1
|
Sharma A, Kumar S, Kumar R, Sharma AK, Singh B, Sharma D. Computational studies on metabolic pathways of Coxiella burnetii to combat Q fever: A roadmap to vaccine development. Microb Pathog 2025; 198:107136. [PMID: 39571832 DOI: 10.1016/j.micpath.2024.107136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
Coxiella burnetii (Cbu) is the gram-negative intracellular pathogen responsible for deadly zoonotic infection, Q fever. The pathogen is environmentally stable and distributed throughout the world which is sustained in nature by chronic infection of ruminants. The epidemiological studies on Q fever indicates it as emerging public health problem in various countries and it is imperative to promptly identify an appropriate therapeutic solution for this pathogen. In the current study, metabolic pathways of Cbu were analysed by the combination of multiple computational tools for the prediction of suitable therapeutic candidates. We have identified 25 metabolic pathways which were specific to Cbu containing 287 unique proteins. A total of 141 proteins which were either virulent, essential or resistant were shortlisted that do not show homology with the host proteins and considered as potential targets for drug and vaccine development. The potential therapeutic targets were classified in to seven functional classes, i.e., metabolism, transport, gene expression and regulation, signal transduction, antimicrobial resistance, stress response regulator and unknown. The majority of the proteins were found to be present in metabolism and transport class. The functional annotation showed the predominant presence of proteins containing HATPase_c, Beta-lactamase, GerE, ACR_tran, PP-binding, CsrA domains. We have identified Type I secretion outer membrane protein for the design of multi-epitope subunit vaccine using reverse vacciniology approach. Four B cell epitopes, six MHC-I epitopes and four MHC-II epitopes were identified which are non-toxic, non-allergen and highly antigenic. The multi-epitope subunit vaccine construct was 327 amino acid residues long which include adjuvant, B cell epitopes, MHC-I epitopes and MHC-II epitopes. The Cholera enterotoxin subunit B is included as an adjuvant in the N terminal of vaccine construct which will help to produce a strong immune response to the vaccine. The multi-epitope vaccine construct was non-toxic, non-allergen and probable antigen having molecular weight 35.13954 kDa, aliphatic index 85.50, theoretical PI 9.65, GRAVY -0.001, and instability index of 28.37. The tertiary structure of the vaccine construct was modeled and physiochemical properties were predicted. After validation and refinement of tertiary structure the molecular docking of vaccine exhibited strong binding with TLR2, TLR3, TLR4, TLR5 and TLR8. The TLRs and vaccine construct formed hydrogen bonds, salt bridges and non-bonded contacts with all TLR receptors. The in-silico immune simulations showed the ability to trigger primary immune response as shown by increment in B-cell and T-cell population. The research paves the way for more effective control of zoonotic disease Q fever.
Collapse
Affiliation(s)
- Ankita Sharma
- Dr. Ambedkar Centre of Excellence, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, 176215, India
| | - Sunil Kumar
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, India, 176206
| | - Rakesh Kumar
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, India, 176206
| | - Amit Kumar Sharma
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, India, 176206
| | - Birbal Singh
- ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, Himachal Pradesh, India, 176061
| | - Dixit Sharma
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, India, 176206.
| |
Collapse
|
2
|
Prajapat B, Sharma A, Kumar S, Sharma D. Deciphering Rickettsia conorii metabolic pathways: A treasure map to therapeutic targets. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2024; 6:1-9. [PMID: 39722831 PMCID: PMC11667008 DOI: 10.1016/j.biotno.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024]
Abstract
Indian tick typhus is an infectious disease caused by intracellular gram-negative bacteria Rickettsia conorii (R. conorii). The bacterium is transmitted to humans through bite of infected ticks and sometimes by lice, fleas or mites. The disease is restricted to some areas with few cases but in last decade it is re-emerging with large number of cases from different areas of India. The insight in to genetic makeup of bacterial pathogens can be derived from their metabolic pathways. In the current study 18 metabolic pathways were found to be unique to the pathogen (R. conorii). A comprehensive analysis revealed 163 proteins implicated in 18 unique metabolic pathways of R. conorii. 140 proteins were reported to be essential for the bacterial survival, 46 were found virulent and 10 were found involved in resistance which can enhance the bacterial pathogenesis. The functional analysis of unique metabolic pathway proteins showed the abundance of plasmid conjugal transfer TrbL/VirB6, aliphatic acid kinase short chain, signal transduction response regulator receiver and components of type IV transporter system domains. The proteins were classified into six broad categories on the basis of predicted domains, i.e., metabolism, transport, gene expression and regulation, antimicrobial resistance, cell signalling and proteolysis. Further, in silico analysis showed that 88 proteins were suitable therapeutic targets which do not showed homology with host proteins. The 43 proteins showed hits with the DrugBank database showing their druggable nature and remaining 45 proteins were classified as novel drug targets that require further validation. The study will help to provide the better understanding of pathogens survival and embark on the development of successful therapies for the management of Indian tick typhus.
