1
|
de Menezes AB, Gashchak S, Wood MD, Beresford NA. Relationships between radiation, wildfire and the soil microbial communities in the Chornobyl Exclusion Zone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175381. [PMID: 39122033 DOI: 10.1016/j.scitotenv.2024.175381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
There is considerable uncertainty regarding radiation's effects on biodiversity in natural complex ecosystems typically subjected to multiple environmental disturbances and stresses. In this study we characterised the relationships between soil microbial communities and estimated total absorbed dose rates to bacteria, grassy vegetation and trees in the Red Forest region of the Chornobyl Exclusion Zone. Samples were taken from sites of contrasting ecological histories and along burn and no burn areas following a wildfire. Estimated total absorbed dose rates to bacteria reached levels one order of magnitude higher than those known to affect bacteria in laboratory studies. Sites with harsher ecological conditions, notably acidic pH and low soil moisture, tended to have higher radiation contamination levels. No relationship between the effects of fire and radiation were observed. Microbial groups that correlated with high radiation sites were mostly classified to taxa associated with high environmental stress habitats or stress resistance traits. Distance-based linear models and co-occurrence analysis revealed that the effects of radiation on the soil microbiome were minimal. Hence, the association between high radiation sites and specific microbial groups is more likely a result of the harsher ecological conditions in these sites, rather than due to radiation itself. In this study, we provide a starting point for understanding the relationship between soil microbial communities and estimated total absorbed radiation dose rates to different components of an ecosystem highly contaminated with radiation. Our results suggest that soil microbiomes adapted to natural soil conditions are more likely to be resistant to ionising radiation than expected from laboratory studies, which demonstrates the importance of assessing the impact of ionising radiation on soil microbial communities under field conditions.
Collapse
Affiliation(s)
- Alexandre Barretto de Menezes
- University of Galway, School of Biological and Chemical Sciences, Ryan Institute, University Road, H91 TK33, Galway, Ireland.
| | - Sergii Gashchak
- Chornobyl Center for Nuclear Safety, Radioactive Waste & Radioecology, International Radioecology Laboratory, Slavutych, Kyiv Region, Ukraine.
| | - Michael D Wood
- School of Science, Engineering & Environment, University of Salford, Manchester M5 4WT, United Kingdom.
| | - Nicholas A Beresford
- School of Science, Engineering & Environment, University of Salford, Manchester M5 4WT, United Kingdom; Centre for Ecology & Hydrology, CEH Lancaster, Lancaster Environment Centre, Library Av., Bailrigg, Lancaster LA1 4AP, United Kingdom
| |
Collapse
|
2
|
Hall AN, Hall BW, Kinney KJ, Olsen GG, Banta AB, Noguera DR, Donohue TJ, Peters JM. Tools for genetic engineering and gene expression control in Novosphingobium aromaticivorans and Rhodobacter sphaeroides. Appl Environ Microbiol 2024; 90:e0034824. [PMID: 39324814 PMCID: PMC11497788 DOI: 10.1128/aem.00348-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/08/2024] [Indexed: 09/27/2024] Open
Abstract
Alphaproteobacteria have a variety of cellular and metabolic features that provide important insights into biological systems and enable biotechnologies. For example, some species are capable of converting plant biomass into valuable biofuels and bioproducts that have the potential to contribute to the sustainable bioeconomy. Among the Alphaproteobacteria, Novosphingobium aromaticivorans, Rhodobacter sphaeroides, and Zymomonas mobilis show promise as organisms that can be engineered to convert extracted plant lignin or sugars into bioproducts and biofuels. Genetic manipulation of these bacteria is needed to introduce engineered pathways and modulate expression of native genes with the goal of enhancing bioproduct output. Although recent work has expanded the genetic toolkit for Z. mobilis, N. aromaticivorans and R. sphaeroides still need facile, reliable approaches to deliver genetic payloads to the genome and to control gene expression. Here, we expand the platform of genetic tools for N. aromaticivorans and R. sphaeroides to address these issues. We demonstrate that Tn7 transposition is an effective approach for introducing engineered DNA into the chromosome of N. aromaticivorans and R. sphaeroides. We screen a synthetic promoter library to identify isopropyl β-D-1-thiogalactopyranoside-inducible promoters with regulated activity in both organisms (up to ~15-fold induction in N. aromaticivorans and ~5-fold induction in R. sphaeroides). Combining Tn7 integration with promoters from our library, we establish CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) interference systems for N. aromaticivorans and R. sphaeroides (up to ~10-fold knockdown in N. aromaticivorans and R. sphaeroides) that can target essential genes and modulate engineered pathways. We anticipate that these systems will greatly facilitate both genetic engineering and gene function discovery efforts in these species and other Alphaproteobacteria.IMPORTANCEIt is important to increase our understanding of the microbial world to improve health, agriculture, the environment, and biotechnology. For example, building a sustainable bioeconomy depends on the efficient conversion of plant material to valuable biofuels and bioproducts by microbes. One limitation in this conversion process is that microbes with otherwise promising properties for conversion are challenging to genetically engineer. Here we report genetic tools for Novosphingobium aromaticivorans and Rhodobacter sphaeroides that add to the burgeoning set of tools available for genome engineering and gene expression in Alphaproteobacteria. Our approaches allow straightforward insertion of engineered pathways into the N. aromaticivorans or R. sphaeroides genome and control of gene expression by inducing genes with synthetic promoters or repressing genes using CRISPR interference. These tools can be used in future work to gain additional insight into these and other Alphaproteobacteria and to aid in optimizing yield of biofuels and bioproducts.
Collapse
Affiliation(s)
- Ashley N. Hall
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Benjamin W. Hall
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kyle J. Kinney
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Gabby G. Olsen
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Amy B. Banta
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Daniel R. Noguera
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Timothy J. Donohue
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jason M. Peters
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Wei J, Luo J, Peng T, Zhou P, Zhang J, Yang F. Comparative genomic analysis and functional investigations for MCs catabolism mechanisms and evolutionary dynamics of MCs-degrading bacteria in ecology. ENVIRONMENTAL RESEARCH 2024; 248:118336. [PMID: 38295970 DOI: 10.1016/j.envres.2024.118336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/06/2024] [Accepted: 01/27/2024] [Indexed: 02/07/2024]
Abstract
Microcystins (MCs) significantly threaten the ecosystem and public health. Biodegradation has emerged as a promising technology for removing MCs. Many MCs-degrading bacteria have been identified, including an indigenous bacterium Sphingopyxis sp. YF1 that could degrade MC-LR and Adda completely. Herein, we gained insight into the MCs biodegradation mechanisms and evolutionary dynamics of MCs-degrading bacteria, and revealed the toxic risks of the MCs degradation products. The biochemical characteristics and genetic repertoires of strain YF1 were explored. A comparative genomic analysis was performed on strain YF1 and six other MCs-degrading bacteria to investigate their functions. The degradation products were investigated, and the toxicity of the intermediates was analyzed through rigorous theoretical calculation. Strain YF1 might be a novel species that exhibited versatile substrate utilization capabilities. Many common genes and metabolic pathways were identified, shedding light on shared functions and catabolism in the MCs-degrading bacteria. The crucial genes involved in MCs catabolism mechanisms, including mlr and paa gene clusters, were identified successfully. These functional genes might experience horizontal gene transfer events, suggesting the evolutionary dynamics of these MCs-degrading bacteria in ecology. Moreover, the degradation products for MCs and Adda were summarized, and we found most of the intermediates exhibited lower toxicity to different organisms than the parent compound. These findings systematically revealed the MCs catabolism mechanisms and evolutionary dynamics of MCs-degrading bacteria. Consequently, this research contributed to the advancement of green biodegradation technology in aquatic ecology, which might protect human health from MCs.
