1
|
Beliakoff RE, Gonzalez CF, Lorca GL. Bile promotes Lactobacillus johnsonii N6.2 extracellular vesicle production with conserved immunomodulatory properties. Sci Rep 2024; 14:12272. [PMID: 38806562 PMCID: PMC11133329 DOI: 10.1038/s41598-024-62843-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/22/2024] [Indexed: 05/30/2024] Open
Abstract
Recently, Lactobacillus johnsonii N6.2-derived extracellular vesicles (EVs) were shown to reduce apoptosis in human beta cell lines and stimulate insulin secretion in human islets. Our goal was to identify a physiologically relevant environmental condition that induces a hypervesiculation phenotype in L. johnsonii N6.2 and to evaluate if transcriptional changes are involved in this process. Culturing this strain in the presence of 0.2% bovine bile, which mimics a stressor encountered by the bacterium in the small intestine, resulted in approximately a 100-fold increase in EVs relative to cells grown in media without bile. Whole transcriptome analysis of cells grown with bile revealed upregulation of several peptidoglycan hydrolases as well as several genes involved in fatty acid utilization. These results suggest that the hypervesiculation phenotype may be the result of increased cell wall turnover combined with increased accumulation of phospholipids, in agreement with our previous proteomic and lipidomics results. Additionally, EVs isolated from L. johnsonii N6.2 grown in presence of bile maintained their immunomodulatory properties in host-derived βlox5 pancreatic and THP-1 macrophage cell lines. Our findings suggest that in L. johnsonii N6.2 vesiculogenesis is significantly impacted by the expression of cell wall modifying enzymes and proteins utilized for exogenous fatty acid uptake that are regulated at the transcriptional level. Furthermore, this data suggests that vesiculogenesis could be stimulated in vivo using small molecules thereby maximizing the beneficial interactions between bacteria and their hosts.
Collapse
Affiliation(s)
- Reagan E Beliakoff
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Claudio F Gonzalez
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Graciela L Lorca
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
2
|
Palud A, Roullier-Gall C, Alexandre H, Weidmann S. Mixed biofilm formation by Oenococcus oeni and Saccharomyces cerevisiae: A new strategy for the wine fermentation process. Food Microbiol 2024; 117:104386. [PMID: 37919010 DOI: 10.1016/j.fm.2023.104386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/21/2023] [Accepted: 09/13/2023] [Indexed: 11/04/2023]
Abstract
Bacterial biofilms have attracted much attention in the food industry since this phenotype increases microbial resistance to environmental stresses. In wine-making, the biofilm produced by Oenococcus oeni is able to persist in this harsh environment and perform malolactic fermentations. Certain viticultural practices are interested in the simultaneous triggering of alcoholic fermentation by yeasts of the species Saccharomyces cerevisiae and malolactic fermentation by lactic acid bacteria. As yet, no data is available on the ability of these micro-organisms to produce mixed biofilms and promote fermentations. Here, the ability of S. cerevisiae and O. oeni to form mixed biofilms on different surfaces found in vinification was observed and analyzed using scanning electron microscopy experiments. Then, following co-inoculation with biofilm or planktonic cells microvinifications were carried out to demonstrate that the mixed biofilms developed on oak allow the efficient completion of fermentations because of their high resistance to stress. Finally, comparisons of the different metabolic profiles obtained by LC-MS were made to assess the impact of the mode of life of biofilms on wine composition.
Collapse
Affiliation(s)
- Aurore Palud
- Procédés Alimentaires et Microbiologiques (PAM), AgroSup Dijon, PAM UMR A 02.102, Laboratoire VAlMiS-IUVV, Dijon, France
| | - Chloé Roullier-Gall
- Procédés Alimentaires et Microbiologiques (PAM), AgroSup Dijon, PAM UMR A 02.102, Laboratoire VAlMiS-IUVV, Dijon, France
| | - Hervé Alexandre
- Procédés Alimentaires et Microbiologiques (PAM), AgroSup Dijon, PAM UMR A 02.102, Laboratoire VAlMiS-IUVV, Dijon, France
| | - Stéphanie Weidmann
- Procédés Alimentaires et Microbiologiques (PAM), AgroSup Dijon, PAM UMR A 02.102, Laboratoire VAlMiS-IUVV, Dijon, France.
| |
Collapse
|
3
|
Parlindungan E, Jones OAH. Using metabolomics to understand stress responses in Lactic Acid Bacteria and their applications in the food industry. Metabolomics 2023; 19:99. [PMID: 37999908 DOI: 10.1007/s11306-023-02062-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Lactic Acid Bacteria (LAB) are commonly used as starter cultures, probiotics, to produce lactic acid and other useful compounds, and even as natural preservatives. For use in any food product however, LAB need to survive the various stresses they encounter in the environment and during processing. Understanding these mechanisms may enable direction of LAB biochemistry with potential beneficial impact for the food industry. AIM OF REVIEW To give an overview of the use of LAB in the food industry and then generate a deeper biochemical understanding of LAB stress response mechanisms via metabolomics, and methods of screening for robust strains of LAB. KEY SCIENTIFIC CONCEPTS OF REVIEW Uses of LAB in food products were assessed and factors which contribute to survival and tolerance in LAB investigated. Changes in the metabolic profiles of LAB exposed to stress were found to be associated with carbohydrates, amino acids and fatty acid levels and these changes were proposed to be a result of the bacteria trying to maintain cellular homeostasis in response to external conditions and minimise cellular damage from reactive oxygen species. This correlates with morphological analysis which shows that LAB can undergo cell elongation and shortening, as well as thinning and thickening of cell membranes, when exposed to stress. It is proposed that these innate strategies can be utilised to minimise negative effects caused by stress through selection of intrinsically robust strains, genetic modification and/or prior exposure to sublethal stress. This work demonstrates the utility of metabolomics to the food industry.
