1
|
Jeyaraman M, Jeyaraman N, Ram PR, Muthu S, Jain VK, Iyengar KP. Decoding the hidden realm: Molecular pioneering unravelling osteoarticular tuberculosis diagnosis. J Clin Orthop Trauma 2024; 56:102538. [PMID: 39318541 PMCID: PMC11417564 DOI: 10.1016/j.jcot.2024.102538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/28/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024] Open
Abstract
Osteoarticular tuberculosis (TB), a form of extrapulmonary tuberculosis, refers to the involvement of Mycobacterium tuberculosis (M.tb) in the bones and joints. While pulmonary tuberculosis is the most common form, osteoarticular TB represents a relatively rare but significant manifestation, accounting for approximately 1-3% of all TB cases. Accurate and timely diagnosis plays a pivotal role in the management of osteoarticular TB. Conventional diagnostic methods for osteoarticular TB, such as acid-fast bacilli smear microscopy and culture, have limitations in terms of sensitivity, specificity, and turnaround time. The purpose of this review is to comprehensively evaluate and synthesize the existing literature on molecular pioneering in osteoarticular TB diagnosis. Molecular techniques, such as nucleic acid amplification tests and gene-based assays, have emerged as promising tools for diagnosing TB. These techniques target specific genetic sequences of M.tb, enabling rapid and sensitive detection of the pathogen. However, the diagnostic accuracy, advantages, and limitations of these molecular techniques in the context of osteoarticular TB diagnosis require further investigation and consolidation of evidence. Furthermore, this review aims to identify areas for future research and development in the field of molecular diagnostics for osteoarticular TB.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, 600077, Tamil Nadu, India
- Orthopaedic Research Group, Coimbatore, 641045, Tamil Nadu, India
- Virginia Tech India, Chennai, 600095, Tamil Nadu, India
| | - Naveen Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, 600077, Tamil Nadu, India
| | - Pothuri Rishi Ram
- Department of Orthopaedics, Sanjay Gandhi Institute of Trauma and Orthopaedics, Bengaluru, 560029, Karnataka, India
| | - Sathish Muthu
- Orthopaedic Research Group, Coimbatore, 641045, Tamil Nadu, India
- Department of Orthopaedics, Government Medical College and Hospital, Karur, 639004, Tamil Nadu, India
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, 641021, Tamil Nadu, India
| | - Vijay Kumar Jain
- Department of Orthopaedics, Atal Bihari Vajpayee Institute of Medical Sciences, Dr Ram Manohar Lohia Hospital, New Delhi, 110001, India
| | - Karthikeyan P. Iyengar
- Trauma and Orthopaedic Surgeon, Southport and Ormskirk Hospitals, Mersey and West Lancashire Teaching NHS Trust, Southport, PR8 6PN, United Kingdom
| |
Collapse
|
2
|
Wang Y, Jin F, Mao W, Yu Y, Xu W. Identification of diagnostic biomarkers correlate with immune infiltration in extra-pulmonary tuberculosis by integrating bioinformatics and machine learning. Front Microbiol 2024; 15:1349374. [PMID: 38384272 PMCID: PMC10879613 DOI: 10.3389/fmicb.2024.1349374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/25/2024] [Indexed: 02/23/2024] Open
Abstract
The diagnosis of tuberculosis depends on detecting Mycobacterium tuberculosis (Mtb). Unfortunately, recognizing patients with extrapulmonary tuberculosis (EPTB) remains challenging due to the insidious clinical presentation and poor performance of diagnostic tests. To identify biomarkers for EPTB, the GSE83456 dataset was screened for differentially expressed genes (DEGs), followed by a gene enrichment analysis. One hundred and ten DEGs were obtained, mainly enriched in inflammation and immune -related pathways. Weighted gene co-expression network analysis (WGCNA) was used to identify 10 co-expression modules. The turquoise module, correlating the most highly with EPTB, contained 96 DEGs. Further screening with the least absolute shrinkage and selection operator (LASSO) and support vector machine recursive feature elimination (SVM-RFE) narrowed down the 96 DEGs to five central genes. All five key genes were validated in the GSE144127 dataset. CARD17 and GBP5 had high diagnostic capacity, with AUC values were 0.763 (95% CI: 0.717-0.805) and 0.833 (95% CI: 0.793-0.869) respectively. Using single sample gene enrichment analysis (ssGSEA), we evaluated the infiltration of 28 immune cells in EPTB and explored their relationships with key genes. The results showed 17 immune cell subtypes with significant infiltrations in EPTB. CARD17, GBP5, HOOK1, LOC730167, and HIST1H4C were significantly associated with 16, 14, 12, 6, and 4 immune cell subtypes, respectively. The RT-qPCR results confirmed that the expression levels of GBP5 and CARD17 were higher in EPTB compared to control. In conclusion, CARD17 and GBP5 have high diagnostic efficiency for EPTB and are closely related to immune cell infiltration.