Collapse
Affiliation(s)
- Jia Wei
- Xiangya School of Public Health, Central South University, Changsha, Hunan, 410078, China
| | - Jiayou Luo
- Xiangya School of Public Health, Central South University, Changsha, Hunan, 410078, China.
| | - Tangjian Peng
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, Hunan, 421001, China
| | - Pengji Zhou
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, Hunan, 421001, China
| | - Jiajia Zhang
- Xiangya School of Public Health, Central South University, Changsha, Hunan, 410078, China
| | - Fei Yang
- Xiangya School of Public Health, Central South University, Changsha, Hunan, 410078, China; Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
4
|
Gao X, Liu C, Jing X, Guo M, Liu K, Zhu D. Microalgal-bacterial treatment of ice-cream wastewater to remove organic waste and harvest oil-rich biomass. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31646-31655. [PMID: 38668945 DOI: 10.1007/s11356-024-33472-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/22/2024] [Indexed: 10/27/2024]
Abstract
The diversity of microalgae and bacteria allows them to form beneficial consortia for efficient wastewater treatment and nutrient recovery. This study aimed to evaluate the feasibility of a new microalgal-bacterial combination in the treatment of ice cream wastewater for biomass harvest. The bacterium Novosphingobium sp. ICW1 was natively isolated from ice cream wastewater and the microalga Vischeria sp. WL1 was a terrestrial oil-producing strain of Eustigmatophyceae. The ice cream wastewater was diluted 4 folds for co-cultivation, which was relatively less inhibitory for the growth of Vischeria sp. WL1. Four initial algal-bacterial combinations (v:v) of 150:0 (single algal cultivation), 150:1, 150:2, and 150:4 were assessed. During 24 days of co-cultivation, algal pigmentation was dynamically changed, particularly at the algal-bacterial combination of 150:4. Algal growth (in terms of cell number) was slightly promoted during the late phase of co-cultivation at the combinations of 150:2 and 150:4, while in the former the cellular oil yield was obviously elevated. Treated by these algal-bacterial combinations, total carbon was reduced by 67.5 ~ 74.5% and chemical oxygen demand was reduced by 55.0 ~ 60.4%. Although single bacterial treatment was still effective for removing organic nutrients, the removal efficiency was obviously enhanced at the algal-bacterial combination of 150:4. In addition, the harvested oils contained 87.1 ~ 88.3% monounsaturated fatty acids. In general, this study enriches the biotechnological solutions for the sustainable treatment of organic matter-rich food wastewater.
Collapse
Affiliation(s)
- Xiang Gao
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, Shaanxi, China.
| | - Chang Liu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, Shaanxi, China
| | - Xin Jing
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, Shaanxi, China
| | - Min Guo
- Research Center of Basic Medical Science, Medical College, Qinghai University, Xining, 810016, Qinghai, China
| | - Kaihui Liu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, Shaanxi, China
| | - Derui Zhu
- Research Center of Basic Medical Science, Medical College, Qinghai University, Xining, 810016, Qinghai, China
| |
Collapse
|
5
|
Hall AN, Hall BW, Kinney KJ, Olsen GG, Banta AB, Noguera DR, Donohue TJ, Peters JM. Tools for Genetic Engineering and Gene Expression Control in Novosphingobium aromaticivorans and Rhodobacter sphaeroides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.25.554875. [PMID: 37662258 PMCID: PMC10473679 DOI: 10.1101/2023.08.25.554875] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Alphaproteobacteria have a variety of cellular and metabolic features that provide important insights into biological systems and enable biotechnologies. For example, some species are capable of converting plant biomass into valuable biofuels and bioproducts have the potential to form the backbone of the sustainable bioeconomy. Among the Alphaproteobacteria, Novosphingobium aromaticivorans, Rhodobacter sphaeroides, and Zymomonas mobilis, show particular promise as organisms that can be engineered to convert extracted plant lignin or sugars into bioproducts and biofuels. Genetic manipulation of these bacteria is needed to introduce engineered pathways and modulate expression of native genes with the goal of enhancing bioproduct output. Although recent work has expanded the genetic toolkit for Z. mobilis, N. aromaticivorans and R. sphaeroides still need facile, reliable approaches to deliver genetic payloads to the genome and to control gene expression. Here, we expand the platform of genetic tools for N. aromaticivorans and R. sphaeroides to address these issues. We demonstrate that Tn7 transposition is an effective approach for introducing engineered DNA into the chromosome of N. aromaticivorans and R. sphaeroides. We screen a synthetic promoter library to identify inducible promoters with strong, regulated activity in both organisms. Combining Tn7 integration with promoters from our library, we establish CRISPR interference systems for N. aromaticivorans and R. sphaeroides that can target essential genes and modulate engineered pathways. We anticipate that these systems will greatly facilitate both genetic engineering and gene function discovery efforts in these industrially important species and other Alphaproteobacteria.
Collapse
Affiliation(s)
- Ashley N. Hall
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Benjamin W. Hall
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kyle J. Kinney
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Gabby G. Olsen
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Amy B. Banta
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Daniel R. Noguera
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Timothy J. Donohue
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jason M. Peters
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
6
|
Turner T, Tonge D, Glanville HC, Wheeler R, Oliver IW. Microbial genome (Illumina MiSeq) sequencing of drinking water treatment residuals to evaluate compatibility with environmental applications. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1027. [PMID: 37553528 PMCID: PMC10409814 DOI: 10.1007/s10661-023-11511-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 06/10/2023] [Indexed: 08/10/2023]
Abstract
The clarification of drinking water leads to the production of large quantities of water treatment residuals (WTRs). DNA was extracted from six WTR samples collected from water treatment plants within the UK to compare their bacterial communities and examine whether factors such as coagulant usage (aluminium versus iron salt), the type of water source (reservoir or river), or leachable chemical composition influence these communities. Bacterial 16S variable region 4 (V4) was amplified and sequenced using Illumina MiSeq sequencing. The most abundant phyla in WTR samples were Proteobacteria, Actinobacteria, Bacteroidetes, Acidobacteria, and Firmicutes, collectively representing 92.77-97.8% of the total bacterial sequences. Statistical analysis of microbial profiles indicated that water source played a significant role in microbial community structure, diversity, and richness, however coagulant type did not. PERMANOVA analysis showed that no single chemical variable (pH, organic matter, or extractable element concentration) influenced microbial composition significantly; however, canonical correspondence analysis of WTR microbiomes yielded a model using all these variables that could be used to explain variations in microbial community structures of WTRs (p < 0.05). No common, potentially toxic cyanobacteria, or related pathogens of concern were found. Analysis with PICRUSt showed that WTRs all had similar predicted microbial functional profiles. Overall, the results indicate that WTRs analysed in this study are unlikely to pose any threat to soil microbial community structure when applied to land as a soil conditioner or enhancer and may help to enhance the soil microbial community.
Collapse
Affiliation(s)
- Tomi Turner
- School of Geography, Geology and the Environment, Keele University, Keele, ST5 5BG UK
| | - Daniel Tonge
- School of Life Sciences, Keele University, Keele, ST5 5BG UK
| | - Helen C. Glanville
- School of Geography, Geology and the Environment, Keele University, Keele, ST5 5BG UK
- School of Social Sciences and Humanities, Loughborough University, LE11 3TU Loughborough, UK
| | - Rebecca Wheeler
- 4R Group, Control House, A1 Business Park, Knottingley Road, Knottingley, WF11 0BU UK
| | - Ian W. Oliver
- School of Geography, Geology and the Environment, Keele University, Keele, ST5 5BG UK
| |
Collapse
|
7
|
Rottet S, Iqbal S, Xifaras R, Singer MT, Scott C, Deplazes E, Callaghan R. Biochemical interactions between the Atm1-like transporter from Novosphingobium aromaticivorans and heavy metals. Arch Biochem Biophys 2023:109696. [PMID: 37481198 DOI: 10.1016/j.abb.2023.109696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/23/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
Novosphingobium aromaticivorans has the ability to survive in harsh environments by virtue of its suite of iron-containing oxygenases that biodegrade an astonishing array of aromatic compounds. It is also resistant to heavy metals through Atm1, an ATP-binding cassette protein that mediates active efflux of heavy metals conjugated to glutathione. However, Atm1 orthologues in higher organisms have been implicated in the intracellular transport of organic iron complexes. Our hypothesis suggests that the ability of Atm1 to remove heavy metals is related to the need for regulated iron handling in N. aromaticivorans to support high oxygenase activity. Here we provide the first data demonstrating a direct interaction between an iron-porphyrin compound (hemin) and NaAtm1. Hemin displayed considerably higher binding affinity and lower EC50 to stimulate ATP hydrolysis by Atm1 than Ag-GSH, GSSG or GSH, established substrates of the transporter. Co-incubation of NaAtm1, hemin with Ag-GSH in ATPase assays revealed a non-competitive interaction, indicating distinct binding sites on NaAtm1 and this property was reinforced using molecular docking analysis. Our data suggests that NaAtm1 has considerable versatility in transporting organic conjugates of metals and that this versatility enables it to play roles in detoxification processes for toxic metals and in homeostasis of iron. The ability to play these distinct roles is enabled by the plasticity of the substrate binding site within the central cavity of NaAtm1.
