1
|
Vass M, Székely AJ, Carlsson-Graner U, Wikner J, Andersson A. Microeukaryote community coalescence strengthens community stability and elevates diversity. FEMS Microbiol Ecol 2024; 100:fiae100. [PMID: 39003240 PMCID: PMC11287207 DOI: 10.1093/femsec/fiae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/19/2024] [Accepted: 07/12/2024] [Indexed: 07/15/2024] Open
Abstract
Mixing of entire microbial communities represents a frequent, yet understudied phenomenon. Here, we mimicked estuarine condition in a microcosm experiment by mixing a freshwater river community with a brackish sea community and assessed the effects of both environmental and community coalescences induced by varying mixing processes on microeukaryotic communities. Signs of shifted community composition of coalesced communities towards the sea parent community suggest asymmetrical community coalescence outcome, which, in addition, was generally less impacted by environmental coalescence. Community stability, inferred from community cohesion, differed among river and sea parent communities, and increased following coalescence treatments. Generally, community coalescence increased alpha diversity and promoted competition from the introduction (or emergence) of additional (or rare) species. These competitive interactions in turn had community stabilizing effect as evidenced by the increased proportion of negative cohesion. The fate of microeukaryotes was influenced by mixing ratios and frequencies (i.e. one-time versus repeated coalescence). Namely, diatoms were negatively impacted by coalescence, while fungi, ciliates, and cercozoans were promoted to varying extents, depending on the mixing ratios of the parent communities. Our study suggests that the predictability of coalescence outcomes was greater when the sea parent community dominated the final community, and this predictability was further enhanced when communities collided repeatedly.
Collapse
Affiliation(s)
- Máté Vass
- Department of Ecology and Environmental Science, Umeå University, SE-90187 Umeå, Sweden
- Division of Systems and Synthetic Biology, Department of Life Sciences, Science for Life Laboratory, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Anna J Székely
- Division of Microbial Ecology, Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Ulla Carlsson-Graner
- Department of Ecology and Environmental Science, Umeå University, SE-90187 Umeå, Sweden
| | - Johan Wikner
- Department of Ecology and Environmental Science, Umeå University, SE-90187 Umeå, Sweden
- Umeå Marine Sciences Centre, Umeå University, SE-90571 Hörnefors, Sweden
| | - Agneta Andersson
- Department of Ecology and Environmental Science, Umeå University, SE-90187 Umeå, Sweden
- Umeå Marine Sciences Centre, Umeå University, SE-90571 Hörnefors, Sweden
| |
Collapse
|
2
|
Dong S, Yan PF, Mezzari MP, Abriola LM, Pennell KD, Cápiro NL. Using Network Analysis and Predictive Functional Analysis to Explore the Fluorotelomer Biotransformation Potential of Soil Microbial Communities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7480-7492. [PMID: 38639388 DOI: 10.1021/acs.est.4c00942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Microbial transformation of per- and polyfluoroalkyl substances (PFAS), including fluorotelomer-derived PFAS, by native microbial communities in the environment has been widely documented. However, few studies have identified the key microorganisms and their roles during the PFAS biotransformation processes. This study was undertaken to gain more insight into the structure and function of soil microbial communities that are relevant to PFAS biotransformation. We collected 16S rRNA gene sequencing data from 8:2 fluorotelomer alcohol and 6:2 fluorotelomer sulfonate biotransformation studies conducted in soil microcosms under various redox conditions. Through co-occurrence network analysis, several genera, including Variovorax, Rhodococcus, and Cupriavidus, were found to likely play important roles in the biotransformation of fluorotelomers. Additionally, a metagenomic prediction approach (PICRUSt2) identified functional genes, including 6-oxocyclohex-1-ene-carbonyl-CoA hydrolase, cyclohexa-1,5-dienecarbonyl-CoA hydratase, and a fluoride-proton antiporter gene, that may be involved in defluorination. This study pioneers the application of these bioinformatics tools in the analysis of PFAS biotransformation-related sequencing data. Our findings serve as a foundational reference for investigating enzymatic mechanisms of microbial defluorination that may facilitate the development of efficient microbial consortia and/or pure microbial strains for PFAS biotransformation.
Collapse
Affiliation(s)
- Sheng Dong
- Department of Biological and Environmental Engineering, Cornell University, 214 Riley-Robb Hall, 111 Wing Drive, Ithaca, New York 14853, United States
| | - Peng-Fei Yan
- Department of Biological and Environmental Engineering, Cornell University, 214 Riley-Robb Hall, 111 Wing Drive, Ithaca, New York 14853, United States
| | - Melissa P Mezzari
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Linda M Abriola
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Kurt D Pennell
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Natalie L Cápiro
- Department of Biological and Environmental Engineering, Cornell University, 214 Riley-Robb Hall, 111 Wing Drive, Ithaca, New York 14853, United States
| |
Collapse
|
3
|
Xie R, Lin L, Shi C, Zhang P, Rao P, Li J, Izabel-Shen D. Elucidating the links between N 2O dynamics and changes in microbial communities following saltwater intrusions. ENVIRONMENTAL RESEARCH 2024; 245:118021. [PMID: 38147917 DOI: 10.1016/j.envres.2023.118021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 12/28/2023]
Abstract
Saltwater intrusion in estuarine ecosystems alters microbial communities as well as biogeochemical cycling processes and has become a worldwide problem. However, the impact of salinity intrusion on the dynamics of nitrous oxide (N2O) and associated microbial community are understudied. Here, we conducted field microcosms in a tidal estuary during different months (December, April and August) using dialysis bags, and microbes inside the bags encountered a change in salinity in natural setting. We then compared N2O dynamics in the microcosms with that in natural water. Regardless of incubation environment, saltwater intrusion altered the dissolved N2O depending on the initial saturation rates of N2O. While the impact of saltwater intrusion on N2O dynamics was consistent across months, the dissolved N2O was higher in summer than in winter. The N-related microbial communities following saltwater intrusion were dominated by denitrifers, with fewer nitrifiers and bacterial taxa involved in dissimilatory nitrate reduction to ammonium. While denitrification was a significant driver of N2O dynamics in the studied estuary, nitrifier-involved denitrification contributed to the additional production of N2O, evidenced by the strong associations with amoA genes and the abundance of Nitrospira. Higher N2O concentrations in the field microcosms than in natural water limited N2O consumption in the former, given the lack of an association with nosZ gene abundance. The differences in the N2O dynamics observed between the microcosms and natural water could be that the latter comprised not only indigenous microbes but also those accompanied with saltwater intrusion, and that immigrants might be functionally rich individuals and able to perform N transformation in multiple pathways. Our work provides the first quantitative assessment of in situ N2O concentrations in an estuary subjected to a saltwater intrusion. The results highlight the importance of ecosystem size and microbial connectivity in the source-sink dynamics of N2O in changing environments.