Collapse
Affiliation(s)
- Brijesh Prajapat
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, India, 176206
| | - Ankita Sharma
- Dr. Ambedkar Centre of Excellence, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, 176215, India
| | - Sunil Kumar
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, India, 176206
| | - Dixit Sharma
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, India, 176206
| |
Collapse
|
3
|
Kushwah AS, Dixit H, Upadhyay V, Verma SK, Prasad R. The study of iron- and copper-binding proteome of Fusarium oxysporum and its effector candidates. Proteins 2024; 92:1097-1112. [PMID: 38666709 DOI: 10.1002/prot.26696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 03/26/2024] [Accepted: 04/08/2024] [Indexed: 08/07/2024]
Abstract
Fusarium oxysporum f.sp. lycopersici is a phytopathogen which causes vascular wilt disease in tomato plants. The survival tactics of both pathogens and hosts depend on intricate interactions between host plants and pathogenic microbes. Iron-binding proteins (IBPs) and copper-binding proteins (CBPs) play a crucial role in these interactions by participating in enzyme reactions, virulence, metabolism, and transport processes. We employed high-throughput computational tools at the sequence and structural levels to investigate the IBPs and CBPs of F. oxysporum. A total of 124 IBPs and 37 CBPs were identified in the proteome of Fusarium. The ranking of amino acids based on their affinity for binding with iron is Glu > His> Asp > Asn > Cys, and for copper is His > Asp > Cys respectively. The functional annotation, determination of subcellular localization, and Gene Ontology analysis of these putative IBPs and CBPs have unveiled their potential involvement in a diverse array of cellular and biological processes. Three iron-binding glycosyl hydrolase family proteins, along with four CBPs with carbohydrate-binding domains, have been identified as potential effector candidates. These proteins are distinct from the host Solanum lycopersicum proteome. Moreover, they are known to be located extracellularly and function as enzymes that degrade the host cell wall during pathogen-host interactions. The insights gained from this report on the role of metal ions in plant-pathogen interactions can help develop a better understanding of their fundamental biology and control vascular wilt disease in tomato plants.
Collapse
Affiliation(s)
- Ankita Singh Kushwah
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Himisha Dixit
- Centre for Computational Biology & Bioinformatics, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, India
| | - Vipin Upadhyay
- Centre for Computational Biology & Bioinformatics, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, India
| | - Shailender Kumar Verma
- Centre for Computational Biology & Bioinformatics, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, India
- Department of Environmental Studies, University of Delhi, North Campus, Delhi, India
| | - Ramasare Prasad
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| |
Collapse
|
4
|
Wu R, Xie D, Du J. The binding pattern of ferric iron and iron-binding protein in Botrytis cinerea. Comput Biol Med 2024; 178:108686. [PMID: 38850956 DOI: 10.1016/j.compbiomed.2024.108686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/06/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
Iron-binding protein (Ibp) has protective effect on pathogen exposed to H2O2 in defense response of plants. Ibp in Botrytis cinerea (BcIbp) is related to its virulence. Bcibp mutation lead to virulence deficiencies in B. cinerea. BcIbp is involved in the Fe3+ homeostasis regulation. Recognition the binding site and binding pattern of ferric iron and iron-binding protein in B. cinerea are vital to understand its function. In this study, molecular dynamics (MD) simulations, gaussian accelerated molecular dynamics (GaMD) simulations, dynamic cross correlation analysis and quantum chemical energy calculation were used to explore binding pattern of ferric iron. MD results showed that the C-terminal region had little effect on the stability of residues in the Fe3+-binding pocket. Energy calculations suggested the most likely coordination pattern for ferric iron in iron-binding protein. These results will help to understand the binding of ferric iron to iron-binding protein and provide new ideas for regulating the virulence of B. cinerea.
Collapse
Affiliation(s)
- Ruihan Wu
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Donglin Xie
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Juan Du
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
5
|
Rogowska A, Król-Górniak A, Railean V, Kanawati B, Schmitt-Kopplin P, Michalke B, Sugajski M, Pomastowski P, Buszewski B. Deciphering the complexes of zinc ions and hen egg white lysozyme: Instrumental analysis, molecular docking, and antimicrobial assessment. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123490. [PMID: 37816265 DOI: 10.1016/j.saa.2023.123490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/12/2023]
Abstract
In the research presented in this manuscript, an intricate study has been carried out on the interaction of zinc ions with the hen egg white lysozyme (HEWL) protein. Utilizing a spectroscopic technique, the alterations that arise due to the binding of Zn2+ to the HEWL were scrutinized, underscoring the paramount significance of deprotonated carboxyl and thiol groups in the process of binding. The binding phenomena were substantiated using capillary electrophoresis integrated with inductively coupled plasma mass spectrometry (CE-ICP-MS). Further spectrometric assessments (MALDI-TOF MS and FT-ICR-MS) shed light on the direct interaction of zinc ions with the functional groups of the protein. Importantly, high-resolution FT-ICR-MS techniques elucidated the capability of a single protein molecule to bind to multiple zinc ions. The empirically derived spectroscopic data received additional confirmation via a molecular docking study of the Zn2+ binding process, which highlighted a substantial affinity between the predicted 3D model of zinc-lysozyme complexes. Predominantly, the interaction between the bound entities was observed at the cysteine residues. Lastly, the conducted antimicrobial tests revealed that the zinc-lysozyme complexes manifest an inhibitory effect against bacterial (E. coli and S. aureus) and yeast (C. albicans) strains.
Collapse
Affiliation(s)
- Agnieszka Rogowska
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wileńska 4, 87-100 Torun, Poland; Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Anna Król-Górniak
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wileńska 4, 87-100 Torun, Poland; Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Viorica Railean
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wileńska 4, 87-100 Torun, Poland; Department of Infectious, Invasive Diseases and Veterinary Administration, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Toruń, Poland.
| | - Basem Kanawati
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich-German Research Center for Environmental Health, 85764 Neuherberg, Germany.