Collapse
Affiliation(s)
- Sarah Rottet
- CSIRO Synthetic Biology Future Science Platform, GPO Box 1700, Acton, Canberra, ACT, 2601, Australia
| | - Shagufta Iqbal
- Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | - Rachel Xifaras
- Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | - Michael T Singer
- CSIRO Synthetic Biology Future Science Platform, GPO Box 1700, Acton, Canberra, ACT, 2601, Australia
| | - Colin Scott
- CSIRO Synthetic Biology Future Science Platform, GPO Box 1700, Acton, Canberra, ACT, 2601, Australia
| | - Evelyne Deplazes
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Australia
| | - Richard Callaghan
- Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom.
| |
Collapse
|
8
|
Safika S, Indrawati A, Afiff U, Hastuti YT, Zureni Z, Jati AP. First Study on profiling of gut microbiome in wild and captive Sumatran orangutans ( Pongo abelii). Vet World 2023; 16:717-727. [PMID: 37235163 PMCID: PMC10206964 DOI: 10.14202/vetworld.2023.717-727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/27/2023] [Indexed: 05/28/2023] Open
Abstract
Background and Aim Orangutans are an "umbrella species" for conserving tropical forests in Sumatra and Kalimantan. There are remarkable changes between the gut microbiomes of wild and captive Sumatran orangutans. This study aimed to profile gut microbiota of wild and captive Sumatran orangutans. Materials and Methods Nine fecal samples collected from wild orangutans and nine fecal samples collected from captive orangutans were divided into three replicates. Each replicate randomly combined three pieces and were analyzed on the Illumina platform. A bioinformatics study of 16S rRNA according to Qiime2 (Version 2021.4) and microbiome profiling analysis was conducted. Results The relative abundance of different microbial taxa varied significantly between wild and captive Sumatran orangutans. Among the operational taxonomic units, various proportions of Firmicutes, Proteobacteria, Bacteroidetes, Euryarchaeota, Acidobacteria, Actinobacteria and Verrucomicrobia predominated. Solobacterium was found only in 19% of captive orangutans. Methanobrevibacter was identified to be prevalent among wild orangutans (16%). Analysis of the core microbiome from the combined wild and captive data revealed seven species as cores. According to linear discriminant analysis effect size, Micrococcus luteus, Bacteroidescaccae, Lachnospiraceae bacterium, Ruthenibacterium lactatiformans, Haemophilus haemolyticus, and Chishuiella spp. were microbiome biomarkers in captive orangutans, whereas Roseburia inulinivorans, Collinsella aerofaciens, Oscillibacter spp., and Eubacterium hallii were microbiome biomarkers in wild orangutans. Conclusion There were differences in the microbiome biomarkers of wild and captive Sumatran orangutans. This study is important for understanding the role of gut bacteria in the health of Sumatran orangutans.
Collapse
Affiliation(s)
- Safika Safika
- Division of Medical Microbiology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Agustin Indrawati
- Division of Medical Microbiology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Usamah Afiff
- Division of Medical Microbiology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | | | - Zureni Zureni
- Class II Agricultural Quarantine Center Medan, Indonesia
| | | |
Collapse
|
9
|
Biodegradation of chemicals tested in mixtures and individually: mixture effects on biodegradation kinetics and microbial composition. Biodegradation 2023; 34:139-153. [PMID: 36595149 DOI: 10.1007/s10532-022-10009-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/12/2022] [Indexed: 01/04/2023]
Abstract
Biodegradation in the aquatic environment occurs in the presence of many chemicals, while standard simulation biodegradation tests are conducted with single chemicals. This study aimed to investigate the effect of the presence of additional chemicals on (1) biodegradation kinetics of individual chemicals and (2) the microbial composition in test systems. Parallel mixture and single substance experiments were conducted for 9 chemicals (phenethyl benzoate, oxacycloheptadec-10-en-2-one, α-ionone, methyl 2-naphthyl ether, decan-5-olide, octan-2-one, 2'-acetonaphthanone, methyl N-methylanthranilate, (+)-menthone) using inoculum from a Danish stream. Biotic and abiotic test systems were incubated at 12 °C for 1-30 days. Primary biodegradation kinetics were then determined from biotic/abiotic peak area ratios using SPME GC/MS analysis. The effect of the mixture on biodegradation varied with test chemical and was more pronounced for chemicals with lag-phases above 14 days: two chemicals degraded in the mixture but not when tested alone (i.e., positive mixture effect), and two degraded when tested alone but not in the mixture (i.e., negative mixture effect). Microbial composition (16S rRNA gene amplicon sequencing) was highly affected by 14 days incubation and the presence of the mixture (significant carbon source), but less by single chemicals (low carbon source). Growth on chemical mixtures resulted in consistent proliferation of Pseudomonas and Malikia, while specific chemicals increased the abundance of putative degraders belonging to Novosphingobium and Zoogloea. The chemical and microbiological results support (1) that simulation biodegradation kinetics should be determined in mixtures at low environmentally relevant concentrations and (2) that degradation times beyond some weeks are associated with more uncertainty.
Collapse
|
10
|
Belmok A, de Almeida FM, Rocha RT, Vizzotto CS, Tótola MR, Ramada MHS, Krüger RH, Kyaw CM, Pappas GJ. Genomic and physiological characterization of Novosphingobium terrae sp. nov., an alphaproteobacterium isolated from Cerrado soil containing a mega-sized chromid. Braz J Microbiol 2023; 54:239-258. [PMID: 36701110 PMCID: PMC9944591 DOI: 10.1007/s42770-022-00900-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 10/02/2022] [Indexed: 01/27/2023] Open
Abstract
A novel bacterial strain, designated GeG2T, was isolated from soils of the native Cerrado, a highly biodiverse savanna-like Brazilian biome. 16S rRNA gene analysis of GeG2T revealed high sequence identity (100%) to the alphaproteobacterium Novosphingobium rosa; however, comparisons with N. rosa DSM 7285T showed several distinctive features, prompting a full characterization of the new strain in terms of physiology, morphology, and, ultimately, its genome. GeG2T cells were Gram-stain-negative bacilli, facultatively anaerobic, motile, positive for catalase and oxidase activities, and starch hydrolysis. Strain GeG2T presented planktonic-sessile dimorphism and cell aggregates surrounded by extracellular matrix and nanometric spherical structures were observed, suggesting the production of exopolysaccharides (EPS) and outer membrane vesicles (OMVs). Despite high 16S rDNA identity, strain GeG2T showed 90.38% average nucleotide identity and 42.60% digital DNA-DNA hybridization identity with N. rosa, below species threshold. Whole-genome assembly revealed four circular replicons: a 4.1 Mb chromosome, a 2.7 Mb extrachromosomal megareplicon, and two plasmids (212.7 and 68.6 kb). The megareplicon contains a few core genes and plasmid-type replication/maintenance systems, consistent with its classification as a chromid. Genome annotation shows a vast repertoire of carbohydrate-active enzymes and genes involved in the degradation of aromatic compounds, highlighting the biotechnological potential of the new isolate. Chemotaxonomic features, including polar lipid and fatty acid profiles, as well as physiological, molecular, and whole-genome comparisons showed significant differences between strain GeG2T and N. rosa, indicating that it represents a novel species, for which the name Novosphingobium terrae is proposed. The type strain is GeG2T (= CBMAI 2313T = CBAS 753 T).
Collapse
Affiliation(s)
- Aline Belmok
- Laboratório de Microbiologia, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil.
| | - Felipe Marques de Almeida
- Laboratório de Biologia Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil
| | - Rodrigo Theodoro Rocha
- Laboratório de Biologia Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil
| | - Carla Simone Vizzotto
- Laboratório de Saneamento Ambiental, Departamento de Engenharia Civil e Ambiental, Faculdade de Tecnologia, Universidade de Brasília, Brasilia, DF, Brazil
- Laboratório de Enzimologia, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil
| | - Marcos Rogério Tótola
- Laboratório de Biotecnologia e Biodiversidade para o Meio Ambiente, Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Marcelo Henrique Soller Ramada
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasilia, DF, Brazil
- Programa de Pós-Graduação em Gerontologia, Universidade Católica de Brasília, Brasilia, DF, Brazil
| | - Ricardo Henrique Krüger
- Laboratório de Enzimologia, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil
| | - Cynthia Maria Kyaw
- Laboratório de Microbiologia, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil.
| | - Georgios J Pappas
- Laboratório de Biologia Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil.
| |
Collapse
|
11
|
Yang Z, Lou Y, Pan H, Wang H, Yang Q, Zhuge Y, Hu J. Improved Denitrification Performance of Polybutylene Succinate/Corncob Composite Carbon Source by Proper Pretreatment: Performance, Functional Genes and Microbial Community Structure. Polymers (Basel) 2023; 15:polym15040801. [PMID: 36850087 PMCID: PMC9958998 DOI: 10.3390/polym15040801] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Blending biodegradable polymers with plant materials is an effective method to improve the biodegradability of solid carbon sources and save denitrification costs, but the recalcitrant lignin in plant materials hinders the microbial decomposition of available carbon sources. In the present study, corncob pretreated by different methods was used to prepare polybutylene succinate/corncob (PBS/corncob) composites for biological denitrification. The PBS/corncob composite with alkaline pretreatment achieved the optimal NO3--N removal rate (0.13 kg NO3--N m-3 day-1) with less adverse effects. The pretreatment degree, temperature, and their interaction distinctly impacted the nitrogen removal performance and dissolved organic carbon (DOC) release, while the N2O emission was mainly affected by the temperature and the interaction of temperature and pretreatment degree. Microbial community analysis showed that the bacterial community was responsible for both denitrification and lignocellulose degradation, while the fungal community was primarily in charge of lignocellulose degradation. The outcomes of this study provide an effective strategy for improving the denitrification performance of composite carbon sources.