Collapse
Affiliation(s)
- Rongrong Xie
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou, 350117, China; Key Laboratory of Pollution Control and Resource Recycling of Fujian Province, Fujian Normal University, Fuzhou, 350117, China; Leibniz Institute for Baltic Sea Research, Warnemünde, Rostock, 18119, Germany.
| | - Laichang Lin
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou, 350117, China
| | - Chengchun Shi
- Fujian Research Academy of Environmental Sciences, Fuzhou, 350013, China
| | - Peng Zhang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China
| | - Peiyuan Rao
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou, 350117, China
| | - Jiabing Li
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou, 350117, China; Key Laboratory of Pollution Control and Resource Recycling of Fujian Province, Fujian Normal University, Fuzhou, 350117, China
| | - Dandan Izabel-Shen
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg, 26129, Germany; Alfred-Wegener-Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, 27570, Germany.
| |
Collapse
|
4
|
Xing T, Liu K, Ji M, Chen Y, Liu Y. Bacterial diversity in a continuum from supraglacial habitats to a proglacial lake on the Tibetan Plateau. FEMS Microbiol Lett 2024; 371:fnae021. [PMID: 38521984 DOI: 10.1093/femsle/fnae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/14/2024] [Accepted: 03/22/2024] [Indexed: 03/25/2024] Open
Abstract
Mountain glaciers are frequently assessed for their hydrological connectivity from glaciers to proglacial lakes. Ecological process on glacier surfaces and downstream ecosystems have often been investigated separately, but few studies have focused on the connectivity between the different glacial habitats. Therefore, it remains a limited understanding of bacterial community assembly across different habitats along the glacier hydrological continuum. In this study, we sampled along a glacial catchment from supraglacial snow, cryoconite holes, supraglacial runoff, ice-marginal moraine and proglacial lake on the Tibetan Plateau. The bacterial communities in these habitats were analyzed using high-throughput DNA sequencing of the 16S rRNA gene to determine the bacterial composition and assembly. Our results showed that each habitat hosted unique bacterial communities, with higher bacterial α-diversity in transitional habitats (e.g. runoff and ice-marginal moraine). Null model analysis indicated that deterministic processes predominantly shaped bacterial assembly in snow, cryoconite holes and lake, while stochastic process dominantly governed bacterial community in transitional habitats. Collectively, our findings suggest that local environment play a critical role in filtering bacterial community composition within glacier habitats. This study enhances our understanding of microbial assembly process in glacier environments and provides valuable insights into the factors governing bacterial community compositions across different habitats along the glacial hydrological continuum.
Collapse
Affiliation(s)
- Tingting Xing
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Keshao Liu
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Mukan Ji
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou 730000, China
| | - Yuying Chen
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongqin Liu
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
5
|
Gronniger JL, Gray PC, Niebergall AK, Johnson ZI, Hunt DE. A Gulf Stream frontal eddy harbors a distinct microbiome compared to adjacent waters. PLoS One 2023; 18:e0293334. [PMID: 37943816 PMCID: PMC10635494 DOI: 10.1371/journal.pone.0293334] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023] Open
Abstract
Mesoscale oceanographic features, including eddies, have the potential to alter productivity and other biogeochemical rates in the ocean. Here, we examine the microbiome of a cyclonic, Gulf Stream frontal eddy, with a distinct origin and environmental parameters compared to surrounding waters, in order to better understand the processes dominating microbial community assembly in the dynamic coastal ocean. Our microbiome-based approach identified the eddy as distinct from the surround Gulf Stream waters. The eddy-associated microbial community occupied a larger area than identified by temperature and salinity alone, increasing the predicted extent of eddy-associated biogeochemical processes. While the eddy formed on the continental shelf, after two weeks both environmental parameters and microbiome composition of the eddy were most similar to the Gulf Stream, suggesting the effect of environmental filtering on community assembly or physical mixing with adjacent Gulf Stream waters. In spite of the potential for eddy-driven upwelling to introduce nutrients and stimulate primary production, eddy surface waters exhibit lower chlorophyll a along with a distinct and less even microbial community, compared to the Gulf Stream. At the population level, the eddy microbiome exhibited differences among the cyanobacteria (e.g. lower Trichodesmium and higher Prochlorococcus) and in the heterotrophic alpha Proteobacteria (e.g. lower relative abundances of specific SAR11 phylotypes) versus the Gulf Stream. However, better delineation of the relative roles of processes driving eddy community assembly will likely require following the eddy and surrounding waters since inception. Additionally, sampling throughout the water column could better clarify the contribution of these mesoscale features to primary production and carbon export in the oceans.
Collapse
Affiliation(s)
| | - Patrick C. Gray
- Marine Laboratory, Duke University, Beaufort, NC, United States of America
| | | | - Zackary I. Johnson
- Marine Laboratory, Duke University, Beaufort, NC, United States of America
- Biology and Civil & Environmental Engineering, Duke University, Durham, NC, United States of America
| | - Dana E. Hunt
- Marine Laboratory, Duke University, Beaufort, NC, United States of America
- Biology and Civil & Environmental Engineering, Duke University, Durham, NC, United States of America
| |
Collapse
|
6
|
Lumpi T, Guo X, Lindström ES. Nutrient availability and grazing influence the strength of priority effects during freshwater bacterial community coalescence. Environ Microbiol 2023; 25:2289-2302. [PMID: 37381117 DOI: 10.1111/1462-2920.16450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/31/2023] [Indexed: 06/30/2023]
Abstract
When bacterial communities mix, immigration history can fundamentally affect the community composition as a result of priority effects. Priority effects arise when an early immigrant exhausts resources and/or alters habitat conditions, thereby influencing the establishment success of the late arriver. The strength of priority effects is context-dependent and expected to be stronger if environmental conditions favour the growth of the first arriver. In this study, we conducted a two-factorial experiment testing the importance of nutrient availability and grazing on the strength of priority effects in complex aquatic bacterial communities. We did so by mixing two dissimilar communities, simultaneously, and with a 38 h time-delay. Priority effects were measured as the invasion resistance of the first community to the invading second community. We found stronger priority effects in treatments with high nutrient availability and absence of grazing, but in general, the arrival timing was less important than the selection by nutrients and grazing. At the population level, the results were complex, but priority effects may have been driven by bacteria belonging to for example, the genera Rhodoferax and Herbaspirillum. Our study highlights the importance of arrival timing in complex bacterial communities, especially if environmental conditions favour rapid community growth.
Collapse
Affiliation(s)
- Theresa Lumpi
- Department of Ecology and Genetics/Limnology, Uppsala University, Uppsala, Sweden
| | - Xin Guo
- Department of Ecology and Genetics/Limnology, Uppsala University, Uppsala, Sweden
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Eva S Lindström
- Department of Ecology and Genetics/Limnology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
7
|
Bonincontro G, Scuderi SA, Marino A, Simonetti G. Synergistic Effect of Plant Compounds in Combination with Conventional Antimicrobials against Biofilm of Staphylococcus aureus, Pseudomonas aeruginosa, and Candida spp. Pharmaceuticals (Basel) 2023; 16:1531. [PMID: 38004397 PMCID: PMC10675371 DOI: 10.3390/ph16111531] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Bacterial and fungal biofilm has increased antibiotic resistance and plays an essential role in many persistent diseases. Biofilm-associated chronic infections are difficult to treat and reduce the efficacy of medical devices. This global problem has prompted extensive research to find alternative strategies to fight microbial chronic infections. Plant bioactive metabolites with antibiofilm activity are known to be potential resources to alleviate this problem. The phytochemical screening of some medicinal plants showed different active groups, such as stilbenes, tannins, alkaloids, terpenes, polyphenolics, flavonoids, lignans, quinones, and coumarins. Synergistic effects can be observed in the interaction between plant compounds and conventional drugs. This review analyses and summarises the current knowledge on the synergistic effects of plant metabolites in combination with conventional antimicrobials against biofilms of Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. The synergism of conventional antimicrobials with plant compounds can modify and inhibit the mechanisms of acquired resistance, reduce undesirable effects, and obtain an appropriate therapeutic effect at lower doses. A deeper knowledge of these combinations and of their possible antibiofilm targets is needed to develop next-generation novel antimicrobials and/or improve current antimicrobials to fight drug-resistant infections attributed to biofilm.
