1
|
Hammami K, Souissi Y, Souii A, Gorrab A, Hassen W, Chouchane H, Masmoudi AS, Cherif A, Neifar M. Pseudomonas rhizophila S211 as a microbial cell factory for direct bioconversion of waste cooking oil into medium-chain-length polyhydroxyalkanoates. 3 Biotech 2024; 14:207. [PMID: 39184912 PMCID: PMC11341804 DOI: 10.1007/s13205-024-04048-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024] Open
Abstract
The present study examines the use of waste cooking oil (WCO) as a substrate for medium-chain-length polyhydroxyalkanoates (mcl-PHA) production by Pseudomonas rhizophila S211. The genome analysis revealed that the S211 strain has a mcl-PHA cluster (phaC1ZC2DFI) encoding two class II PHA synthases (PhaC1 and PhaC2) separated by a PHA depolymerase (PhaZ), a transcriptional activator (PhaD) and two phasin-like proteins (PhaFI). Genomic annotation also identified a gene encoding family I.3 lipase that was able to hydrolyze plant oils and generate fatty acids as favorable carbon sources for cell growth and PHA synthesis via β-oxidation pathway. Using a three-variable Doehlert experimental design, the optimum conditions for mcl-PHA accumulation were achieved in 10% of WCO-based medium with an inoculum size of 10% and an incubation period of 48 h at 30 °C. The experimental yield of PHA from WCO was 1.8 g/L close to the predicted yield of 1.68 ± 0.14 g/L. Moreover, 1H nuclear magnetic resonance spectroscopy analysis confirmed the extracted mcl-PHA. Overall, this study describes P. rhizophila as a cell factory for biosynthesis of biodegradable plastics and proposes green and efficient approach to cooking oil waste management by decreasing the cost of mcl-PHA production, which can help reduce the dependence on petroleum-based plastics.
Collapse
Affiliation(s)
- Khouloud Hammami
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Yasmine Souissi
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
- Department of Engineering, German University of Technology in Oman, Muscat, Oman
| | - Amal Souii
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Afwa Gorrab
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Wafa Hassen
- Research Unit of Analysis and Process Applied on the Environmental-APAE UR17ES32, Higher Institute of Applied Sciences and Technology Mahdia “ISSAT”, University of Monastir, 5100 Mahdia, Tunisia
| | - Habib Chouchane
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Ahmed Slaheddine Masmoudi
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Ameur Cherif
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Mohamed Neifar
- APVA-LR16ES20, National School of Engineers of Sfax (ENIS), University of Sfax, Sfax, Tunisia
- Common Services Unit “Bioreactor Coupled With an Ultrafilter”, ENIS, University of Sfax, 3030 Sfax, Tunisia
| |
Collapse
|
2
|
Thakur M, Yadav V, Kumar Y, Pramanik A, Dubey KK. How to deal with xenobiotic compounds through environment friendly approach? Crit Rev Biotechnol 2024:1-20. [PMID: 38710611 DOI: 10.1080/07388551.2024.2336527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 03/13/2024] [Indexed: 05/08/2024]
Abstract
Every year, a huge amount of lethal compounds, such as synthetic dyes, pesticides, pharmaceuticals, hydrocarbons, etc. are mass produced worldwide, which negatively affect soil, air, and water quality. At present, pesticides are used very frequently to meet the requirements of modernized agriculture. The Food and Agriculture Organization of the United Nations (FAO) estimates that food production will increase by 80% by 2050 to keep up with the growing population, consequently pesticides will continue to play a role in agriculture. However, improper handling of these highly persistent chemicals leads to pollution of the environment and accumulation in food chain. These effects necessitate the development of technologies to eliminate or degrade these pollutants. Degradation of these compounds by physical and chemical processes is expensive and usually results in secondary compounds with higher toxicity. The biological strategies proposed for the degradation of these compounds are both cost-effective and eco-friendly. Microbes play an imperative role in the degradation of xenobiotic compounds that have toxic effects on the environment. This review on the fate of xenobiotic compounds in the environment presents cutting-edge insights and novel contributions in different fields. Microbial community dynamics in water bodies, genetic modification for enhanced pesticide degradation and the use of fungi for pharmaceutical removal, white-rot fungi's versatile ligninolytic enzymes and biodegradation potential are highlighted. Here we emphasize the factors influencing bioremediation, such as microbial interactions and carbon catabolism repression, along with a nuanced view of challenges and limitations. Overall, this review provides a comprehensive perspective on the bioremediation strategies.
Collapse
Affiliation(s)
- Mony Thakur
- Department of Microbiology, Central University of Haryana, Mahendergarh, India
| | - Vinod Yadav
- Department of Microbiology, Central University of Haryana, Mahendergarh, India
| | - Yatin Kumar
- Department of Microbiology, Central University of Haryana, Mahendergarh, India
| | - Avijit Pramanik
- Department of Microbiology, Central University of Haryana, Mahendergarh, India
| | | |
Collapse
|
3
|
Gupta R, Khan F, Alqahtani FM, Hashem M, Ahmad F. Plant Growth-Promoting Rhizobacteria (PGPR) Assisted Bioremediation of Heavy Metal Toxicity. Appl Biochem Biotechnol 2024; 196:2928-2956. [PMID: 37097400 DOI: 10.1007/s12010-023-04545-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 04/26/2023]
Abstract
Due to a variety of natural and anthropogenic processes, heavy metal toxicity of soil constitutes a substantial hazard to all living beings in the environment. The heavy metals alter the soil properties, which directly or indirectly influence the agriculture systems. Thus, plant growth-promoting rhizobacteria (PGPR)-assisted bioremediation is a promising, eco-friendly, and sustainable method for eradicating heavy metals. PGPR cleans up the heavy metal-contaminated environment using various approaches including efflux systems, siderophores and chelation, biotransformation, biosorption, bioaccumulation, precipitation, ACC deaminase activity, biodegradation, and biomineralization methods. These PGPRs have been found effective to bioremediate the heavy metal-contaminated soil through increased plant tolerance to metal stress, improved nutrient availability in soil, alteration of heavy metal pathways, and by producing some chemical compounds like siderophores and chelating ions. Many heavy metals are non-degradable; hence, another remediation approach with a broader scope of contamination removal is needed. This article also briefly emphasized the role of genetically modified PGPR strains which improve the soil's degradation rate of heavy metals. In this regard, genetic engineering, a molecular approach, could improve bioremediation efficiency and be helpful. Thus, the ability of PGPRs can aid in heavy metal bioremediation and promote a sustainable agricultural soil system.
Collapse
Affiliation(s)
- Rishil Gupta
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, U.P, India
| | - Faryad Khan
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, U.P, India
| | - Fatmah M Alqahtani
- Department of Biology, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Mohamed Hashem
- Department of Biology, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Faheem Ahmad
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, U.P, India.
| |
Collapse
|
4
|
Wang T, Xu J, Chen J, Liu P, Hou X, Yang L, Zhang L. Progress in Microbial Fertilizer Regulation of Crop Growth and Soil Remediation Research. PLANTS (BASEL, SWITZERLAND) 2024; 13:346. [PMID: 38337881 PMCID: PMC10856823 DOI: 10.3390/plants13030346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
More food is needed to meet the demand of the global population, which is growing continuously. Chemical fertilizers have been used for a long time to increase crop yields, and may have negative effect on human health and the agricultural environment. In order to make ongoing agricultural development more sustainable, the use of chemical fertilizers will likely have to be reduced. Microbial fertilizer is a kind of nutrient-rich and environmentally friendly biological fertilizer made from plant growth-promoting bacteria (PGPR). Microbial fertilizers can regulate soil nutrient dynamics and promote soil nutrient cycling by improving soil microbial community changes. This process helps restore the soil ecosystem, which in turn promotes nutrient uptake, regulates crop growth, and enhances crop resistance to biotic and abiotic stresses. This paper reviews the classification of microbial fertilizers and their function in regulating crop growth, nitrogen fixation, phosphorus, potassium solubilization, and the production of phytohormones. We also summarize the role of PGPR in helping crops against biotic and abiotic stresses. Finally, we discuss the function and the mechanism of applying microbial fertilizers in soil remediation. This review helps us understand the research progress of microbial fertilizer and provides new perspectives regarding the future development of microbial agent in sustainable agriculture.
