1
|
Papadopoulou D, Chrysikopoulou V, Rampaouni A, Tsoupras A. Antioxidant and anti-inflammatory properties of water kefir microbiota and its bioactive metabolites for health promoting bio-functional products and applications. AIMS Microbiol 2024; 10:756-811. [PMID: 39628717 PMCID: PMC11609422 DOI: 10.3934/microbiol.2024034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/05/2024] [Accepted: 08/28/2024] [Indexed: 12/06/2024] Open
Abstract
Inflammation and oxidative stress are implicated in several chronic disorders, while healthy foods and especially fermented beverages and those containing probiotics can provide anti-inflammatory and antioxidant protection against such manifestations and the associated disorders. Water kefir is such a beverage that is rich in both probiotic microbiota and anti-inflammatory bioactives, with an increasing demand as an alternative to a fermented product based on non-dairy matrix with potential health properties. Within this study, the health-promoting properties of the most representative species and strains of microorganisms present in water kefir grains, as well as the health benefits attributed to the bioactive metabolites produced by each individual strain in a series of their cultures, were thoroughly reviewed. Emphasis was given to the antioxidant, antithrombotic, and anti-inflammatory bio-functionalities of both the cultured microorganisms and the bioactive metabolites produced in each case. Moreover, an extensive presentation of the antioxidant and anti-inflammatory health benefits observed from the overall water kefir cultures and classic water kefir beverages obtained were also conducted. Finally, the use of water kefir for the production of several other bio-functional products, including fermented functional foods, supplements, nutraceuticals, nutricosmetics, cosmeceuticals, and cosmetic applications with anti-inflammatory and antioxidant health promoting potential was also thoroughly discussed. Limitations and future perspectives on the use of water kefir, its microorganisms, and their bioactive metabolites are also outlined.
Collapse
Affiliation(s)
| | | | | | - Alexandros Tsoupras
- Hephaestus Laboratory, School of Chemistry, Faculty of Science, Democritus University of Thrace, Kavala University Campus, 65404, Kavala, Greece
| |
Collapse
|
2
|
Campos GM, Américo MF, Dos Santos Freitas A, Barroso FAL, da Cruz Ferraz Dutra J, Quaresma LS, Cordeiro BF, Laguna JG, de Jesus LCL, Fontes AM, Birbrair A, Santos TM, Azevedo V. Lactococcus lactis as an Interleukin Delivery System for Prophylaxis and Treatment of Inflammatory and Autoimmune Diseases. Probiotics Antimicrob Proteins 2024; 16:352-366. [PMID: 36746838 PMCID: PMC9902259 DOI: 10.1007/s12602-023-10041-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 02/08/2023]
Abstract
Target delivery of therapeutic agents with anti-inflammatory properties using probiotics as delivery and recombinant protein expression vehicles is a promising approach for the prevention and treatment of many diseases, such as cancer and intestinal immune disorders. Lactococcus lactis, a Lactic Acid Bacteria (LAB) widely used in the dairy industry, is one of the most important microorganisms with GRAS status for human consumption, for which biotechnological tools have already been developed to express and deliver recombinant biomolecules with anti-inflammatory properties. Cytokines, for example, are immune system communication molecules present at virtually all levels of the immune response. They are essential in cellular and humoral processes, such as hampering inflammation or adjuvating in the adaptive immune response, making them good candidates for therapeutic approaches. This review discusses the advances in the development of new therapies and prophylactic approaches using LAB to deliver/express cytokines for the treatment of inflammatory and autoimmune diseases in the future.