Collapse
Affiliation(s)
| | | | | | | | - Wenfang Xu
- Department of Clinical Laboratory, Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| |
Collapse
|
3
|
Yang X, Fu Q, Zhang W, An Q, Zhang Z, Li H, Chen X, Chen Z, Cheng Y, Chen S, Man C, Du L, Chen Q, Wang F. Overexpression of Pasteurella multocida OmpA induces transcriptional changes and its possible implications for the macrophage polarization. Microb Pathog 2023; 183:106212. [PMID: 37353176 DOI: 10.1016/j.micpath.2023.106212] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Pasteurella multocida (P. multocida) is a highly infectious, zoonotic pathogen. Outer membrane protein A (OmpA) is an important virulence component of the outer membrane of P. multocida. OmpA mediates bacterial biofilm formation, eukaryotic cell infection, and immunomodulation. It is unclear how OmpA affects the host immune response. We estimated the role of OmpA in the pathogenesis of P. multocida by investigating the effect of OmpA on the immune cell transcriptome. Changes in the transcriptome of rat alveolar macrophages (NR8383) upon overexpression of P. multocida OmpA were demonstrated. A model cell line for stable transcription of OmpA was constructed by infecting NR8383 cells with OmpA-expressing lentivirus. RNA was extracted from cells and sequenced on an Illumina HiSeq platform. Key gene analysis of genes in the RNA-seq dataset were performed using various bioinformatics methods, such as gene ontology enrichment analysis, Kyoto Encyclopedia of Genes and Genomes enrichment analysis, Gene Set Enrichment Analysis, and Protein-Protein Interaction Analysis. Our findings revealed 1340 differentially expressed genes. Immune-related pathways that were significantly altered in rat alveolar macrophages under the effect of OmpA included focal adhesion, extracellular matrix and vascular endothelial growth factor signaling pathways, antigen processing and presentation, nucleotide oligomerization domain-like receptor and Toll-like receptor signaling pathways, and cytokine-cytokine receptor interaction. The key genes screened were Vegfa, Igf2r, Fabp5, P2rx1, C5ar1, Nedd4l, Gas6, Cxcl1, Pf4, Pdgfb, Thbs1, Col7a1, Vwf, Ccl9, and Arg1. Data of associated pathways and altered gene expression indicated that OmpA might cause the conversion of rat alveolar macrophages to M2-like. The related pathways and key genes can serve as a reference for OmpA of P. multitocida and host interaction mechanism studies.