Collapse
Affiliation(s)
- Tingting Wang
- College of Plant Protection, Shandong Agricultural University, Tai’an 271002, China; (T.W.); (J.X.); (P.L.); (X.H.)
| | - Jiaxin Xu
- College of Plant Protection, Shandong Agricultural University, Tai’an 271002, China; (T.W.); (J.X.); (P.L.); (X.H.)
| | - Jian Chen
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, Nanjing 221122, China;
| | - Peng Liu
- College of Plant Protection, Shandong Agricultural University, Tai’an 271002, China; (T.W.); (J.X.); (P.L.); (X.H.)
| | - Xin Hou
- College of Plant Protection, Shandong Agricultural University, Tai’an 271002, China; (T.W.); (J.X.); (P.L.); (X.H.)
| | - Long Yang
- College of Plant Protection, Shandong Agricultural University, Tai’an 271002, China; (T.W.); (J.X.); (P.L.); (X.H.)
| | - Li Zhang
- College of Plant Protection, Shandong Agricultural University, Tai’an 271002, China; (T.W.); (J.X.); (P.L.); (X.H.)
| |
Collapse
|
5
|
Gonzalez-Gonzalez LM, de-Bashan LE. The Potential of Microalgae-Bacteria Consortia to Restore Degraded Soils. BIOLOGY 2023; 12:biology12050693. [PMID: 37237506 DOI: 10.3390/biology12050693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023]
Abstract
Soil restoration is one of the biggest challenges of this century. Besides the negative impacts of climate change, the current increase in food demands has put severe pressure on soil resources, resulting in a significant area of degraded land worldwide. However, beneficial microorganisms, such as microalgae and plant growth-promoting bacteria, have an outstanding ability to restore soil health and fertility. In this mini-review, we summarize state-of-the-art knowledge on these microorganisms as amendments that are used to restore degraded and contaminated soils. Furthermore, the potential of microbial consortia to maximize beneficial effects on soil health and boost the production of plant-growth-promoting compounds within a mutualistic interaction is discussed.
Collapse
Affiliation(s)
| | - Luz E de-Bashan
- The Bashan Institute of Science, 1730 Post Oak Ct, Auburn, AL 36830, USA
- Department of Entomology and Plant Pathology, Auburn University, 209 Life Sciences Building, Auburn, AL 36849, USA
- Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Avenida IPN 195, La Paz 23096, Mexico
| |
Collapse
|
6
|
Bokade P, Gaur VK, Tripathi V, Bobate S, Manickam N, Bajaj A. Bacterial remediation of pesticide polluted soils: Exploring the feasibility of site restoration. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129906. [PMID: 36088882 DOI: 10.1016/j.jhazmat.2022.129906] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
For decades, reclamation of pesticide contaminated sites has been a challenging avenue. Due to increasing agricultural demand, the application of synthetic pesticides could not be controlled in its usage, and it has now adversely impacted the soil, water, and associated ecosystems posing adverse effects on human health. Agricultural soil and pesticide manufacturing sites, in particular, are one of the most contaminated due to direct exposure. Among various strategies for soil reclamation, ecofriendly microbial bioremediation suffers inherent challenges for large scale field application as interaction of microbes with the polluted soil varies greatly under climatic conditions. Methodically, starting from functional or genomic screening, enrichment isolation; functional pathway mapping, production of tensioactive metabolites for increasing the bioavailability and bio-accessibility, employing genetic engineering strategies for modifications in existing catabolic genes to enhance the degradation activity; each step-in degradation study has challenges and prospects which can be addressed for successful application. The present review critically examines the methodical challenges addressing the feasibility for restoring and reclaiming pesticide contaminated sites along with the ecotoxicological risk assessments. Overall, it highlights the need to fine-tune the available processes and employ interdisciplinary approaches to make microbe assisted bioremediation as the method of choice for reclamation of pesticide contaminated sites.
Collapse
Affiliation(s)
- Priyanka Bokade
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Vivek Kumar Gaur
- Environmental Biotechnology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; School of Energy and Chemical Engineering, UNIST, Ulsan 44919, South Korea
| | - Varsha Tripathi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India; Environmental Biotechnology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Shishir Bobate
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Natesan Manickam
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India; Environmental Biotechnology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Abhay Bajaj
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
7
|
Karamchandani BM, Pawar AA, Pawar SS, Syed S, Mone NS, Dalvi SG, Rahman PKSM, Banat IM, Satpute SK. Biosurfactants' multifarious functional potential for sustainable agricultural practices. Front Bioeng Biotechnol 2022; 10:1047279. [PMID: 36578512 PMCID: PMC9792099 DOI: 10.3389/fbioe.2022.1047279] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
Increasing food demand by the ever-growing population imposes an extra burden on the agricultural and food industries. Chemical-based pesticides, fungicides, fertilizers, and high-breeding crop varieties are typically employed to enhance crop productivity. Overexploitation of chemicals and their persistence in the environment, however, has detrimental effects on soil, water, and air which consequently disturb the food chain and the ecosystem. The lower aqueous solubility and higher hydrophobicity of agrochemicals, pesticides, metals, and hydrocarbons allow them to adhere to soil particles and, therefore, continue in the environment. Chemical pesticides, viz., organophosphate, organochlorine, and carbamate, are used regularly to protect agriculture produce. Hydrophobic pollutants strongly adhered to soil particles can be solubilized or desorbed through the usage of biosurfactant/s (BSs) or BS-producing and pesticide-degrading microorganisms. Among different types of BSs, rhamnolipids (RL), surfactin, mannosylerythritol lipids (MELs), and sophorolipids (SL) have been explored extensively due to their broad-spectrum antimicrobial activities against several phytopathogens. Different isoforms of lipopeptide, viz., iturin, fengycin, and surfactin, have also been reported against phytopathogens. The key role of BSs in designing and developing biopesticide formulations is to protect crops and our environment. Various functional properties such as wetting, spreading, penetration ability, and retention period are improved in surfactant-based formulations. This review emphasizes the use of diverse types of BSs and their source microorganisms to challenge phytopathogens. Extensive efforts seem to be focused on discovering the innovative antimicrobial potential of BSs to combat phytopathogens. We discussed the effectiveness of BSs in solubilizing pesticides to reduce their toxicity and contamination effects in the soil environment. Thus, we have shed some light on the use of BSs as an alternative to chemical pesticides and other agrochemicals as sparse literature discusses their interactions with pesticides. Life cycle assessment (LCA) and life cycle sustainability analysis (LCSA) quantifying their impact on human activities/interventions are also included. Nanoencapsulation of pesticide formulations is an innovative approach in minimizing pesticide doses and ultimately reducing their direct exposures to humans and animals. Some of the established big players and new entrants in the global BS market are providing promising solutions for agricultural practices. In conclusion, a better understanding of the role of BSs in pesticide solubilization and/or degradation by microorganisms represents a valuable approach to reducing their negative impact and maintaining sustainable agricultural practices.