Collapse
Affiliation(s)
- Elvina Parlindungan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research, 31 Biopolis Way, Singapore, 138669, Singapore
| | - Oliver A H Jones
- School of Science, Australian Centre for Research On Separation Science (ACROSS), RMIT University, PO Box 71, Bundoora, VIC, 3083, Australia.
| |
Collapse
|
4
|
Liu N, Qin L, Zeng H, Wen A, Miao S. Integrative proteomic-transcriptomic analysis revealed the lifestyles of Lactobacillus paracasei H4-11 and Kluyveromyces marxianus L1-1 under co-cultivation conditions. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
5
|
Castro-López C, Romero-Luna HE, García HS, Vallejo-Cordoba B, González-Córdova AF, Hernández-Mendoza A. Key Stress Response Mechanisms of Probiotics During Their Journey Through the Digestive System: A Review. Probiotics Antimicrob Proteins 2023; 15:1250-1270. [PMID: 36001271 DOI: 10.1007/s12602-022-09981-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2022] [Indexed: 11/26/2022]
Abstract
The survival of probiotic microorganisms during their exposure to harsh environments plays a critical role in the fulfillment of their functional properties. In particular, transit through the human gastrointestinal tract (GIT) is considered one of the most challenging habitats that probiotics must endure, because of the particularly stressful conditions (e.g., oxygen level, pH variations, nutrient limitations, high osmolarity, oxidation, peristalsis) prevailing in the different sections of the GIT, which in turn can affect the growth, viability, physiological status, and functionality of microbial cells. Consequently, probiotics have developed a series of strategies, called "mechanisms of stress response," to protect themselves from these adverse conditions. Such mechanisms may include but are not limited to the induction of new metabolic pathways, formation/production of particular metabolites, and changes of transcription rates. It should be highlighted that some of such mechanisms can be conserved across several different strains or can be unique for specific genera. Hence, this review attempts to review the state-of-the-art knowledge of mechanisms of stress response displayed by potential probiotic strains during their transit through the GIT. In addition, evidence whether stress responses can compromise the biosafety of such strains is also discussed.
Collapse
Affiliation(s)
- Cecilia Castro-López
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Gustavo Enrique Astiazarán Rosas 46, Hermosillo, Sonora, 83304, México
| | - Haydee E Romero-Luna
- Instituto Tecnológico Superior de Xalapa/Tecnológico Nacional de México, Reserva Territorial s/n Sección 5, Santa Bárbara, Xalapa-Enríquez, Veracruz, 91096, México
| | - Hugo S García
- Unidad de Investigación Y Desarrollo de Alimentos, Instituto Tecnológico de Veracruz/Tecnológico Nacional de México, Miguel Ángel de Quevedo 2779, Veracruz, Veracruz, 91897, México
| | - Belinda Vallejo-Cordoba
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Gustavo Enrique Astiazarán Rosas 46, Hermosillo, Sonora, 83304, México
| | - Aarón F González-Córdova
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Gustavo Enrique Astiazarán Rosas 46, Hermosillo, Sonora, 83304, México
| | - Adrián Hernández-Mendoza
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Gustavo Enrique Astiazarán Rosas 46, Hermosillo, Sonora, 83304, México.
| |
Collapse
|
6
|
Chen F, Yin Y, Chen H, Li S, Yin G, Wang H. mleS in Staphylococcus aureus Contributes to Microaerobic Metabolic Activity, Abscess Formation, and Survival in Macrophages. Microbiol Spectr 2023; 11:e0090923. [PMID: 37052483 PMCID: PMC10269618 DOI: 10.1128/spectrum.00909-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/24/2023] [Indexed: 04/14/2023] Open
Abstract
Staphylococcus aureus is subdivided into lineages termed sequence types (STs), infections of which necessitate the expression of virulence factors and metabolic adaptation to the host niche. Given that mechanisms underlying the dynamic replacement of sequence types in S. aureus populations have yet to be sufficiently determined, we investigated the role of metabolic determinants in epidemic clones. mleS, encoding the NAD+-dependent malolactic enzyme, was found to be carried by the epidemic clones ST59 and ST398, although not by ST239 and ST5. The genomic location of mleS in the metabolism-associated region flanked by the thiol-specific redox system and glycolysis operon implies that it plays significant roles in metabolism and pathogenesis. Mouse skin abscess caused by the BS19-mleS mutant strain (isogenic mleS mutant in an ST59 isolate) was significantly attenuated and associated with reductions in interleukin-6 (IL-6) and lactic acid production. mleS deletion also impaired S. aureus biofilm formation and survival in RAW264.7 cells. The BS19-mleS-mutant was also characterized by reduced ATP and lactic acid production under microaerobic conditions; however, NAD+/NADH levels remained unaffected. mleS is thus identified as an epidemiological marker that plays an important role in the microaerobic metabolism and pathogenesis of epidemic S. aureus clones. IMPORTANCE Given the importance of metabolic adaptation during infection, new insights are required regarding the pathogenesis of S. aureus, particularly for epidemic clones. We accordingly investigated the role of metabolic determinants that are unique to the epidemic clones ST59 and ST398. Our results provide evidence that the NAD+-dependent malolactic enzyme-coding gene mleS is an epidemiological marker that plays an important role in the microaerobic metabolism and pathogenesis of epidemic S. aureus clones.