| | - Phillipe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich-German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich-German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Mateusz Sugajski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wileńska 4, 87-100 Torun, Poland
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| |
Collapse
|
6
|
Brar B, Kumar R, Sharma D, Sharma AK, Thakur K, Mahajan D, Kumar R. Metagenomic analysis reveals diverse microbial community and potential functional roles in Baner rivulet, India. J Genet Eng Biotechnol 2023; 21:147. [PMID: 38015339 PMCID: PMC10684477 DOI: 10.1186/s43141-023-00601-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND The health index of any population is directly correlated with the water quality, which in turn depends upon physicochemical characteristics and the microbiome of that aquatic source. For maintaining the water quality, knowledge of microbial diversity is a must. The present investigation attempts to evaluate the microflora of Baner. Metagenomics has been proven to be the technique for examining the genetic diversity of unculturable microbiota without using traditional culturing techniques. The microbial profile of Baner is analyzed using metagenomics for the first time to the best of our knowledge. RESULTS To explore the microbial diversity of Baner, metagenomics analysis from 3 different sites was done. Data analysis identified 29 phyla, 62 classes, 131 orders, 268 families, and 741 genera. Proteobacteria was found to be the most abundant phylum in all the sampling sites, with the highest abundance at S3 sampling site (94%). Bacteroidetes phylum was found to be second abundant in S1 and S2 site, whereas Actinobacteria was second dominant in sampling site S3. Enterobacteriaceae family was dominant in site S1, whereas Comamonadaceae and Pseudomonadaceae was abundant in sites S2 and S3 respectively. The Baner possesses an abundant bacterial profile that holds great promise for developing bioremediation tactics against a variety of harmful substances. CONCLUSION Baner river's metagenomic analysis offers the first insight into the microbial profile of this hilly stream. Proteobacteria was found to be the most abundant phylum in all the sampling sites indicating anthropogenic interference and sewage contamination. The highest abundance of proteobacteria at S3 reveals it to be the most polluted site, as it is the last sampling site downstream of the area under investigation, and falls after crossing the main city, so more human intervention and pollution were observed. Despite some pathogens, a rich profile of bacteria involved in bioremediation, xenobiotic degradation, and beneficial fish probiotics was observed, reflecting their potential applications for improving water quality and establishing a healthy aquaculture and fishery section.
Collapse
Affiliation(s)
- Bhavna Brar
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, India
| | - Ravi Kumar
- Department of Microbiology, Dr. Rajendra Prasad Government Medical College & Hospital, Tanda, Kangra, Himachal Pradesh, India
| | - Dixit Sharma
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, India
| | - Amit Kumar Sharma
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, India
| | - Kushal Thakur
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, India
| | - Danish Mahajan
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, India
| | - Rakesh Kumar
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, India.
| |
Collapse
|
7
|
Sharma A, Sharma D, Verma SK. A systematic in silico report on iron and zinc proteome of Zea mays. FRONTIERS IN PLANT SCIENCE 2023; 14:1166720. [PMID: 37662157 PMCID: PMC10469895 DOI: 10.3389/fpls.2023.1166720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/10/2023] [Indexed: 09/05/2023]
Abstract
Zea mays is an essential staple food crop across the globe. Maize contains macro and micronutrients but is limited in essential mineral micronutrients such as Fe and Zn. Worldwide, serious health concerns have risen due to the deficiencies of essential nutrients in human diets, which rigorously jeopardizes economic development. In the present study, the systematic in silico approach has been used to predict Fe and Zn binding proteins from the whole proteome of maize. A total of 356 and 546 putative proteins have been predicted, which contain sequence and structural motifs for Fe and Zn ions, respectively. Furthermore, the functional annotation of these predicted proteins, based on their domains, subcellular localization, gene ontology, and literature support, showed their roles in distinct cellular and biological processes, such as metabolism, gene expression and regulation, transport, stress response, protein folding, and proteolysis. The versatile roles of these shortlisted putative Fe and Zn binding proteins of maize could be used to manipulate many facets of maize physiology. Moreover, in the future, the predicted Fe and Zn binding proteins may act as relevant, novel, and economical markers for various crop improvement programs.
Collapse
Affiliation(s)
- Ankita Sharma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, India
| | - Dixit Sharma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, India
| | - Shailender Kumar Verma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, India
- Department of Environmental Studies, University of Delhi, Delhi, India
| |
Collapse
|
8
|
Kushwah AS, Dixit H, Upadhyay V, Yadav S, Verma SK, Prasad R. Elucidating the zinc-binding proteome of Fusarium oxysporum f. sp. lycopersici with particular emphasis on zinc-binding effector proteins. Arch Microbiol 2023; 205:298. [PMID: 37516670 DOI: 10.1007/s00203-023-03638-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/29/2023] [Accepted: 07/14/2023] [Indexed: 07/31/2023]
Abstract
Fusarium oxysporum f. sp. lycopersici is a soil-borne phytopathogenic species which causes vascular wilt disease in the Solanum lycopersicum (tomato). Due to the continuous competition for zinc usage by Fusarium and its host during infection makes zinc-binding proteins a hotspot for focused investigation. Zinc-binding effector proteins are pivotal during the infection process, working in conjunction with other essential proteins crucial for its biological activities. This work aims at identifying and analysing zinc-binding proteins and zinc-binding proteins effector candidates of Fusarium. We have identified three hundred forty-six putative zinc-binding proteins; among these proteins, we got two hundred and thirty zinc-binding proteins effector candidates. The functional annotation, subcellular localization, and Gene Ontology analysis of these putative zinc-binding proteins revealed their probable role in wide range of cellular and biological processes such as metabolism, gene expression, gene expression regulation, protein biosynthesis, protein folding, cell signalling, DNA repair, and RNA processing. Sixteen proteins were found to be putatively secretory in nature. Eleven of these were putative zinc-binding protein effector candidates may be involved in pathogen-host interaction during infection. The information obtained here may enhance our understanding to design, screen, and apply the zinc-metal ion-based antifungal agents to protect the S. lycopersicum and control the vascular wilt caused by F. oxysporum.