Collapse
Affiliation(s)
| | - Ameya A. Pawar
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Sujit S. Pawar
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Sahil Syed
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Nishigandha S. Mone
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Sunil G. Dalvi
- Tissue Culture Section, Vasantdada Sugar Institute, Pune, India
| | - Pattanathu K. S. M. Rahman
- Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Ibrahim M. Banat
- School of Biomedical Sciences, Faculty of Life and Health Sciences, University of Ulster, Coleraine, United Kingdom,*Correspondence: Surekha K. Satpute, ; Ibrahim M. Banat,
| | - Surekha K. Satpute
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India,*Correspondence: Surekha K. Satpute, ; Ibrahim M. Banat,
| |
Collapse
|
8
|
Kuzina E, Mukhamatdyarova S, Sharipova Y, Makhmutov A, Belan L, Korshunova T. Influence of Bacteria of the Genus Pseudomonas on Leguminous Plants and Their Joint Application for Bioremediation of Oil Contaminated Soils. PLANTS (BASEL, SWITZERLAND) 2022; 11:3396. [PMID: 36501436 PMCID: PMC9737819 DOI: 10.3390/plants11233396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
The modern approach to the creation of biological products to stimulate plant growth is based on the study of specific inter-bacterial interactions. This study describes the impact that the introduction of strains of the genus Pseudomonas has on annual and perennial leguminous plants and the ecosystem of the leguminous plant-the indigenous microbial community. The objects of research under the conditions of vegetation experiments were plants of field peas (Pisum sativum L.), white lupine (Lupinus albus L.), chickpea (Cicer arietinum L.), alfalfa (Medicago sativa subsp. varia (Martyn) Arcang.), and white sweet clover (Melilotus albus Medik.). For the treatment of plant seeds, a liquid culture of strains of growth-stimulating bacteria Pseudomonas koreensis IB-4, and P. laurentiana ANT 17 was used. The positive effect of the studied strains on the germination, growth and development of plants was established. There was no inhibitory effect of inoculants on rhizobia; on the contrary, an increase in nodule formation was observed. The possibility of recultivation of oil-contaminated soil using chickpea and alfalfa as phytomeliorants and growth-stimulating strains P. koreensis IB-4, P. laurentiana ANT 17 as inoculants was evaluated. It is proved that seed treatment improved the morphological parameters of plants, as well as the efficiency of oil destruction.
Collapse
Affiliation(s)
- Elena Kuzina
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, 450054 Ufa, Russia
- Department of Environmental Protection and Prudent Exploitation of Natural Resources, Ufa State Petroleum Technological University, 450044 Ufa, Russia
| | - Svetlana Mukhamatdyarova
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, 450054 Ufa, Russia
- Department of Environmental Protection and Prudent Exploitation of Natural Resources, Ufa State Petroleum Technological University, 450044 Ufa, Russia
| | - Yuliyana Sharipova
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, 450054 Ufa, Russia
- Department of Environmental Protection and Prudent Exploitation of Natural Resources, Ufa State Petroleum Technological University, 450044 Ufa, Russia
| | - Ainur Makhmutov
- Department of Environmental Protection and Prudent Exploitation of Natural Resources, Ufa State Petroleum Technological University, 450044 Ufa, Russia
| | - Larisa Belan
- Department of Environmental Protection and Prudent Exploitation of Natural Resources, Ufa State Petroleum Technological University, 450044 Ufa, Russia
| | - Tatyana Korshunova
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, 450054 Ufa, Russia
- Department of Environmental Protection and Prudent Exploitation of Natural Resources, Ufa State Petroleum Technological University, 450044 Ufa, Russia
| |
Collapse
|
9
|
Sheng Y, Benmati M, Guendouzi S, Benmati H, Yuan Y, Song J, Xia C, Berkani M. Latest eco-friendly approaches for pesticides decontamination using microorganisms and consortia microalgae: A comprehensive insights, challenges, and perspectives. CHEMOSPHERE 2022; 308:136183. [PMID: 36058371 DOI: 10.1016/j.chemosphere.2022.136183] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/13/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Pesticides are chemical compounds that are considered toxic to many organisms, including humans. Their elimination from polluted sites attracted the attention of Scientifics in the last decade; Among the various methods used to decontaminate pesticides from the environment, the microbial-algae consortium is a promising bioremediation technology, which implies several advantages as an eco-friendly process that generate biomass produced that could be valorized in the form of bioenergy, In this review, we will discuss the latest eco-friendly approaches using microorganisms to remediate sites contaminated by pesticides, and shows the ability of microbial, algae and their consortium to remove pesticides and the role of different enzymes in degradation processes.
Collapse
Affiliation(s)
- Yequan Sheng
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Mahbouba Benmati
- Biotechnology Laboratory, National Higher School of Biotechnology, BP E66, 25100, Constantine, Algeria
| | - Salma Guendouzi
- Biotechnology Laboratory, National Higher School of Biotechnology, BP E66, 25100, Constantine, Algeria
| | - Hadjer Benmati
- Laboratoire de Biologie et Environnement, Campus Chaab-Erssas, Biopole Université des Frères Mentouri Constantine 1, Ain Bey, 25000 Constantine Algeria
| | - Yan Yuan
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, PR China
| | - Junlong Song
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Mohammed Berkani
- Biotechnology Laboratory, National Higher School of Biotechnology, BP E66, 25100, Constantine, Algeria.
| |
Collapse
|
10
|
Thongnok S, Siripornadulsil W, Siripornadulsil S. Responses to arsenic stress of rice varieties coinoculated with the heavy metal-resistant and rice growth-promoting bacteria Pseudomonas stutzeri and Cupriavidus taiwanensis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 191:42-54. [PMID: 36182828 DOI: 10.1016/j.plaphy.2022.09.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Arsenic (As)-contaminated rice paddy fields are spreading globally, and thus, rice grains with low As accumulation at a safe level for consumption is profoundly needed. Rice is highly susceptible to As accumulation, and the responses to As vary among rice varieties. Here, combinations of the AsIII-oxidizing bacteria Pseudomonas stutzeri strains 4.25, 4.27, or 4.44 and Cupriavidus taiwanensis KKU2500-3 were investigated with respect to their responses to As toxicity and rice growth promotion during the early growth stage. All bacterial strains enhanced antioxidant enzyme activities, including SOD, CAT, APX, GPX, and GR, under As stress in vitro. Uninoculated and coinoculated rice seedlings of three rice varieties (KDML105, RD6, RD10) were cultivated in hydroponic solution without and with a combination of toxic AsIII and less toxic AsV for 30 days. Compared with uninoculated seedlings, the inoculated seedlings showed higher growth parameters and lower As contents in roots, shoots and throughout the plants. The bioconcentration factor (BCF) and translocation factor were reduced in inoculated seedlings. The effective response of rice to As toxicity influenced by bacteria was highest in KDML105, followed by RD6 and RD10. The root sulfide content was correlated with As accumulation in roots, shoots, and total seedlings and the BCFs. P. stutzeri 4.44 and C. taiwanensis KKU2500-3 were the most promising combinations for application in KDML105 cultivation under As-contaminated conditions. Understanding the basic response of rice coinoculated with effective bacteria at the early stage will provide guidelines for rice cultivation under As conditions at other scales.
Collapse
Affiliation(s)
- Sarun Thongnok
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Wilailak Siripornadulsil
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand; Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Surasak Siripornadulsil
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand; Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
11
|
Mgbechidinma CL, Akan OD, Zhang C, Huang M, Linus N, Zhu H, Wakil SM. Integration of green economy concepts for sustainable biosurfactant production - A review. BIORESOURCE TECHNOLOGY 2022; 364:128021. [PMID: 36167175 DOI: 10.1016/j.biortech.2022.128021] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The link between increasing global population, food demand, industrialization, and agricultural waste is strong. Decomposing by-products from food cycles can introduce harmful toxic heavy metals, active degrading microbes, and enzymes to the environment. Additionally, high greenhouse gas emissions from the decomposing wastes contribute to global change and a high carbon economy. The bioeconomy and circular economy of biosurfactant production utilize these cheap feedstocks and promote waste to valuable product initiatives. Waste reduction, reuse, and recycling in an integrating green economy bioprocess ensure the sustainability of novel, cost-effective, safe, and renewable health-grade biosurfactants. This work reviews green economy concepts integration with sustainable biosurfactant production and its application in health-related industries. Benefits from recent advances in the production, characterization, and health-wise classification of biosurfactants were further discussed, including its limitations, techno-economic assessment, market evaluations, possible roadblocks, and future directions.