Collapse
Affiliation(s)
- Fengning Chen
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Yuyao Yin
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Hongbin Chen
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Shuguang Li
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Guankun Yin
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| |
Collapse
|
7
|
An J, Zhang Y, Zhao Z, Huan R, Yi H, Wang H, Luan C, Feng S, Huang H, Li S, Wang D, Zhai Z, Hao Y. Molecular Organization and Functional Analysis of a Novel Plasmid-Borne cps Gene Cluster from Lactiplantibacillus plantarum YC41. Microbiol Spectr 2023; 11:e0415022. [PMID: 36877018 PMCID: PMC10100969 DOI: 10.1128/spectrum.04150-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/03/2023] [Indexed: 03/07/2023] Open
Abstract
Capsular polysaccharide (CPS) can tightly attach to bacterial surfaces and plays a critical role in protecting microorganisms from environmental stresses. However, the molecular and functional properties of some plasmid-borne cps gene clusters are poorly understood. In this study, comparative genomics of the draft genomes of 21 Lactiplantibacillus plantarum strains revealed that the specific gene cluster for CPS biosynthesis was observed only in the 8 strains with a ropy phenotype. Furthermore, the complete genomes showed that the specific gene cluster cpsYC41 was located on the novel plasmid pYC41 in L. plantarum YC41. In silico analysis confirmed that the cpsYC41 gene cluster contained the dTDP-rhamnose precursor biosynthesis operon, the repeating-unit biosynthesis operon, and the wzx gene. The insertional inactivation of the rmlA and cpsC genes abolished the ropy phenotype and reduced the CPS yields by 93.79% and 96.62%, respectively, in L. plantarum YC41 mutants. These results revealed that the cpsYC41 gene cluster was responsible for CPS biosynthesis. Moreover, the survival rates of the YC41-rmlA- and YC41-cpsC- mutants under acid, NaCl, and H2O2 stresses were decreased by 56.47 to 93.67% compared to that of the control strain. Furthermore, the specific cps gene cluster was also confirmed to play a vital role in CPS biosynthesis in L. plantarum MC2, PG1, and YD2. These findings enhance our understanding of the genetic organization and gene functions of plasmid-borne cps gene clusters in L. plantarum. IMPORTANCE Capsular polysaccharide is well known to protect bacteria against various environmental stresses. The gene cluster for CPS biosynthesis is typically organized in the chromosome in bacteria. It is worth noting that complete genome sequencing showed that a novel plasmid pYC41-borne cpsYC41 gene cluster was identified in L. plantarum YC41. The cpsYC41 gene cluster included the dTDP-rhamnose precursor biosynthesis operon, the repeating-unit biosynthesis operon, and the wzx gene, which was verified by the significantly decreased CPS yield and the absent ropy phenotype in the corresponding mutants. The cpsYC41 gene cluster plays an important role in bacterial survival under environmental stress, and the mutants had decreased fitness under stress conditions. The vital role of this specific cps gene cluster in CPS biosynthesis was also confirmed in other CPS-producing L. plantarum strains. These results advanced a better understanding of the molecular mechanisms of plasmid-borne cps gene clusters and the protective functionality of CPS.
Collapse
Affiliation(s)
- Jieran An
- Key Laboratory of Functional Dairy, Co-constructed by the Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yuchen Zhang
- Key Laboratory of Functional Dairy, Co-constructed by the Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zhaoer Zhao
- Key Laboratory of Functional Dairy, Co-constructed by the Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Ran Huan
- Key Laboratory of Functional Dairy, Co-constructed by the Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Hui Wang
- Key Laboratory of Functional Dairy, Co-constructed by the Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Chunguang Luan
- China National Research Institute of Food and Fermentation Industries, Beijing, China
| | | | | | - Shanwen Li
- Qinghai Huzhu Barley Wine Co. Ltd., Haining, China
| | - Deliang Wang
- China National Research Institute of Food and Fermentation Industries, Beijing, China
| | - Zhengyuan Zhai
- Key Laboratory of Functional Dairy, Co-constructed by the Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yanling Hao
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Nie R, Zhu Z, Qi Y, Wang Z, Sun H, Liu G. Bacteriocin production enhancing mechanism of Lactiplantibacillus paraplantarum RX-8 response to Wickerhamomyces anomalus Y-5 by transcriptomic and proteomic analyses. Front Microbiol 2023; 14:1111516. [PMID: 36910197 PMCID: PMC9998909 DOI: 10.3389/fmicb.2023.1111516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/30/2023] [Indexed: 02/26/2023] Open
Abstract
Plantaricin is a kind of bacteriocin with broad-spectrum antibacterial activity on several food pathogens and spoilage microorganisms, showing potential in biopreservation applications. However, the low yield of plantaricin limits its industrialization. In this study, it was found that the co-culture of Wickerhamomyces anomalus Y-5 and Lactiplantibacillus paraplantarum RX-8 could enhance plantaricin production. To investigate the response of L. paraplantarum RX-8 facing W. anomalus Y-5 and understand the mechanisms activated when increasing plantaricin yield, comparative transcriptomic and proteomic analyses of L. paraplantarum RX-8 were performed in mono-culture and co-culture. The results showed that different genes and proteins in the phosphotransferase system (PTS) were improved and enhanced the uptake of certain sugars; the key enzyme activity in glycolysis was increased with the promotion of energy production; arginine biosynthesis was downregulated to increase glutamate mechanism and then promoted plantaricin yield; and the expression of several genes/proteins related to purine metabolism was downregulated and those related to pyrimidine metabolism was upregulated. Meanwhile, the increase of plantaricin synthesis by upregulation of plnABCDEF cluster expression under co-culture indicated that the PlnA-mediated quorum sensing (QS) system took part in the response mechanism of L. paraplantarum RX-8. However, the absence of AI-2 did not influence the inducing effect on plantaricin production. Mannose, galactose, and glutamate were critical metabolites and significantly simulate plantaricin production (p < 0.05). In summary, the findings provided new insights into the interaction between bacteriocin-inducing and bacteriocin-producing microorganisms, which may serve as a basis for further research into the detailed mechanism.