Collapse
Affiliation(s)
- Xiaohong Yang
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Qiaoyu Fu
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Wencan Zhang
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Qi An
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Zhenxing Zhang
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Hong Li
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Xiangying Chen
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Zhen Chen
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Yiwen Cheng
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Si Chen
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Churiga Man
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Li Du
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| | - Qiaoling Chen
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| | - Fengyang Wang
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| |
Collapse
|
4
|
Verma A, Kaur M, Luthra P, Singh L, Aggarwal D, Verma I, Radotra BD, Bhadada SK, Sharma S. Immunological aspects of host-pathogen crosstalk in the co-pathogenesis of diabetes and latent tuberculosis. Front Cell Infect Microbiol 2023; 12:957512. [PMID: 36776550 PMCID: PMC9909355 DOI: 10.3389/fcimb.2022.957512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 12/28/2022] [Indexed: 01/27/2023] Open
Abstract
Introduction Diabetes is a potent risk factor for the activation of latent tuberculosis and worsens the tuberculosis (TB) treatment outcome. The major reason for mortality and morbidity in diabetic patients is due to their increased susceptibility to TB. Thus, the study was conducted to understand the crosstalk between M. tuberculosis and its host upon latent tuberculosis infection and under hyperglycemic conditions or diabetes. Methods An animal model was employed to study the relationship between latent tuberculosis and diabetes. BCG immunization was done in mice before infection with M. tuberculosis, and latency was confirmed by bacillary load, histopathological changes in the lungs and gene expression of hspX, tgs1, tgs3 and tgs5. Diabetes was then induced by a single high dose of streptozotocin (150 mg/kg body weight). Host factors, like various cytokines and MMPs (Matrix metalloproteinases), which play an important role in the containment of mycobacterial infection were studied in vivo and in vitro. Results A murine model of latent TB was developed, which was confirmed by CFU counts (<104 in the lungs and spleen) and granuloma formation in lungs in the latent TB group. Also, the gene expression of hspX, tgs1, and tgs5 was upregulated, and after diabetes induction, blood glucose levels were >200 mg/dl. An in vitro study employing a THP-1 macrophage model of latent and active tuberculosis under normal and high glucose conditions showed that dormant bacilli were better contained in the presence of 5.5 mM glucose concentration as compared with active bacilli. However, the killing and restriction efficiency of macrophages decreased, and CFU counts increased significantly with an increase in glucose concentration. Discussion The decreased levels of MCP-1, decreased expression of mmp-9, and increased expression of mmp-1 in the latent group at high glucose concentrations could explain the failure of granuloma formation at high glucose conditions.
Collapse
Affiliation(s)
- Arpana Verma
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Maninder Kaur
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Princy Luthra
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Lakshyaveer Singh
- Tuberculosis Aerosol Challenge Facility (TACF), International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Divya Aggarwal
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Indu Verma
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Bishan D. Radotra
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Sanjay Kumar Bhadada
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Sadhna Sharma
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, India,*Correspondence: Sadhna Sharma,
| |
Collapse
|
5
|
Epidemiological and Cytokine Profile of Patients with Pulmonary and Extrapulmonary Tuberculosis in a Population of the Brazilian Amazon. Microorganisms 2022; 10:microorganisms10102075. [PMID: 36296351 PMCID: PMC9609616 DOI: 10.3390/microorganisms10102075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Several factors are associated with the development of different clinical forms of tuberculosis (TB). The present study evaluated epidemiological variables and cytokine levels in samples from 89 patients with TB (75 with pulmonary TB and 14 with extrapulmonary TB) and 45 controls. Cytokines were measured by flow cytometry (Human Th1/Th2/Th17 Cytometric Bead Array kit). The TB group had a higher frequency of individuals who were 39 years of age or older, married, with primary education or illiterate and had a lower family income (p < 0.05). All individuals with extrapulmonary TB reported that they were not working, and the main reasons were related to disease symptoms or treatment. The levels of IFN-γ (OR = 4.06) and IL-4 (OR = 2.62) were more likely to be elevated in the TB group (p = 0.05), and IFN-γ levels were lower in patients with extrapulmonary TB compared to those with pulmonary TB (OR = 0.11; p = 0.0050). The ROC curve was applied to investigate the diagnostic accuracy of IFN-γ levels between the different clinical forms of tuberculosis, resulting in high AUC (0.8661; p < 0.0001), sensitivity (93.85%) and specificity median (65.90%), suggesting that IFN-γ levels are useful to differentiate pulmonary TB from extrapulmonary TB. The dysregulation of pro- and anti-inflammatory cytokine levels represent a risk for the development of TB and contribute to the pathogenesis of the disease, especially variation in IFN-γ levels, which may determine protection or risk for extrapulmonary TB.
Collapse
|
6
|
Dasaradhan T, Koneti J, Kalluru R, Gadde S, Cherukuri SP, Chikatimalla R. Tuberculosis-Associated Anemia: A Narrative Review. Cureus 2022; 14:e27746. [PMID: 36106202 PMCID: PMC9447415 DOI: 10.7759/cureus.27746] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2022] [Indexed: 11/25/2022] Open
Abstract
Tuberculosis (TB) is an airborne illness that induces systemic inflammation. It often affects the lungs causing cough, fever, and chest pain. A commonly associated comorbid condition in TB is anemia. This review article has summarized various studies with an aim to gain a better understanding of pathogenesis and the role of cytokines that contribute to the development of anemia in TB. The study has gathered risk factors that enhance the likelihood of TB patients acquiring anemia. It has reviewed therapeutic modalities such as antitubercular therapy and iron therapy in an attempt to find which of them are effective in reducing the severity of anemia. This review article has also emphasized the importance of measuring hepcidin and ferritin and has touched upon the investigations that can be easily implemented.