Collapse
Affiliation(s)
- Chiamaka Linda Mgbechidinma
- Integrated Life Sciences, University of Georgia, Athens, GA 30602, USA; Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China; Department of Microbiology, University of Ibadan, Ibadan, Oyo State 200243, Nigeria
| | - Otobong Donald Akan
- College of Food Science and Engineering, Central South University of Forestry and Technology, Hunan 41004, China; Microbiology Department, Akwa-Ibom State University, Akwa-Ibom State, Nigeria
| | - Chunfang Zhang
- Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Mengzhen Huang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Hunan 41004, China
| | - Nsemeke Linus
- Biochemistry Department, University of Uyo, Uyo, Nigeria
| | - He Zhu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Hunan 41004, China; College of Food Science and Engineering, Shandong Agriculture and Engineering University, Shandong, China
| | | |
Collapse
|
12
|
Saha J, Dey S, Pal A. Whole genome sequencing and comparative genomic analyses of Pseudomonas aeruginosa strain isolated from arable soil reveal novel insights into heavy metal resistance and codon biology. Curr Genet 2022; 68:481-503. [PMID: 35763098 DOI: 10.1007/s00294-022-01245-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/14/2022] [Accepted: 06/06/2022] [Indexed: 11/03/2022]
Abstract
Elevated concentration of non-essential persistent heavy metals and metalloids in the soil is detrimental to essential soil microbes and plants, resulting in diminished diversity and biomass. Thus, isolation, screening, and whole genomic analysis of potent strains of bacteria from arable lands with inherent capabilities of heavy metal resistance and plant growth promotion hold the key for bio remedial applications. This study is an attempt to do the same. In this study, a potent strain of Pseudomonas aeruginosa was isolated from paddy fields, followed by metabolic profiling using FTIR, metal uptake analysis employing ICP-MS, whole genome sequencing and comparative codon usage analysis. ICP-MS study provided insights into a high degree of Cd uptake during the exponential phase of growth under cumulative metal stress to Cd, Zn and Co, which was further corroborated by the detection of cadA gene along with czcCBA operon in the genome upon performing whole-genome sequencing. This potent strain of Pseudomonas aeruginosa also harboured genes, such as copA, chrA, znuA, mgtE, corA, and others conferring resistance against different heavy metals, such as Cd, Zn, Co, Cu, Cr, etc. A comparative codon usage bias analysis at the genomic and genic level, whereby several heavy metal resistant genes were considered in the backdrop of two housekeeping genes among 40 Pseudomonas spp. indicated the presence of a relatively strong codon usage bias in the studied strain. With this work, an effort was made to explore heavy metal-resistant bacteria (isolated from arable soil) and whole genome sequence analysis to get insight into metal resistance for future bio remedial applications.
Collapse
Affiliation(s)
- Jayanti Saha
- Microbiology and Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, West Bengal, 733134, India
| | - Sourav Dey
- Microbiology and Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, West Bengal, 733134, India
| | - Ayon Pal
- Microbiology and Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, West Bengal, 733134, India.
| |
Collapse
|
13
|
Malik G, Arora R, Chaturvedi R, Paul MS. Implementation of Genetic Engineering and Novel Omics Approaches to Enhance Bioremediation: A Focused Review. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:443-450. [PMID: 33837794 DOI: 10.1007/s00128-021-03218-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Bioremediation itself is considered to be a cost effective soil clean-up technique and preferred over invasive physical and chemical treatments. Besides increasing efficiency, application of genetic engineering has led to reduction in the time duration required to achieve remediation, overcoming the so called 'Achilles heel' of Bioremediation. Omics technologies, namely genomics, transcriptomics, proteomics, and metabolomics, are being employed extensively to gain insights at genetic level. A wise synchronised application of these approaches can help scrutinize complex metabolic pathways, and molecular changes in response to heavy metal stress, and also its fate i.e., uptake, transport, sequestration and detoxification. In the present review, an account of some latest achievements made in the field is presented.
Collapse
Affiliation(s)
| | - Rahul Arora
- The Francis Crick Institute, London, United Kingdom
- Division of Biosciences, University College London, London, United Kingdom
| | | | - Manoj S Paul
- Department of Botany, St. John's College, Agra, U.P, India
| |
Collapse
|
14
|
Kumar P, Rai AK, Gupta A, Phukon H, Singh A, Kalita D, Sharma S, Harshvardhan K, Dubey RC. Pesticide-Degrading and Phosphate-Solubilizing Bacilli Isolated from Agricultural Soil of Punjab (India) Enhance Plant Growth. Microbiology (Reading) 2021. [DOI: 10.1134/s0026261722010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
15
|
Werheni Ammeri R, Kraiem K, Riahi K, Eturki S, Hassen W, Mehri I, Hassen A. Removal of pentachlorophenol from contaminated wastewater using phytoremediation and bioaugmentation processes. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:3091-3103. [PMID: 34850714 DOI: 10.2166/wst.2021.328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The phytoremediation procedure was conducted by Lemna gibba (L) and Typha angustifolia (T) and the bioaugmentation procedure used P. putida HM627618. The ability of the selected P. putida HM627618 to tolerate and remove PCP (200 mg L-1) was measured by high performance liquid chromatography analysis and optical density at 600 nm. Five different experiments were conducted in secondary treated wastewater for PCP testing removal (100 mg L-1) including two phytoremediation assays (T + PCP; L + PCP), three bioaugmentation-phytoremediation assays (T + B + PCP; L + B + PCP; L + T + B + PCP) and a negative control assay with PCP. Various analytical parameters were determined in this study such as bacterial count, chlorophylls a and b, COD, pH and PCP content. The main results showed that the average PCP removal by P. putida HM627618 was around 87.5% after 7 days of incubation, and 88% of PCP removal was achieved by treatment (T + B) after 9 days. During these experiments, pH, COD and chloride content showed a net increase in all treatments. The chlorophylls a and b in case of (T) and (L) Chlorophylls a and b for T and L phytoremediation showed a decrease with a value less than 10 μg/mg of fresh material after 20 days of cultivation.
Collapse
Affiliation(s)
- Rim Werheni Ammeri
- Center of Research and Water Technologies (CERTE), Laboratory of Treatment and Valorization of Water Rejects (LTVRH), Techno Park of Borj-Cédria, BP. 273, 8020 Borj-Cédria, Tunisia E-mail: ; Eremology and Combating Desertification, Arid Regions Institute of Medenine, Mednine, Tunisia
| | - Khadija Kraiem
- Higher Institute of Applied Biological Sciences of Tunis, Tunisia
| | - Khalifa Riahi
- Department of Planning and Environment, UR-GDRES-17AGR03, Higher School of Engineers of Medjez El Bab, University of Jendouba, Tunisia
| | - Saiefeddine Eturki
- Eremology and Combating Desertification, Arid Regions Institute of Medenine, Mednine, Tunisia
| | - Wafa Hassen
- Institute of Applied Sciences and Technology Mahdia, University of Monastir, Monastir, Tunisia
| | - Ines Mehri
- Center of Research and Water Technologies (CERTE), Laboratory of Treatment and Valorization of Water Rejects (LTVRH), Techno Park of Borj-Cédria, BP. 273, 8020 Borj-Cédria, Tunisia E-mail:
| | - Abdennaceur Hassen
- Center of Research and Water Technologies (CERTE), Laboratory of Treatment and Valorization of Water Rejects (LTVRH), Techno Park of Borj-Cédria, BP. 273, 8020 Borj-Cédria, Tunisia E-mail:
| |
Collapse
|
16
|
Ammeri RW, Hidri Y, Hassen W, Mehri I, Khlifi N, Hassen A. Surfactant efficiency on pentachlorophenol-contaminated wastewater enhanced by Pseudomonas putida AJ 785569. Arch Microbiol 2021; 203:5141-5152. [PMID: 34327555 DOI: 10.1007/s00203-021-02486-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 11/30/2022]
Abstract
This study aims to evaluate the effect of three surfactants on the removal of PCP (800 mg L-1) from Secondary Treated Wastewater (STWW) by Pseudomonas putida AJ 785569. The effect of surfactants [sodium lauryl sulfate (SDS) as anionic, Tween 80 (TW80) as non-anionic and cetyltrimethylammonium bromide (CTAB) as cationic] is tested about the three following aspects: (1) bacterial growth, (2) bacterial biofilm formation or development and (3) PCP rate removal. The results showed that strain P. putida AJ 785569 could adsorb around 30 mg L-1 and remove 600 mg L-1 of PCP within 168 h of incubation. The SDS developed the growth of bacteria and the removal of PCP. This PCP removal in mineral salt medium (MSM) is around 760 mg L-1 (95% degradation) higher than the ones registered with CTAB and TW80 with a value 506.75 (63% degradation) and 364.1 mg L-1 (45% degradation), respectively. The obtained results of chloride concentration showed an important relation with PCP removal during incubation with an important value. Monitoring the development of bacterial biofilm, in MSM medium added with PCP (100 mg L-1) by strain P. putida AJ 785569, showed a significant increase in the optical density value from 0.9 to 4 at λ = 595 nm, a modification of strain P. putida AJ 785569's morphotype, density and color colonies.