Collapse
Affiliation(s)
- Rong Nie
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Laboratory of Food Quality and Safety, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Zekang Zhu
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Laboratory of Food Quality and Safety, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Yanwei Qi
- School of Control and Computer Engineering, North China Electric Power University, Beijing, China
| | - Zhao Wang
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Laboratory of Food Quality and Safety, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Haoxuan Sun
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Laboratory of Food Quality and Safety, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Guorong Liu
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Laboratory of Food Quality and Safety, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
9
|
Identification of Novel Bile Salt-Tolerant Genes in Lactobacillus Using Comparative Genomics and Its Application in the Rapid Screening of Tolerant Strains. Microorganisms 2022; 10:microorganisms10122371. [PMID: 36557624 PMCID: PMC9786149 DOI: 10.3390/microorganisms10122371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/17/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Under bile salt treatment, strains display significant differences in their tolerance ability, suggesting the existence of diverse resistance mechanisms in Lactobacillus; however, the genes involved in this protective process are not fully understood. In this study, novel target genes associated with bile salt tolerance in Lactobacillus were identified using comparative genomics for PCR detection and the rapid screening of tolerant strains. The bile salt tolerance of 107 lactobacilli isolated from different origins was assessed, and 26 strains with comparatively large differences were selected for further comparative genomic analysis. Tolerant strains had 112 specific genes that were enriched in the phosphotransferase system, the two-component system, carbohydrate metabolism, and the ATP-binding cassette transporter. Six genes from Lactobacillus were cloned into the inducible lactobacillal expression vector pSIP403. Overexpression in the host strain increased its tolerance ability by 11.86-18.08%. The novel genes identified here can be used as targets to design primers for the rapid screening of bile salt-tolerant lactobacilli. Altogether, these results deepen our understanding of bile salt tolerance mechanisms in Lactobacillus and provide a basis for further rapid assessments of tolerant strains.
Collapse
|
10
|
Huan R, Zhai Z, An J, Ma X, Hao Y. L-Malic Acid Protects Lacticaseibacillus paracasei L9 from Glycodeoxycholic Acid Stress via the Malolactic Enzyme Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9007-9016. [PMID: 35833866 DOI: 10.1021/acs.jafc.2c02453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bile stress tolerance is a crucial characteristic of probiotics for surviving in the human gastrointestinal tract. The mechanism underlying the effect of l-malic acid on enhancing the glycodeoxycholic acid (GDCA) tolerance of Lacticaseibacillus paracasei L9 was investigated herein. Bile tolerance specificity assays revealed that Lc. paracasei L9 was more sensitive to GDCA than to taurocholic acid, glycocholic acid, and taurodeoxycholic acid. Notably, l-malic acid significantly enhanced the GDCA tolerance of Lc. paracasei L9 by increasing the pH of the medium. The role of the malolactic enzyme pathway in enhancing GDCA resistance was investigated using molecular techniques. Confocal laser scanning and scanning electron microscopy revealed that l-malic acid preserved membrane permeability and cellular morphology, thereby protecting bacterial cells from GDCA stress-induced damage. The study also demonstrated that l-malic acid enhanced bile tolerance in different species of lactobacilli. These findings provide a novel protective mechanism for coping with bile stress in lactobacilli.
Collapse
Affiliation(s)
- Ran Huan
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhengyuan Zhai
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jieran An
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiayin Ma
- School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Yanling Hao
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
11
|
Smythe P, Efthimiou G. In Silico Genomic and Metabolic Atlas of Limosilactobacillus reuteri DSM 20016: An Insight into Human Health. Microorganisms 2022; 10:microorganisms10071341. [PMID: 35889060 PMCID: PMC9320016 DOI: 10.3390/microorganisms10071341] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/23/2022] Open
Abstract
Probiotics are bacterial strains that are known to provide host health benefits. Limosilactobacillus reuteri is a well-documented lactic acid bacterium that has been cultured from numerous human sites. The strain investigated was L. reuteri DSM 20016, which has been found to produce useful metabolites. The strain was explored using genomic and proteomic tools, manual searches, and databases, including KEGG, STRING, BLAST Sequence Similarity Search, and UniProt. This study located over 200 key genes that were involved in human health benefit pathways. L. reuteri DSM 20016 has metabolic pathways to produce acetate, propionate, and lactate, and there is evidence of a pathway for butanoate production through a FASII mechanism. The bacterium produces histamine through the hdc operon, which may be able to suppress proinflammatory TNF, and the bacterium also has the ability to synthesize folate and riboflavin, although whether they are secreted is yet to be explored. The strain can bind to human Caco2 cells through srtA, mapA/cnb, msrB, and fbpA and can compete against enteric bacteria using reuterin, which is an antimicrobial that induces oxidative stress. The atlas could be used for designing metabolic engineering approaches to improve beneficial metabolite biosynthesis and better probiotic-based cures.