Collapse
Affiliation(s)
- Graziana Bonincontro
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro, 5, 00185 Roma, Italy;
| | - Sarah Adriana Scuderi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98100 Messina, Italy;
| | - Andreana Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98100 Messina, Italy;
| | - Giovanna Simonetti
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro, 5, 00185 Roma, Italy;
| |
Collapse
|
8
|
Xu Z, Chen J, Li Y, Shekarriz E, Wu W, Chen B, Liu H. High Microeukaryotic Diversity in the Cold-Seep Sediment. MICROBIAL ECOLOGY 2023; 86:2003-2020. [PMID: 36973438 DOI: 10.1007/s00248-023-02212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/22/2023] [Indexed: 06/18/2023]
Abstract
Microeukaryotic diversity, community structure, and their regulating mechanisms remain largely unclear in chemosynthetic ecosystems. Here, using high-throughput sequencing data of 18S rRNA genes, we explored microeukaryotic communities from the Haima cold seep in the northern South China Sea. We compared three distinct habitats: active, less active, and non-seep regions, with vertical layers (0-25 cm) from sediment cores. The results showed that seep regions harbored more abundant and diverse parasitic microeukaryotes (e.g., Apicomplexa and Syndiniales) as indicator species, compared to nearby non-seep region. Microeukaryotic community heterogeneity was larger between habitats than within habitat, and greatly increased when considering molecular phylogeny, suggesting the local diversification in cold-seep sediments. Microeukaryotic α-diversity at cold seeps was positively increased by metazoan richness and dispersal rate of microeukaryotes, while its β-diversity was promoted by heterogeneous selection mainly from metazoan communities (as potential hosts). Their combined effects led to the significant higher γ-diversity (i.e., total diversity in a region) at cold seeps than non-seep regions, suggesting cold-seep sediment as a hotspot for microeukaryotic diversity. Our study highlights the importance of microeukaryotic parasitism in cold-seep sediment and has implications for the roles of cold seep in maintaining and promoting marine biodiversity.
Collapse
Affiliation(s)
- Zhimeng Xu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jiawei Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yingdong Li
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Erfan Shekarriz
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Wenxue Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Bingzhang Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Mathematics and Statistics, University of Strathclyde, Glasgow, UK
| | - Hongbin Liu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China.
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China.
- CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Sanya, China.
| |
Collapse
|
9
|
Li P, Yin R, Cheng J, Lin J. Bacterial Biofilm Formation on Biomaterials and Approaches to Its Treatment and Prevention. Int J Mol Sci 2023; 24:11680. [PMID: 37511440 PMCID: PMC10380251 DOI: 10.3390/ijms241411680] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Bacterial biofilms can cause widespread infection. In addition to causing urinary tract infections and pulmonary infections in patients with cystic fibrosis, biofilms can help microorganisms adhere to the surfaces of various medical devices, causing biofilm-associated infections on the surfaces of biomaterials such as venous ducts, joint prostheses, mechanical heart valves, and catheters. Biofilms provide a protective barrier for bacteria and provide resistance to antimicrobial agents, which increases the morbidity and mortality of patients. This review summarizes biofilm formation processes and resistance mechanisms, as well as the main features of clinically persistent infections caused by biofilms. Considering the various infections caused by clinical medical devices, we introduce two main methods to prevent and treat biomaterial-related biofilm infection: antibacterial coatings and the surface modification of biomaterials. Antibacterial coatings depend on the covalent immobilization of antimicrobial agents on the coating surface and drug release to prevent and combat infection, while the surface modification of biomaterials affects the adhesion behavior of cells on the surfaces of implants and the subsequent biofilm formation process by altering the physical and chemical properties of the implant material surface. The advantages of each strategy in terms of their antibacterial effect, biocompatibility, limitations, and application prospects are analyzed, providing ideas and research directions for the development of novel biofilm infection strategies related to therapeutic materials.
Collapse
Affiliation(s)
| | | | | | - Jinshui Lin
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan’an University, Yan’an 716000, China; (P.L.); (R.Y.); (J.C.)
| |
Collapse
|
10
|
Zhao A, Sun J, Liu Y. Understanding bacterial biofilms: From definition to treatment strategies. Front Cell Infect Microbiol 2023; 13:1137947. [PMID: 37091673 PMCID: PMC10117668 DOI: 10.3389/fcimb.2023.1137947] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/09/2023] [Indexed: 04/08/2023] Open
Abstract
Bacterial biofilms are complex microbial communities encased in extracellular polymeric substances. Their formation is a multi-step process. Biofilms are a significant problem in treating bacterial infections and are one of the main reasons for the persistence of infections. They can exhibit increased resistance to classical antibiotics and cause disease through device-related and non-device (tissue) -associated infections, posing a severe threat to global health issues. Therefore, early detection and search for new and alternative treatments are essential for treating and suppressing biofilm-associated infections. In this paper, we systematically reviewed the formation of bacterial biofilms, associated infections, detection methods, and potential treatment strategies, aiming to provide researchers with the latest progress in the detection and treatment of bacterial biofilms.
Collapse
Affiliation(s)
- Ailing Zhao
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Jiazheng Sun
- Department of Vasculocardiology, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yipin Liu
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
- *Correspondence: Yipin Liu,
| |
Collapse
|
11
|
Öztürk FY, Darcan C, Kariptaş E. The Determination, Monitoring, Molecular Mechanisms and Formation of Biofilm in E. coli. Braz J Microbiol 2023; 54:259-277. [PMID: 36577889 PMCID: PMC9943865 DOI: 10.1007/s42770-022-00895-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 12/16/2022] [Indexed: 12/30/2022] Open
Abstract
Biofilms are cell assemblies embedded in an exopolysaccharide matrix formed by microorganisms of a single or many different species. This matrix in which they are embedded protects the bacteria from external influences and antimicrobial effects. The biofilm structure that microorganisms form to protect themselves from harsh environmental conditions and survive is found in nature in many different environments. These environments where biofilm formation occurs have in common that they are in contact with fluids. The gene expression of bacteria in complex biofilm differs from that of bacteria in the planktonic state. The differences in biofilm cell expression are one of the effects of community life. Means of quorum sensing, bacteria can act in coordination with each other. At the same time, while biofilm formation provides many benefits to bacteria, it has positive and negative effects in many different areas. Depending on where they occur, biofilms can cause serious health problems, contamination risks, corrosion, and heat and efficiency losses. However, they can also be used in water treatment plants, bioremediation, and energy production with microbial fuel cells. In this review, the basic steps of biofilm formation and biofilm regulation in the model organism Escherichia coli were discussed. Finally, the methods by which biofilm formation can be detected and monitored were briefly discussed.