Collapse
Affiliation(s)
- Rim Werheni Ammeri
- Center of Research and Water Technologies (CERTE), Laboratory of Treatment and Valorization of Water Rejects (LTVRH), Techno Park of Borj-Cédria, BP. 273, 8020, Borj-Cédria, Tunisia. .,Faculty of Mathematical, Physical and Natural Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia.
| | - Yassine Hidri
- Integrated Olive Production Laboratory (LR 16IO3), Cité Mahrajène, BP. 208, 1082, Tunis, Tunisia
| | - Wafa Hassen
- Research Unit of Analysis and Process Applied to the Environmental APAE Higher Institute of Applied Sciences and Technology Mahdia, The University of Monastir, Monastir, Tunisia
| | - Ines Mehri
- Center of Research and Water Technologies (CERTE), Laboratory of Treatment and Valorization of Water Rejects (LTVRH), Techno Park of Borj-Cédria, BP. 273, 8020, Borj-Cédria, Tunisia
| | - Nesrine Khlifi
- Center of Research and Water Technologies (CERTE), Laboratory of Treatment and Valorization of Water Rejects (LTVRH), Techno Park of Borj-Cédria, BP. 273, 8020, Borj-Cédria, Tunisia
| | - Abdennaceur Hassen
- Center of Research and Water Technologies (CERTE), Laboratory of Treatment and Valorization of Water Rejects (LTVRH), Techno Park of Borj-Cédria, BP. 273, 8020, Borj-Cédria, Tunisia
| |
Collapse
|
17
|
Sundh I, Del Giudice T, Cembalo L. Reaping the Benefits of Microorganisms in Cropping Systems: Is the Regulatory Policy Adequate? Microorganisms 2021; 9:microorganisms9071437. [PMID: 34361873 PMCID: PMC8303151 DOI: 10.3390/microorganisms9071437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/23/2021] [Accepted: 06/30/2021] [Indexed: 11/21/2022] Open
Abstract
Within food plant cropping systems, microorganisms provide vital functions and ecosystem services, such as biological pest and disease control, promotion of plant growth and crop quality, and biodegradation of organic matter and pollutants. The beneficial effects of microorganisms can be achieved and/or enhanced by agricultural management measures that target the resident microbial biodiversity or by augmentation with domesticated and propagated microbial strains. This study presents a critical review of the current legislation and regulatory policies pertaining to the utilization of plant-beneficial microorganisms in the European Union (EU). For augmentative approaches, the nature of the intended effect and the product claim determine how a microbiological product is categorized and regulated, and pre-market authorization may be mandatory. Typically, microbial products have been incorporated into frameworks that were designed for evaluating non-living substances, and are therefore not well suited to the specific properties of live microorganisms. We suggest that regulatory harmonization across the sector could stimulate technical development and facilitate implementation of crop management methods employing microorganisms. Possible scenarios for regulatory reform in the longer term are discussed, but more investigation into their feasibility is needed. The findings of this study should serve as a catalyst for more efficient future use of plant-beneficial microorganisms, to the benefit of agriculture as well as the environment.
Collapse
Affiliation(s)
- Ingvar Sundh
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, 750 07 Uppsala, Sweden
- Correspondence:
| | - Teresa Del Giudice
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (T.D.G.); (L.C.)
| | - Luigi Cembalo
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (T.D.G.); (L.C.)
| |
Collapse
|
18
|
Hassen W, Cherif H, Werhani R, Raddadi N, Neifar M, Hassen A, Cherif A. Exhaustion of pentachlorophenol in soil microcosms with three Pseudomonas species as detoxification agents. Arch Microbiol 2021; 203:4641-4651. [PMID: 34173006 DOI: 10.1007/s00203-021-02451-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 01/09/2023]
Abstract
Pentachlorophenol (PCP) is a toxic compound, which is widely used as a wood preservative product and general biocide. It is persistent in the environment and has been classified as a persistent organic pollutant to be reclaimed in many countries. Bioremediation is an emerging approach to rehabilitating areas polluted by recalcitrant xenobiotics. In the present study, we evaluated the potential of three strains of Pseudomonas (P. putida S121, P. rhizophila S211, and P. fuscovagiceae S115) as bioremediation agents in depletion and detoxification of PCP in soil microcosms. PCP removal was effectively optimized using a central-composite experimental design and response surface methodology (RSM). The optimum conditions for maximum PCP removal yield (85 ± 5%) were: 500 mg/kg PCP concentration, 108 UFC/g soil inoculum size of each strain and 55 days incubation period. The bacterial strains, P. putida, P. rhizophila, and P. fuscovagiceae, showed good capability to tolerate and degrade PCP so that they could be successfully used in synergistic effect to treat PCP polluted soils.
Collapse
Affiliation(s)
- Wafa Hassen
- Research Unit of Analysis and Process Applied on the Environmental-APAE UR17ES32, Higher Institute of Applied Sciences and Technology Mahdia "ISSAT", University of Monastir, 5100, Mahdia, Tunisia. .,LR Biotechnology and Bio-Geo Resources Valorization, Higher Institute for Biotechnology, Biotechpole Sidi Thabet, University of Manouba, 2020, Ariana, Tunisia.
| | - Hanene Cherif
- LR Biotechnology and Bio-Geo Resources Valorization, Higher Institute for Biotechnology, Biotechpole Sidi Thabet, University of Manouba, 2020, Ariana, Tunisia
| | - Rim Werhani
- Laboratory of Treatment and Recycle of Wastewater, Centre of Research and Technologies of Water (CERTE), Borj Cédria Technology Park, BP 273, 8020, Tunis, Tunisia
| | - Noura Raddadi
- Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), University of Bologna, via Terracini 28, 40131, Bologna, Italy
| | - Mohamed Neifar
- LR Biotechnology and Bio-Geo Resources Valorization, Higher Institute for Biotechnology, Biotechpole Sidi Thabet, University of Manouba, 2020, Ariana, Tunisia
| | - Abdennaceur Hassen
- Laboratory of Treatment and Recycle of Wastewater, Centre of Research and Technologies of Water (CERTE), Borj Cédria Technology Park, BP 273, 8020, Tunis, Tunisia
| | - Ameur Cherif
- LR Biotechnology and Bio-Geo Resources Valorization, Higher Institute for Biotechnology, Biotechpole Sidi Thabet, University of Manouba, 2020, Ariana, Tunisia
| |
Collapse
|
19
|
Korshunova TY, Bakaeva MD, Kuzina EV, Rafikova GF, Chetverikov SP, Chetverikova DV, Loginov ON. Role of Bacteria of the Genus Pseudomonas in the Sustainable Development of Agricultural Systems and Environmental Protection (Review). APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s000368382103008x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Mahjoubi M, Aliyu H, Neifar M, Cappello S, Chouchane H, Souissi Y, Masmoudi AS, Cowan DA, Cherif A. Genomic characterization of a polyvalent hydrocarbonoclastic bacterium Pseudomonas sp. strain BUN14. Sci Rep 2021; 11:8124. [PMID: 33854112 PMCID: PMC8046798 DOI: 10.1038/s41598-021-87487-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 02/12/2021] [Indexed: 02/02/2023] Open
Abstract
Bioremediation offers a viable alternative for the reduction of contaminants from the environment, particularly petroleum and its recalcitrant derivatives. In this study, the ability of a strain of Pseudomonas BUN14 to degrade crude oil, pristane and dioxin compounds, and to produce biosurfactants, was investigated. BUN14 is a halotolerant strain isolated from polluted sediment recovered from the refinery harbor on the Bizerte coast, north Tunisia and capable of producing surfactants. The strain BUN14 was assembled into 22 contigs of 4,898,053 bp with a mean GC content of 62.4%. Whole genome phylogeny and comparative genome analyses showed that strain BUN14 could be affiliated with two validly described Pseudomonas Type Strains, P. kunmingensis DSM 25974T and P. chloritidismutans AW-1T. The current study, however, revealed that the two Type Strains are probably conspecific and, given the priority of the latter, we proposed that P. kunmingensis DSM 25974 is a heteronym of P. chloritidismutans AW-1T. Using GC-FID analysis, we determined that BUN14 was able to use a range of hydrocarbons (crude oil, pristane, dibenzofuran, dibenzothiophene, naphthalene) as a sole carbon source. Genome analysis of BUN14 revealed the presence of a large repertoire of proteins (154) related to xenobiotic biodegradation and metabolism. Thus, 44 proteins were linked to the pathways for complete degradation of benzoate and naphthalene. The annotation of conserved functional domains led to the detection of putative genes encoding enzymes of the rhamnolipid biosynthesis pathway. Overall, the polyvalent hydrocarbon degradation capacity of BUN14 makes it a promising candidate for application in the bioremediation of polluted saline environments.