Collapse
Affiliation(s)
- Paisleigh Smythe
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Castle Hill Hospital, Daisy Building, Hull HU16 5JQ, UK;
| | - Georgios Efthimiou
- Department of Biomedical and Forensic Sciences, University of Hull, Cottingham Road, Hardy Building, Hull HU6 7RX, UK
- Correspondence: ; Tel.: +44-(0)1482-465970
| |
Collapse
|
12
|
Sałański P, Kowalczyk M, Bardowski JK, Szczepankowska AK. Health-Promoting Nature of Lactococcus lactis IBB109 and Lactococcus lactis IBB417 Strains Exhibiting Proliferation Inhibition and Stimulation of Interleukin-18 Expression in Colorectal Cancer Cells. Front Microbiol 2022; 13:822912. [PMID: 35694291 PMCID: PMC9174673 DOI: 10.3389/fmicb.2022.822912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/29/2022] [Indexed: 12/19/2022] Open
Abstract
Lactic acid bacteria (LAB) are Gram-positive bacteria which are considered for use as adjuvant therapeutics in management of various disease ailments, including obesity, irritable bowel syndrome, lactose intolerance and cancer. To investigate the possible use of Lactococcus lactis strains from our collection in treatment of gastrointestinal cancer, we tested them for the ability to arrest proliferation of human colorectal adenocarcinoma cells (Caco-2). Results of the BrdU assay showed that the anti-proliferative activity of L. lactis cells is strain-specific. We found that particularly, two strains, L. lactis IBB109 and L. lactis IBB417, exhibited the most potent inhibitory effect. Moreover, both strains triggered interleukin 18 gene expression, normally inhibited in Caco-2 (cancer) cells. To examine the probiotic potential of the two strains, we tested them for bile salts and acid tolerance, as well as adhesion properties. Both isolates exhibited probiotic potential—they survived in the presence of 0.3% bile salts and tolerated exposure to low pH and osmotic stress. Notably, we found that L. lactis IBB417 displayed better adherence to mucus and Caco-2 cells than L. lactis IBB109. Additionally, by microdilution tests we confirmed that both strains are sensitive to all nine antibiotics of human and veterinary importance listed by the European Food Safety Authority. Finally, by in silico investigations of whole genome sequencing data, we revealed the genetic features of L. lactis IBB109 and L. lactis IBB417 that can be associated with functional (e.g., adhesion and carbohydrate metabolic genes) and safety (e.g., virulence and antibiotic resistance) aspects of the strains, confirming their health-promoting potential.
Collapse
|
13
|
Yan R, Zhang X. Analysis of Cyclocarya paliurus flavonoids modulation on the physiology and gene expression in Enterococcus faecalis under bile salt stress. Lett Appl Microbiol 2021; 74:555-563. [PMID: 34951708 DOI: 10.1111/lam.13639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/30/2022]
Abstract
Enterococcus faecalis (E. faecalis) is one of the probiotic groups in the intestinal tract which has varieties of functional effects in the host, such as a protective barrier, nutritional efficacy and antibacterial effects. Stress conditions such as low pH, bile salts, and hypertonicity are inevitable negative factors for the normal survival of E. faecalis in the gastrointestinal tract. Under the stress and inhibition of bile salt, E. faecalis needs specific adaptation and coping style if it wants to successfully colonize the intestine stably. The appropriate concentration of flavonoids can assist probiotics to serve a beneficial role and help them resist the stress of external irresistible environmental factors. In the present research, RNA-sequence (RNA-seq) technology was employed to investigate the influence of Cyclocarya paliurus flavonoids (CPF) on Enterococcus faecalis 131-2 (E. faecalis 131-2) exposed to bile salt stress. Analysis results revealed that under bile salt stress, many genes related to cellular process, catalytic activity, and transport activity were significantly differentially expressed (P < 0.05), and some not expected variations of which could be partly alleviated by supplementation of CPF, indicating its capacity to improve the bile salt tolerances of E. faecalis 131-2. Additionally, CPF alleviated the obvious inhibitory effects of bile salt stress on the exponential growth of E. faecalis 131-2. An overall view of the physiological and transcriptomic changes of E. faecalis 131-2 under bile salt stresses with or without CPF will further deepen our understanding of the mechanism by which CPF assists E. faecalis 131-2 to perform beneficial functions in the gastrointestinal environment.