Collapse
Affiliation(s)
- Ankita Singh Kushwah
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Himisha Dixit
- Centre for Computational Biology & Bioinformatics, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, 176206, India
| | - Vipin Upadhyay
- Centre for Computational Biology & Bioinformatics, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, 176206, India
| | - Siddharth Yadav
- Department of Computer Science and Engineering, Thapar Institute of Engineering & Technology, Patiala, Punjab, 147004, India
| | - Shailender Kumar Verma
- Centre for Computational Biology & Bioinformatics, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, 176206, India
- Department of Environmental Studies, University of Delhi, New Delhi, Delhi, 110007, India
| | - Ramasare Prasad
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
9
|
Azhar BJ, Abbas S, Aman S, Yamburenko MV, Chen W, Müller L, Uzun B, Jewell DA, Dong J, Shakeel SN, Groth G, Binder BM, Grigoryan G, Schaller GE. Basis for high-affinity ethylene binding by the ethylene receptor ETR1 of Arabidopsis. Proc Natl Acad Sci U S A 2023; 120:e2215195120. [PMID: 37253004 PMCID: PMC10266040 DOI: 10.1073/pnas.2215195120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 04/14/2023] [Indexed: 06/01/2023] Open
Abstract
The gaseous hormone ethylene is perceived in plants by membrane-bound receptors, the best studied of these being ETR1 from Arabidopsis. Ethylene receptors can mediate a response to ethylene concentrations at less than one part per billion; however, the mechanistic basis for such high-affinity ligand binding has remained elusive. Here we identify an Asp residue within the ETR1 transmembrane domain that plays a critical role in ethylene binding. Site-directed mutation of the Asp to Asn results in a functional receptor that has a reduced affinity for ethylene, but still mediates ethylene responses in planta. The Asp residue is highly conserved among ethylene receptor-like proteins in plants and bacteria, but Asn variants exist, pointing to the physiological relevance of modulating ethylene-binding kinetics. Our results also support a bifunctional role for the Asp residue in forming a polar bridge to a conserved Lys residue in the receptor to mediate changes in signaling output. We propose a new structural model for the mechanism of ethylene binding and signal transduction, one with similarities to that found in a mammalian olfactory receptor.
Collapse
Affiliation(s)
- Beenish J. Azhar
- Department of Biological Sciences, Dartmouth College, Hanover, NH03755
- Department of Biochemistry, Quaid-i-azam University, Islamabad45320, Pakistan
| | - Safdar Abbas
- Department of Biological Sciences, Dartmouth College, Hanover, NH03755
- Department of Biochemistry, Quaid-i-azam University, Islamabad45320, Pakistan
| | - Sitwat Aman
- Department of Biological Sciences, Dartmouth College, Hanover, NH03755
| | | | - Wei Chen
- Department of Biological Sciences, Dartmouth College, Hanover, NH03755
| | - Lena Müller
- Institute of Biochemical Plant Physiology, Heinrich Heine University Düsseldorf,40225Düsseldorf, Germany
| | - Buket Uzun
- Institute of Biochemical Plant Physiology, Heinrich Heine University Düsseldorf,40225Düsseldorf, Germany
| | - David A. Jewell
- Department of Computer Science, Dartmouth College, Hanover, NH03755
| | - Jian Dong
- Department of Biological Sciences, Dartmouth College, Hanover, NH03755
| | - Samina N. Shakeel
- Department of Biological Sciences, Dartmouth College, Hanover, NH03755
- Department of Biochemistry, Quaid-i-azam University, Islamabad45320, Pakistan
| | - Georg Groth
- Institute of Biochemical Plant Physiology, Heinrich Heine University Düsseldorf,40225Düsseldorf, Germany
| | - Brad M. Binder
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN37996
| | - Gevorg Grigoryan
- Department of Biological Sciences, Dartmouth College, Hanover, NH03755
- Department of Computer Science, Dartmouth College, Hanover, NH03755
| | - G. Eric Schaller
- Department of Biological Sciences, Dartmouth College, Hanover, NH03755
| |
Collapse
|
10
|
Metabolomic Changes as Key Factors of Green Plant Regeneration Efficiency of Triticale In Vitro Anther Culture. Cells 2022; 12:cells12010163. [PMID: 36611956 PMCID: PMC9818285 DOI: 10.3390/cells12010163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Green plant regeneration efficiency (GPRE) via in vitro anther culture results from biochemical pathways and cycle dysfunctions that may affect DNA and histone methylation, with gene expression influencing whole cell functioning. The reprogramming from gametophytic to sporophytic fate is part of the phenomenon. While DNA methylation and sequence changes related to the GPRE have been described, little attention was paid to the biochemical aspects of the phenomenon. Furthermore, only a few theoretical models that describe the complex relationships between biochemical aspects of GPRE and the role of Cu(II) ions in the induction medium and as cofactors of enzymatic reactions have been developed. Still, none of these models are devoted directly to the biochemical level. Fourier transform infrared (FTIR) spectroscopy was used in the current study to analyze triticale regenerants derived under various in vitro tissue culture conditions, including different Cu(II) and Ag(I) ion concentrations in the induction medium and anther culture times. The FTIR spectra of S-adenosyl-L-methionine (SAM), glutathione, and pectins in parallel with the Cu(II) ions, as well as the evaluated GPRE values, were put into the structural equation model (SEM). The data demonstrate the relationships between SAM, glutathione, pectins, and Cu(II) in the induction medium and how they affect GPRE. The SEM reflects the cell functioning under in vitro conditions and varying Cu(II) concentrations. In the presented model, the players are the Krebs and Yang cycles, the transsulfuration pathway controlled by Cu(II) ions acting as cofactors of enzymatic reactions, and the pectins of the primary cell wall.