Collapse
|
7
|
Saghazadeh A, Rezaei N. Vascular endothelial growth factor levels in tuberculosis: A systematic review and meta-analysis. PLoS One 2022; 17:e0268543. [PMID: 35613134 PMCID: PMC9132289 DOI: 10.1371/journal.pone.0268543] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 05/03/2022] [Indexed: 12/21/2022] Open
Abstract
Background Changes in endothelial function are implicated in the spread of tuberculosis (TB). Studies suggest a role for the vascular endothelial growth factor (VEGF) in TB-related endothelial function changes. However, the findings of studies investigating the VGEF profile in TB are not consistent, and no formal systematic review and meta-analysis exists summarizing these studies. Methods We did a meta-analysis of studies assessing VEGF levels in patients with TB. A systematic search on June 25, 2021, was conducted for eligible studies that made VEGF measurements in an unstimulated sample, e.g., a blood fraction (plasma or serum), cerebrospinal fluid (CSF), pleural effusion (PE), or bronchoalveolar lavage fluid, and ascites or pericardial fluid for patients with TB and controls without TB. Also, studies that made simultaneous measurements of VEGF in blood and PE or CSF in the same patients with TB were included. Longitudinal studies that provided these data at baseline or compared pre-post anti-tuberculosis treatment (ATT) levels of VEGF were included. The primary outcome was the standardized mean difference (SMD) of VEGF levels between the comparison groups. Results 52 studies were included in the meta-analysis. There were 1787 patients with TB and 3352 control subjects of eight categories: 107 patients with transudative pleural effusion, 228 patients with congestive heart failure (CHF)/chronic renal failure (CRF), 261 patients with empyema and parapneumonic effusion (PPE), 241 patients with cirrhosis, 694 healthy controls (with latent TB infection or uninfected individuals), 20 patients with inactive tuberculous meningitis (TBM), 123 patients with non-TBM, and 1678 patients with malignancy. The main findings are as follows: (1) serum levels of VEGF are higher in patients with active TB compared with healthy controls without other respiratory diseases, including those with latent TB infection or uninfected individuals; (2) both serum and pleural levels of VEGF are increased in patients with TPE compared with patients with transudative, CHF/CRF, or cirrhotic pleural effusion; (3) ascitic/pericardial fluid, serum, and pleural levels of VEGF are decreased in patients with TB compared with patients with malignancy; (4) pleural levels of VEGF are lower in patients with TPE compared with those with empyema and PPE, whereas serum levels of VEGF are not different between these patients; (5) both CSF and serum levels of VEGF are increased in patients with active TBM compared with controls, including patients with inactive TBM or non-TBM subjects; (6) post-ATT levels of VEGF are increased compared with pre-ATT levels of VEGF; and (7) the mean age and male percentage of the TB group explained large and total amount of heterogeneity for the meta-analysis of blood and pleural VEGF levels compared with healthy controls and patients with PPE, respectively, whereas these moderators did not show any significant interaction with the effect size for other analyses. Discussion The important limitation of the study is that we could not address the high heterogeneity among studies. There might be unmeasured factors behind this heterogeneity that need to be explored in future research. Meta-analysis findings align with the hypothesis that TB may be associated with abnormal vascular function, and both local and systemic levels of VEGF can be used to trace this abnormality.