Collapse
Affiliation(s)
- Gabriela Munis Campos
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Monique Ferrary Américo
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Andria Dos Santos Freitas
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Joyce da Cruz Ferraz Dutra
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
- Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ludmila Silva Quaresma
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Bárbara Fernandes Cordeiro
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Juliana Guimarães Laguna
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luís Cláudio Lima de Jesus
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Aparecida Maria Fontes
- Genetics Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Alexander Birbrair
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Tulio Marcos Santos
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
- Uniclon Biotecnologia, Belo Horizonte, MG, Brazil
| | - Vasco Azevedo
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
3
|
Markakiou S, Neves AR, Zeidan AA, Gaspar P. Development of a Tetracycline-Inducible System for Conditional Gene Expression in Lactococcus lactis and Streptococcus thermophilus. Microbiol Spectr 2023; 11:e0066823. [PMID: 37191512 PMCID: PMC10269922 DOI: 10.1128/spectrum.00668-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/21/2023] [Indexed: 05/17/2023] Open
Abstract
Inducible gene expression systems are invaluable tools for the functional characterization of genes and in the construction of protein overexpression hosts. Controllable expression is especially important for the study of essential and toxic genes or genes where the level of expression tightly influences their cellular effect. Here, we implemented the well-characterized tetracycline-inducible expression system in two industrially important lactic acid bacteria, Lactococcus lactis and Streptococcus thermophilus. Using a fluorescent reporter gene, we show that optimization of the repression level is necessary for efficient induction using anhydrotetracycline in both organisms. Random mutagenesis in the ribosome binding site of the tetracycline repressor TetR in Lactococcus lactis indicated that altering the expression levels of TetR was necessary for efficient inducible expression of the reporter gene. Through this approach, we achieved plasmid-based, inducer-responsive, and tight gene expression in Lactococcus lactis. We then verified the functionality of the optimized inducible expression system in Streptococcus thermophilus following its chromosomal integration using a markerless mutagenesis approach and a novel DNA fragment assembly tool presented herein. This inducible expression system holds several advantages over other described systems in lactic acid bacteria, although more efficient techniques for genetic engineering are still needed to realize these advantages in industrially relevant species, such as S. thermophilus. Our work expands the molecular toolbox of these bacteria, which can accelerate future physiological studies. IMPORTANCE Lactococcus lactis and Streptococcus thermophilus are two industrially important lactic acid bacteria globally used in dairy fermentations and, therefore, are of considerable commercial interest to the food industry. Moreover, due to their general history of safe usage, these microorganisms are increasingly being explored as hosts for the production of heterologous proteins and various chemicals. Development of molecular tools in the form of inducible expression systems and mutagenesis techniques facilitates their in-depth physiological characterization as well as their exploitation in biotechnological applications.
Collapse
Affiliation(s)
- Sofia Markakiou
- R&D Department, Chr. Hansen A/S, Hørsholm, Denmark
- Department of Biochemistry, University of Groningen, Groningen, Netherlands
| | | | | | - Paula Gaspar
- R&D Department, Chr. Hansen A/S, Hørsholm, Denmark
| |
Collapse
|
4
|
Kosiorek K, Koryszewska-Bagińska A, Skoneczny M, Aleksandrzak-Piekarczyk T. Control of Bacterial Phenotype and Chromosomal Gene Expression by Single Plasmids of Lactococcus lactis IL594. Int J Mol Sci 2023; 24:9877. [PMID: 37373024 DOI: 10.3390/ijms24129877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Plasmid-free Lactococcus lactis IL1403 is one of the best-characterized representatives of lactic acid bacteria (LAB), intensively used in broad microbiology worldwide. Its parent strain, L. lactis IL594, contains seven plasmids (pIL1-pIL7) with resolved DNA sequences and an indicated role for overall plasmid load in enhancing host-adaptive potential. To determine how individual plasmids manipulate the expression of phenotypes and chromosomal genes, we conducted global comparative phenotypic analyses combined with transcriptomic studies in plasmid-free L. lactis IL1403, multiplasmid L. lactis IL594, and its single-plasmid derivatives. The presence of pIL2, pIL4, and pIL5 led to the most pronounced phenotypic differences in the metabolism of several carbon sources, including some β-glycosides and organic acids. The pIL5 plasmid also contributed to increased tolerance to some antimicrobial compounds and heavy metal ions, especially those in the toxic cation group. Comparative transcriptomics showed significant variation in the expression levels of up to 189 chromosomal genes due to the presence of single plasmids and 435 unique chromosomal genes that were resultant of the activity of all plasmids, which may suggest that the observed phenotypic changes are not only the result of a direct action of their own genes but also originate from indirect actions through crosstalk between plasmids and the chromosome. The data obtained here indicate that plasmid maintenance leads to the development of important mechanisms of global gene regulation that provide changes in the central metabolic pathways and adaptive properties of L. lactis and suggest the possibility of a similar phenomenon among other groups of bacteria.