Collapse
Affiliation(s)
- Ruonan Yan
- Department of Food Science and Engineering, Ningbo University, Ningbo, 315211, P.R. China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, 315211, P.R. China
| |
Collapse
|
14
|
Tofalo R, Battistelli N, Perpetuini G, Valbonetti L, Rossetti AP, Perla C, Zulli C, Arfelli G. Oenococcus oeni Lifestyle Modulates Wine Volatilome and Malolactic Fermentation Outcome. Front Microbiol 2021; 12:736789. [PMID: 34650537 PMCID: PMC8506162 DOI: 10.3389/fmicb.2021.736789] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/27/2021] [Indexed: 12/30/2022] Open
Abstract
In this study, nine Oenococcus oeni strains were tested for their ability to adhere to polystyrene using mMRS and wine as culture media. Moreover, planktonic and biofilm-detached cells were investigated for their influence on malic acid degradation kinetics and aroma compound production. Three strains were able to adhere on polystyrene plates in a strain-dependent way. In particular, MALOBACT-T1 and ISO359 strains mainly grew as planktonic cells, while the ISO360 strain was found prevalent in sessile state. The strain-dependent adhesion ability was confirmed by confocal laser scanning microscopy. Planktonic and biofilm detached cells showed a different metabolism. In fact, biofilm-detached cells had a better malic acid degradation kinetic and influenced the aroma composition of resulting wines, acting on the final concentration of esters, higher alcohols, and organic acids. Oenococcus oeni in biofilm lifestyle seems to be a suitable tool to improve malolactic fermentation outcome, and to contribute to wine aroma. The industrial-scale application of this strategy should be implemented to develop novel wine styles.
Collapse
Affiliation(s)
- Rosanna Tofalo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Noemi Battistelli
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Giorgia Perpetuini
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Luca Valbonetti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Alessio Pio Rossetti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Carlo Perla
- Dalton Biotecnologie s.r.l., Spoltore, Italy
| | | | - Giuseppe Arfelli
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
15
|
Gao X, Kong J, Zhu H, Mao B, Cui S, Zhao J. Lactobacillus, Bifidobacterium and Lactococcus response to environmental stress: Mechanisms and application of cross-protection to improve resistance against freeze-drying. J Appl Microbiol 2021; 132:802-821. [PMID: 34365708 DOI: 10.1111/jam.15251] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 06/12/2021] [Accepted: 07/07/2021] [Indexed: 01/30/2023]
Abstract
The review deals with lactic acid bacteria in characterizing the stress adaptation with cross-protection effects, mainly associated with Lactobacillus, Bifidobacterium and Lactococcus. It focuses on adaptation and cross-protection in Lactobacillus, Bifidobacterium and Lactococcus, including heat shocking, cold stress, acid stress, osmotic stress, starvation effect, etc. Web of Science, Google Scholar, Science Direct, and PubMed databases were used for the systematic search of literature up to the year 2020. The literature suggests that a lower survival rate during freeze-drying is linked to environmental stress. Protective pretreatment under various mild stresses can be applied to lactic acid bacteria which may enhance resistance in a strain-dependent manner. We investigate the mechanism of damage and adaptation under various stresses including heat, cold, acidic, osmotic, starvation, oxidative and bile stress. Adaptive mechanisms include synthesis of stress-induced proteins, adjusting the composition of cell membrane fatty acids, accumulating compatible substances, etc. Next, we reveal the cross-protective effect of specific stress on the other environmental stresses. Freeze-drying is discussed from three perspectives including the regulation of membrane, accumulation of compatible solutes and the production of chaperones and stress-responsive proteases. The resistance of lactic acid bacteria against technological stress can be enhanced via cross-protection, which improves industrial efficiency concerning the survival of probiotics. However, the adaptive responses and cross-protection are strain-dependent and should be optimized case by case.
Collapse
Affiliation(s)
- Xinwei Gao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jie Kong
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hongkang Zhu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
16
|
Bu Y, Liu Y, Li J, Liu T, Gong P, Zhang L, Wang Y, Yi H. Analyses of plantaricin Q7 synthesis by Lactobacillus plantarum Q7 based on comparative transcriptomics. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107909] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Characteristics of the Proteolytic Enzymes Produced by Lactic Acid Bacteria. Molecules 2021; 26:molecules26071858. [PMID: 33806095 PMCID: PMC8037685 DOI: 10.3390/molecules26071858] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 12/20/2022] Open
Abstract
Over the past several decades, we have observed a very rapid development in the biotechnological use of lactic acid bacteria (LAB) in various branches of the food industry. All such areas of activity of these bacteria are very important and promise enormous economic and industrial successes. LAB are a numerous group of microorganisms that have the ability to ferment sugars into lactic acid and to produce proteolytic enzymes. LAB proteolytic enzymes play an important role in supplying cells with the nitrogen compounds necessary for their growth. Their nutritional requirements in this regard are very high. Lactic acid bacteria require many free amino acids to grow. The available amount of such compounds in the natural environment is usually small, hence the main function of these enzymes is the hydrolysis of proteins to components absorbed by bacterial cells. Enzymes are synthesized inside bacterial cells and are mostly secreted outside the cell. This type of proteinase remains linked to the cell wall structure by covalent bonds. Thanks to advances in enzymology, it is possible to obtain and design new enzymes and their preparations that can be widely used in various biotechnological processes. This article characterizes the proteolytic activity, describes LAB nitrogen metabolism and details the characteristics of the peptide transport system. Potential applications of proteolytic enzymes in many industries are also presented, including the food industry.