Collapse
|
12
|
Wang Y, Xu H, Yao H, Liu B, Ding M, Lin T, Mo T, Gao L, Zhang L. Insights into the role of prechlorination in algae-laden raw water distribution process: Algal organic matter and microcystin-LR release, extracellular polymeric substances (EPS) aggregation, and pipeline biofilm communities. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130306. [PMID: 36345065 DOI: 10.1016/j.jhazmat.2022.130306] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/25/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Prechlorination routinely applied for the treatment of algae-laden raw water has received extensive attention due to its influence on water quality and aquatic microbes. In this study, prechlorination experiments with different doses were conducted in sets of model raw water distribution systems. With the elevated dose of chlorine and prolonged hydraulic retention time (HRT), the ratio of intact algal cells decreased, and the stability of water enhanced. Dissolved organic carbon (DOC) and nitrogen (DON) increased when chlorine dose elevated from 0 to 0.5 mg/L but decreased with elevations from 0.5 to 2.0 mg/L, while UV254 showed a monotonically increasing tendency. DOC, DON and extracellular microcystin-LR increase initially and decrease thereafter with the prolonged HRT. Notably, the effects of prechlorination on extracellular polymeric substances aggregation behavior on pipe walls and microbial community composition was revealed, providing more profound understanding of the community dynamics in this engineered system. This study helped optimize strategies to improve the stability and efficiency of pretreatment of algae-laden water.
Collapse
Affiliation(s)
- Yueting Wang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Hang Xu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Hao Yao
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Bonan Liu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Mingmei Ding
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Tao Lin
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Tianpei Mo
- Hefei Industry Investment Group, Hefei 230071, PR China.
| | - Li Gao
- South East Water, PO Box 2268, Seaford, VIC 3198, Australia.
| | - Lei Zhang
- School of Civil Engineering & Architecture, Chuzhou University, Chuzhou 230090, PR China.
| |
Collapse
|
13
|
Tombuloglu H, Yaman C, Boudellioua I, Cevik E, Anil I, Aga O, Yaman AB, Qureshi A, Gunday ST. Metagenome analyses of microbial population in geotextile fabrics used in permeable reactor barriers for toluene biodegradation. 3 Biotech 2023; 13:40. [PMID: 36636577 PMCID: PMC9829945 DOI: 10.1007/s13205-023-03460-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/31/2022] [Indexed: 01/11/2023] Open
Abstract
Toluene is one of the hydrocarbons that contaminate soil and groundwater, and has a high cost to remediate, which makes it an environmental pollutant of concern. This study aimed to find bacterial distribution from nonwoven geotextile (GT) fabric specimens in a pilot-scale permeable reactive barrier (PRB). Upon 167 days of incubation with the addition of toluene, the microbial community on the GT surfaces (n = 12) was investigated by the 16S rRNA metagenome sequencing approach. According to taxonomic classification, the Proteobacteria phylum dominated the metagenomes of all the geotextile samples (80-90%). Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway database search of the toluene degradation mechanism revealed the susceptible toluene-degrading species. For the toluene-to-benzoate degradation, the Cupriavidus genus, particularly C. gilardii, C. metallidurans, and C. taiwanensis, are likely to be functional. In addition to these species, the Novosphingobium genus was abundantly localized in the GTs, in particular Novosphingobium sp. ABRDHK2. The results suggested the biodegradation potential of these species in toluene remediation. Overall, this work sheds light on the variety of microorganisms found in the geotextile fabrics used in PRBs and the species involved in the biodegradation of toluene from several sources, including soil, sediment, and groundwater. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03460-y.
Collapse
Affiliation(s)
- Huseyin Tombuloglu
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441 Saudi Arabia
| | - Cevat Yaman
- Environmental Engineering Department, College of Engineering, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, Saudi Arabia
| | - Imane Boudellioua
- Information and Computer Science Department, King Fahd University of Petroleum and Minerals, P.O. Box 2205, Dhahran, 31261 Saudi Arabia
| | - Emre Cevik
- Bioenergy Research Unit, Department of Biophysics, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, PO Box:1982, Dammam, 31441 Saudi Arabia
| | - Ismail Anil
- Environmental Engineering Department, College of Engineering, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, Saudi Arabia
| | - Omer Aga
- Environmental Engineering Department, College of Engineering, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, Saudi Arabia
| | - Ayse B. Yaman
- Environmental Engineering Department, College of Engineering, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, Saudi Arabia
| | - Aleem Qureshi
- Environmental Engineering Department, College of Engineering, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, Saudi Arabia
| | - Seyda Tugba Gunday
- Bioenergy Research Unit, Department of Biophysics, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, PO Box:1982, Dammam, 31441 Saudi Arabia
| |
Collapse
|
14
|
Nagarajan V, Tsai HC, Chen JS, Koner S, Kumar RS, Chao HC, Hsu BM. Systematic assessment of mineral distribution and diversity of microbial communities and its interactions in the Taiwan subduction zone of mud volcanoes. ENVIRONMENTAL RESEARCH 2023; 216:114536. [PMID: 36228688 DOI: 10.1016/j.envres.2022.114536] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/11/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Mud volcanoes are the most dynamic and unstable sedimentary structures in the areas of tectonic compression like the subduction zones. In this study, we comprehensively analyzed the distribution of minerals as well as diversity, abundance and metabolic potential of the microbial communities of major mud volcanic groups across Taiwan namely Chu-kou Fault (CKF), Gu-ting-keng Anticline (GTKA), Chi-shan Fault (CSF), and Longitudinal Valley Fault (LVF). The mud volcano fluids recorded relatively higher Na and Cl contents than the other elements, particularly in the CKF and GTKA groups. The highest microbial diversity and richness were observed in the CSF group, followed by the GTKA group, whereas the lowest microbial diversity was observed in the CKF and LVF groups. Proteobacteria were common in all the sampling sites, except WST-7 and WST-H (Wu-Shan-Ting) of the CSF group, which were abundant in Chloroflexi. The halophilic genus Alterococcus was abundant in the Na-and Cl-rich CL-A sites of the CKF group. Sulfurovum was dominant in the CLHS (Chung-Lun hot spring) site of the CKF group and was positively correlated with sulfur/thiosulfate respiration, which might have resulted in a higher expression of these pathways in the respective group. Aerobic methane-oxidizing microbial communities, such as Methylobacter, Methylomicrobium, Methylomonas, and Methylosoma, constituted a dominant part of the LVF and CSF groups, except for the YNH-A and YNH-B (Yang-Nyu-Hu) sites. The WST-7 and JS sites were abundant in both methane-producing and methane-oxidizing microbial communities. The LGH-F1 (Lei-Gong-Huo) site was dominated by both methanotrophic and methylotrophic genera, such as Methylomicrobium and Methylophaga, respectively. Methylotrophy, methanotrophs, and hydrocarbon-degrading pathways were more abundant in the LVF and CSF groups but not in the remaining groups. The results of this study extend our knowledge of the diversity, abundance, and metabolic functions of prokaryotes in major terrestrial mud volcanoes in Taiwan.