Collapse
Affiliation(s)
- Katarzyna Kosiorek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences (IBB PAS), Pawińskiego 5a, 02-106 Warsaw, Poland
| | | | - Marek Skoneczny
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences (IBB PAS), Pawińskiego 5a, 02-106 Warsaw, Poland
| | | |
Collapse
|
5
|
Zhang Y, Li X, Shan B, Zhang H, Zhao L. Perspectives from recent advances of Helicobacter pylori vaccines research. Helicobacter 2022; 27:e12926. [PMID: 36134470 DOI: 10.1111/hel.12926] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/25/2022] [Accepted: 08/17/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND Helicobacter pylori (H. pylori) infection is the main factor leading to some gastric diseases. Currently, H. pylori infection is primarily treated with antibiotics. However, with the widespread application of antibiotics, H. pylori resistance to antibiotics has also gradually increased year by year. Vaccines may be an alternative solution to clear H. pylori. AIMS By reviewing the recent progress on H. pylori vaccines, we expected it to lead to more research efforts to accelerate breakthroughs in this field. MATERIALS & METHODS We searched the research on H. pylori vaccine in recent years through PubMed®, and then classified and summarized these studies. RESULTS The study of the pathogenic mechanism of H. pylori has led to the development of vaccines using some antigens, such as urease, catalase, and heat shock protein (Hsp). Based on these antigens, whole-cell, subunit, nucleic acid, vector, and H. pylori exosome vaccines have been tested. DISCUSSION At present, researchers have developed many types of vaccines, such as whole cell vaccines, subunit vaccines, vector vaccines, etc. However, although some of these vaccines induced protective immunity in mouse models, only a few were able to move into human trials. We propose that mRNA vaccine may play an important role in preventing or treating H. pylori infection. The current study shows that we have developed various types of vaccines based on the virulence factors of H. pylori. However, only a few vaccines have entered human clinical trials. In order to improve the efficacy of vaccines, it is necessary to enhance T-cell immunity. CONCLUSION We should fully understand the pathogenic mechanism of H. pylori and find its core antigen as a vaccine target.
Collapse
Affiliation(s)
- Ying Zhang
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoya Li
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Baoen Shan
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongtao Zhang
- University of Pennsylvania School of Medicine Philadelphia, Philadelphia, Pennsylvania, USA
| | - Lianmei Zhao
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
6
|
Dieye Y, Nguer CM, Thiam F, Diouara AAM, Fall C. Recombinant Helicobacter pylori Vaccine Delivery Vehicle: A Promising Tool to Treat Infections and Combat Antimicrobial Resistance. Antibiotics (Basel) 2022; 11:antibiotics11121701. [PMID: 36551358 PMCID: PMC9774608 DOI: 10.3390/antibiotics11121701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Antimicrobial resistance (AMR) has become a global public health threat. Experts agree that unless proper actions are taken, the number of deaths due to AMR will increase. Many strategies are being pursued to tackle AMR, one of the most important being the development of efficient vaccines. Similar to other bacterial pathogens, AMR in Helicobacter pylori (Hp) is rising worldwide. Hp infects half of the human population and its prevalence ranges from <10% in developed countries to up to 90% in low-income countries. Currently, there is no vaccine available for Hp. This review provides a brief summary of the use of antibiotic-based treatment for Hp infection and its related AMR problems together with a brief description of the status of vaccine development for Hp. It is mainly dedicated to genetic tools and strategies that can be used to develop an oral recombinant Hp vaccine delivery platform that is (i) completely attenuated, (ii) can survive, synthesize in situ and deliver antigens, DNA vaccines, and adjuvants to antigen-presenting cells at the gastric mucosa, and (iii) possibly activate desired compartments of the gut-associated mucosal immune system. Recombinant Hp vaccine delivery vehicles can be used for therapeutic or prophylactic vaccination for Hp and other microbial pathogens.
