnius, Lithuania
| | | | - Jurij Novickij
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Irutė Girkontaitė
- State Research Institute Centre for Innovative Medicine, Department of Immunology, Vilnius, Lithuania
| |
Collapse
|
23
|
Xia Y, Sun J, Zhao L, Zhang F, Liang XJ, Guo Y, Weir MD, Reynolds MA, Gu N, Xu HHK. Magnetic field and nano-scaffolds with stem cells to enhance bone regeneration. Biomaterials 2018; 183:151-170. [PMID: 30170257 DOI: 10.1016/j.biomaterials.2018.08.040] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/10/2018] [Accepted: 08/20/2018] [Indexed: 12/20/2022]
Abstract
Novel strategies utilizing magnetic nanoparticles (MNPs) and magnetic fields are being developed to enhance bone tissue engineering efficacy. This article first reviewed cutting-edge research on the osteogenic enhancements via magnetic fields and MNPs. Then the current developments in magnetic strategies to improve the cells, scaffolds and growth factor deliveries were described. The magnetic-cell strategies included cell labeling, targeting, patterning, and gene modifications. MNPs were incorporated to fabricate magnetic composite scaffolds, as well as to construct delivery systems for growth factors, drugs and gene transfections. The novel methods using magnetic nanoparticles and scaffolds with magnetic fields and stem cells increased the osteogenic differentiation, angiogenesis and bone regeneration by 2-3 folds over those of the controls. The mechanisms of magnetic nanoparticles and scaffolds with magnetic fields and stem cells to enhance bone regeneration were identified as involving the activation of signaling pathways including MAPK, integrin, BMP and NF-κB. Potential clinical applications of magnetic nanoparticles and scaffolds with magnetic fields and stem cells include dental, craniofacial and orthopedic treatments with substantially increased bone repair and regeneration efficacy.
Collapse
Affiliation(s)
- Yang Xia
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China; Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Jianfei Sun
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Liang Zhao
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Feimin Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, Jiangsu 215123, China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yu Guo
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Michael D Weir
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Mark A Reynolds
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Ning Gu
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, Jiangsu 215123, China.
| | - Hockin H K Xu
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|