Collapse
Affiliation(s)
- Viji Nagarajan
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan
| | - Hsin-Chi Tsai
- Department of Psychiatry, School of Medicine, Tzu Chi University, Hualien, Taiwan; Department of Psychiatry, Tzu Chi General Hospital, Hualien, Taiwan
| | - Jung-Sheng Chen
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan
| | - Suprokash Koner
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan; Department of Biomedical Sciences, National Chung Cheng University, Chiayi County, Taiwan
| | - Rajendran Senthil Kumar
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan
| | - Hung-Chun Chao
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan; Centre for Innovative on Aging Society, National Chung Cheng University, Chiayi County, Taiwan.
| |
Collapse
|
15
|
Schrad N, Pensky J, Gorski G, Beganskas S, Fisher AT, Saltikov C. Soil characteristics and redox properties of infiltrating water are determinants of microbial communities at managed aquifer recharge sites. FEMS Microbiol Ecol 2022; 98:6795929. [PMID: 36331034 DOI: 10.1093/femsec/fiac130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/10/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
In this study, we conducted a meta-analysis of soil microbial communities at three, pilot-scale field sites simulating shallow infiltration for managed aquifer recharge (MAR). We evaluated shifts in microbial communities after infiltration across site location, through different soils, with and without carbon-rich amendments added to test plots. Our meta-analysis aims to enable more effective MAR basin design by identifying potentially important interactions between soil physical-geochemical parameters and microbial communities across several geographically separate MAR basins. We hypothesized infiltration and carbon amendments would lead to common changes in subsurface microbial communities at multiple field sites but instead found distinct differences. Sites with coarser (mainly sandy) soil had large changes in diversity and taxa abundance, while sites with finer soils had fewer significant changes in genera, despite having the greatest increase in nitrogen cycling. Below test plots amended with a carbon-rich permeable reactive barrier, we observed more nitrate removal and a decrease in genera capable of nitrification. Multivariate statistics determined that the soil texture (a proxy for numerous soil characteristics) was the main determinant of whether the microbial community composition changed because of infiltration. These results suggest that microbial communities in sandy soil with carbon-rich amendments are most impacted by infiltration. Soil composition is a critical parameter that links between microbial communities and nutrient cycling during infiltration and could influence the citing and operation of MAR to benefit water quality and supply.
Collapse
Affiliation(s)
- Nicole Schrad
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, United States
| | - Jennifer Pensky
- Department of Earth and Planetary Sciences, University of California, Santa Cruz, Santa Cruz, CA 95064, United States
| | - Galen Gorski
- Department of Earth and Planetary Sciences, University of California, Santa Cruz, Santa Cruz, CA 95064, United States.,Present Address: U.S. Geological Survey, Reston VA, 20192, United States
| | - Sarah Beganskas
- Water Resource Management, Delaware River Basin Commission, 25 Cosey Road, West Trenton, NJ, 08628, United States
| | - Andrew T Fisher
- Department of Earth and Planetary Sciences, University of California, Santa Cruz, Santa Cruz, CA 95064, United States
| | - Chad Saltikov
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, United States
| |
Collapse
|
16
|
Genomic Analysis of Sphingopyxis sp. USTB-05 for Biodegrading Cyanobacterial Hepatotoxins. Toxins (Basel) 2022; 14:toxins14050333. [PMID: 35622580 PMCID: PMC9144602 DOI: 10.3390/toxins14050333] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/21/2022] [Accepted: 04/28/2022] [Indexed: 12/04/2022] Open
Abstract
Sphingopyxis sp. USTB-05, which we previously identified and examined, is a well-known bacterial strain for biodegrading cyanobacterial hepatotoxins of both nodularins (NODs) and microcystins (MCs). Although the pathways for biodegrading the different types of [D-Asp1] NOD, MC-YR, MC-LR and MC-RR by Sphingopyxis sp. USTB-05 were suggested, and several biodegradation genes were successfully cloned and expressed, the comprehensive genomic analysis of Sphingopyxis sp. USTB-05 was not reported. Here, based on second and third generation sequencing technology, we analyzed the whole genome of Sphingopyxis sp. USTB-05, which is 4,679,489 bp and contains 4,312 protein coding genes. There are 88 protein-coding genes related to the NODs and MCs biodegradation, of which 16 genes (bioA, hmgL, hypdh, speE, nspC, phy, spuC, murD, glsA, ansA, ocd, crnA, ald, gdhA, murC and murI) are unique. These genes for the transformation of phenylacetic acid CoA (PA-CoA) to CO2 were also found in Sphingopyxis sp. USTB-05. This study expands the understanding of the pathway for complete biodegradation of cyanobacterial hepatotoxins by Sphingopyxis sp. USTB-05.
Collapse
|
17
|
Cai D, Wei J, Huang F, Feng H, Peng T, Luo J, Yang F. The detoxification activities and mechanisms of microcystinase towards MC-LR. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113436. [PMID: 35367885 DOI: 10.1016/j.ecoenv.2022.113436] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/13/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Microcystins (MCs) are the most common and toxic cyanotoxins that are hazardous to human health and ecosystems. Microcystinase is the enzyme in charge of the initial step in the biodegradation of MCs. The characterization, application conditions, and detoxification mechanisms of microcystinase from an indigenous bacterium Sphingopyxis sp. YF1 towards MC-LR were investigated in the current study. The microcystinase gene of strain YF1 was most similar to Sphingomonas sp. USTB-05 and contained a CAAX-family conversed abortive Infection (ABI) domain. The microcystinase was successful obtained and purified by overexpression in Escherichia coli. The highest degradation rate of MC-LR was 1.0 μg/mL/min under the optimal condition of 30 ℃, pH 7, 20 μg/mL MC-LR, and 400 μg/mL microcystinase. The MC-degrading product was identified as linearized MC-LR, which possessed a much lower inhibitory activity against protein phosphatase 2A than MC-LR. Microcystinase interacted with MC-LR via amino acid residues involved in through the formation of conventional Hydrogen Bond, Pi-Pi T-shapes, Van der Waals force, and so on. The optimal MC-degrading condition of pure microcystinase and its detoxification mechanisms against MC-LR were revealed. The toxicity of purified linearized MC-LR was explored for the first time. These findings suggest that pure microcystinase may efficiently detoxify MCs and it is promising in the bioremediation of MC-polluted environments.
Collapse
Affiliation(s)
- Danping Cai
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, China.
| | - Jia Wei
- Xiangya School of Public Health, Central South University, Changsha, China.
| | - Feiyu Huang
- The First People's Hospital of Jingzhou, Jingzhou, China.
| | - Hai Feng
- Xiangya School of Public Health, Central South University, Changsha, China.
| | - Tangjian Peng
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, China.
| | - Jiayou Luo
- Xiangya School of Public Health, Central South University, Changsha, China.
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, China; Xiangya School of Public Health, Central South University, Changsha, China.
| |
Collapse
|
18
|
Chen WT, Chien CC, Ho WS, Ou JH, Chen SC, Kao CM. Effects of treatment processes on AOC removal and changes of bacterial diversity in a water treatment plant. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 311:114853. [PMID: 35276566 DOI: 10.1016/j.jenvman.2022.114853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
The effectiveness of different treatment processes on assimilable organic carbon (AOC) removal and bacterial diversity variations was evaluated in a water treatment plant. The van der Kooij technique was applied for AOC analysis and responses of bacterial communities were characterized by the metagenomics assay. Results show that the AOC concentrations were about 93, 148, 43, 51, 37, and 38 μg acetate-C/L in effluents of raw water basin, preozonation, rapid sand filtration (RSF), ozonation, biofiltration [biological activated carbon (BAC) filtration], and chlorination (clear water), respectively. Increased AOC concentrations were observed after preozonation, ozonation, and chlorination units due to the production of biodegradable organic matters after the oxidation processes. Results indicate that the oxidation processes were the main causes of AOC formation, which resulted in significant increases in AOC concentrations (18-59% increment). The AOC removal efficiencies were 47, 28, and 60% in the RSF, biofiltration, and the whole system, respectively. RSF and biofiltration were responsible for the AOC treatment and both processes played key roles in AOC removal. Thus, both RSF and biofiltration processes would contribute to AOC treatment after oxidation. Sediments from the raw water basin and filter samples from RSF and BAC units were collected and analyzed for bacterial communities. Results from scanning electron microscope analysis indicate that bacterial colonization was observed in filter materials. This indicates that the surfaces of the filter materials were beneficial to bacterial growth and AOC removal via the adsorption and biodegradation mechanisms. Next generation sequencing analyses demonstrate that water treatment processes resulted in the changes of bacterial diversity and community profiles in filters of RSF and BAC. According to the findings of bacterial composition and interactions, the dominant bacterial phyla were Proteobacteria (41% in RSF and 56% in BAC) followed by Planctomycetes and Acidobacteria in RSF and BAC systems, which might affect the AOC biodegradation efficiency. Results would be useful in developing AOC treatment and management processes in water treatment plants.