Collapse
Affiliation(s)
- Amene Saghazadeh
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- * E-mail:
| |
Collapse
|
8
|
Vascular endothelial growth factor (VEGF) and interleukin-1 receptor antagonist (IL-1Ra) as promising biomarkers for distinguishing active from latent tuberculosis in children and adolescents. Tuberculosis (Edinb) 2022; 134:102205. [DOI: 10.1016/j.tube.2022.102205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 11/22/2022]
|
9
|
Mann TN, Davis JH, Walzl G, Beltran CG, du Toit J, Lamberts RP, Chegou NN. Candidate Biomarkers to Distinguish Spinal Tuberculosis From Mechanical Back Pain in a Tuberculosis Endemic Setting. Front Immunol 2021; 12:768040. [PMID: 34868023 PMCID: PMC8637108 DOI: 10.3389/fimmu.2021.768040] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/02/2021] [Indexed: 12/02/2022] Open
Abstract
Background Spinal tuberculosis (TB) may have a variable, non-specific presentation including back pain with- or without- constitutional symptoms. Further tools are needed to aid early diagnosis of this potentially severe form of TB and immunological biomarkers may show potential in this regard. The aim of this study was to investigate the utility of host serum biomarkers to distinguish spinal TB from mechanical back pain. Methods Patients with suspected spinal TB or suspected mechanical back pain were recruited from a tertiary hospital in the Western Cape, South Africa, and provided a blood sample for biomarker analysis. Diagnosis was subsequently confirmed using bacteriological testing, advanced imaging and/or clinical evaluation, as appropriate. The concentrations of 19 host biomarkers were evaluated in serum samples using the Luminex platform. Receiver Operating Characteristic (ROC) curves and General Discriminant Analysis were used to identify biomarkers with the potential to distinguish spinal TB from mechanical back pain. Results Twenty-six patients with spinal TB and 17 with mechanical back pain were recruited. Seven out of 19 biomarkers were significantly different between groups, of which Fibrinogen, CRP, IFN-γ and NCAM were the individual markers with the highest discrimination utility (Area Under Curve ROC plot 0.88-0.99). A five-marker biosignature (CRP, NCAM, Ferritin, CXCL8 and GDF-15) correctly classified all study participants after leave-one-out cross-validation. Conclusion This study identified host serum biomarkers with the potential to diagnose spinal TB, including a five-marker biosignature. These preliminary findings require validation in larger studies.
Collapse
Affiliation(s)
- Theresa N. Mann
- Division of Orthopaedic Surgery, Department of Surgical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Institute of Orthopaedics and Rheumatology, Mediclinic Winelands Orthopaedic Hospital, Stellenbosch, South Africa
| | - Johan H. Davis
- Division of Orthopaedic Surgery, Department of Surgical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Institute of Orthopaedics and Rheumatology, Mediclinic Winelands Orthopaedic Hospital, Stellenbosch, South Africa
| | - Gerhard Walzl
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Caroline G. Beltran
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Jacques du Toit
- Division of Orthopaedic Surgery, Department of Surgical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Robert P. Lamberts
- Division of Orthopaedic Surgery, Department of Surgical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Department of Sport Science, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Novel N. Chegou
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
10
|
Wani BA, Shehjar F, Shah S, Koul A, Yusuf A, Murtaza M, Singh R, Althobaiti F, Aldhahrani A, Afroze D. Association of IFN-gamma and IL-10 gene variants with the risk of extrapulmonary tuberculosis. Saudi J Biol Sci 2021; 28:4210-4216. [PMID: 34354401 PMCID: PMC8324987 DOI: 10.1016/j.sjbs.2021.06.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 11/21/2022] Open
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis (MTB) is a chronic infectious disease. Interferon-gamma (IFN-γ) is an important cytokine imparting resistance to mycobacterial diseases. It is believed that IFN-γ and Interleukin-10 (IL-10) play divergent roles in the host immune system against MTB infection. IL-10 is an important inhibitory cytokine and helps balancing the inflammatory and immune responses. IL-10 is involved in down regulation of Th1 cytokines, MHC class II antigen and co-stimulatory molecular expression on macrophages, while IFN-γ results in macrophage activation allowing them to exert the microbicidal role. The objectives were to find out the association of IL-10 (-1082 A/G) and IFN-γ (+874 A/T) single nucleotide polymorphisms (SNPs) with extrapulmonary tuberculosis in ethnic Kashmiri population. A total of 100 extrapulmonary tuberculosis cases and 102 healthy controls were analyzed for IL-10 (-1082 A/G) and IFN- γ (+874 A/T) SNPs using Allele-Specific PCR. We found a significant association of IFN-γ + 874 'TT' genotype with extrapulmonary tuberculosis (p = 0.006) and in case of IL-10 (-1082 A/G) we found a significant association with extrapulmonary tuberculosis under recessive model (GG vs GA + AA) (p = 0.03) in Kashmiri population. IL-10 (-1082 A/G) and IFN-γ (+874 A/T) have a significant association with extrapulmonary tuberculosis in ethnic Kashmiri population.