Collapse
Affiliation(s)
- Yakhya Dieye
- Groupe de Recherche Biotechnologies Appliquées & Bioprocédés Environnementaux (GRBA-BE), École Supérieure Polytechnique, Université Cheikh Anta Diop, Dakar BP 5085, Senegal
- Pôle de Microbiologie, Institut Pasteur de Dakar, 36 Avenue Pasteur, Dakar BP 220, Senegal
- Correspondence: or ; Tel.: +221-784-578-766
| | - Cheikh Momar Nguer
- Groupe de Recherche Biotechnologies Appliquées & Bioprocédés Environnementaux (GRBA-BE), École Supérieure Polytechnique, Université Cheikh Anta Diop, Dakar BP 5085, Senegal
| | - Fatou Thiam
- Groupe de Recherche Biotechnologies Appliquées & Bioprocédés Environnementaux (GRBA-BE), École Supérieure Polytechnique, Université Cheikh Anta Diop, Dakar BP 5085, Senegal
| | - Abou Abdallah Malick Diouara
- Groupe de Recherche Biotechnologies Appliquées & Bioprocédés Environnementaux (GRBA-BE), École Supérieure Polytechnique, Université Cheikh Anta Diop, Dakar BP 5085, Senegal
| | - Cheikh Fall
- Pôle de Microbiologie, Institut Pasteur de Dakar, 36 Avenue Pasteur, Dakar BP 220, Senegal
| |
Collapse
|
7
|
Son J, Jeong KJ. Engineering of Leuconostoc citreum for Efficient Bioconversion of Soy Isoflavone Glycosides to Their Aglycone Forms. Int J Mol Sci 2022; 23:ijms23179568. [PMID: 36076965 PMCID: PMC9455899 DOI: 10.3390/ijms23179568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Soy isoflavones are phytochemicals that possess various beneficial physiological properties such as anti-aging, anti-tumor, and antioxidant properties. Since soy isoflavones exist in glycoside forms, their bioavailability requires initial hydrolysis of the sugar moieties bound to them to be efficiently absorbed through the gut epithelium. Instead of conventional chemical hydrolysis using acids or organic solvents, alternative strategies for enhancing the bioavailability of soy isoflavones using biological methods are gaining attention. Here, we engineered Leuconostoc citreum isolated from Korean kimchi for efficient bioconversion of soy isoflavone glycosides into their aglycone forms to enhance their bioavailability. We first constructed an expression module based on the isoflavone hydrolase (IH)-encoding gene of Bifidobacterium lactis, which mediates conversion of isoflavone glycosides to aglycone forms. Using a high copy number plasmid and bicistronic expression design, the IH was successfully synthesized in L. citreum. Additionally, we determined enzymatic activity of the IH using an in vivo β-glucosidase assay and confirmed its highly efficient bioconversion efficiency for various types of isoflavone glycosides. Finally, we successfully demonstrated that the engineered L. citreum could convert isoflavone glycosides present in fermented soymilk into aglycones.
Collapse
Affiliation(s)
- Jaewoo Son
- Department of Chemical and Biomolecular Engineering, BK21 Plus Program, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Ki Jun Jeong
- Department of Chemical and Biomolecular Engineering, BK21 Plus Program, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
- Institute for The BioCentury, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
- Correspondence: ; Tel.: +82-42-350-3934
| |
Collapse
|
8
|
Chelliah R, Banan-MwineDaliri E, Khan I, Wei S, Elahi F, Yeon SJ, Selvakumar V, Ofosu FK, Rubab M, Ju HH, Rallabandi HR, Madar IH, Sultan G, Oh DH. A review on the application of bioinformatics tools in food microbiome studies. Brief Bioinform 2022; 23:6533500. [PMID: 35189636 DOI: 10.1093/bib/bbac007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/20/2021] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
There is currently a transformed interest toward understanding the impact of fermentation on functional food development due to growing consumer interest on modified health benefits of sustainable foods. In this review, we attempt to summarize recent findings regarding the impact of Next-generation sequencing and other bioinformatics methods in the food microbiome and use prediction software to understand the critical role of microbes in producing fermented foods. Traditionally, fermentation methods and starter culture development were considered conventional methods needing optimization to eliminate errors in technique and were influenced by technical knowledge of fermentation. Recent advances in high-output omics innovations permit the implementation of additional logical tactics for developing fermentation methods. Further, the review describes the multiple functions of the predictions based on docking studies and the correlation of genomic and metabolomic analysis to develop trends to understand the potential food microbiome interactions and associated products to become a part of a healthy diet.