Collapse
Affiliation(s)
- Fırat Yavuz Öztürk
- Department of Molecular Biology and Genetic, Faculty of Arts and Science, Bilecik Seyh Edebali University, Bilecik, Turkey.
| | - Cihan Darcan
- Department of Molecular Biology and Genetic, Faculty of Arts and Science, Bilecik Seyh Edebali University, Bilecik, Turkey
| | - Ergin Kariptaş
- Department of Medical Microbiology, Faculty of Medicine, Samsun University, Samsun, Turkey
| |
Collapse
|
12
|
McMullen JG, Lennon JT. Mark-recapture of microorganisms. Environ Microbiol 2023; 25:150-157. [PMID: 36310117 DOI: 10.1111/1462-2920.16267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 01/21/2023]
Affiliation(s)
| | - Jay T Lennon
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
13
|
Bier RL, Vass M, Székely AJ, Langenheder S. Ecosystem size-induced environmental fluctuations affect the temporal dynamics of community assembly mechanisms. THE ISME JOURNAL 2022; 16:2635-2643. [PMID: 35982230 PMCID: PMC9666552 DOI: 10.1038/s41396-022-01286-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/23/2022] [Accepted: 07/05/2022] [Indexed: 12/15/2022]
Abstract
Understanding processes that determine community membership and abundance is important for many fields from theoretical community ecology to conservation. However, spatial community studies are often conducted only at a single timepoint despite the known influence of temporal variability on community assembly processes. Here we used a spatiotemporal study to determine how environmental fluctuation differences induced by mesocosm volumes (larger volumes were more stable) influence assembly processes of aquatic bacterial metacommunities along a press disturbance gradient. By combining path analysis and network approaches, we found mesocosm size categories had distinct relative influences of assembly process and environmental factors that determined spatiotemporal bacterial community composition, including dispersal and species sorting by conductivity. These processes depended on, but were not affected proportionately by, mesocosm size. Low fluctuation, large mesocosms primarily developed through the interplay of species sorting that became more important over time and transient priority effects as evidenced by more time-delayed associations. High fluctuation, small mesocosms had regular disruptions to species sorting and greater importance of ecological drift and dispersal limitation indicated by lower richness and higher taxa replacement. Together, these results emphasize that environmental fluctuations influence ecosystems over time and its impacts are modified by biotic properties intrinsic to ecosystem size.
Collapse
Affiliation(s)
- Raven L. Bier
- grid.8993.b0000 0004 1936 9457Department of Ecology and Genetics/Limnology, Uppsala University, Norbyvägen 18 D, 75236 Uppsala, Sweden ,grid.213876.90000 0004 1936 738XPresent Address: Savannah River Ecology Laboratory, University of Georgia, PO Drawer E, Aiken, SC 29802 USA
| | - Máté Vass
- grid.8993.b0000 0004 1936 9457Department of Ecology and Genetics/Limnology, Uppsala University, Norbyvägen 18 D, 75236 Uppsala, Sweden
| | - Anna J. Székely
- grid.8993.b0000 0004 1936 9457Department of Ecology and Genetics/Limnology, Uppsala University, Norbyvägen 18 D, 75236 Uppsala, Sweden ,grid.6341.00000 0000 8578 2742Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, 75007 Uppsala, Sweden
| | - Silke Langenheder
- grid.8993.b0000 0004 1936 9457Department of Ecology and Genetics/Limnology, Uppsala University, Norbyvägen 18 D, 75236 Uppsala, Sweden
| |
Collapse
|
14
|
Gronniger JL, Wang Z, Brandt GR, Ward CS, Tsementzi D, Mu H, Gu J, Johnson ZI, Konstantinidis KT, Hunt DE. Rapid changes in coastal ocean microbiomes uncoupled with shifts in environmental variables. Environ Microbiol 2022; 24:4167-4177. [PMID: 35715385 DOI: 10.1111/1462-2920.16086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 05/25/2022] [Indexed: 11/30/2022]
Abstract
Disturbances, here defined as events that directly alter microbial community composition, are commonly studied in host-associated and engineered systems. In spite of global change both altering environmental averages and increasing extreme events, there has been relatively little research into the causes, persistence and population-level impacts of disturbance in the dynamic coastal ocean. Here, we utilize 3 years of observations from a coastal time series to identify disturbances based on the largest week-over-week changes in the microbiome (i.e. identifying disturbance as events that alter the community composition). In general, these microbiome disturbances were not clearly linked to specific environmental factors and responsive taxa largely differed, aside from SAR11, which generally declined. However, several disturbance metagenomes identified increased phage-associated genes, suggesting that unexplained community shifts might be caused by increased mortality. Furthermore, a category 1 hurricane, the only event that would likely be classified a priori as an environmental disturbance, was not an outlier in microbiome composition, but did enhance a bloom in seasonally abundant phytoplankton. Thus, as extreme environmental changes intensify, assumptions of what constitutes a disturbance should be re-examined in the context of ecological history and microbiome responses.
Collapse
Affiliation(s)
| | - Zhao Wang
- Marine Laboratory, Duke University, Beaufort, NC, USA
| | | | | | | | - Han Mu
- Marine Laboratory, Duke University, Beaufort, NC, USA
| | - Junyao Gu
- Marine Laboratory, Duke University, Beaufort, NC, USA
| | - Zackary I Johnson
- Marine Laboratory, Duke University, Beaufort, NC, USA.,Biology and Civil & Environmental Engineering, Duke University, Durham, NC, USA
| | | | - Dana E Hunt
- Marine Laboratory, Duke University, Beaufort, NC, USA.,Biology and Civil & Environmental Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
15
|
Izabel-Shen D, Li S, Luo T, Wang J, Li Y, Sun Q, Yu CP, Hu A. Repeated introduction of micropollutants enhances microbial succession despite stable degradation patterns. ISME COMMUNICATIONS 2022; 2:48. [PMID: 37938643 PMCID: PMC9723708 DOI: 10.1038/s43705-022-00129-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 05/28/2023]
Abstract
The increasing-volume release of micropollutants into natural surface waters has raised great concern due to their environmental accumulation. Persisting micropollutants can impact multiple generations of organisms, but their microbially-mediated degradation and their influence on community assembly remain understudied. Here, freshwater microbes were treated with several common micropollutants, alone or in combination, and then transferred every 5 days to fresh medium containing the same micropollutants to mimic the repeated exposure of microbes. Metabarcoding of 16S rRNA gene makers was chosen to study the succession of bacterial assemblages following micropollutant exposure. The removal rates of micropollutants were then measured to assess degradation capacity of the associated communities. The degradation of micropollutants did not accelerate over time but altered the microbial community composition. Community assembly was dominated by stochastic processes during early exposure, via random community changes and emergence of seedbanks, and deterministic processes later in the exposure, via advanced community succession. Early exposure stages were characterized by the presence of sensitive microorganisms such as Actinobacteria and Planctomycetes, which were then replaced by more tolerant bacteria such as Bacteroidetes and Gammaproteobacteria. Our findings have important implication for ecological feedback between microbe-micropollutants under anthropogenic climate change scenarios.
