1
|
Mukhopadhyay S, Bishayi R, Shaji A, Lee AH, Gupta R, Mohajeri M, Katiyar A, McKee B, Schmitz IR, Shin R, Lele TP, Lele PP. Dynamic Adaptation in Extant Porins Facilitates Antibiotic Tolerance in Energetic Escherichia coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.07.583920. [PMID: 38496420 PMCID: PMC10942424 DOI: 10.1101/2024.03.07.583920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Bacteria can tolerate antibiotics despite lacking the genetic components for resistance. The prevailing notion is that tolerance results from depleted cellular energy or cell dormancy. In contrast to this view, many cells in the tolerant population of Escherichia coli can exhibit motility - a phenomenon that requires cellular energy, specifically, the proton-motive force (PMF). As these motile-tolerant cells are challenging to isolate from the heterogeneous tolerant population, their survival mechanism is unknown. Here, we discovered that motile bacteria segregate themselves from the tolerant population under micro-confinement, owing to their unique ability to penetrate micron-sized channels. Single-cell measurements on the motile-tolerant population showed that the cells retained a high PMF, but they did not survive through active efflux alone. By utilizing growth assays, single-cell fluorescence studies, and chemotaxis assays, we showed that the cells survived by dynamically inhibiting the function of existing porins in the outer membrane. A drug transport model for porin-mediated intake and efflux pump-mediated expulsion suggested that energetic tolerant cells withstand antibiotics by constricting their porins. The novel porin adaptation we have uncovered is independent of gene expression changes and may involve electrostatic modifications within individual porins to prevent extracellular ligand entry.
Collapse
|
2
|
Gupta R, Yuan J, Lele PP. Bacterial Proprioception: Can a Bacterium Sense Its Movement? Front Microbiol 2022; 13:928408. [PMID: 35875555 PMCID: PMC9302961 DOI: 10.3389/fmicb.2022.928408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
The evolution of the bacterial flagellum gave rise to motility and repurposing of a signaling network, now termed the chemotaxis network, enabled biasing of cell movements. This made it possible for the bacterium to seek out favorable chemical environments. To enable chemotaxis, the chemotaxis network sensitively detects extracellular chemical stimuli and appropriately modulates flagellar functions. Additionally, the flagellar motor itself is capable of detecting mechanical stimuli and adapts its structure and function in response, likely triggering a transition from planktonic to surface-associated lifestyles. Recent work has shown a link between the flagellar motor's response to mechanical stimuli and the chemotactic output. Here, we elaborate on this link and discuss how it likely helps the cell sense and adapt to changes in its swimming speeds in different environments. We discuss the mechanism whereby the motor precisely tunes its chemotaxis output under different mechanical loads, analogous to proprioception in higher order organisms. We speculate on the roles bacterial proprioception might play in a variety of phenomena including the transition to surface-associated lifestyles such as swarming and biofilms.
Collapse
Affiliation(s)
- Rachit Gupta
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, United States
| | - Junhua Yuan
- Department of Physics, University of Science and Technology of China, Hefei, China
| | - Pushkar P Lele
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, United States
| |
Collapse
|
3
|
Gupta R, Rhee KY, Beagle SD, Chawla R, Perdomo N, Lockless SW, Lele PP. Indole modulates cooperative protein-protein interactions in the flagellar motor. PNAS NEXUS 2022; 1. [PMID: 35719892 PMCID: PMC9205328 DOI: 10.1093/pnasnexus/pgac035] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Indole is a major component of the bacterial exometabolome, and the mechanisms for its wide-ranging effects on bacterial physiology are biomedically significant, although they remain poorly understood. Here, we determined how indole modulates the functions of a widely conserved motility apparatus, the bacterial flagellum. Our experiments in Escherichia coli revealed that indole influences the rotation rates and reversals in the flagellum’s direction of rotation via multiple mechanisms. At concentrations higher than 1 mM, indole decreased the membrane potential to dissipate the power available for the rotation of the motor that operates the flagellum. Below 1 mM, indole did not dissipate the membrane potential. Instead, experiments and modeling indicated that indole weakens cooperative protein interactions within the flagellar complexes to inhibit motility. The metabolite also induced reversals in the rotational direction of the motor to promote a weak chemotactic response, even when the chemotaxis response regulator, CheY, was lacking. Experiments further revealed that indole does not require the transporter Mtr to cross the membrane and influence motor functions. Based on these findings, we propose that indole modulates intra- and inter-protein interactions in the cell to influence several physiological functions.