Collapse
|
18
|
Liu N, Qin L, Mazhar M, Miao S. Integrative transcriptomic-proteomic analysis revealed the flavor formation mechanism and antioxidant activity in rice-acid inoculated with Lactobacillus paracasei and Kluyveromyces marxianus. J Proteomics 2021; 238:104158. [PMID: 33631365 DOI: 10.1016/j.jprot.2021.104158] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 11/18/2022]
Abstract
In the study on fermented acid rice soup (rice-acid) inoculated with L. paracasei H4-11 and K. marxianus L1-1, the concentrations of main flavor components on the third day of fermentation were significantly higher than those on the first day. Transcriptome analysis and proteome analysis based on RNA sequencing and 4D label-free proteomic techniques were combined to provide new insights into the molecular mechanisms of flavor characteristics and antioxidant activity of the two strains during the development of rice-acid. The key up-regulated genes and proteins in L. paracasei and K. marxianus L1-1, which were involved in flavor formation and antioxidant activity in rice-acid development, were different. The KEGG pathways involving the up-regulated genes and proteins in L. paracasei included starch and sucrose metabolism, pyruvate metabolism, amino sugar, and nucleotide sugar metabolism, and glycolysis/guconeogenesis. The KEGG pathways involving the up-regulated genes and proteins in K. marxianus L1-1 mainly included glycolysis/gluconeogenesis, TCA cycle, pyruvate metabolism, and other pathways related to antioxidant capacity. We successfully identified key genes and proteins associated with the metabolism and accumulation of flavor components and antioxidant activity. These findings provide new insights into the molecular mechanisms of flavor formation in co-cultivation with L. paracasei and K. marxianus. SIGNIFICANCE: It is anticipated that this study would provide us an insight into the mechanisms of flavor components accumulation and antioxidant activity of acid rice soup in China's minority areas. Importantly, this research provides the foundation of biological and chemical analysis for the application of the co-culture of L. paracasei H4-11 and K. marxianus in non-dairy products.
Collapse
Affiliation(s)
- Na Liu
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, China; Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Likang Qin
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China.
| | - Muhammad Mazhar
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, China
| | - Song Miao
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland.
| |
Collapse
|
19
|
Zhang L, Song D, Wu Z. Transcriptome analysis of Cyclocarya paliurus flavonoids regulation of differently expressed genes in Enterococcus faecalis under low pH stress. Arch Microbiol 2021; 203:2147-2155. [PMID: 33611635 DOI: 10.1007/s00203-021-02215-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/19/2021] [Accepted: 02/09/2021] [Indexed: 01/23/2023]
Abstract
Enterococcus faecalis (E. faecalis) is an indigenous intestinal bacterium and has potential to be applied as probiotic supplement. Low pH is one of the main stresses that E. faecalis has to deal with to colonize in the gastrointestinal tract. Previous study indicated low concentration of flavonoids may enhance the tolerance of probiotic to environmental stress. In the present research, transcriptome analysis was employed to investigate the influence of Cyclocarya paliurus flavonoids (CPF) on E. faecalis exposed to low pH environment. The results revealed that under the stress of low pH, genes related to cell wall and membrane, transmembrane transport, metabolism process, energy production, and conversion stress proteins were significantly differentially expressed. And certain undesired changes of which (such as genes for MFS transporter were downregulated) could be partially mitigated by CPF intervention, indicating their capacity to improve the low pH tolerance of E. faecalis. Results from this study deepened our understanding of the beneficial role of CPF on the probiotic in the gastrointestinal environment.
Collapse
Affiliation(s)
- Li Zhang
- Department of Physical Education, China University of Mining and Technology, Beijing, 100083, People's Republic of China
| | - Dan Song
- Department of Food Science and Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo, 315211, People's Republic of China.
| |
Collapse
|
20
|
Bagon BB, Valeriano VDV, Oh JK, Pajarillo EAB, Lee JY, Kang DK. Exoproteome Perspective on the Bile Stress Response of Lactobacillus johnsonii. Proteomes 2021; 9:proteomes9010010. [PMID: 33578796 PMCID: PMC7931105 DOI: 10.3390/proteomes9010010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/19/2022] Open
Abstract
Probiotics must not only exert a health-promoting effect but also be capable of adapting to the harsh environment of the gastrointestinal (GI) tract. Probiotics in the GI tract must survive the cell wall-disrupting effect of bile acids. We investigated the exoproteome of Lactobacillus johnsonii PF01 and C1-10 under bile stress. A comparative analysis revealed the similarities between the two L. johnsonii exoproteomes, as well as their different responses to bile. The large number of metabolic proteins in L. johnsonii revealed its metabolic adaptation to meet protein synthesis requirements under bile stress. In addition, cell wall modifications occurred in response to bile. Furthermore, some extracellular proteins of L. johnsonii may have moonlighting function in the presence of bile. Enolase, L-lactate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, triosephosphate isomerase, 50s ribosomal protein L7/L12, and cellobiose-specific phosphotransferase system (PTS) sugar transporter were significantly upregulated under bile stress, suggesting a leading role in the collective bile stress response of L. johnsonii from its exoproteome perspective.
Collapse
Affiliation(s)
- Bernadette B. Bagon
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Korea; (B.B.B.); (V.D.V.V.); (J.K.O.); (E.A.B.P.)
| | - Valerie Diane V. Valeriano
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Korea; (B.B.B.); (V.D.V.V.); (J.K.O.); (E.A.B.P.)
| | - Ju Kyoung Oh
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Korea; (B.B.B.); (V.D.V.V.); (J.K.O.); (E.A.B.P.)
| | - Edward Alain B. Pajarillo
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Korea; (B.B.B.); (V.D.V.V.); (J.K.O.); (E.A.B.P.)
| | - Ji Yoon Lee
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea;
| | - Dae-Kyung Kang
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Korea; (B.B.B.); (V.D.V.V.); (J.K.O.); (E.A.B.P.)