Collapse
Affiliation(s)
- Mouna Mahjoubi
- grid.424444.60000 0001 1103 8547University of Manouba, ISBST, BVBGR-LR11ES31, Biotechpole SidiThabet, 2020 Ariana, Tunisia
| | - Habibu Aliyu
- grid.7892.40000 0001 0075 5874Institute of Process Engineering in Life Science 2: Technical Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Mohamed Neifar
- grid.424444.60000 0001 1103 8547University of Manouba, ISBST, BVBGR-LR11ES31, Biotechpole SidiThabet, 2020 Ariana, Tunisia
| | - Simone Cappello
- Istituto per le Risorse Biologiche e le Biotecnologie Marine (IRBIM)-CNR of Messina, Sp. San Raineri, 86, 98122 Messina, Italy
| | - Habib Chouchane
- grid.424444.60000 0001 1103 8547University of Manouba, ISBST, BVBGR-LR11ES31, Biotechpole SidiThabet, 2020 Ariana, Tunisia
| | - Yasmine Souissi
- grid.424444.60000 0001 1103 8547University of Manouba, ISBST, BVBGR-LR11ES31, Biotechpole SidiThabet, 2020 Ariana, Tunisia
| | - Ahmed Salaheddine Masmoudi
- grid.424444.60000 0001 1103 8547University of Manouba, ISBST, BVBGR-LR11ES31, Biotechpole SidiThabet, 2020 Ariana, Tunisia
| | - Don A. Cowan
- grid.49697.350000 0001 2107 2298Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, 0002 South Africa
| | - Ameur Cherif
- grid.424444.60000 0001 1103 8547University of Manouba, ISBST, BVBGR-LR11ES31, Biotechpole SidiThabet, 2020 Ariana, Tunisia
| |
Collapse
|
21
|
Development and Genetic Engineering of Hyper-Producing Microbial Strains for Improved Synthesis of Biosurfactants. Mol Biotechnol 2021; 63:267-288. [PMID: 33523418 DOI: 10.1007/s12033-021-00302-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 10/22/2022]
Abstract
Current research energies are fixated on the synthesis of environmentally friendly and non-hazardous products, which include finding and recognizing biosurfactants that can substitute synthetic surfactants. Microbial biosurfactants are surface-active compounds synthesized intracellularly or extracellularly. To use biosurfactants in various industries, it is essential to understand scientific engagements that demonstrate its potentials as real advancement in the 21st century. Other than applying a substantial effect on the world economic market, engineered hyper-producing microbial strains in combination with optimized cultivation parameters have made it probable for many industrial companies to receive the profits of 'green' biosurfactant innovation. There needs to be an emphasis on the worldwide state of biosurfactant synthesis, expression of biosurfactant genes in expressive host systems, the recent developments, and prospects in this line of research. Thus, molecular dynamics with respect to genetic engineering of biosynthetic genes are proposed as new biotechnological tools for development, improved synthesis, and applications of biosurfactants. For example, mutant and hyper-producing recombinants have been designed efficaciously to advance the nature, quantity, and quality of biosurfactants. The fastidious and deliberate investigation will prompt a comprehension of the molecular dynamics and phenomena in new microorganisms. Throughout the decade, valuable data on the molecular genetics of biosurfactant have been produced, and this solid foundation would encourage application-oriented yields of the biosurfactant production industry and expand its utilization in diverse fields. Therefore, the conversations among different interdisciplinary experts from various scientific interests such as microbiology, biochemistry, molecular biology, and genetics are indispensable and significant to accomplish these objectives.
Collapse
|
22
|
Fu W, Pan Y, Shi Y, Chen J, Gong D, Li Y, Hao G, Han D. Root Morphogenesis of Arabidopsis thaliana Tuned by Plant Growth-Promoting Streptomyces Isolated From Root-Associated Soil of Artemisia annua. FRONTIERS IN PLANT SCIENCE 2021; 12:802737. [PMID: 35082816 PMCID: PMC8786036 DOI: 10.3389/fpls.2021.802737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/25/2021] [Indexed: 05/15/2023]
Abstract
In this study, the capacity to tune root morphogenesis by a plant growth-promoting rhizobacterium, Streptomyces lincolnensis L4, was investigated from various aspects including microbial physiology, root development, and root endophytic microbial community. Strain L4 was isolated from the root-associated soil of 7-year plantation of Artemisia annua. Aiming at revealing the promotion mechanism of Streptomyces on root growth and development, this study first evaluated the growth promotion characters of S. lincolnensis L4, followed by investigation in the effect of L4 inoculation on root morphology, endophytic microbiota of root system, and expression of genes involved in root development in Arabidopsis thaliana. Streptomyces lincolnensis L4 is able to hydrolyze organic and inorganic phosphorus, fix nitrogen, and produce IAA, ACC deaminase, and siderophore, which shaped specific structure of endophytic bacterial community with dominant Streptomyces in roots and promoted the development of roots. From the observation of root development characteristics, root length, root diameter, and the number of root hairs were increased by inoculation of strain L4, which were verified by the differential expression of root development-related genes in A. thaliana. Genomic traits of S. lincolnensis L4 which further revealed its capacity for plant growth promotion in which genes involved in phosphorus solubilization, ACC deamination, iron transportation, and IAA production were identified. This root growth-promoting strain has the potential to develop green method for regulating plant development. These findings provide us ecological knowledge of microenvironment around root system and a new approach for regulating root development.
Collapse
Affiliation(s)
- Wenbo Fu
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanshuo Pan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Yangling, China
| | - Yuhua Shi
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Material Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jieyin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Daozhi Gong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuzhong Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guangfei Hao
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
- *Correspondence: Guangfei Hao,
| | - Dongfei Han
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- Dongfei Han,
| |
Collapse
|
23
|
Mishra I, Fatima T, Egamberdieva D, Arora NK. Novel Bioformulations Developed from Pseudomonas putida BSP9 and its Biosurfactant for Growth Promotion of Brassica juncea (L.). PLANTS 2020; 9:plants9101349. [PMID: 33053904 PMCID: PMC7601481 DOI: 10.3390/plants9101349] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/17/2022]
Abstract
In this study, Pseudomonas putida BSP9 isolated from rhizosphere of Brassica juncea was investigated for its plant growth promoting and biosurfactant producing activities. The isolate showed the ability to produce indole acetic acid, siderophore, phosphate solubilization activity and was an efficient producer of biosurfactant. Purification (of the biosurfactant) by thin layer chromatography (TLC) and further characterization by Fourier transform infrared spectroscopy (FTIR) revealed that biosurfactant produced by the isolate belonged to the glycolipid category, which is largely produced by Pseudomonas sp. In addition, liquid chromatography-mass spectroscopy (LC-MS) analysis showed the presence of a mixture of six mono-rhamnolipidic and a di-rhamnolipidic congeners, confirming it as a rhamnolipid biosurfactant. Bioformulations were developed using BSP9 and its biosurfactant to check their impact on promoting plant growth in B. juncea. It was noted from the study that bioformulations amended with biosurfactant (singly or in combination with BSP9) resulted in enhancement in the growth parameters of B. juncea as compared to untreated control. Maximum increment was achieved by plants inoculated with bioformulation that had BSP9 plus biosurfactant. The study also suggested that growth promotion was significant up to a threshold level of biosurfactant and that further increasing the concentration did not further enhance the growth parameter values of the plant. The study proves that novel bioformulations can be developed by integrating plant growth promoting rhizobacteria (PGPR) and their biosurfactant, and they can be effectively used for increasing agricultural productivity while minimizing our dependence on agrochemicals.