Collapse
Affiliation(s)
- Rachit Gupta
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3122, USA
| | - Kathy Y Rhee
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3122, USA
| | - Sarah D Beagle
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| | - Ravi Chawla
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
| | - Nicolas Perdomo
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3122, USA
| | - Steve W Lockless
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA
| | - Pushkar P Lele
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3122, USA
| |
Collapse
|
4
|
Colin R, Ni B, Laganenka L, Sourjik V. Multiple functions of flagellar motility and chemotaxis in bacterial physiology. FEMS Microbiol Rev 2021; 45:fuab038. [PMID: 34227665 PMCID: PMC8632791 DOI: 10.1093/femsre/fuab038] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/02/2021] [Indexed: 12/13/2022] Open
Abstract
Most swimming bacteria are capable of following gradients of nutrients, signaling molecules and other environmental factors that affect bacterial physiology. This tactic behavior became one of the most-studied model systems for signal transduction and quantitative biology, and underlying molecular mechanisms are well characterized in Escherichia coli and several other model bacteria. In this review, we focus primarily on less understood aspect of bacterial chemotaxis, namely its physiological relevance for individual bacterial cells and for bacterial populations. As evident from multiple recent studies, even for the same bacterial species flagellar motility and chemotaxis might serve multiple roles, depending on the physiological and environmental conditions. Among these, finding sources of nutrients and more generally locating niches that are optimal for growth appear to be one of the major functions of bacterial chemotaxis, which could explain many chemoeffector preferences as well as flagellar gene regulation. Chemotaxis might also generally enhance efficiency of environmental colonization by motile bacteria, which involves intricate interplay between individual and collective behaviors and trade-offs between growth and motility. Finally, motility and chemotaxis play multiple roles in collective behaviors of bacteria including swarming, biofilm formation and autoaggregation, as well as in their interactions with animal and plant hosts.
Collapse
Affiliation(s)
- Remy Colin
- Max Planck Institute for Terrestrial Microbiology & Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch Strasse 16, Marburg D-35043, Germany
| | - Bin Ni
- Max Planck Institute for Terrestrial Microbiology & Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch Strasse 16, Marburg D-35043, Germany
- College of Resources and Environmental Science, National Academy of Agriculture Green Development, China Agricultural University, Yuanmingyuan Xilu No. 2, Beijing 100193, China
| | - Leanid Laganenka
- Institute of Microbiology, D-BIOL, ETH Zürich, Vladimir-Prelog-Weg 4, Zürich 8093, Switzerland
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology & Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch Strasse 16, Marburg D-35043, Germany
| |
Collapse
|
5
|
Wang J, Lei Y, Yu Y, Yin L, Zhang Y. Use of Acetic Acid to Partially Replace Lactic Acid for Decontamination against Escherichia coli O157:H7 in Fresh Produce and Mechanism of Action. Foods 2021; 10:2406. [PMID: 34681456 PMCID: PMC8535275 DOI: 10.3390/foods10102406] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 11/16/2022] Open
Abstract
Escherichia coli O157:H7 is frequently detected in ready-to-eat produce and causes serious food-borne diseases. The decontamination efficacy of lactic acid (LA) is clearly established. In this study, LA was mixed with acetic acid (AA) to reduce costs while achieving consistent or better inhibitory effects. Time-kill curves and inoculation experiments using fresh-cut spinach and arugula indicated that 0.8%LA+0.2%AA shows similar antibacterial effects to those of 1%LA. To determine whether 1%LA and 0.8%LA+0.2%AA exert antibacterial effects by similar mechanisms, proteomics analysis was used. The proteins related to macromolecule localization, cellular localization, and protein unfolding were uniquely altered after the treatment with 1%LA, and the proteins related to taxis, response to stress, catabolic process, and the regulation of molecular function were uniquely altered after the treatment with 0.8%LA+0.2%AA. Based on these findings, combined with the results of a network clustering analysis, we speculate that cell membrane damage is greater in response to LA than to 0.8%LA+0.2%AA. This prediction was supported by cell membrane permeability experiments (analyses of protein, nucleotide, ATP, and alkaline phosphatase leakage), which showed that LA causes greater membrane damage than 0.8%LA+0.2%AA. These results provide a theoretical basis for the application of an acid mixture to replace LA for produce decontamination.