Collapse
Affiliation(s)
- Dandan Izabel-Shen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91, Stockholm, Sweden
| | - Shuang Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Environmental Microbiology, UFZ, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Tingwei Luo
- Institute of Marine Microbes and Ecospheres, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yan Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian Sun
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chang-Ping Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, 106, Taiwan
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
16
|
Izabel-Shen D, Höger AL, Jürgens K. Abundance-Occupancy Relationships Along Taxonomic Ranks Reveal a Consistency of Niche Differentiation in Marine Bacterioplankton With Distinct Lifestyles. Front Microbiol 2021; 12:690712. [PMID: 34262550 PMCID: PMC8273345 DOI: 10.3389/fmicb.2021.690712] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 05/25/2021] [Indexed: 01/23/2023] Open
Abstract
Abundance-occupancy relationships (AORs) are an important determinant of biotic community dynamics and habitat suitability. However, little is known about their role in complex bacterial communities, either within a phylogenetic framework or as a function of niche breadth. Based on data obtained in a field study in the St. Lawrence Estuary, we used 16S rRNA gene sequencing to examine the vertical patterns, strength, and character of AORs for particle-attached and free-living bacterial assemblages. Free-living communities were phylogenetically more diverse than particle-attached communities. The dominant taxa were consistent in terms of their presence/absence but population abundances differed in surface water vs. the cold intermediate layer. Significant, positive AORs characterized all of the surveyed communities across all taxonomic ranks of bacteria, thus demonstrating an ecologically conserved trend for both free-living and particle-attached bacteria. The strength of the AORs was low at the species level but higher at and above the genus level. These results demonstrate that an assessment of the distributions and population densities of finely resolved taxa does not necessarily improve determinations of apparent niche differences in marine bacterioplankton communities at regional scales compared with the information inferred from a broad taxonomic classification.
Collapse
Affiliation(s)
- Dandan Izabel-Shen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- Department of Biological Oceanography Leibniz Institute for Baltic Sea Research, Rostock, Germany
| | - Anna-Lena Höger
- Department of Biological Oceanography Leibniz Institute for Baltic Sea Research, Rostock, Germany
- Department of Applied Biosciences and Process Engineering, Anhalt University of Applied Sciences, Köthen, Germany
| | - Klaus Jürgens
- Department of Biological Oceanography Leibniz Institute for Baltic Sea Research, Rostock, Germany
| |
Collapse
|
17
|
Izabel-Shen D, Albert S, Winder M, Farnelid H, Nascimento FJA. Quality of phytoplankton deposition structures bacterial communities at the water-sediment interface. Mol Ecol 2021; 30:3515-3529. [PMID: 33993575 DOI: 10.1111/mec.15984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 02/16/2021] [Accepted: 05/11/2021] [Indexed: 11/28/2022]
Abstract
Phytoplankton comprises a large fraction of the vertical carbon flux to deep water via the sinking of particulate organic matter (POM). However, despite the importance of phytoplankton in the coupling of benthic-pelagic productivity, the extent to which its deposition in the sediment affects bacterial dynamics at the water-sediment interface is poorly understood. Here, we conducted a microcosm experiment in which varying mixtures of diatom and cyanobacteria, representing phytoplankton-derived POM of differing quality, served as inputs to sediment cores. Characterization of 16S rRNA gene of the bacterial communities at the water-sediment interface showed that bacterial α-diversity was not affected by POM addition, while bacterial β-diversity changed significantly along the POM quality gradient, with the variation driven by changes in relative abundance rather than in taxon replacement. Analysing individual taxa abundances across the POM gradient revealed two distinct bacterial responses, in which taxa within either diatom- or cyanobacteria-favoured groups were more phylogenetically closely related to one another than other taxa found in the water. Moreover, there was little overlap in taxon identity between sediment and water communities, suggesting the minor role played by sediment bacteria in influencing the observed changes in bacterial communities in the overlying water. Together, these results showed that variability in phytoplankton-originated POM can impact bacterial dynamics at the water-sediment interface. Our findings highlight the importance of considering the potential interactions between phytoplankton and bacteria in benthic-pelagic coupling in efforts to understand the structure and function of bacterial communities under a changing climate.
Collapse
Affiliation(s)
- Dandan Izabel-Shen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Séréna Albert
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Monika Winder
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Hanna Farnelid
- Center for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | | |
Collapse
|
18
|
Microbial Community Resilience across Ecosystems and Multiple Disturbances. Microbiol Mol Biol Rev 2021; 85:85/2/e00026-20. [PMID: 33789927 DOI: 10.1128/mmbr.00026-20] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The ability of ecosystems to withstand disturbances and maintain their functions is being increasingly tested as rates of change intensify due to climate change and other human activities. Microorganisms are crucial players underpinning ecosystem functions, and the recovery of microbial communities from disturbances is therefore a key part of the complex processes determining the fate of ecosystem functioning. However, despite global environmental change consisting of numerous pressures, it is unclear and controversial how multiple disturbances affect microbial community stability and what consequences this has for ecosystem functions. This is particularly the case for those multiple or compounded disturbances that occur more frequently than the normal recovery time. The aim of this review is to provide an overview of the mechanisms that can govern the responses of microbes to multiple disturbances across aquatic and terrestrial ecosystems. We first summarize and discuss properties and mechanisms that influence resilience in aquatic and soil biomes to determine whether there are generally applicable principles. Following, we focus on interactions resulting from inherent characteristics of compounded disturbances, such as the nature of the disturbance, timing, and chronology that can lead to complex and nonadditive effects that are modulating the response of microorganisms.
Collapse
|
19
|
Wang C, Zhang H, Liu P, Wang Y, Sun Y, Song Z, Hu X. Divergent Patterns of Bacterial Community Structure and Function in Response to Estuarine Output in the Middle of the Bohai Sea. Front Microbiol 2021; 12:630741. [PMID: 33763048 PMCID: PMC7982528 DOI: 10.3389/fmicb.2021.630741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Understanding environment-community relationships under shifting environmental conditions helps uncover mechanisms by which environmental microbial communities manage to improve ecosystem functioning. This study investigated the microbial community and structure near the Yellow Sea River estuary in 12 stations across the middle of the Bohai Sea for over two seasons to elucidate the influence of estuarine output on them. We found that the dominant phyla in all stations were Proteobacteria, Cyanobacteria, Bacteroidetes, Actinobacteria, and Planctomycetes. Alpha-diversity increased near the estuary and bacterial community structure differed with variation of spatiotemporal gradients. Among all the environmental factors surveyed, temperature, salinity, phosphate, silicon, nitrate, and total virioplankton abundance played crucial roles in controlling the bacterial community composition. Some inferred that community functions such as carbohydrate, lipid, amino acid metabolism, xenobiotics biodegradation, membrane transport, and environmental adaptation were much higher in winter; energy and nucleotide metabolism were lower in winter. Our results suggested that estuarine output had a great influence on the Bohai Sea environment and changes in the water environmental conditions caused by estuarine output developed distinctive microbial communities in the middle of the Bohai Sea. The distinctive microbial communities in winter demonstrated that the shifting water environment may stimulate changes in the diversity and then strengthen the predicted functions.