Collapse
|
11
|
Chakraborty A, Mahajan S, Bisht MS, Sharma VK. Genome sequencing and comparative analysis of Ficus benghalensis and Ficus religiosa species reveal evolutionary mechanisms of longevity. iScience 2022; 25:105100. [PMID: 36164650 PMCID: PMC9508489 DOI: 10.1016/j.isci.2022.105100] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/10/2022] [Accepted: 09/04/2022] [Indexed: 11/23/2022] Open
Abstract
Ficus benghalensis and Ficus religiosa are large woody trees well known for their long lifespan, ecological and traditional significance, and medicinal properties. To understand the genomic and evolutionary aspects of these characteristics, the whole genomes of these Ficus species were sequenced using 10x Genomics linked reads and Oxford Nanopore long reads. The draft genomes of F. benghalensis and F. religiosa comprised of 392.89 Mbp and 332.97 Mbp, respectively. We established the genome-wide phylogenetic positions of the two Ficus species with respect to 50 other Angiosperm species. Comparative evolutionary analyses with other phylogenetically closer Eudicot species revealed adaptive evolution in genes involved in key cellular mechanisms associated with prolonged survival including phytohormones signaling, senescence, disease resistance, and abiotic stress tolerance, which provide genomic insights into the mechanisms conferring longevity and suggest that longevity is a multifaceted phenomenon. This study also provides clues on the existence of CAM pathway in these Ficus species.
Collapse
Affiliation(s)
- Abhisek Chakraborty
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066 Madhya Pradesh, India
| | - Shruti Mahajan
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066 Madhya Pradesh, India
| | - Manohar S. Bisht
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066 Madhya Pradesh, India
| | - Vineet K. Sharma
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066 Madhya Pradesh, India
| |
Collapse
|
12
|
Nguyen TN, Do QH, Vu TTD, Nguyen TT, Nguyen DT, Nguyen TBN, Tran TTH, Vu TKO, Nghiem THL, Hoa TMT, Nguyen TMH, Bui PN, Nguyen MH, Pham DM, Tran TCT. Enhancement of antibacterial activity by a copper(II) and zinc(II) in chelation with ethylenediaminetetra-acetic acid and urea complex. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02361-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Kalajahi ST, Mofradnia SR, Yazdian F, Rasekh B, Neshati J, Taghavi L, Pourmadadi M, Haghirosadat BF. Inhibition performances of graphene oxide/silver nanostructure for the microbial corrosion: molecular dynamic simulation study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:49884-49897. [PMID: 35220537 DOI: 10.1007/s11356-022-19247-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/11/2022] [Indexed: 05/06/2023]
Abstract
Steel is one of the mainly used materials in the oil and gas industry. However, it is susceptible to the marine corrosion, which 20% of the total marine corrosion is caused by microbiologically influenced corrosion (MIC). The economic and environmental impacts of corrosion are significant, and it is crucial to fight against corrosion in a proper sustainability context and environmental-friendly methods. In this study, the graphene oxide/silver nanostructure (GO-Ag) inhibitory effect on the corrosion of steel in the presence of sulfate reducing bacteria (SRB) was investigated, via weight loss (WL) and Tafel polarization measurements. Moreover, molecular dynamic (MD) simulations were performed to obtain a deep understanding of the corrosion inhibition effect of GO-Ag. GO-Ag showed a significant antibacterial effect at 80 ppm. Moreover, WL and Tafel polarization measurements illustrated a great inhibition efficiency, which reached up to 84% reduction of WL and 98% reduction of corrosion current density (Icorr) after 7 days of incubation with GO-Ag. Based on MD simulations, bonding energy reached to the larger value in the presence of GO-Ag, which indicated the ability of graphene oxide nanosheets to be adsorbed on the steel surface and prevent the access of corrosive agents to the steel surface. The radial distribution function (RDF) results implied distance between corrosive agent (water and SRB) and steel surface (Fe atoms), which indicated protection of the steel surface due to the effective adsorption of GO nanosheets through the active sites of the steel surface. The mean square displacement (MSD) result showed smaller displacement of the corrosive particles on the surface of steel, resulting that the GO-Ag molecules bonded with Fe molecules on the surface of steel.
Collapse
Affiliation(s)
- Sara Taghavi Kalajahi
- Department of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, North Kargar Street, 1439957131, Tehran, Iran.
| | - Behnam Rasekh
- Environment and Biotechnology Division, West Blvd. of Azadi Sport Complex, Research Institute of Petroleum Industry (RIPI), P.O. Box 14665-137, Tehran, Iran
| | - Jaber Neshati
- Energy and Environment Research Center, West Blvd. of Azadi Sport Complex, Research Institute of Petroleum Industry (RIPI), P.O. Box 14665-137, Tehran, Iran
| | - Lobat Taghavi
- Department of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mehrab Pourmadadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Bibi Fatemeh Haghirosadat
- Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
14
|
Dineshkumar K, Antony G. Computational identification of putative copper-binding proteins in pomegranate bacterial blight pathogen Xanthomonas citri pv. punicae. Arch Microbiol 2022; 204:362. [DOI: 10.1007/s00203-022-02982-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/12/2022] [Indexed: 11/28/2022]
|
15
|
Sharma D, Kumar S, Sharma A, Kumar R, Kumar R, Kulharia M, Kumar M. Functional assignment to hypothetical proteins in Orientia tsutsugamushistrain Ikeda. Bioinformation 2022; 18:188-195. [PMID: 36518125 PMCID: PMC9722422 DOI: 10.6026/97320630018188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/11/2022] [Accepted: 03/31/2022] [Indexed: 09/19/2023] Open
Abstract
Orientia tsutsugamushi(O. tsutsugamushi) is an intracellular bacterial pathogen which causes zoonosis scrub typhus in humans. Genome of O. tsutsugamushi strain Ikeda contains 214 hypothetical proteins (HPs) which is nearly 20% of the total proteins. Domain and family based functional analysis of HPs results in the annotation of 44 hypothetical proteins. The annotated HPs were classified in to five main classes namely, gene expression and regulation, transport, metabolism, cell signaling and proteolysis. Thus, computational analysis of HPs helps to understand their putative roles in various biological and cellular processes, including pathogenesis for further consideration as potential therapeutic targets.