Collapse
Affiliation(s)
- Jiayi Wang
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China; (Y.Y.); (L.Y.); (Y.Z.)
| | - Yue Lei
- Institute of Rice Research, Guizhou Academy of Agricultural, Guiyang 550009, China;
| | - Yougui Yu
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China; (Y.Y.); (L.Y.); (Y.Z.)
| | - Lebin Yin
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China; (Y.Y.); (L.Y.); (Y.Z.)
| | - Yangyang Zhang
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China; (Y.Y.); (L.Y.); (Y.Z.)
| |
Collapse
|
6
|
Abstract
Bacteria have developed a large array of motility mechanisms to exploit available resources and environments. These mechanisms can be broadly classified into swimming in aqueous media and movement over solid surfaces. Swimming motility involves either the rotation of rigid helical filaments through the external medium or gyration of the cell body in response to the rotation of internal filaments. On surfaces, bacteria swarm collectively in a thin layer of fluid powered by the rotation of rigid helical filaments, they twitch by assembling and disassembling type IV pili, they glide by driving adhesins along tracks fixed to the cell surface and, finally, non-motile cells slide over surfaces in response to outward forces due to colony growth. Recent technological advances, especially in cryo-electron microscopy, have greatly improved our knowledge of the molecular machinery that powers the various forms of bacterial motility. In this Review, we describe the current understanding of the physical and molecular mechanisms that allow bacteria to move around.
Collapse
|
7
|
Mechanosensitive recruitment of stator units promotes binding of the response regulator CheY-P to the flagellar motor. Nat Commun 2021; 12:5442. [PMID: 34521846 PMCID: PMC8440544 DOI: 10.1038/s41467-021-25774-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/25/2021] [Indexed: 11/08/2022] Open
Abstract
Reversible switching of the bacterial flagellar motor between clockwise (CW) and counterclockwise (CCW) rotation is necessary for chemotaxis, which enables cells to swim towards favorable chemical habitats. Increase in the viscous resistance to the rotation of the motor (mechanical load) inhibits switching. However, cells must maintain homeostasis in switching to navigate within environments of different viscosities. The mechanism by which the cell maintains optimal chemotactic function under varying loads is not understood. Here, we show that the flagellar motor allosterically controls the binding affinity of the chemotaxis response regulator, CheY-P, to the flagellar switch complex by modulating the mechanical forces acting on the rotor. Mechanosensitive CheY-P binding compensates for the load-induced loss of switching by precisely adapting the switch response to a mechanical stimulus. The interplay between mechanical forces and CheY-P binding tunes the chemotactic function to match the load. This adaptive response of the chemotaxis output to mechanical stimuli resembles the proprioceptive feedback in the neuromuscular systems of insects and vertebrates.
Collapse
|
8
|
Tian M, Zhang C, Zhang R, Yuan J. Collective motion enhances chemotaxis in a two-dimensional bacterial swarm. Biophys J 2021; 120:1615-1624. [PMID: 33636168 DOI: 10.1016/j.bpj.2021.02.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/20/2021] [Accepted: 02/10/2021] [Indexed: 02/05/2023] Open
Abstract
In a dilute liquid environment in which cell-cell interaction is negligible, flagellated bacteria, such as Escherichia coli, perform chemotaxis by biased random walks alternating between run-and-tumble. In a two-dimensional crowded environment, such as a bacterial swarm, the typical behavior of run-and-tumble is absent, and this raises the question whether and how bacteria can perform chemotaxis in a swarm. Here, by examining the chemotactic behavior as a function of the cell density, we showed that chemotaxis is surprisingly enhanced because of cell crowding in a bacterial swarm, and this enhancement is correlated with increase in the degree of cell body alignment. Cells tend to form clusters that move collectively in a swarm with increased effective run length, and we showed analytically that this resulted in increased drift velocity toward attractants. We also explained the enhancement by stochastically simulating bacterial chemotaxis in a swarm. We found that cell crowding in a swarm enhances chemotaxis if the cell-cell interactions used in the simulation induce cell-cell alignment, but it impedes chemotaxis if the interactions are collisions that randomize cell moving direction. Therefore, collective motion in a bacterial swarm enhances chemotaxis.