Collapse
Affiliation(s)
- Ramachandran Chelliah
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea
| | - Eric Banan-MwineDaliri
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea
| | - Imran Khan
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea.,Department of Biotechnology, University of Malakand, Khyber Pakhtunkhwa Pakistan
| | - Shuai Wei
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea.,Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Fazle Elahi
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea
| | - Su-Jung Yeon
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea
| | - Vijayalakshmi Selvakumar
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea
| | - Fred Kwame Ofosu
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea
| | - Momna Rubab
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea
| | - Hum Hun Ju
- Department of Biological Environment, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea
| | - Harikrishna Reddy Rallabandi
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea
| | - Inamul Hasan Madar
- Department of Biochemistry, School of Life Science, Bharathidasan, University, Thiruchirappalli, Tamilnadu, India
| | - Ghazala Sultan
- Department of Computer Science, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Deog Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea
| |
Collapse
|
9
|
Ren Y, Lu X, Yang Z, Lei H. Protective immunity induced by oral vaccination with a recombinant Lactococcus lactis vaccine against H5Nx in chickens. BMC Vet Res 2022; 18:3. [PMID: 34980121 PMCID: PMC8720943 DOI: 10.1186/s12917-021-03109-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 12/13/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The development of an influenza vaccine for poultry that provides broadly protective immunity against influenza H5Nx viruses is a challenging goal. RESULTS Lactococcus lactis (L. lactis)/pNZ8149-HA1-M2 expressing hemagglutinin-1 (HA1) of A/chicken/Vietnam/NCVD-15A59/2015 (H5N6) and the conserved M2 gene of A/Vietnam/1203/2004 (H5N1) was generated. L. lactis/pNZ8149-HA1-M2 could induce significant humoral, mucosal and cell-mediated immune responses, as well as neutralization antibodies. Importantly, L. lactis/pNZ8149-HA1-M2 could prevent disease symptoms without significant weight loss and confer protective immunity in a chicken model against lethal challenge with divergent influenza H5Nx viruses, including H5N6 and H5N1. CONCLUSIONS L. lactis/pNZ8149-HA1-M2 can serve as a promising vaccine candidate in poultry industry for providing protection against H5Nx virus infection in the field application.
Collapse
Affiliation(s)
- Yi Ren
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Xin Lu
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Zhonghe Yang
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Han Lei
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
| |
Collapse
|
10
|
|
11
|
Dendritic Cells Targeting Lactobacillus plantarum Strain NC8 with a Surface-Displayed Single-Chain Variable Fragment of CD11c Induce an Antigen-Specific Protective Cellular Immune Response. Infect Immun 2020; 88:IAI.00759-19. [PMID: 31740528 DOI: 10.1128/iai.00759-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/08/2019] [Indexed: 12/16/2022] Open
Abstract
Influenza A virus (H1N1) is an acute, highly contagious respiratory virus. The use of lactic acid bacteria (LAB) to deliver mucosal vaccines against influenza virus infection is a research hot spot. In this study, two recombinant Lactobacillus plantarum strains expressing hemagglutinin (HA) alone or coexpressing aCD11c-HA to target HA protein to dendritic cells (DCs) by fusion to an anti-CD11c single-chain antibody (aCD11c) were constructed. The activation of bone marrow dendritic cells (BMDCs) by recombinant strains and the interaction of activated BMDCs and sorted CD4+ or CD8+ T cells were evaluated through flow cytometry in vitro, and cellular supernatants were assessed by using an enzyme-linked immunosorbent assay kit. The results demonstrated that, compared to the HA strain, the aCD11c-HA strain significantly increased the activation of BMDCs and increased the production of CD4+ gamma interferon-positive (IFN-γ+) T cells, CD8+ IFN-γ+ T cells, and IFN-γ in the cell culture supernatant in vitro Consistent with these results, the aCD11c-HA strain clearly increased the activation and maturation of DCs, the HA-specific responses of CD4+ IFN-γ+ T cells, CD8+ IFN-γ+ T cells, and CD8+ CD107a+ T cells, and the proliferation of T cells in the spleen, finally increasing the levels of specific antibodies and neutralizing antibodies in mice. In addition, the protection of immunized mice was observed after viral infection, as evidenced by improved weight loss, survival, and lung pathology. The adoptive transfer of CD8+ T cells from the aCD11c-HA mice to NOD/Lt-SCID mice resulted in a certain level of protection after influenza virus infection, highlighting the efficacy of the aCD11c targeting strategy.