Collapse
Affiliation(s)
- Isha Mishra
- Department of Microbiology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar Raebareli Road, Lucknow 226025, India; (I.M.); (T.F.)
| | - Tahmish Fatima
- Department of Microbiology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar Raebareli Road, Lucknow 226025, India; (I.M.); (T.F.)
| | - Dilfuza Egamberdieva
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
- Faculty of Biology, National University of Uzbekistan, Tashkent 100174, Uzbekistan
- Correspondence: (D.E.); (N.K.A.)
| | - Naveen Kumar Arora
- Department of Environmental Science, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar Raebareli Road, Lucknow 226025, India
- Correspondence: (D.E.); (N.K.A.)
| |
Collapse
|
24
|
Meena M, Swapnil P, Divyanshu K, Kumar S, Harish, Tripathi YN, Zehra A, Marwal A, Upadhyay RS. PGPR-mediated induction of systemic resistance and physiochemical alterations in plants against the pathogens: Current perspectives. J Basic Microbiol 2020; 60:828-861. [PMID: 32815221 DOI: 10.1002/jobm.202000370] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/28/2020] [Accepted: 08/02/2020] [Indexed: 12/14/2022]
Abstract
Plant growth-promoting rhizobacteria (PGPR) are diverse groups of plant-associated microorganisms, which can reduce the severity or incidence of disease during antagonism among bacteria and soil-borne pathogens, as well as by influencing a systemic resistance to elicit defense response in host plants. An amalgamation of various strains of PGPR has improved the efficacy by enhancing the systemic resistance opposed to various pathogens affecting the crop. Many PGPR used with seed treatment causes structural improvement of the cell wall and physiological/biochemical changes leading to the synthesis of proteins, peptides, and chemicals occupied in plant defense mechanisms. The major determinants of PGPR-mediated induced systemic resistance (ISR) are lipopolysaccharides, lipopeptides, siderophores, pyocyanin, antibiotics 2,4-diacetylphoroglucinol, the volatile 2,3-butanediol, N-alkylated benzylamine, and iron-regulated compounds. Many PGPR inoculants have been commercialized and these inoculants consequently aid in the improvement of crop growth yield and provide effective reinforcement to the crop from disease, whereas other inoculants are used as biofertilizers for native as well as crops growing at diverse extreme habitat and exhibit multifunctional plant growth-promoting attributes. A number of applications of PGPR formulation are needed to maintain the resistance levels in crop plants. Several microarray-based studies have been done to identify the genes, which are associated with PGPR-induced systemic resistance. Identification of these genes associated with ISR-mediating disease suppression and biochemical changes in the crop plant is one of the essential steps in understanding the disease resistance mechanisms in crops. Therefore, in this review, we discuss the PGPR-mediated innovative methods, focusing on the mode of action of compounds authorized that may be significant in the development contributing to enhance plant growth, disease resistance, and serve as an efficient bioinoculants for sustainable agriculture. The review also highlights current research progress in this field with a special emphasis on challenges, limitations, and their environmental and economic advantages.
Collapse
Affiliation(s)
- Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India.,Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Prashant Swapnil
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India.,Department of Botany, Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Kumari Divyanshu
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sunil Kumar
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Harish
- Plant Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Yashoda Nandan Tripathi
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Andleeb Zehra
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Avinash Marwal
- Department of Biotechnology, Vigyan Bhawan-Block B, New Campus, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Ram Sanmukh Upadhyay
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
25
|
Chopra A, Bobate S, Rahi P, Banpurkar A, Mazumder PB, Satpute S. Pseudomonas aeruginosa RTE4: A Tea Rhizobacterium With Potential for Plant Growth Promotion and Biosurfactant Production. Front Bioeng Biotechnol 2020; 8:861. [PMID: 32850725 PMCID: PMC7403194 DOI: 10.3389/fbioe.2020.00861] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/03/2020] [Indexed: 12/04/2022] Open
Abstract
Tea is an ancient non-alcoholic beverage plantation crop cultivated in the most part of Assam, India. Being a long-term monoculture, tea plants are prone to both biotic and abiotic stresses, and requires massive amounts of chemicals as fertilizers and pesticides to achieve worthy crop productivity. The rhizosphere bacteria with the abilities to produce phytohormone, secreting hydrolytic enzyme, biofilm formation, bio-control activity provides induced systemic resistance to plants against pathogens. Thus, plant growth promoting (PGP) rhizobacteria represents as an alternative candidate to chemical inputs for agriculture sector. Further, deciphering the secondary metabolites, including biosurfactant (BS) allow developing a better understanding of rhizobacterial strains. The acidic nature of tea rhizosphere is predominated by Bacillus followed by Pseudomonas that enhances crop biomass and yield through accelerating uptake of nutrients. In the present study, a strain Pseudomonas aeruginosa RTE4 isolated from tea rhizosphere soil collected from Rosekandy Tea Garden, Cachar, Assam was evaluated for various plant-growth promoting attributes. The strain RTE4 produces indole acetic acid (74.54 μg/ml), hydrolytic enzymes, and solubilize tri-calcium phosphate (46 μg/ml). Bio-control activity of RTE4 was recorded against two foliar fungal pathogens of tea (Corticium invisium and Fusarium solani) and a bacterial plant pathogen (Xanthomonas campestris). The strain RTE4 was positive for BS production in the preliminary screening. Detailed analytical characterization through TLC, FTIR, NMR, and LCMS techniques revealed that the strain RTE4 grown in M9 medium with glucose (2% w/v) produce di-rhamnolipid BS. This BS reduced surface tension of phosphate buffer saline from 71 to 31 mN/m with a critical micelle concentration of 80 mg/L. Purified BS of RTE4 showed minimum inhibitory concentration of 5, 10, and 20 mg/ml against X. campestris, F. solani and C. invisium, respectively. Capability of RTE4 BS to be employed as a biofungicide as compared to Carbendazim - commercially available fungicide is also tested. The strain RTE4 exhibits multiple PGP attributes along with production of di-rhamnolipid BS. This gives a possibility to produce di-rhamnolipid BS from RTE4 in large scale and explore its applications in fields as a biological alternative to chemical fertilizer.
Collapse
Affiliation(s)
- Ankita Chopra
- Department of Biotechnology, Assam University, Silchar, India
| | - Shishir Bobate
- Department of Microbiology, Savitribai Phule Pune University, Pune, India
| | - Praveen Rahi
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India
| | - Arun Banpurkar
- Department of Physics, Savitribai Phule Pune University, Pune, India
| | | | - Surekha Satpute
- Department of Microbiology, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
26
|
Ouertani R, Ouertani A, Mahjoubi M, Bousselmi Y, Najjari A, Cherif H, Chamkhi A, Mosbah A, Khdhira H, Sghaier H, Chouchane H, Cherif A, Neifar M. New Plant Growth-Promoting, Chromium-Detoxifying Microbacterium Species Isolated From a Tannery Wastewater: Performance and Genomic Insights. Front Bioeng Biotechnol 2020; 8:521. [PMID: 32719777 PMCID: PMC7350417 DOI: 10.3389/fbioe.2020.00521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 05/01/2020] [Indexed: 12/31/2022] Open
Abstract
Hexavalent chromium [Cr(VI)], widely generated by tannery activities, is considered among the most toxic substances and causes a serious damage for the environment and for human health. Interestingly, some microorganisms have a potential of bioremediation of chromium-contaminated wastewaters and soils through the reduction of Cr(VI) (soluble and harmful form) into Cr(III) (stable and non-toxic form). Here, we present the full genome sequence of a novel heavy-metal-resistant, plant growth-promoting bacterium (PGPB), Microbacterium metallidurans TL13, which was isolated from a Tunisian leather industry. The strain TL13 was resistant to many heavy metals, such as chromium, copper, nickel, cobalt, and arsenic. The 50% TL13 growth inhibitory concentration (IC50) values of HgCl2, CoCl2, K2Cr2O7, CuSO4, NiCl2, FeSO4, and Na2HAsO4 are 368, 445, 676, 1,590, 1,680, 4,403, and 7,007 mg/L, respectively, with the following toxicity order: HgCl2 > CoCl2 > K2Cr2O7 > CuSO4 > NiCl2 > FeSO4 > Na2HAsO4. This new strain was also able to promote the growth of the hybrid tomato (Elika F1) under chromium metal stress. Its whole genome sequence length was estimated to be 3,587,460 bp (3,393 coding sequences) with a G + C content of 70.7%. Functional annotation of the genome of TL13 revealed the presence of open reading frames (ORFs) involved in adaptation to metal stress, such as the chromate transport protein, cobalt–zinc–cadmium resistance protein, copper resistance protein, copper responsive transcriptional regulator, multidrug resistance transporters, arsenical resistance operon repressor, arsenate reductase, arsenic resistance protein, mercuric resistance operon regulatory protein, mercuric ion reductase, and organomercurial lyase. Moreover, genes for the production of glutathione peroxidase, catalase, superoxide dismutase, and thioredoxin reductase, which confer a higher tolerance to oxidative/metal stresses, were identified in TL13 genome. In addition, genes for heat shock tolerance, cold shock tolerance, glycine-betaine production, mineral phosphate solubilization, ammonia assimilation, siderophores, exopolysaccharides, polyketides, and lytic enzymes (cellulase, chitinase, and proteases) production that enable bacteria to survive biotic/abiotic stress and to promote plant growth and health were also revealed. Based on genome analysis and experimental approaches, strain TL13 appears to have evolved from various metabolic strategies and could play a role in ensuring sustainable environmental and agricultural systems.