Collapse
Affiliation(s)
- Maojin Tian
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, China
| | - Chi Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, China
| | - Rongjing Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, China.
| | - Junhua Yuan
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
9
|
Antani JD, Sumali AX, Lele TP, Lele PP. Asymmetric random walks reveal that the chemotaxis network modulates flagellar rotational bias in Helicobacter pylori. eLife 2021; 10:63936. [PMID: 33493107 PMCID: PMC7834020 DOI: 10.7554/elife.63936] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/12/2021] [Indexed: 12/14/2022] Open
Abstract
The canonical chemotaxis network modulates the bias for a particular direction of rotation in the bacterial flagellar motor to help the cell migrate toward favorable chemical environments. How the chemotaxis network in Helicobacter pylori modulates flagellar functions is unknown, which limits our understanding of chemotaxis in this species. Here, we determined that H. pylori swim faster (slower) whenever their flagella rotate counterclockwise (clockwise) by analyzing their hydrodynamic interactions with bounding surfaces. This asymmetry in swimming helped quantify the rotational bias. Upon exposure to a chemo-attractant, the bias decreased and the cells tended to swim exclusively in the faster mode. In the absence of a key chemotaxis protein, CheY, the bias was zero. The relationship between the reversal frequency and the rotational bias was unimodal. Thus, H. pylori’s chemotaxis network appears to modulate the probability of clockwise rotation in otherwise counterclockwise-rotating flagella, similar to the canonical network.
Collapse
Affiliation(s)
- Jyot D Antani
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, United States
| | - Anita X Sumali
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, United States
| | - Tanmay P Lele
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77840, College Station, TX 77840, United States.,Department of Translational Medical Sciences, Texas A&M University, Houston, TX 77030, United States
| | - Pushkar P Lele
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, United States
| |
Collapse
|
10
|
Khan F, Tabassum N, Pham DTN, Oloketuyi SF, Kim YM. Molecules involved in motility regulation in Escherichia coli cells: a review. BIOFOULING 2020; 36:889-908. [PMID: 33028083 DOI: 10.1080/08927014.2020.1826939] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
The initial colonization of the host organism by commensal, probiotic, and pathogenic Escherichia coli strains is an important step in the development of infections and biofilms. Sensing and colonization of host cell surfaces are governed by flagellar and fimbriae/pili appendages, respectively. Biofilm formation confers great advantages on pathogenic E. coli cells such as protection against the host immune system, antimicrobial agents, and several environmental stress factors. The transition from planktonic to sessile physiological states involves several signaling cascades and factors responsible for the regulation of flagellar motility in E. coli cells. These regulatory factors have thus become important targets to control pathogenicity. Hence, attenuation of flagellar motility is considered a potential therapy against pathogenic E. coli. The present review describes signaling pathways and proteins involved in direct or indirect regulation of flagellar motility. Furthermore, application strategies for antimotility natural or synthetic compounds are discussed also.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Institute of Food Science, Pukyong National University, Busan, Republic of Korea
| | - Nazia Tabassum
- Industrial Convergence Bionix Engineering, Pukyong National University, Busan, Republic of Korea
| | - Dung Thuy Nguyen Pham
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| | | | - Young-Mog Kim
- Institute of Food Science, Pukyong National University, Busan, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
11
|
Wu Z, He R, Zhang R, Yuan J. Swarming Motility Without Flagellar Motor Switching by Reversal of Swimming Direction in E. coli. Front Microbiol 2020; 11:1042. [PMID: 32670212 PMCID: PMC7326100 DOI: 10.3389/fmicb.2020.01042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 04/27/2020] [Indexed: 01/08/2023] Open
Abstract
In a crowded environment such as a bacterial swarm, cells frequently got jammed and came to a stop, but were able to escape the traps by backing up in their moving course with a head-to-tail change (a reversal). Reversals are essential for the expansion of a bacterial swarm. Reversal for a wildtype cell usually involved polymorphic transformation of the flagellar filaments induced by directional switching of the flagellar motors. Here we discovered a new way of reversal in cells without motor switching and characterized its mechanisms. We further found that this type of reversal was not limited to swarmer cells, but also occurred for cells grown in a bulk solution. Therefore, reversal was a general way of escaping when cells got jammed in their natural complex habitats. The new way of reversal we discovered here offered a general strategy for cells to escape traps and explore their environment.