Collapse
|
12
|
Takahashi K, Orito N, Tokunoh N, Inoue N. Current issues regarding the application of recombinant lactic acid bacteria to mucosal vaccine carriers. Appl Microbiol Biotechnol 2019; 103:5947-5955. [PMID: 31175431 DOI: 10.1007/s00253-019-09912-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 12/21/2022]
Abstract
Over the past two decades, lactic acid bacteria (LAB) have been intensively studied as potential bacterial carriers for therapeutic materials, such as vaccine antigens, to the mucosal tissues. LAB have several attractive advantages as carriers of mucosal vaccines, and the effectiveness of LAB vaccines has been demonstrated in numerous studies. Research on LAB vaccines to date has focused on whether antigen-specific immunity, particularly antibody responses, can be induced. However, with recent developments in immunology, microbiology, and vaccinology, more detailed analyses of the underlying mechanisms, especially, of the induction of cell-mediated immunity and memory cells, have been required for vaccine development and licensure. In this mini-review, we will discuss the issues, including (i) immune responses other than antibody production, (ii) persistence of LAB vaccine immunity, (iii) comparative evaluation of LAB vaccines with any existing or reference vaccines, (iv) strategies for increasing the effectiveness of LAB vaccines, and (iv) effects of microbiota on the efficacy of LAB vaccines. Although these issues have been rarely studied or discussed to date in relation to LAB vaccine research, further understanding of them is critical for the practical application of LAB vaccine systems.
Collapse
Affiliation(s)
- Keita Takahashi
- Department of Microbiology and Immunology, Gifu Pharmaceutical University, 1-25-4 Daigaku Nishi, Gifu, 501-1196, Japan.
| | - Nozomi Orito
- Department of Microbiology and Immunology, Gifu Pharmaceutical University, 1-25-4 Daigaku Nishi, Gifu, 501-1196, Japan
| | - Nagisa Tokunoh
- Department of Microbiology and Immunology, Gifu Pharmaceutical University, 1-25-4 Daigaku Nishi, Gifu, 501-1196, Japan
| | - Naoki Inoue
- Department of Microbiology and Immunology, Gifu Pharmaceutical University, 1-25-4 Daigaku Nishi, Gifu, 501-1196, Japan.
| |
Collapse
|
13
|
Liu J, Yang G, Gao X, Zhang Z, Liu Y, Liu Q, Chatel JM, Jiang Y, Wang C. Recombinant invasive Lactobacillus plantarum expressing fibronectin binding protein A induce specific humoral immune response by stimulating differentiation of dendritic cells. Benef Microbes 2019; 10:589-604. [PMID: 31088293 DOI: 10.3920/bm2018.0157] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recombinant lactic acid bacteria (LAB), especially Lactococcus lactis, have been genetically engineered to express heterogeneous invasion proteins, such as the fibronectin binding protein A (FnBPA) from Staphylococcus aureus, to increase the invasion ability of the host strains, indicating a promising approach for DNA vaccine delivery. The presence of FnBPA has been also shown to be an adjuvant for co-delivered antigens, however, the underlying mechanisms are still not clear. To explore the above underlying mechanisms, in this study, we constructed a novel Lactobacillus plantarum strain with surface displayed FnBPA, which could significantly improve the adhesion and invasion ratios of L. plantarum strain on a porcine intestinal epithelial cell line (IPEC-J2) about two-fold compared with the empty vector. At the same time, the presence of FnBPA significantly stimulated the differentiation of bone marrow-derived dendritic cells (DCs) and increased the secretion of interleukin (IL)-6 and mRNA level of IL-6 gene, which were proved by flow cytometry, enzyme-linked immunosorbent assay (ELISA) and quantitative reverse transcription PCR (qRT-PCR). With regard to in vivo study, the presence of FnBPA significantly stimulated the differentiation of DCs in the Peyer's patch (PP) and the percentages of IL-4+ and IL-17A+ T helper (Th) cells of splenocytes in flow cytometry assay. In consistent with these results, the levels of IL-4 and IL-17A in serum as measured via ELISA also increased in mice treated with FnBPA+ L. plantarum. Finally, the FnBPA strain increased the production of B220+ B cells in mesenteric lymph node (MLN) and PP and the levels of FnBPA-specific IgG and sIgA antibodies, indicating the its possible application in vaccine field. This study demonstrated that the invasive L. plantarum with surface displayed FnBPA could modulate host immune response by stimulating the differentiation of DCs and Th cells which could possibly be responsive for the adjuvant effects of FnBPA.