Collapse
Affiliation(s)
- Dixit Sharma
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, India - 176206
| | - Sunil Kumar
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, India - 176206
| | - Ankita Sharma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, India - 176206
| | - Rakesh Kumar
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, India - 176206
| | - Ranjit Kumar
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, India - 176206
| | - Mahesh Kulharia
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, India - 176206
| | - Manish Kumar
- Department of Chemistry and Chemical Sciences, School of Physical and Material Science, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, India - 176206
| |
Collapse
|
16
|
Kho ZY, Azad MAK, Han ML, Zhu Y, Huang C, Schittenhelm RB, Naderer T, Velkov T, Selkrig J, Zhou Q(T, Li J. Correlative proteomics identify the key roles of stress tolerance strategies in Acinetobacter baumannii in response to polymyxin and human macrophages. PLoS Pathog 2022; 18:e1010308. [PMID: 35231068 PMCID: PMC8887720 DOI: 10.1371/journal.ppat.1010308] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/26/2022] [Indexed: 11/19/2022] Open
Abstract
The opportunistic pathogen Acinetobacter baumannii possesses stress tolerance strategies against host innate immunity and antibiotic killing. However, how the host-pathogen-antibiotic interaction affects the overall molecular regulation of bacterial pathogenesis and host response remains unexplored. Here, we simultaneously investigate proteomic changes in A. baumannii and macrophages following infection in the absence or presence of the polymyxins. We discover that macrophages and polymyxins exhibit complementary effects to disarm several stress tolerance and survival strategies in A. baumannii, including oxidative stress resistance, copper tolerance, bacterial iron acquisition and stringent response regulation systems. Using the spoT mutant strains, we demonstrate that bacterial cells with defects in stringent response exhibit enhanced susceptibility to polymyxin killing and reduced survival in infected mice, compared to the wild-type strain. Together, our findings highlight that better understanding of host-pathogen-antibiotic interplay is critical for optimization of antibiotic use in patients and the discovery of new antimicrobial strategy to tackle multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Zhi Ying Kho
- Biomedicine Discovery Institute, Infection Program and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Mohammad A. K. Azad
- Biomedicine Discovery Institute, Infection Program and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Mei-Ling Han
- Biomedicine Discovery Institute, Infection Program and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Yan Zhu
- Biomedicine Discovery Institute, Infection Program and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Cheng Huang
- Monash Proteomics & Metabolomics Facility, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Ralf B. Schittenhelm
- Monash Proteomics & Metabolomics Facility, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Thomas Naderer
- Biomedicine Discovery Institute, Infection Program, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Tony Velkov
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Joel Selkrig
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Qi (Tony) Zhou
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, Indiana, United States of America
| | - Jian Li
- Biomedicine Discovery Institute, Infection Program and Department of Microbiology, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
17
|
Sharma D, Sharma A, Singh B, Kumar S, Verma S. Neglected scrub typhus: An updated review with a focus on omics technologies. ASIAN PAC J TROP MED 2022. [DOI: 10.4103/1995-7645.364003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
18
|
Sharma D, Sharma A, Singh B, Verma SK. Pan-proteome profiling of emerging and re-emerging zoonotic pathogen Orientia tsutsugamushi for getting insight into microbial pathogenesis. Microb Pathog 2021; 158:105103. [PMID: 34298125 DOI: 10.1016/j.micpath.2021.105103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 01/21/2023]
Abstract
With the occurrence and evolution of antibiotic and multidrug resistance in bacteria most of the existing remedies are becoming ineffective. The pan-proteome exploration of the bacterial pathogens helps to identify the wide spectrum therapeutic targets which will be effective against all strains in a species. The current study is focused on the pan-proteome profiling of zoonotic pathogen Orientia tsutsugamushi (Ott) for the identification of potential therapeutic targets. The pan-proteome of Ott is estimated to be extensive in nature that has 1429 protein clusters, out of which 694 were core, 391 were accessory, and 344 were unique. It was revealed that 622 proteins were essential, 222 proteins were virulent factors, and 42 proteins were involved in antibiotic resistance. The potential therapeutic targets were further classified into eleven broad classes among which gene expression and regulation, transport, and metabolism were dominant. The biological interactome analysis of therapeutic targets revealed that an ample amount of interactions were present among the proteins involved in DNA replication, ribosome assembly, cellwall metabolism, cell division, and antimicrobial resistance. The predicted therapeutic targets from the pan-proteome of Ott are involved in various biological processes, virulence, and antibiotic resistance; hence envisioned as potential candidates for drug discovery to combat scrub typhus.