Collapse
Affiliation(s)
- W T Chen
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - C C Chien
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Chung-Li City, Taoyuan, Taiwan
| | - W S Ho
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - J H Ou
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - S C Chen
- Department of Life Sciences, National Central University, Taoyuan, Taiwan.
| | - C M Kao
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
19
|
Su M, Dell'Orto M, D'Imporzano G, Bani A, Dumbrell AJ, Adani F. The structure and diversity of microalgae-microbial consortia isolated from various local organic wastes. BIORESOURCE TECHNOLOGY 2022; 347:126416. [PMID: 34838970 DOI: 10.1016/j.biortech.2021.126416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
Pure microalgae cultivation in organic wastes may be hampered by their low adaptation to extreme growth conditions and by the risk of microbial contamination. This work aimed to isolate self-adapted microalgae-microbial consortia able to survive in organic wastes characterized by extreme conditions, to be then proposed for technological application in removing carbon and nutrients from wastes' streams. To do so, sixteen organic wastes with different origins and consistency were sampled. Twelve microbial consortia were isolated from wastes and their eukaryotic and prokaryotic compositions were analyzed by next generation sequencing. Eight eukaryotic communities were dominated by Chlorophyta, led by Chlorella, able to survive in different wastes regardless of chemical-biological properties. Tetradesmus, the second most represented genus, grew preferentially in substrates with less stressing chemical-physical parameters. Chlorella and Tetradesmus were mostly isolated from cow slurry and derived wastes which proved to be the best local residual organic source.
Collapse
Affiliation(s)
- Min Su
- Gruppo Ricicla labs., Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia (DiSAA), Università degli Studi di Milano, Via Celoria 2, 20133, Italy
| | - Marta Dell'Orto
- Gruppo Ricicla labs., Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia (DiSAA), Università degli Studi di Milano, Via Celoria 2, 20133, Italy
| | - Giuliana D'Imporzano
- Gruppo Ricicla labs., Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia (DiSAA), Università degli Studi di Milano, Via Celoria 2, 20133, Italy
| | - Alessia Bani
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| | - Alex J Dumbrell
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| | - Fabrizio Adani
- Gruppo Ricicla labs., Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia (DiSAA), Università degli Studi di Milano, Via Celoria 2, 20133, Italy.
| |
Collapse
|
20
|
Airborne bacterial community associated with fine particulate matter (PM2.5) under different air quality indices in Temuco city, southern Chile. Arch Microbiol 2022; 204:148. [PMID: 35061108 PMCID: PMC8776980 DOI: 10.1007/s00203-021-02740-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/02/2022]
|
21
|
Liu L, Wang F, Xu S, Sun W, Wang Y, Ji M. Woodchips bioretention column for stormwater treatment: Nitrogen removal performance, carbon source and microbial community analysis. CHEMOSPHERE 2021; 285:131519. [PMID: 34329128 DOI: 10.1016/j.chemosphere.2021.131519] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/29/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
This study chose Oak woodchips and gravel as media filter to enhance the denitrification in the bioretention system (saturated zone 7.7 L) treating synthetic stormwater runoff. It revealed that the denitrification process mainly occurred during the drying phase and enlarging volume of saturated zones to retain more stormwater during storm event was the direct method to promote nitrogen removal of the bioretention system. Nevertheless, it was noted that the nitrogen and dissolved organic carbon would be released into the effluent during the wetting period. The denitrification rate with different nitrate nitrogen (NO3-N) concentrations did not show the obvious change with zero order kinetics constant of 2.91 mg/L∙d on average. Furthermore, it confirmed that woodchips were degraded and converted to volatile fatty acids (VFAs), especially acetic acid as carbon source, further utilized by the denitrifying bacteria, such as Dechloromonas, Acidoborax, Pseudomonas, Denitratisoma and Acinetobacter. In addition, genera of Lachnospiraceae and Lactobacillus, which had the ability to degrade the macromolecular organic components into low molecular VFAs, were observed in the woodchips bioretention system.
Collapse
Affiliation(s)
- Lingjie Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Fen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China.
| | - Sihan Xu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Wei Sun
- North China Municipal Engineering Design and Research Institute Co. LTD., Tianjin, 300381, China
| | - Yang Wang
- North China Municipal Engineering Design and Research Institute Co. LTD., Tianjin, 300381, China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
22
|
Solliec M, Roy-Lachapelle A, Storck V, Callender K, Greer CW, Barbeau B. A data-independent acquisition approach based on HRMS to explore the biodegradation process of organic micropollutants involved in a biological ion-exchange drinking water filter. CHEMOSPHERE 2021; 277:130216. [PMID: 33780680 DOI: 10.1016/j.chemosphere.2021.130216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Drinking water producers continuously develop innovative treatment processes to effectively remove organic micropollutants from raw water. Biological ion-exchange (BIEX) water treatment is one of these new techniques under development and showing great potential. In order to investigate if biodegradation is highly involved in such a removal technique, cultures were prepared with microorganisms sampled on the resins of a BIEX filter. Then, organic micropollutants were spiked into these cultures and their (bio)degradation was followed over 30 days by ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS). The purpose of this study was firstly to develop an analytical method using UHPLC-HRMS able to monitor the degradation of three spiked organic micropollutants in culture. Beyond quantification, this method allowed the simultaneous recording of fragmentation information via the use of a data-independent acquisition approach to perform a non-exhaustive search of transformation products related to the spiked micropollutants in culture aliquots. Secondly, a data treatment approach was developed to process raw spectral data generated by aliquots analysis by optimizing the precursor isolation mass windows, the accurate mass tolerance, peak intensity thresholds and choice of database. The use of this new method with a post-data acquisition treatment approach completed by the exhaustive study of fragmentation spectra allowed the tentative identification of 11 transformation products related to the spiked compounds. Finally, 16S rRNA gene amplicon sequencing revealed that bacterial genera known for their ability to degrade the spiked micropollutants were present in the microbial community of the BIEX drinking water filter.
Collapse
Affiliation(s)
- Morgan Solliec
- NSERC Industrial Chair on Drinking Water, Department of Civil Engineering, Polytechnique School of Montreal, Montreal, QC, Canada.
| | - Audrey Roy-Lachapelle
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Montreal, QC, Canada
| | - Veronika Storck
- NSERC Industrial Chair on Drinking Water, Department of Civil Engineering, Polytechnique School of Montreal, Montreal, QC, Canada
| | - Katrina Callender
- National Research Council Canada, Energy, Mining and Environment Research Centre, Montreal, QC, Canada
| | - Charles W Greer
- National Research Council Canada, Energy, Mining and Environment Research Centre, Montreal, QC, Canada
| | - Benoit Barbeau
- NSERC Industrial Chair on Drinking Water, Department of Civil Engineering, Polytechnique School of Montreal, Montreal, QC, Canada
| |
Collapse
|
23
|
Mitter EK, Germida JJ, de Freitas JR. Impact of diesel and biodiesel contamination on soil microbial community activity and structure. Sci Rep 2021; 11:10856. [PMID: 34035323 PMCID: PMC8149423 DOI: 10.1038/s41598-021-89637-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 04/22/2021] [Indexed: 02/04/2023] Open
Abstract
Soil contamination as a result of oil spills is a serious issue due to the global demand for diesel fuel. As an alternative to diesel, biodiesel has been introduced based on its high degradability rates and potential for reducing of greenhouse gases emissions. This study assessed the impacts diesel and biodiesel contamination on soil microbial community activity and structure. Our results suggest higher microbial activity in biodiesel contaminated soils and analysis of PLFA profiles confirmed shifts in microbial community structure in response to contamination. High-throughput 16S rRNA amplicon sequencing also revealed a lower bacterial richness and diversity in contaminated soils when compared to control samples, supporting evidence of the detrimental effects of hydrocarbons on soil microbiota. Control samples comprised mostly of Actinobacteria, whereas Proteobacteria were predominantly observed in diesel and biodiesel contaminated soils. At genus level, diesel and biodiesel amendments highly selected for Rhodococcus and Pseudomonas spp., respectively. Moreover, predicted functional profiles based on hydrocarbon-degrading enzymes revealed significant differences between contaminated soils mostly due to the chemical composition of diesel and biodiesel fuel. Here, we also identified that Burkholderiaceae, Novosphingobium, Anaeromyxobacter, Pseudomonas and Rhodococcus were the main bacterial taxa contributing to these enzymes. Together, this study supports the evidence of diesel/biodiesel adverse effects in soil microbial community structure and highlights microbial taxa that could be further investigated for their biodegradation potential.