- Correspondence:
| |
Collapse
|
21
|
Genomics-based approaches to identify and predict the health-promoting and safety activities of promising probiotic strains – A probiogenomics review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.12.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Ma J, Xu C, Liu F, Hou J, Shao H, Yu W. Stress adaptation and cross-protection of Lactobacillus plantarum KLDS 1.0628. CYTA - JOURNAL OF FOOD 2021. [DOI: 10.1080/19476337.2020.1859619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Jiage Ma
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, P. R. China
| | - Cong Xu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, P. R. China
| | - Fei Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, P. R. China
| | - Juncai Hou
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, P. R. China
| | - Hong Shao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, P. R. China
| | - Wei Yu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, P. R. China
| |
Collapse
|
23
|
Wang G, Zhai Z, Ren F, Li Z, Zhang B, Hao Y. Combined transcriptomic and proteomic analysis of the response to bile stress in a centenarian-originated probiotic Lactobacillus salivarius Ren. Food Res Int 2020; 137:109331. [PMID: 33233046 DOI: 10.1016/j.foodres.2020.109331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 05/10/2020] [Accepted: 05/16/2020] [Indexed: 01/24/2023]
Abstract
Tolerance to bile stress is a crucial property for probiotics to survive in the gastrointestinal tract and exert their beneficial effects. In this work, transcriptomic analysis combined with two-dimensional electrophoresis revealed that the transcript levels of 129 genes and the abundance of 34 proteins were significantly changed in Lactobacillus salivarius Ren when exposed to 0.75 g/L ox-bile. Notably, carbohydrate metabolism shifted to the utilization of maltose and glycerol for energy production, suggesting that L. salivarius Ren expanded carbon sources profile for gut adaptation in response to bile. Moreover, the enzymes involved in cell surface charge modification and the cell envelope-located hemolysin-like protein were overproduced, which was supposed to hinder the penetration of bile. Then, the up-regulated ABC transporters could contribute to the extrusion of bile accumulated in the cytoplasm. Additionally, proteolytic system was activated to provide more amino acids for the synthesis and repair of proteins damaged by bile. Finally, γ-glutamylcysteine with antioxidant activity and oxidoreductases for redox homeostasis were increased to cope with the bile-induced oxidative stress. These findings provide new insights into the molecular mechanisms involved in bile stress response and adaptation in L. salivarius.
Collapse
Affiliation(s)
- Guohong Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
| | - Zhengyuan Zhai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, Beijing, China
| | - Zaigui Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
| | - Bing Zhang
- Core Genomic Facility, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yanling Hao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, Beijing, China.
| |
Collapse
|
24
|
Liu W, Yuan X, Yuan S, Dai L, Dong S, Liu J, Peng L, Wang M, Tang Y, Xiao Y. Optimal reference genes for gene expression analysis in polyploid of Cyprinus carpio and Carassius auratus. BMC Genet 2020; 21:107. [PMID: 32943013 PMCID: PMC7499967 DOI: 10.1186/s12863-020-00915-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 08/31/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Reference genes are usually stably expressed in various cells and tissues. However, it was reported that the expression of some reference genes may be distinct in different species. In this study, we intend to answer whether the expression of reported traditional reference genes changes or not in the polyploid fish RESULTS: By retrieving the mRNA sequencing data of three different ploidy fish from the NCBI SRA database, we selected 12 candidate reference genes, and examined their expression levels in the 10 tissues and in the four cell lines of three different ploidy fish by real-time PCR. Then, the expression profiles of these 12 candidate reference genes were systematically evaluated by using the software platforms: BestKeeper, NormFinder and geNorm. CONCLUSION The 28S ribosomal protein S5 gene (RPS5) and the ribosomal protein S18 gene (RPS18) are the most suitable reference genes for the polyploid of Cyprinus carpio and Carassius auratus, demonstrated by both of the tissues and the cultured cells.
Collapse
Affiliation(s)
- Wenbin Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Xiudan Yuan
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Shuli Yuan
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Liuye Dai
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Shenghua Dong
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Jinhui Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Liangyue Peng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Minmeng Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Yi Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Yamei Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China. .,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.
| |
Collapse
|
25
|
Probiotic Potential of Lactobacillus paracasei CT12 Isolated from Water Kefir Grains (Tibicos). Curr Microbiol 2020; 77:2584-2592. [PMID: 32372103 DOI: 10.1007/s00284-020-02016-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/24/2020] [Indexed: 12/20/2022]
Abstract
The water kefir grains are a multi-species starter culture used to produce fermented beverages of sucrose solution with or without fruit extracts. The water kefir grains are known in Mexico as Tibicos, which are mainly used to produce Tepache, a traditional Mexican drink made by fermenting pineapple peel. The microbiota of Tibicos mainly include lactic acid bacteria (LAB) and since most probiotics belong to this group, Tibicos may represent a potential source of probiotic bacteria. Moreover, several bacteria isolated from kefir samples have been recognized as probiotics. Hence, the aim of this study was to assess the probiotic properties of a Lactobacillus strain isolated from Tibicos. The isolated, designed as CT12, was identified as Lactobacillus paracasei by sequencing 16S RNA gene. L. paracasei CT12 showed a survival rate of ca. 57% and 40% following simulated gastric and intestinal digestion, respectively. Besides, the strain was sensitive to ampicillin and erythromycin, and exhibited hydrophobicity (97-99%), autoaggregation (ca. 70%) and mucin adhesion properties (up to 90%), while no possessed haemolytic capacity. Furthermore, its cell-free supernatant displayed relevant antimicrobial, antifungal and antioxidant capacity. Hence, L. paracasei CT12 appears to possess a potential probiotic value.
Collapse
|