Collapse
Affiliation(s)
- Dixit Sharma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, 176206, India.
| | - Ankita Sharma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, 176206, India
| | - Birbal Singh
- ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, Himachal Pradesh, 176061, India
| | - Shailender Kumar Verma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, 176206, India
| |
Collapse
|
19
|
Shabrangy A, Ghatak A, Zhang S, Priller A, Chaturvedi P, Weckwerth W. Magnetic Field Induced Changes in the Shoot and Root Proteome of Barley ( Hordeum vulgare L.). FRONTIERS IN PLANT SCIENCE 2021; 12:622795. [PMID: 33708230 PMCID: PMC7940674 DOI: 10.3389/fpls.2021.622795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/13/2021] [Indexed: 05/04/2023]
Abstract
The geomagnetic field (GMF) has been present since the beginning of plant evolution. Recently, some researchers have focused their efforts on employing magnetic fields (MFs) higher than GMF to improve the seed germination, growth, and harvest of agriculturally important crop plants, as the use of MFs is an inexpensive and environment-friendly technique. In this study, we have employed different treatments of MF at 7 mT (milliTesla) at different time points of exposure, including 1, 3, and 6 h. The extended exposure was followed by five consecutive days at 6 h per day in barley seeds. The results showed a positive impact of MF on growth characteristics for 5-day-old seedlings, including seed germination rate, root and shoot length, and biomass weight. Furthermore, ~5 days of delay of flowering in pre-treated plants was also observed. We used a shotgun proteomics approach to identify changes in the protein signatures of root and shoot tissues under MF effects. In total, we have identified 2,896 proteins. Thirty-eight proteins in the shoot and 15 proteins in the root showed significant changes under the MF effect. Proteins involved in primary metabolic pathways were increased in contrast to proteins with a metal ion binding function, proteins that contain iron ions in their structure, and proteins involved in electron transfer chain, which were all decreased significantly in the treated tissues. The upregulated proteins' overall biological processes included carbohydrate metabolic process, oxidation-reduction process, and cell redox homeostasis, while down-regulated processes included translation and protein refolding. In general, shoot response was more affected by MF effect than root tissue, leading to the identification of 41 shoot specific proteins. This study provides an initial insight into the proteome regulation response to MF during barley's seedling stage.
Collapse
Affiliation(s)
- Azita Shabrangy
- Molecular Systems Biology Lab, Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Azita Shabrangy
| | - Arindam Ghatak
- Molecular Systems Biology Lab, Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Shuang Zhang
- Molecular Systems Biology Lab, Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Alfred Priller
- VERA Laboratory, Isotope Physics, Faculty of Physics, University of Vienna, Vienna, Austria
| | - Palak Chaturvedi
- Molecular Systems Biology Lab, Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Wolfram Weckwerth
- Molecular Systems Biology Lab, Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center, University of Vienna, Vienna, Austria
- *Correspondence: Wolfram Weckwerth
| |
Collapse
|
20
|
A novel FRET peptide assay reveals efficient Helicobacter pylori HtrA inhibition through zinc and copper binding. Sci Rep 2020; 10:10563. [PMID: 32601479 PMCID: PMC7324608 DOI: 10.1038/s41598-020-67578-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 06/09/2020] [Indexed: 12/21/2022] Open
Abstract
Helicobacter pylori (H. pylori) secretes the chaperone and serine protease high temperature requirement A (HtrA) that cleaves gastric epithelial cell surface proteins to disrupt the epithelial integrity and barrier function. First inhibitory lead structures have demonstrated the essential role of HtrA in H. pylori physiology and pathogenesis. Comprehensive drug discovery techniques allowing high-throughput screening are now required to develop effective compounds. Here, we designed a novel fluorescence resonance energy transfer (FRET) peptide derived from a gel-based label-free proteomic approach (direct in-gel profiling of protease specificity) as a valuable substrate for H. pylori HtrA. Since serine proteases are often sensitive to metal ions, we investigated the influence of different divalent ions on the activity of HtrA. We identified Zn++ and Cu++ ions as inhibitors of H. pylori HtrA activity, as monitored by in vitro cleavage experiments using casein or E-cadherin as substrates and in the FRET peptide assay. Putative binding sites for Zn++ and Cu++ were then analyzed in thermal shift and microscale thermophoresis assays. The findings of this study will contribute to the development of novel metal ion-dependent protease inhibitors, which might help to fight bacterial infections.
Collapse
|
21
|
Sharma D, Sharma A, Singh B, Verma SK. Bioinformatic Exploration of Metal-Binding Proteome of Zoonotic Pathogen Orientia tsutsugamushi. Front Genet 2019; 10:797. [PMID: 31608099 PMCID: PMC6769048 DOI: 10.3389/fgene.2019.00797] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/30/2019] [Indexed: 12/21/2022] Open
Abstract
Metal ions are involved in many essential biological processes and are crucial for the survival of all organisms. Identification of metal-binding proteins (MBPs) of human affecting pathogens may provide the blueprint for understanding biological metal usage and their putative roles in pathogenesis. This study is focused on the analysis of MBPs from Orientia tsutsugamushi (Ott), a causal agent of scrub typhus in humans. A total of 321 proteins were predicted as putative MBPs, based on sequence search and three-dimensional structure analysis. Majority of proteins could bind with magnesium, and the order of metal binding was Mg > Ca > Zn > Mn > Fe > Cd > Ni > Co > Cu, respectively. The predicted MBPs were functionally classified into nine broad classes. Among them, gene expression and regulation, metabolism, cell signaling, and transport classes were dominant. It was noted that the putative MBPs were localized in all subcellular compartments of Ott, but majorly found in the cytoplasm. Additionally, it was revealed that out of 321 predicted MBPs 245 proteins were putative bacterial toxins and among them, 98 proteins were nonhomologous to human proteome. Sixty putative MBPs showed the ability to interact with drug or drug-like molecules, which indicate that they may be used as broad-spectrum drug targets. These predicted MBPs from Ott could play vital role(s) in various cellular activities and virulence, hence may serve as plausible therapeutic targets to design metal-based drugs to curtail its infection.