Collapse
Affiliation(s)
- Caixia Wang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Haikun Zhang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Pengyuan Liu
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yibo Wang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yanyu Sun
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zenglei Song
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoke Hu
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
20
|
Wan W, Grossart HP, He D, Yuan W, Yang Y. Stronger environmental adaptation of rare rather than abundant bacterioplankton in response to dredging in eutrophic Lake Nanhu (Wuhan, China). WATER RESEARCH 2021; 190:116751. [PMID: 33348071 DOI: 10.1016/j.watres.2020.116751] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/08/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
Deciphering responses of rare versus abundant bacterioplankton to environmental change, crucial for understanding and mitigating of cyanobacterial blooms, is an important but poorly investigated subject. Using MiSeq sequencing, we investigated the taxonomic and phylogenetic diversity of rare and abundant bacterioplankton in eutrophic Lake Nanhu before and after dredging. We estimated environmental breadths and phylogenetic signals of ecological preferences of rare and abundant bacterioplankton, and investigated community function and bacterioplankton assembly processes. Both taxonomic and phylogenic distances of rare and abundant bacterioplankton communities were significantly positively correlated with the dissimilarity of environmental factors. Threshold indicator taxa analysis and Blomberg's K statistic indicated that rare taxa held broader environmental thresholds and stronger phylogenetic signals for ecological traits than abundant taxa. Environmental adaptations of both rare and abundant taxa exhibited distinct changes after dredging. Higher functional redundancy occurred in the abundant compared to the rare bacterioplankton, with functions of rare bacterioplankton decreasing and for the abundant ones increasing after dredging. The null model revealed that dispersal limitation belonging to stochastic processes determined the abundant bacterioplankton community assembly, whereas variable selection belonging to deterministic processes drove the rare one. Rare bacterioplankton was more environmentally constrained than the abundant one. Dissolved oxygen was the decisive factor in determining the balance between stochasticity and determinism in both rare and abundant bacterioplankton. Our study extends our knowledge of environmental adaptation of rare versus abundant bacterioplankton to massive disturbing measures, i.e. dredging, and allows to estimate dredging performance for mitigating cyanobacterial blooms from a molecular ecology viewpoint.
Collapse
Affiliation(s)
- Wenjie Wan
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China; Center of the Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, PR China
| | - Hans-Peter Grossart
- Leibniz-Institude of Freshwater Ecology and Inland Fisheries (IGB), 16775, Neuglobsow, Germany; University of Potsdam, Institute of Biochemistry and Biology, Maulbeerallee 2, 14469, Potsdam, Germany
| | - Donglan He
- College of Life Science, South-Central University for Nationalities, Wuhan 430070, PR China
| | - Wenke Yuan
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China; Center of the Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, PR China
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China; Center of the Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, PR China.
| |
Collapse
|
21
|
Fillinger L, Hug K, Griebler C. Aquifer recharge viewed through the lens of microbial community ecology: Initial disturbance response, and impacts of species sorting versus mass effects on microbial community assembly in groundwater during riverbank filtration. WATER RESEARCH 2021; 189:116631. [PMID: 33217664 DOI: 10.1016/j.watres.2020.116631] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
Riverbank filtration has gained increasing importance for balancing rising groundwater demands and securing drinking water supplies. While microbial communities are the pillar of vital ecosystem functions in groundwater, the impact of riverbank filtration on these communities has been understudied so far. Here, we followed changes in microbial community composition based on 16S rRNA gene amplicon sequence variants (ASVs) in an initially pristine shallow porous aquifer in response to surface water intrusion during the early stages of induced riverbank filtration over a course of seven weeks. We further analyzed sediment cores for imprints of river-derived ASVs after seven weeks of riverbank filtration. The onset of the surface water intrusion caused loss of taxa and significant changes in community composition, revealing low disturbance resistance of the initial aquifer microbial communities. SourceTracker analysis revealed that proportions of river-derived ASVs in the groundwater were generally <25%, but locally could reach up to 62% during a period of intense precipitation. However, variation partitioning showed that the impact of dispersal of river-derived ASVs on changes in aquifer microbial community composition was overall outweighed by species sorting due to changes in environmental conditions caused by the infiltrating river water. Proportions of river-derived ASVs on aquifer sediments were <0.5%, showing that taxa transported from the river into the aquifer over the course of the study mainly resided as planktonic microorganisms in the groundwater. Our study demonstrates that groundwater microbial communities react sensitively to changes in environmental conditions caused by surface water intrusion, whereas mass effects resulting from the influx of river-derived taxa play a comparatively minor role.
Collapse
Affiliation(s)
- Lucas Fillinger
- Helmholtz Zentrum München, Institute of Groundwater Ecology, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Katrin Hug
- Helmholtz Zentrum München, Institute of Groundwater Ecology, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Christian Griebler
- Helmholtz Zentrum München, Institute of Groundwater Ecology, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| |
Collapse
|
22
|
Rain-Franco A, de Moraes GP, Beier S. Cryopreservation and Resuscitation of Natural Aquatic Prokaryotic Communities. Front Microbiol 2021; 11:597653. [PMID: 33584565 PMCID: PMC7877341 DOI: 10.3389/fmicb.2020.597653] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/30/2020] [Indexed: 11/25/2022] Open
Abstract
Experimental reproducibility in aquatic microbial ecology is critical to predict the dynamics of microbial communities. However, controlling the initial composition of naturally occurring microbial communities that will be used as the inoculum in experimental setups is challenging, because a proper method for the preservation of those communities is lacking. To provide a feasible method for preservation and resuscitation of natural aquatic prokaryote assemblages, we developed a cryopreservation procedure applied to natural aquatic prokaryotic communities. We studied the impact of inoculum size, processing time, and storage time on the success of resuscitation. We further assessed the effect of different growth media supplemented with dissolved organic matter (DOM) prepared from naturally occurring microorganisms on the recovery of the initially cryopreserved communities obtained from two sites that have contrasting trophic status and environmental heterogeneity. Our results demonstrated that the variability of the resuscitation process among replicates decreased with increasing inoculum size. The degree of similarity between initial and resuscitated communities was influenced by both the growth medium and origin of the community. We further demonstrated that depending on the inoculum source, 45-72% of the abundant species in the initially natural microbial communities could be detected as viable cells after cryopreservation. Processing time and long-term storage up to 12 months did not significantly influence the community composition after resuscitation. However, based on our results, we recommend keeping handling time to a minimum and ensure identical incubation conditions for repeated resuscitations from cryo-preserved aliquots at different time points. Given our results, we recommend cryopreservation as a promising tool to advance experimental research in the field of microbial ecology.
Collapse
Affiliation(s)
- Angel Rain-Franco
- UMR 7621 Laboratoire d’Océanographie Microbienne, Observatoire Océanologique de Banyuls-sur-Mer, Sorbonne Université, Banyuls-sur-Mer, France
| | - Guilherme Pavan de Moraes
- UMR 7621 Laboratoire d’Océanographie Microbienne, Observatoire Océanologique de Banyuls-sur-Mer, Sorbonne Université, Banyuls-sur-Mer, France
- Graduate Program in Ecology and Natural Resources (PPGERN), Laboratory of Phycology, Department of Botany, Universidade Federal de São Carlos, São Carlos, Brazil
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
| | - Sara Beier
- UMR 7621 Laboratoire d’Océanographie Microbienne, Observatoire Océanologique de Banyuls-sur-Mer, Sorbonne Université, Banyuls-sur-Mer, France
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
| |
Collapse
|
23
|
Understanding response of microbial communities to saltwater intrusion through microcosms. Comput Struct Biotechnol J 2021; 19:929-933. [PMID: 33598106 PMCID: PMC7851333 DOI: 10.1016/j.csbj.2021.01.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 11/21/2022] Open
Abstract
A central pursuit of microbial ecology is to accurately describe and explain the shifts in microbial community composition and function that occur in response to environmental changes. This goal requires a thorough understanding of the individual responses of different species and of the processes guiding the assembly of microbial populations similar in their response traits and corresponding functional traits. These research topics are addressed and synthesized in this Highlights, in four studies applying a trait-based framework to assess how environmental change affected the composition and functional performance of bacterioplankton of natural origin in microcosm experiments. The salinity of many aquatic environments is currently changing, due to climate change and anthropogenic activities. The mechanisms by which salinity influences community assembly, functional redundancy and functional genes involved in nitrogen cycle, and how dispersal modifies community outcome are explored in the four studies. Together, the findings of these case studies demonstrate the feasibility of using novel experiments in combination with integrative analyses of 16S rRNA and meta-'omic' data to address ecological questions. This combined approach has the potential to elucidate both the processes contributing to bacterial community assembly and the possible links between the compositional and functional changes that occur under shifting environmental conditions.