Collapse
Affiliation(s)
- Bilal Ahmad Wani
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, J&K, India
- Amity Institute of Microbial Biotechnology, Amity University, Uttar Pradesh, Noida, U.P, India
| | - Faheem Shehjar
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, J&K, India
| | - Sonaullah Shah
- Department of Internal & Pulmonary Medicine, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, J&K, India
| | - Ajaz Koul
- Department of Internal & Pulmonary Medicine, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, J&K, India
| | - Adfar Yusuf
- Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, J&K, India
| | - Masqooba Murtaza
- Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, J&K, India
| | - Rajni Singh
- Amity Institute of Microbial Biotechnology, Amity University, Uttar Pradesh, Noida, U.P, India
| | - Fayez Althobaiti
- Department of Biotechnology, Clege of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Adil Aldhahrani
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif 21995, Saudi Arabia
| | - Dil Afroze
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, J&K, India
| |
Collapse
|
11
|
Chendi BH, Snyders CI, Tonby K, Jenum S, Kidd M, Walzl G, Chegou NN, Dyrhol-Riise AM. A Plasma 5-Marker Host Biosignature Identifies Tuberculosis in High and Low Endemic Countries. Front Immunol 2021; 12:608846. [PMID: 33732236 PMCID: PMC7958880 DOI: 10.3389/fimmu.2021.608846] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/03/2021] [Indexed: 01/06/2023] Open
Abstract
Background: Several host inflammatory markers have been proposed as biomarkers for diagnosis and treatment response in Tuberculosis (TB), but few studies compare their utility in different demographic, ethnic, and TB endemic settings. Methods: Fifty-four host biomarkers were evaluated in plasma samples obtained from presumed TB cases recruited at the Oslo University Hospital in Norway, and a health center in Cape Town, South Africa. Based on clinical and laboratory assessments, participants were classified as having TB or other respiratory diseases (ORD). The concentrations of biomarkers were analyzed using the Luminex multiplex platform. Results: Out of 185 study participants from both study sites, 107 (58%) had TB, and 78 (42%) ORD. Multiple host markers showed diagnostic potential in both the Norwegian and South African cohorts, with I-309 as the most accurate single marker irrespective of geographical setting. Although study site-specific biosignatures had high accuracy for TB, a site-independent 5-marker biosignature (G-CSF, C3b/iC3b, procalcitonin, IP-10, PDGF-BB) was identified diagnosing TB with a sensitivity of 72.7% (95% CI, 49.8–82.3) and specificity of 90.5% (95% CI, 69.6–98.8) irrespective of geographical site. Conclusion: A 5-marker host plasma biosignature has diagnostic potential for TB disease irrespective of TB setting and should be further explored in larger cohorts.