Collapse
Affiliation(s)
- Zhengyu Wu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, China
| | - Rui He
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, China
| | - Rongjing Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, China
| | - Junhua Yuan
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, China
| |
Collapse
|
12
|
Araujo G, Chen W, Mani S, Tang JX. Orbiting of Flagellated Bacteria within a Thin Fluid Film around Micrometer-Sized Particles. Biophys J 2019; 117:346-354. [PMID: 31248602 DOI: 10.1016/j.bpj.2019.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 10/26/2022] Open
Abstract
Bacterial motility under confinement is relevant to both environmental control and the spread of infection. Here, we report observations on Escherichia coli, Enterobacter sp., Pseudomonas aeruginosa, and Bacillus subtilis when they are confined within a thin layer of water around dispersed micrometer-sized particles sprinkled over a semisolid agar gel. In this setting, E. coli and Enterobacteria orbit around the dispersed particles. The liquid layer is shaped like a shallow tent with its height at the center set by the seeding particle, and the meniscus profile set by the strong surface tension of water. The tent-shaped confinement and the left handedness of the flagellar filaments result in exclusively clockwise circular trajectories. The thin fluid layer is resilient because of a balance between evaporation and reinforcement of fluid that permeated out of the agar. The latter is driven by the Laplace pressure caused by the concave meniscus. In short, we explain the physical mechanism of a convenient method to entrap bacteria within localized thin fluid film near a permeable surface.
Collapse
Affiliation(s)
- George Araujo
- Department of Physics, Brown University, Providence, Rhode Island
| | - Weijie Chen
- Department of Physics, Brown University, Providence, Rhode Island; Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Sridhar Mani
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Jay X Tang
- Department of Physics, Brown University, Providence, Rhode Island.
| |
Collapse
|
13
|
Abstract
The fundamental motile behavior of E. coli is a random walk, where straight “runs” are punctuated by “tumbles.” This behavior, conferred by the chemotaxis signaling system, is used to track chemical gradients in liquid. Our study results show that when migrating collectively on surfaces, E. coli modifies its chemosensory physiology to decrease its tumble bias (and hence to increase run durations) by post-transcriptional changes that alter the levels of a key signaling protein. We speculate that the low tumble bias may contribute to the observed Lévy walk (LW) trajectories within the swarm, where run durations have a power law distribution. In animals, LW patterns are hypothesized to maximize searches in unpredictable environments. Swarming bacteria face several challenges while moving collectively over a surface—maintaining cohesion, overcoming constraints imposed by a physical substrate, searching for nutrients as a group, and surviving lethal levels of antimicrobials. The altered chemosensory behavior that we describe in this report may help with these challenges. Many flagellated bacteria “swarm” over a solid surface as a dense consortium. In different bacteria, swarming is facilitated by several alterations such as those corresponding to increased flagellum numbers, special stator proteins, or secreted surfactants. We report here a change in the chemosensory physiology of swarming Escherichia coli which alters its normal “run tumble” bias. E. coli bacteria taken from a swarm exhibit more highly extended runs (low tumble bias) and higher speeds than E. coli bacteria swimming individually in a liquid medium. The stability of the signaling protein CheZ is higher in swarmers, consistent with the observed elevation of CheZ levels and with the low tumble bias. We show that the tumble bias displayed by wild-type swarmers is the optimal bias for maximizing swarm expansion. In assays performed in liquid, swarm cells have reduced chemotactic performance. This behavior is specific to swarming, is not specific to growth on surfaces, and persists for a generation. Therefore, the chemotaxis signaling pathway is reprogrammed for swarming.
Collapse
|