Collapse
|
24
|
Wang H, Tian T, Gong Y, Ma S, Altaf MM, Wu H, Diao X. Both environmental and spatial variables affect bacterial functional diversity in mangrove sediments at an island scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:142054. [PMID: 32896729 DOI: 10.1016/j.scitotenv.2020.142054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
Sediment microorganisms are influenced by various biotic and abiotic factors. However, information concerning the spatial factors that determine the functional diversity of sediment bacterial communities at an island scale is limited. Here, we conducted an island-scale study to assess the driving forces governing the functional diversity of sediment bacterial communities in different mangroves around the coast of Hainan Island, southern China. For mangrove sediments in Hainan Island, differences in the metabolic activity and functional diversity among four sites were context dependent, while that showed a trend of East > North > West > South. Furthermore, total carbon, nitrite nitrogen, and salinity are important environmental factors that determine the metabolic functional diversity of bacterial communities. This study also provided important insights for explaining the metabolic functional diversity of bacterial communities in tropical mangrove sediments. The metabolic activity had a significantly response to environmental variables (13.2% of pure variance was explained) and spatial variables (12.4%). More importantly, given that spatial variables may contribute to the bacterial functional as important as environmental variables, this spatial variety of bacterial functional provides new insight into studying bacterial functional biogeographic patterns and impacts on sediment-associated function.
Collapse
Affiliation(s)
- Haihua Wang
- College of Ecology and Environment, Hainan University, Haikou 570228, People's Republic of China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, People's Republic of China
| | - Tian Tian
- School of Biology, Hainan Normal University, Haikou 571158, People's Republic of China
| | - Ying Gong
- College of Ecology and Environment, Hainan University, Haikou 570228, People's Republic of China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, People's Republic of China
| | - Siyuan Ma
- School of Biology, Hainan Normal University, Haikou 571158, People's Republic of China
| | - Muhammad Mohsin Altaf
- College of Ecology and Environment, Hainan University, Haikou 570228, People's Republic of China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, People's Republic of China
| | - Hongping Wu
- School of Biology, Hainan Normal University, Haikou 571158, People's Republic of China
| | - Xiaoping Diao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, People's Republic of China; School of Biology, Hainan Normal University, Haikou 571158, People's Republic of China.
| |
Collapse
|
25
|
Whitaker BK, Christian N, Chai Q, Clay K. Foliar fungal endophyte community structure is independent of phylogenetic relatedness in an Asteraceae common garden. Ecol Evol 2020; 10:13895-13912. [PMID: 33391689 PMCID: PMC7771118 DOI: 10.1002/ece3.6983] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 09/28/2020] [Accepted: 10/07/2020] [Indexed: 12/31/2022] Open
Abstract
Phylogenetic distance among host species represents a proxy for host traits that act as biotic filters to shape host-associated microbiome community structure. However, teasing apart potential biotic assembly mechanisms, such as host specificity or local species interactions, from abiotic factors, such as environmental specificity or dispersal barriers, in hyperdiverse, horizontally transmitted microbiomes remains a challenge. In this study, we tested whether host phylogenetic relatedness among 18 native Asteraceae plant species and spatial distance between replicated plots in a common garden affects foliar fungal endophyte (FFE) community structure. We found that FFE community structure varied significantly among host species, as well as host tribes, but not among host subfamilies. However, FFE community dissimilarity between host individuals was not significantly correlated with phylogenetic distance between host species. There was a significant effect of spatial distance among host individuals on FFE community dissimilarity within the common garden. The significant differences in FFE community structure among host species, but lack of a significant host phylogenetic effect, suggest functional differences among host species not accounted for by host phylogenetic distance, such as metabolic traits or phenology, may drive FFE community dissimilarity. Overall, our results indicate that host species identity and the spatial distance between plants can determine the similarity of their microbiomes, even across a single experimental field, but that host phylogeny is not closely tied to FFE community divergence in native Asteraceae.
Collapse
Affiliation(s)
| | - Natalie Christian
- Department of BiologyIndiana UniversityBloomingtonINUSA
- Department of BiologyUniversity of LouisvilleLouisvilleKYUSA
| | - Qing Chai
- Department of BiologyIndiana UniversityBloomingtonINUSA
- School of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
| | - Keith Clay
- Department of BiologyIndiana UniversityBloomingtonINUSA
- Department of Ecology and Evolutionary BiologyTulane UniversityNew OrleansLAUSA
| |
Collapse
|
26
|
Xie R, Rao P, Pang Y, Shi C, Li J, Shen D. Salt intrusion alters nitrogen cycling in tidal reaches as determined in field and laboratory investigations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 729:138803. [PMID: 32361438 DOI: 10.1016/j.scitotenv.2020.138803] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/06/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Salinization is a growing problem throughout the world and poses a threat especially to freshwater ecosystems. However, much remains to be learned about the mechanisms by which salinity impacts microbially mediated biogeochemical processes. Elevated nitrogen (N) concentrations in estuarine ecosystems have led to their eutrophication, but the relationship between N transformation and the functional genes involved in the response to saltwater intrusion is poorly understood. Here, using the Minjiang River, a tidal river in southeastern China as an easily accessible natural laboratory, we conducted a 2-year field survey to investigate N speciation during ebb and flood tides. Then, in a laboratory experiment we simulated the varying degrees of salt intrusion that occur in natural tidal reaches. The microcosm study allowed quantitative assessments of N transformation and functional gene responses. The field surveys showed that concentrations of NH4+ rose during flood tides, while the concentrations of NO3- and total N fluctuated. In the microcosms, NO3- concentrations decreased in response to salt pulses, due to simultaneous declines in the abundance of genes responsible for nitrification and increases in the abundance of those involved in dissimilatory nitrate reduction to ammonium (DNRA). The elevated salinity led to increased yields of NH4+, a response that correlated positively with the abundance of nrfA genes, involved in DNRA. Furthermore, an increase in salinity promoted N2O accumulation during the denitrification process. Altogether, our study suggests that saltwater intrusion leads to a decrease in nitrification while favoring N transformation via denitrification and DNRA and that N2O accumulation in the water is dependent on the strength of the salt pulse.