Collapse
Affiliation(s)
- Eduardo K Mitter
- Department of Food and Bioproduct Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada.
| | - James J Germida
- Department of Soil Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - J Renato de Freitas
- Department of Soil Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| |
Collapse
|
24
|
Gonzalez E, Brereton NJB, Li C, Lopez Leyva L, Solomons NW, Agellon LB, Scott ME, Koski KG. Distinct Changes Occur in the Human Breast Milk Microbiome Between Early and Established Lactation in Breastfeeding Guatemalan Mothers. Front Microbiol 2021; 12:557180. [PMID: 33643228 PMCID: PMC7907006 DOI: 10.3389/fmicb.2021.557180] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 01/21/2021] [Indexed: 12/19/2022] Open
Abstract
Human breast milk contains a diverse community of bacteria, but as breast milk microbiome studies have largely focused on mothers from high income countries where few women breastfeed to 6 months, the temporal changes in the breast milk microbiome that occur during later lactation stages have not been explored. For this cross-sectional study, microbiota from breast milk samples of Mam-Mayan mothers living in eight remote rural communities in the Western Highlands of Guatemala were analyzed. All mothers delivered vaginally and breastfed their infants for 6 months. Breast milk from 76 unrelated mothers was used to compare two lactation stages, either “early” (6–46 days post-partum, n = 33) or “late” (109–184 days post-partum, n = 43). Breast milk microbial communities were assessed using 16S ribosomal RNA gene sequencing and lactation stages were compared using DESeq2 differential abundance analysis. A total of 1,505 OTUs were identified, including 287 which could be annotated as putative species. Among several maternal factors, lactation stage explained microbiome variance and inertia in ordination with the most significance (p < 0.001). Differential abundance analysis identified 137 OTUs as significantly higher in either early or late lactation. These included a general shift from Staphylococcus and Streptococcus species in early lactation to Sphingobium and Pseudomonas species in late lactation. Species enriched in early lactation included putative commensal bacteria known to colonize the infant oral and intestinal tracts whereas species enriched in late lactation had a uniform functional trait associated with aromatic compound degradation. Differentially abundant species also included several species which have not previously been reported within breast milk, such as Janthinobacterium agaricidamnosum, Novosphingobium clariflavum, Ottowia beijingensis, and Flavobacterium cucumis. These discoveries describe temporal changes to the breast milk microbiome of healthy Guatemalan mothers from early to late lactation. Collectively, these findings illustrate how studying under-represented human populations might advance our understanding of factors that modulate the human milk microbiome in low and middle income countries (LMIC).
Collapse
Affiliation(s)
- Emmanuel Gonzalez
- Canadian Centre for Computational Genomics (C3G), Department of Human Genetics, McGill University, Montréal, QC, Canada.,Microbiome Research Platform, McGill Interdisciplinary Initiative in Infection and Immunity (MI4), Genome Centre, McGill University, Montréal, QC, Canada
| | - Nicholas J B Brereton
- Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, QC, Canada
| | - Chen Li
- School of Human Nutrition, McGill University, Ste-Anne de Bellevue, QC, Canada
| | - Lilian Lopez Leyva
- School of Human Nutrition, McGill University, Ste-Anne de Bellevue, QC, Canada
| | - Noel W Solomons
- Center for Studies of Sensory Impairment, Aging and Metabolism (CeSSIAM), Guatemala City, Guatemala
| | - Luis B Agellon
- Center for Studies of Sensory Impairment, Aging and Metabolism (CeSSIAM), Guatemala City, Guatemala
| | - Marilyn E Scott
- Institute of Parasitology, McGill University, Ste-Anne de Bellevue, QC, Canada
| | - Kristine G Koski
- School of Human Nutrition, McGill University, Ste-Anne de Bellevue, QC, Canada
| |
Collapse
|
25
|
Dexter J, McCormick AJ, Fu P, Dziga D. Microcystinase - a review of the natural occurrence, heterologous expression, and biotechnological application of MlrA. WATER RESEARCH 2021; 189:116646. [PMID: 33246218 DOI: 10.1016/j.watres.2020.116646] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/01/2020] [Accepted: 11/14/2020] [Indexed: 06/11/2023]
Abstract
Microcystinase (MlrA) was first described in 1996. Since then MlrA peptidase activity has proven to be both the most efficient enzymatic process and the most specific catalyst of all known microcystins detoxification pathways. Furthermore, MlrA and the MlrABC degradation pathway are presently the only enzymatic processes with clear genetic and biochemical descriptions available for microcystins degradation, greatly facilitating modern applied genetics for any relevant technological development. Recently, there has been increasing interest in the potential of sustainable, biologically inspired alternatives to current industrial practice, with note that biological microcystins degradation is the primary detoxification process found in nature. While previous reviews have broadly discussed microbial biodegradation processes, here we present a review focused specifically on MlrA. Following a general overview, we briefly highlight the initial discovery and present understanding of the MlrABC degradation pathway, before discussing the genetic and biochemical aspects of MlrA. We then review the potential biotechnology applications of MlrA in the context of available literature with emphasis on the optimization of MlrA for in situ applications including (i) direct modulation of Mlr activity within naturally existing populations, (ii) bioaugmentation of systems with introduced biodegradative capacity via whole cell biocatalysts, and (iii) bioremediation via direct MlrA application.
Collapse
Affiliation(s)
- Jason Dexter
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 31-007 Kraków, Poland; Cyanoworks, LLC, 1771 Haskell Rd., Olean, NY 14760, USA.
| | - Alistair J McCormick
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, King's Buildings, University of Edinburgh, EH9 3BF, UK.
| | - Pengcheng Fu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 58 Renmin Avenue, Meilan District, Haikou, Hainan Province, 570228 China.
| | - Dariusz Dziga
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 31-007 Kraków, Poland.
| |
Collapse
|
26
|
Zeng YH, Cai ZH, Zhu JM, Du XP, Zhou J. Two hierarchical LuxR-LuxI type quorum sensing systems in Novosphingobium activate microcystin degradation through transcriptional regulation of the mlr pathway. WATER RESEARCH 2020; 183:116092. [PMID: 32622230 DOI: 10.1016/j.watres.2020.116092] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
Microcystins (MCs) are the most common cyanotoxins produced by harmful cyanobacterial blooms and pose an increasing global threat to human health and ecosystems. Microbial degradation represents an efficient and sustainable approach for the removal of MCs. Although the enzymatic pathway for biodegradation of MCs has been characterized, the regulatory mechanisms underlying the degradation processes remain unclear. Quorum sensing (QS) is a cell-density-dependent regulatory mechanism that enables bacteria to orchestrate collective behaviors. The acyl-homoserine lactone (AHL)-mediated QS system regulates the biodegradation of many organic pollutants. However, it is not known whether this QS system is involved in the degradation of MCs. This study aimed to fill this knowledge gap. In this study, the proportion of culturable AHL-producers increased significantly after enrichment of MCs, and AHL-based QS systems were present in all genome-sequenced MC-degrading strains, supporting the hypothesis that QS participates in the degradation of MCs. Two bifunctional Novosphingobium strains (with MC-degrading and AHL-producing abilities) were isolated using a novel primer pair targeting mlrA, the marker gene of mlr degradation pathway. Biochemical and genetic analysis revealed that the MC-degrading bacterium Novosphingobium sp. ERW19 encodes two hierarchical regulatory QS systems designated novR1/novI1 and novR2/novI2. Gene knockout and complementation experiments indicated that both systems were required for efficient degradation of MCs. Transcriptomic analyses revealed that the QS systems positively regulate degradation of MCs through transcriptional activation of MC-degrading genes, especially mlrA. Given that QS may be a common trait within mlr pathway-dependent MC-degrading bacterial strains and the degradation activity is directly regulated by QS, manipulation of the QS systems may be a promising strategy to control biodegradation of MCs.
Collapse
Affiliation(s)
- Yan-Hua Zeng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, PR China
| | - Zhong-Hua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, PR China
| | - Jian-Ming Zhu
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, PR China
| | - Xiao-Peng Du
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, PR China
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, PR China.
| |
Collapse
|
27
|
Yakimovich KM, Engstrom CB, Quarmby LM. Alpine Snow Algae Microbiome Diversity in the Coast Range of British Columbia. Front Microbiol 2020; 11:1721. [PMID: 33013720 PMCID: PMC7485462 DOI: 10.3389/fmicb.2020.01721] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/30/2020] [Indexed: 01/31/2023] Open
Abstract
Snow algae blooms contain bacteria, fungi, and other microscopic organisms. We surveyed 55 alpine snow algae blooms, collecting a total of 68 samples, from 12 mountains in the Coast Range of British Columbia, Canada. We used microscopy and rDNA metabarcoding to document biodiversity and query species and taxonomic associations. Across all samples, we found 173 algal, 2,739 bacterial, 380 fungal, and 540 protist/animalia operational taxonomic units (OTUs). In a previous study, we reported that most algal species were distributed along an elevational gradient. In the current study, we were surprised to find no corresponding distribution in any other taxa. We also tested the hypothesis that certain bacterial and fungal taxa co-occur with specific algal taxa. However, despite previous evidence that particular genera co-occur, we found no significant correlations between taxa across our 68 samples. Notably, seven bacterial, one fungal, and two cercozoan OTUs were widely distributed across our study regions. Taken together, these data suggest that any mutualisms with algae may not be taxon specific. We also report evidence of snow algae predation by rotifers, tardigrades, springtails, chytrid fungi, and ciliates, establishing the framework for a complex food web.