Collapse
Affiliation(s)
- Dixit Sharma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Kangra, India
| | - Ankita Sharma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Kangra, India
| | - Birbal Singh
- ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, India
| | - Shailender Kumar Verma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Kangra, India
| |
Collapse
|
22
|
Antoine R, Rivera-Millot A, Roy G, Jacob-Dubuisson F. Relationships Between Copper-Related Proteomes and Lifestyles in β Proteobacteria. Front Microbiol 2019; 10:2217. [PMID: 31608037 PMCID: PMC6769254 DOI: 10.3389/fmicb.2019.02217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/11/2019] [Indexed: 12/25/2022] Open
Abstract
Copper is an essential transition metal whose redox properties are used for a variety of enzymatic oxido-reductions and in electron transfer chains. It is also toxic to living beings, and therefore its cellular concentration must be strictly controlled. We have performed in silico analyses of the predicted proteomes of more than one hundred species of β proteobacteria to characterize their copper-related proteomes, including cuproproteins, i.e., proteins with active-site copper ions, copper chaperones, and copper-homeostasis systems. Copper-related proteomes represent between 0 and 1.48% of the total proteomes of β proteobacteria. The numbers of cuproproteins are globally proportional to the proteome sizes in all phylogenetic groups and strongly linked to aerobic respiration. In contrast, environmental bacteria have considerably larger proportions of copper-homeostasis systems than the other groups of bacteria, irrespective of their proteome sizes. Evolution toward commensalism, obligate, host-restricted pathogenesis or symbiosis is globally reflected in the loss of copper-homeostasis systems. In endosymbionts, defense systems and copper chaperones have disappeared, whereas residual cuproenzymes are electron transfer proteins for aerobic respiration. Lifestyle is thus a major determinant of the size and composition of the copper-related proteome, and it is particularly reflected in systems involved in copper homeostasis. Analyses of the copper-related proteomes of a number of species belonging to the Burkholderia, Bordetella, and Neisseria genera indicates that commensals are in the process of shedding their copper-homeostasis systems and chaperones to greater extents yet than pathogens.
Collapse
Affiliation(s)
| | | | | | - Françoise Jacob-Dubuisson
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 8204 – Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
23
|
Sharma A, Sharma D, Verma SK. Zinc binding proteome of a phytopathogen Xanthomonas translucens pv. undulosa. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190369. [PMID: 31598288 PMCID: PMC6774946 DOI: 10.1098/rsos.190369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/21/2019] [Indexed: 05/15/2023]
Abstract
Xanthomonas translucens pv. undulosa (Xtu) is a proteobacteria which causes bacterial leaf streak (BLS) or bacterial chaff disease in wheat and barley. The constant competition for zinc (Zn) metal nutrients contributes significantly in plant-pathogen interactions. In this study, we have employed a systematic in silico approach to study the Zn-binding proteins of Xtu. From the whole proteome of Xtu, we have identified approximately 7.9% of proteins having Zn-binding sequence and structural motifs. Further, 115 proteins were found homologous to plant-pathogen interaction database. Among these 115 proteins, 11 were predicted as putative secretory proteins. The functional diversity in Zn-binding proteins was revealed by functional domain, gene ontology and subcellular localization analysis. The roles of Zn-binding proteins were found to be varied in the range from metabolism, proteolysis, protein biosynthesis, transport, cell signalling, protein folding, transcription regulation, DNA repair, response to oxidative stress, RNA processing, antimicrobial resistance, DNA replication and DNA integration. This study provides preliminary information on putative Zn-binding proteins of Xtu which may further help in designing new metal-based antimicrobial agents for controlling BLS and bacterial chaff infections on staple crops.
Collapse
|
24
|
Tavares NK, Stracey N, Brunold TC, Escalante-Semerena JC. The l-Thr Kinase/l-Thr-Phosphate Decarboxylase (CobD) Enzyme from Methanosarcina mazei Gö1 Contains Metallocenters Needed for Optimal Activity. Biochemistry 2019; 58:3260-3279. [PMID: 31268299 PMCID: PMC6667302 DOI: 10.1021/acs.biochem.9b00268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The MM2060 (cobD) gene from Methanosarcina mazei strain Gö1 encodes a protein (MmCobD) with l-threonine kinase (PduX) and l-threonine-O-3-phosphate decarboxylase (CobD) activities. In addition to the unexpected l-Thr kinase activity, MmCobD has an extended carboxy-terminal (C-terminal) region annotated as a putative metal-binding zinc finger-like domain. Here, we demonstrate that the C-terminus of MmCobD is a ferroprotein containing ∼25 non-heme iron atoms per monomer of protein. The absence of the C-terminus substantially reduces, but does not abolish, enzymatic activities in vitro and in vivo. Single-residue substitutions of C-terminal putative Fe-binding cysteinyl and histidinyl residues resulted in the loss of Fe and changes in enzyme activity levels. Salmonella enterica ΔpduX and ΔcobD strains were used as heterologous hosts to assess coenzyme B12 biosynthesis as a function of 17 MmCobD variants tested. Some of the latter displayed 5-fold higher enzymatic activity in vitro and enhanced the growth rate of the S. enterica strains that synthesized them. Most of the MmCobD variants tested were up to 6-fold less active in vitro and supported slow growth rates of the S. enterica strains that synthesized them; some substitutions abolished enzyme activity. MmCobD exhibited an ultraviolet-visible absorption spectrum consistent with [4Fe-4S] clusters that appeared to be susceptible to oxidation by H2O2 and reduction by sodium dithionite. The presence of FeS clusters in MmCobD was corroborated by electron paramagnetic resonance and magnetic circular dichroism studies. Collectively, our results suggest that MmCobD contains one or more diamagnetic [4Fe-4S]2+ center(s) that may play a structural or regulatory role.
Collapse
Affiliation(s)
- Norbert K. Tavares
- Department of Microbiology, University of Georgia, Athens, Georgia 30602, USA
| | - Nuru Stracey
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706 USA
| | - Thomas C Brunold
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706 USA
| | | |
Collapse
|