Collapse
Affiliation(s)
- Bih H Chendi
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Division of Molecular Biology and Human Genetics, Department of Science and Technology-National Research Foundation (DST-NRF) Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Candice I Snyders
- Division of Molecular Biology and Human Genetics, Department of Science and Technology-National Research Foundation (DST-NRF) Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Kristian Tonby
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Synne Jenum
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Martin Kidd
- Department of Statistics and Actuarial Sciences, Centre for Statistical Consultation, Stellenbosch University, Cape Town, South Africa
| | - Gerhard Walzl
- Division of Molecular Biology and Human Genetics, Department of Science and Technology-National Research Foundation (DST-NRF) Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Novel N Chegou
- Division of Molecular Biology and Human Genetics, Department of Science and Technology-National Research Foundation (DST-NRF) Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Anne M Dyrhol-Riise
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
12
|
Korma W, Mihret A, Chang Y, Tarekegn A, Tegegn M, Tuha A, Hwang D, Asefa M, Hasen MO, Kim S, Tessema TS, Lee H. Antigen-Specific Cytokine and Chemokine Gene Expression for Diagnosing Latent and Active Tuberculosis. Diagnostics (Basel) 2020; 10:diagnostics10090716. [PMID: 32962082 PMCID: PMC7555064 DOI: 10.3390/diagnostics10090716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/15/2022] Open
Abstract
Tuberculosis infection exhibits different forms, namely, pulmonary, extrapulmonary, and latent. Here, diagnostic markers based on the gene expression of cytokines and chemokines for differentiating between tuberculosis infection state(s) were identified. Gene expression of seven cytokines (Interferon gamma (IFN-γ), Interferon gamma-induced protein 10 (IP-10), Interleukin-2 receptor (IL-2R), C-X-C Motif Chemokine Ligand 9 (CXCL-9), Interleukin 10 (IL-10), Interleukin 4 (IL-4), and Tumor Necrosis Factor alpha (TNF-α)) in response to tuberculosis antigen was analyzed using real-time polymerase reaction. The sensitivity and specificity of relative quantification (2^-ΔΔCt) of mRNA expression were analyzed by constructing receiver operating characteristic curves and measuring the area under the curve (AUC) values. Combinations of cytokines were analyzed using the R statistical software package. IFN-γ, IP-10, IL2R, and CXCL-9 showed high expression in latent and active tuberculosis patients (p = 0.001), with a decrease in IL10 expression, and no statistical difference in IL-4 levels among all the groups (p = 0.999). IL-10 differentiated pulmonary tuberculosis patients from latent cases with an AUC of 0.731. IL10 combined with CXCL-9 distinguished pulmonary tuberculosis patients from extrapulmonary cases with a sensitivity, specificity, and accuracy of 85.7%, 73.9%, and 81.0%, respectively. IL-10 together with IP-10 and IL-4 differentiated pulmonary tuberculosis from latent cases with a sensitivity and specificity of 77.1% and 88.1%, respectively. Decision tree analysis demonstrated that IFN-γ IL-2R, and IL-4 can diagnose tuberculosis infection with a sensitivity, specificity, and accuracy of 89.7%, 96.1%, and 92.7%, respectively. A combination of gene expression of cytokines and chemokines might serve as an effective marker to differentiate tuberculosis infection state(s).
Collapse
Affiliation(s)
- Workneh Korma
- Molecular Diagnostic Laboratory, Department of Biomedical Laboratory Sciences, Yonsei University, Wonju 26493, Korea; (Y.C.); (D.H.); (S.K.)
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, P.O. Box 1176, Ethiopia;
- Armauer Hansen Research Institute, Addis Ababa, P.O Box 1005, Ethiopia; (A.M.); (A.T.); (M.T.); (A.T.); (M.O.H.)
- Correspondence: or (W.K.); (H.L.)
| | - Adane Mihret
- Armauer Hansen Research Institute, Addis Ababa, P.O Box 1005, Ethiopia; (A.M.); (A.T.); (M.T.); (A.T.); (M.O.H.)
| | - Yunhee Chang
- Molecular Diagnostic Laboratory, Department of Biomedical Laboratory Sciences, Yonsei University, Wonju 26493, Korea; (Y.C.); (D.H.); (S.K.)
| | - Azeb Tarekegn
- Armauer Hansen Research Institute, Addis Ababa, P.O Box 1005, Ethiopia; (A.M.); (A.T.); (M.T.); (A.T.); (M.O.H.)
| | - Metasebiya Tegegn
- Armauer Hansen Research Institute, Addis Ababa, P.O Box 1005, Ethiopia; (A.M.); (A.T.); (M.T.); (A.T.); (M.O.H.)
| | - Adem Tuha
- Armauer Hansen Research Institute, Addis Ababa, P.O Box 1005, Ethiopia; (A.M.); (A.T.); (M.T.); (A.T.); (M.O.H.)
| | - Dasom Hwang
- Molecular Diagnostic Laboratory, Department of Biomedical Laboratory Sciences, Yonsei University, Wonju 26493, Korea; (Y.C.); (D.H.); (S.K.)
| | - Mesfin Asefa
- St. Paul’s Hospital Millennium Medical College, Department of pathology, Addis Ababa, P.O. Box 1271, Ethiopia;
| | - Mahlet O. Hasen
- Armauer Hansen Research Institute, Addis Ababa, P.O Box 1005, Ethiopia; (A.M.); (A.T.); (M.T.); (A.T.); (M.O.H.)
| | - Seoyoung Kim
- Molecular Diagnostic Laboratory, Department of Biomedical Laboratory Sciences, Yonsei University, Wonju 26493, Korea; (Y.C.); (D.H.); (S.K.)
| | - Tesfaye S. Tessema
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, P.O. Box 1176, Ethiopia;
| | - Hyeyoung Lee
- Molecular Diagnostic Laboratory, Department of Biomedical Laboratory Sciences, Yonsei University, Wonju 26493, Korea; (Y.C.); (D.H.); (S.K.)