Collapse
Affiliation(s)
- Rongrong Xie
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China; Key Laboratory of Pollution Control and Resource Recycling of Fujian Province, Fujian Normal University, Fuzhou 350007, China; Section of Physical Oceanography and Instrumentation, Leibniz Institute for Baltic Sea Research, Warnemuende, D-18119 Rostock, Germany
| | - Peiyuan Rao
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China
| | - Yong Pang
- College of Environment, Hohai University, Nanjing 210098, China
| | - Chengchun Shi
- Fuzhou Research Academy of Environmental Sciences, Fuzhou 350013, China
| | - Jiabing Li
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China; Key Laboratory of Pollution Control and Resource Recycling of Fujian Province, Fujian Normal University, Fuzhou 350007, China.
| | - Dandan Shen
- Section of Biological Oceanography, Leibniz Institute for Baltic Sea Research, Warnemuende, D-18119 Rostock, Germany; Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden.
| |
Collapse
|
27
|
Muhammad MH, Idris AL, Fan X, Guo Y, Yu Y, Jin X, Qiu J, Guan X, Huang T. Beyond Risk: Bacterial Biofilms and Their Regulating Approaches. Front Microbiol 2020; 11:928. [PMID: 32508772 PMCID: PMC7253578 DOI: 10.3389/fmicb.2020.00928] [Citation(s) in RCA: 308] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/20/2020] [Indexed: 12/24/2022] Open
Abstract
Bacterial biofilms are complex surface attached communities of bacteria held together by self-produced polymer matrixs mainly composed of polysaccharides, secreted proteins, and extracellular DNAs. Bacterial biofilm formation is a complex process and can be described in five main phases: (i) reversible attachment phase, where bacteria non-specifically attach to surfaces; (ii) irreversible attachment phase, which involves interaction between bacterial cells and a surface using bacterial adhesins such as fimbriae and lipopolysaccharide (LPS); (iii) production of extracellular polymeric substances (EPS) by the resident bacterial cells; (iv) biofilm maturation phase, in which bacterial cells synthesize and release signaling molecules to sense the presence of each other, conducing to the formation of microcolony and maturation of biofilms; and (v) dispersal/detachment phase, where the bacterial cells depart biofilms and comeback to independent planktonic lifestyle. Biofilm formation is detrimental in healthcare, drinking water distribution systems, food, and marine industries, etc. As a result, current studies have been focused toward control and prevention of biofilms. In an effort to get rid of harmful biofilms, various techniques and approaches have been employed that interfere with bacterial attachment, bacterial communication systems (quorum sensing, QS), and biofilm matrixs. Biofilms, however, also offer beneficial roles in a variety of fields including applications in plant protection, bioremediation, wastewater treatment, and corrosion inhibition amongst others. Development of beneficial biofilms can be promoted through manipulation of adhesion surfaces, QS and environmental conditions. This review describes the events involved in bacterial biofilm formation, lists the negative and positive aspects associated with bacterial biofilms, elaborates the main strategies currently used to regulate establishment of harmful bacterial biofilms as well as certain strategies employed to encourage formation of beneficial bacterial biofilms, and highlights the future perspectives of bacterial biofilms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Tianpei Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education, College of Life Sciences & College of Plant Protection & International College, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
28
|
Kivistik C, Knobloch J, Käiro K, Tammert H, Kisand V, Hildebrandt JP, Herlemann DPR. Impact of Salinity on the Gastrointestinal Bacterial Community of Theodoxus fluviatilis. Front Microbiol 2020; 11:683. [PMID: 32457702 PMCID: PMC7225522 DOI: 10.3389/fmicb.2020.00683] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 03/24/2020] [Indexed: 12/21/2022] Open
Abstract
Differences in salinity are boundaries that act as barriers for the dispersal of most aquatic organisms. This creates distinctive biota in freshwater and brackish water (mesohaline) environments. To test how saline boundaries influence the diversity and composition of host-associated microbiota, we analyzed the microbiome within the digestive tract of Theodoxus fluviatilis, an organism able to cross the freshwater and mesohaline boundary. Alpha-diversity measures of the microbiome in freshwater and brackish water were not significantly different. However, the composition of the bacterial community within freshwater T. fluviatilis differed significantly compared with mesohaline T. fluviatilis and typical bacteria could be determined for the freshwater and the mesohaline digestive tract microbiome. An artificial increase in salinity surrounding these freshwater snails resulted in a strong change in the bacterial community and typical marine bacteria became more pronounced in the digestive tract microbiome of freshwater T. fluviatilis. However, the composition of the digestive tract microbiome in freshwater snails did not converge to that found within mesohaline snails. Within mesohaline snails, no cardinal change was found after either an increase or decrease in salinity. In all samples, Pseudomonas, Pirellula, Flavobacterium, Limnohabitans, and Acinetobacter were among the most abundant bacteria. These bacterial genera were largely unaffected by changes in environmental conditions. As permanent residents in T. fluviatilis, they may support the digestion of the algal food in the digestive tract. Our results show that freshwater and mesohaline water host-associated microbiomes respond differently to changes in salinity. Therefore, the salinization of coastal freshwater environments due to a rise in sea level can influence the gut microbiome and its functions with currently unknown consequences for, e.g., nutritional physiology of the host.
Collapse
Affiliation(s)
- Carmen Kivistik
- Centre for Limnology, Estonian University of Life Sciences, Tartu, Estonia
| | - Jan Knobloch
- Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| | - Kairi Käiro
- Centre for Limnology, Estonian University of Life Sciences, Tartu, Estonia
| | - Helen Tammert
- Centre for Limnology, Estonian University of Life Sciences, Tartu, Estonia
| | - Veljo Kisand
- Centre for Limnology, Estonian University of Life Sciences, Tartu, Estonia
- Institute of Technology, University of Tartu, Tartu, Estonia
| | | | | |
Collapse
|
29
|
Rocca JD, Simonin M, Bernhardt ES, Washburne AD, Wright JP. Rare microbial taxa emerge when communities collide: freshwater and marine microbiome responses to experimental mixing. Ecology 2020; 101:e02956. [PMID: 31840237 DOI: 10.1002/ecy.2956] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 10/01/2019] [Accepted: 11/12/2019] [Indexed: 01/06/2023]
Abstract
Whole microbial communities regularly merge with one another, often in tandem with their environments, in a process called community coalescence. Such events impose substantial changes: abiotic perturbation from environmental blending and biotic perturbation of community merging. We used an aquatic mixing experiment to unravel the effects of these perturbations on the whole microbiome response and on the success of individual taxa when distinct freshwater and marine communities coalesce. We found that an equal mix of freshwater and marine habitats and blended microbiomes resulted in strong convergence of the community structure toward that of the marine microbiome. The enzymatic potential of these blended microbiomes in mixed media also converged toward that of the marine, with strong correlations between the multivariate response patterns of the enzymes and of community structure. Exposing each endmember inocula to an axenic equal mix of their freshwater and marine source waters led to a 96% loss of taxa from our freshwater microbiomes and a 66% loss from our marine microbiomes. When both inocula were added together to this mixed environment, interactions amongst the communities led to a further loss of 29% and 49% of freshwater and marine taxa, respectively. Under both the axenic and competitive scenarios, the diversity lost was somewhat counterbalanced by increased abundance of microbial taxa that were too rare to detect in the initial inocula. Our study emphasizes the importance of the rare biosphere as a critical component of microbial community responses to community coalescence.
Collapse
Affiliation(s)
- Jennifer D Rocca
- Department of Biology, Duke University, Durham, North Carolina, 27708, USA
| | - Marie Simonin
- Department of Biology, Duke University, Durham, North Carolina, 27708, USA.,IRD, Cirad, IPME, University of Montpellier, Montpellier, 34080, France
| | - Emily S Bernhardt
- Department of Biology, Duke University, Durham, North Carolina, 27708, USA.,Nicholas School of the Environment, Duke University, Durham, North Carolina, 27708, USA
| | - Alex D Washburne
- Department of Microbiology & Immunology, Montana State University, Bozeman, Montana, 59717, USA
| | - Justin P Wright
- Department of Biology, Duke University, Durham, North Carolina, 27708, USA.,Nicholas School of the Environment, Duke University, Durham, North Carolina, 27708, USA
| |
Collapse
|