Collapse
Affiliation(s)
- J Liu
- 1 College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, 130118 Changchun, China P.R
| | - G Yang
- 1 College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, 130118 Changchun, China P.R
| | - X Gao
- 1 College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, 130118 Changchun, China P.R
| | - Z Zhang
- 1 College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, 130118 Changchun, China P.R
| | - Y Liu
- 1 College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, 130118 Changchun, China P.R
| | - Q Liu
- 1 College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, 130118 Changchun, China P.R
| | - J-M Chatel
- 2 Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Y Jiang
- 1 College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, 130118 Changchun, China P.R
| | - C Wang
- 1 College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, 130118 Changchun, China P.R
| |
Collapse
|
14
|
Tagliavia M, Nicosia A. Advanced Strategies for Food-Grade Protein Production: A New E. coli/Lactic Acid Bacteria Shuttle Vector for Improved Cloning and Food-Grade Expression. Microorganisms 2019; 7:microorganisms7050116. [PMID: 31035573 PMCID: PMC6560424 DOI: 10.3390/microorganisms7050116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/19/2019] [Accepted: 04/24/2019] [Indexed: 12/13/2022] Open
Abstract
Food-grade production of recombinant proteins in Gram-positive bacteria, especially in LAB (i.e., Lactococcus, Lactobacillus, and Streptococcus), is of great interest in the areas of recombinant enzyme production, industrial food fermentation, gene and metabolic engineering, as well as antigen delivery for oral vaccination. Food-grade expression relies on hosts generally considered as safe organisms and on clone selection not dependent on antibiotic markers, which limit the overall DNA manipulation workflow, as it can be carried out only in the expression host and not in E. coli. Moreover, many commercial expression vectors lack useful elements for protein purification. We constructed a “shuttle” vector containing a removable selective marker, which allows feasible cloning steps in E. coli and subsequent protein expression in LAB. In fact, the cassette can be easily excised from the selected recombinant plasmid, and the resulting marker-free vector transformed into the final LAB host. Further useful elements, as improved MCS, 6xHis-Tag, and thrombin cleavage site sequences were introduced. The resulting vector allows easy cloning in E. coli, can be quickly converted in a food-grade expression vector and harbors additional elements for improved recombinant protein purification. Overall, such features make the new vector an improved tool for food-grade expression.
Collapse
Affiliation(s)
- Marcello Tagliavia
- National Research Council-Institute for the Study of Anthropic Impacts and Sustainability in the Marine Environment (IAS-CNR), Capo Granitola, Via del mare, Campobello di Mazara (TP), 91021 Sicily, Italy.
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed.16, 90128 Palermo, Italy.
| | - Aldo Nicosia
- National Research Council-Institute for the Study of Anthropic Impacts and Sustainability in the Marine Environment (IAS-CNR), Capo Granitola, Via del mare, Campobello di Mazara (TP), 91021 Sicily, Italy.
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed.16, 90128 Palermo, Italy.
| |
Collapse
|
15
|
Zhuang K, Jiang Y, Li M, Li H, Feng X, Qu X, Man C. Expression of milk-derived angiotensin I-converting enzyme-inhibitory peptides in Lactococcus lactis. FOOD BIOTECHNOL 2019. [DOI: 10.1080/08905436.2019.1571420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Kejin Zhuang
- Key Lab of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin, China
| | - Yujun Jiang
- Key Lab of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin, China
| | - Mingyu Li
- Key Lab of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin, China
| | - Hongfu Li
- Key Lab of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin, China
| | - Xiaohan Feng
- Key Lab of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin, China
| | - Xingguang Qu
- Key Lab of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin, China
| | - Chaoxin Man
- Key Lab of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|