- Correspondence: or (W.K.); (H.L.)
| |
Collapse
|
13
|
Al-Mozaini MA, Tsolaki AG, Abdul-Aziz M, Abozaid SM, Al-Ahdal MN, Pathan AA, Murugaiah V, Makarov EM, Kaur A, Sim RB, Kishore U, Kouser L. Human Properdin Modulates Macrophage: Mycobacterium bovis BCG Interaction via Thrombospondin Repeats 4 and 5. Front Immunol 2018; 9:533. [PMID: 29867915 PMCID: PMC5951972 DOI: 10.3389/fimmu.2018.00533] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 03/01/2018] [Indexed: 02/01/2023] Open
Abstract
Mycobacterium tuberculosis can proficiently enter macrophages and diminish complement activation on its cell surface. Within macrophages, the mycobacterium can suppress macrophage apoptosis and survive within the intracellular environment. Previously, we have shown that complement regulatory proteins such as factor H may interfere with pathogen–macrophage interactions during tuberculosis infection. In this study, we show that Mycobacterium bovis BCG binds properdin, an upregulator of the complement alternative pathway. TSR4+5, a recombinant form of thrombospondin repeats 4 and 5 of human properdin expressed in tandem, which is an inhibitor of the alternative pathway, was also able to bind to M. bovis BCG. Properdin and TSR4+5 were found to inhibit uptake of M. bovis BCG by THP-1 macrophage cells in a dose-dependent manner. Quantitative real-time PCR revealed elevated pro-inflammatory responses (TNF-α, IL-1β, and IL-6) in the presence of properdin or TSR4+5, which gradually decreased over 6 h. Correspondingly, anti-inflammatory responses (IL-10 and TGF-β) showed suppressed levels of expression in the presence of properdin, which gradually increased over 6 h. Multiplex cytokine array analysis also revealed that properdin and TSR4+5 significantly enhanced the pro-inflammatory response (TNF-α, IL-1β, and IL-1α) at 24 h, which declined at 48 h, whereas the anti-inflammatory response (IL-10) was suppressed. Our results suggest that properdin may interfere with mycobacterial entry into macrophages via TSR4 and TSR5, particularly during the initial stages of infection, thus affecting the extracellular survival of the pathogen. This study offers novel insights into the non-complement related functions of properdin during host–pathogen interactions in tuberculosis.
Collapse
Affiliation(s)
- Maha Ahmed Al-Mozaini
- College of Health and Life Sciences, Brunel University London, London, United Kingdom.,Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Anthony G Tsolaki
- College of Health and Life Sciences, Brunel University London, London, United Kingdom
| | - Munirah Abdul-Aziz
- College of Health and Life Sciences, Brunel University London, London, United Kingdom.,Department of Biochemistry, Oxford University, Oxford, United Kingdom
| | - Suhair M Abozaid
- College of Health and Life Sciences, Brunel University London, London, United Kingdom.,Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Mohammed N Al-Ahdal
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Ansar A Pathan
- College of Health and Life Sciences, Brunel University London, London, United Kingdom
| | - Valarmathy Murugaiah
- College of Health and Life Sciences, Brunel University London, London, United Kingdom
| | - Evgeny M Makarov
- College of Health and Life Sciences, Brunel University London, London, United Kingdom
| | - Anuvinder Kaur
- College of Health and Life Sciences, Brunel University London, London, United Kingdom
| | - Robert B Sim
- Department of Biochemistry, Oxford University, Oxford, United Kingdom
| | - Uday Kishore
- College of Health and Life Sciences, Brunel University London, London, United Kingdom
| | - Lubna Kouser
- College of Health and Life Sciences, Brunel University London, London, United Kingdom
| |
Collapse
|