Collapse
Affiliation(s)
- Rania Ouertani
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, Sidi Thabet, Tunisia.,Laboratory of Microorganisms and Active Biomolecules, MBA-LR03ES03, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Awatef Ouertani
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, Sidi Thabet, Tunisia
| | - Mouna Mahjoubi
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, Sidi Thabet, Tunisia
| | - Yosra Bousselmi
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, Sidi Thabet, Tunisia
| | - Afef Najjari
- Laboratory of Microorganisms and Active Biomolecules, MBA-LR03ES03, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Hanene Cherif
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, Sidi Thabet, Tunisia
| | - Asma Chamkhi
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, Sidi Thabet, Tunisia
| | - Amor Mosbah
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, Sidi Thabet, Tunisia
| | - Hechmi Khdhira
- Management Environment Responsible in Tanneries Mégisseries du Maghreb, TMM, Grombalia, Tunisia
| | - Haitham Sghaier
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, Sidi Thabet, Tunisia.,Laboratory "Energy and Matter for Development of Nuclear Sciences" (LR16CNSTN02), National Center for Nuclear Sciences and Technology (CNSTN), Sidi Thabet Technopark, Sidi Thabet, Tunisia
| | - Habib Chouchane
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, Sidi Thabet, Tunisia
| | - Ameur Cherif
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, Sidi Thabet, Tunisia
| | - Mohamed Neifar
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, Sidi Thabet, Tunisia
| |
Collapse
|
27
|
Isolation and Proto-cooperation of Pseudomonas putida TS 18 from Water Calyx Fluid of Spathodea campanulata P. Beauv. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.4.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
28
|
Field Based Assessment of Capsicum annuum Performance with Inoculation of Rhizobacterial Consortia. Microorganisms 2019; 7:microorganisms7030089. [PMID: 30901903 PMCID: PMC6463109 DOI: 10.3390/microorganisms7030089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/06/2019] [Accepted: 03/08/2019] [Indexed: 11/16/2022] Open
Abstract
Plant growth promoting rhizobacteria (PGPR) are associated with plant roots and augment plant productivity and immunity by reducing fertilizer application rates and nutrient runoff. Studies were conducted to evaluate bell pepper transplants amended with formulation of consortium of two indigenous PGPR isolates (Bacillus subtilis and Bacillus pumilus) in terms of increase in yield and disease resistance under field conditions. Transplants were planted into plots treated by NPK (nitrogen, phosphorus and potassium), fungicides, soil solarization, MeBr fumigation, PGPR and untreated soil. Treatments were assessed for incidence of soil-borne phytopathogens viz. Phytophthora capsici and Colletotrichum sp. Highly significant increases in bell pepper transplant growth occurred in response to formulations of PGPR isolates. Transplant vigor and survival in the field were also improved by PGPR treatments. Consortium of Bacillus subtilis and Bacillus pumilus reduced disease incidence of damping off by 1.81% and anthracnose by 1.75%. Numbers of colony forming units of Phytophthora capsici and Colletotrichum sp. were significantly higher in all plots than those treated with PGPR consortium. Incidence of seed rot and seedling blight on bell pepper was significantly lower in PGPR-treated plots and highest in untreated plots. Total fruit yield of bell pepper increased by 379.36% with PGPR consortium (Bacillus subtilis and Bacillus pumilus).
Collapse
|
29
|
Mosqueira MJ, Marasco R, Fusi M, Michoud G, Merlino G, Cherif A, Daffonchio D. Consistent bacterial selection by date palm root system across heterogeneous desert oasis agroecosystems. Sci Rep 2019; 9:4033. [PMID: 30858421 PMCID: PMC6412053 DOI: 10.1038/s41598-019-40551-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/18/2019] [Indexed: 12/20/2022] Open
Abstract
Highly productive conventional agroecosystems are spatially embedded in resource-homogeneous systems and count on generally nutrient-rich soils. On the contrary, desert oases are isolated, the soil is relatively poor, but yet productivity is similar to conventional agroecosystems. Soil dominates over plant as the main factor shaping root-associated microbiomes in conventional agroecosystems. We hypothesize that in desert oasis, the environmental discontinuity, the resource paucity and limited microbial diversity of the soil make the plant a prevailing factor. We have examined the bacterial communities in the root system of date palm (Phoenix dactylifera), the iconic keystone species of the oases, grown in heterogeneous soils across a broad geographic range (22,200 km2 surface area) of the Sahara Desert in Tunisia. We showed that, regardless of the edaphic conditions and geographic location, the plant invariably selects similar Gammaproteobacteria- and Alphaproteobacteria-dominated bacterial communities. The phylogeny, networking properties and predicted functionalities of the bacterial communities indicate that these two phyla are performing the ecological services of biopromotion and biofertilization. We conclude that in a desert agroecosystem, regardless of the soil microbial diversity baseline, the plant, rather than soil type, is responsible of the bacterial community assembly in its root systems, reversing the pattern observed in conventional agroecosystem.
Collapse
Affiliation(s)
- Maria J Mosqueira
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Ramona Marasco
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia.
| | - Marco Fusi
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Grégoire Michoud
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Giuseppe Merlino
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Ameur Cherif
- University of Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, Ariana, 2020, Tunisia
| | - Daniele Daffonchio
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
30
|
Genome analysis provides insights into crude oil degradation and biosurfactant production by extremely halotolerant Halomonas desertis G11 isolated from Chott El-Djerid salt-lake in Tunisian desert. Genomics 2018; 111:1802-1814. [PMID: 30529640 DOI: 10.1016/j.ygeno.2018.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/05/2018] [Accepted: 12/04/2018] [Indexed: 01/10/2023]
Abstract
Here, we report the genomic features and the bioremediation potential of Halomonas desertis G11, a new halophilic species which uses crude oil as a carbon and energy source and displays intrinsic resistance to salt stress conditions (optimum growth at 10% NaCl). G11 genome (3.96 Mb) had a mean GC content of 57.82%, 3622 coding sequences, 480 subsystems and 64 RNA genes. Annotation predicted 38 genes involved in osmotic stress including the biosynthesis of osmoprotectants glycine-betaine, ectoine and osmoregulated periplasmic glucans. Genome analysis revealed also the versatility of the strain for emulsifying crude oil and metabolizing hydrocarbons. The ability of G11 to degrade crude oil components and to secrete a glycolipid biosurfactant with satisfying properties was experimentally confirmed and validated. Our results help to explain the exceptional capacity of G11 to survive at extreme desertic conditions, and highlight the metabolic features of this organism that has biotechnological and ecological potentialities.
Collapse
|