Collapse
Affiliation(s)
- Kurt M Yakimovich
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Casey B Engstrom
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Lynne M Quarmby
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
28
|
Genome-Wide Analysis Reveals Genetic Potential for Aromatic Compounds Biodegradation of Sphingopyxis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5849123. [PMID: 32596333 PMCID: PMC7273453 DOI: 10.1155/2020/5849123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 04/20/2020] [Indexed: 11/22/2022]
Abstract
Members of genus Sphingopyxis are frequently found in diverse eco-environments worldwide and have been traditionally considered to play vital roles in the degradation of aromatic compounds. Over recent decades, many aromatic-degrading Sphingopyxis strains have been isolated and recorded, but little is known about their genetic nature related to aromatic compounds biodegradation. In this study, bacterial genomes of 19 Sphingopyxis strains were used for comparative analyses. Phylogeny showed an ambiguous relatedness between bacterial strains and their habitat specificity, while clustering based on Cluster of Orthologous Groups suggested the potential link of functional profile with substrate-specific traits. Pan-genome analysis revealed that 19 individuals were predicted to share 1,066 orthologous genes, indicating a high genetic homogeneity among Sphingopyxis strains. Notably, KEGG Automatic Annotation Server results suggested that most genes pertaining aromatic compounds biodegradation were predicted to be involved in benzoate, phenylalanine, and aminobenzoate metabolism. Among them, β-ketoadipate biodegradation might be the main pathway in Sphingopyxis strains. Further inspection showed that a number of mobile genetic elements varied in Sphingopyxis genomes, and plasmid-mediated gene transfer coupled with prophage- and transposon-mediated rearrangements might play prominent roles in the evolution of bacterial genomes. Collectively, our findings presented that Sphingopyxis isolates might be the promising candidates for biodegradation of aromatic compounds in pollution sites.
Collapse
|
29
|
Yang F, Huang F, Feng H, Wei J, Massey IY, Liang G, Zhang F, Yin L, Kacew S, Zhang X, Pu Y. A complete route for biodegradation of potentially carcinogenic cyanotoxin microcystin-LR in a novel indigenous bacterium. WATER RESEARCH 2020; 174:115638. [PMID: 32145555 DOI: 10.1016/j.watres.2020.115638] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 02/12/2020] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
Microcystin-leucine-arginine (MC-LR), a cyclic potentially carcinogenic hepatotoxin, occurs frequently in aquatic habitats worldwide and seriously threatens ecosystem and public health. Limited effectiveness of physicochemical treatments to remove MC-LR from drinking water has led to a search for alternative cost-effective and environment friendly biodegradation strategies. Obtaining MC-degrading bacteria and understanding their MC-degrading mechanisms are outstanding challenges. Here, a novel indigenous bacterium named Sphingopyxis sp. YF1 with a high efficient capacity for MC-degradation was successfully isolated from eutrophic Lake Taihu. Through integrating mass spectrometer and multi-omics analyses accompanied by functional verification of certain genes and proteins, a complete MC-degradation pathway was firstly identified, in which MC-LR was sequentially degraded into linearized MC-LR, tetrapeptide, Adda, phenylacetic acid, and finally potential product CO2. Some specific proteins such as microcystinase, linearized-microcystinase, tetrapeptidease and PAAase responsible for this pathway were identified. This study pioneeringly demonstrated that MC-LR can be completely degraded through natural remediation processes and revealed a significant potential for MC-LR biodegradation in both natural environment and engineered systems.
Collapse
Affiliation(s)
- Fei Yang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China.
| | - Feiyu Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Hai Feng
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Jia Wei
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Isaac Yaw Massey
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Fang Zhang
- School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing, China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Sam Kacew
- McLauglin Centre for Population Health Risk Assessment, Institute of Population Health, University of Ottawa, Ontario, Canada
| | - Xian Zhang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China.
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| |
Collapse
|
30
|
Defining the Environmental Adaptations of Genus Devosia: Insights into its Expansive Short Peptide Transport System and Positively Selected Genes. Sci Rep 2020; 10:1151. [PMID: 31980727 PMCID: PMC6981132 DOI: 10.1038/s41598-020-58163-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/19/2019] [Indexed: 12/21/2022] Open
Abstract
Devosia are well known for their dominance in soil habitats contaminated with various toxins and are best characterized for their bioremediation potential. In this study, we compared the genomes of 27 strains of Devosia with aim to understand their metabolic abilities. The analysis revealed their adaptive gene repertoire which was bared from 52% unique pan-gene content. A striking feature of all genomes was the abundance of oligo- and di-peptide permeases (oppABCDF and dppABCDF) with each genome harboring an average of 60.7 ± 19.1 and 36.5 ± 10.6 operon associated genes respectively. Apart from their primary role in nutrition, these permeases may help Devosia to sense environmental signals and in chemotaxis at stressed habitats. Through sequence similarity network analyses, we identified 29 Opp and 19 Dpp sequences that shared very little homology with any other sequence suggesting an expansive short peptidic transport system within Devosia. The substrate determining components of these permeases viz. OppA and DppA further displayed a large diversity that separated into 12 and 9 homologous clusters respectively in addition to large number of isolated nodes. We also dissected the genome scale positive evolution and found genes associated with growth (exopolyphosphatase, HesB_IscA_SufA family protein), detoxification (moeB, nifU-like domain protein, alpha/beta hydrolase), chemotaxis (cheB, luxR) and stress response (phoQ, uspA, luxR, sufE) were positively selected. The study highlights the genomic plasticity of the Devosia spp. for conferring adaptation, bioremediation and the potential to utilize a wide range of substrates. The widespread toxin-antitoxin loci and ‘open’ state of the pangenome provided evidence of plastic genomes and a much larger genetic repertoire of the genus which is yet uncovered.
Collapse
|
31
|
Ahmad M, Yang Q, Zhang Y, Ling J, Sajjad W, Qi S, Zhou W, Zhang Y, Lin X, Zhang Y, Dong J. The distinct response of phenanthrene enriched bacterial consortia to different PAHs and their degradation potential: a mangrove sediment microcosm study. JOURNAL OF HAZARDOUS MATERIALS 2019; 380:120863. [PMID: 31401251 DOI: 10.1016/j.jhazmat.2019.120863] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/28/2019] [Accepted: 07/02/2019] [Indexed: 06/10/2023]
Abstract
Understanding the microbial community succession to polycyclic aromatic hydrocarbons (PAHs) and identification of important degrading microbial groups are crucial for the designing of appropriate bioremediation strategies. In the present study, two distinct phenanthrene enriched bacterial consortia were treated against high molecular weight (Pyrene, Benzo (a) pyrene and Benzo (a) fluoranthene) and the response was studied in term of taxonomic variations by using High Throughput Illumina sequencing and qPCR analysis. Overall, the type of PAHs significantly affected the composition and the relative abundance of bacterial communities while no obvious difference was detected between bacterial communities of benzo (a) pyrene and benzo (a) fluoranthene treatments. Genera, Novosphingobium, Pseudomonas, Flavobacterium, Mycobacterium, Hoeflae, and Algoriphagus dominated all PAHs treatment groups indicating that they could be the key PAHs degrading phylotypes. Due to the higher abundance of gram-negative PAH-ring hydroxylating dioxygenase gene than that of gram-positive bacteria in all treated groups, we speculated that gram-negative bacteria may contribute more in the PAH degradation. The studied sediments harbored rich PAHs degrading bacterial assemblages involved in both low and high molecular weight PAHs and these findings provided new insight into the perspective of microbial PAHs bioremediation in the mangrove ecosystem.
Collapse
Affiliation(s)
- Manzoor Ahmad
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Qingsong Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yanying Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China; Tropical Marine Biological Research station in Hainan, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 572000 Sanya, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Juan Ling
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China; Tropical Marine Biological Research station in Hainan, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 572000 Sanya, China; University of Chinese Academy of Sciences, 100049 Beijing, China.
| | - Wasim Sajjad
- Department of Biological Sciences, National University of Medical Sciences, 46000 Rawalpindi, Pakistan
| | - Shuhua Qi
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China
| | - Weiguo Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Ying Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xiancheng Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yuhang Zhang
- Guangdong Pharmaceutical University, 510006 Guangzhou, China
| | - Junde Dong
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China; Tropical Marine Biological Research station in Hainan, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 572000 Sanya, China; University of Chinese Academy of Sciences, 100049 Beijing, China.
| |
Collapse
|
32
|
Krausfeldt LE, Steffen MM, McKay RM, Bullerjahn GS, Boyer GL, Wilhelm SW. Insight Into the Molecular Mechanisms for Microcystin Biodegradation in Lake Erie and Lake Taihu. Front Microbiol 2019; 10:2741. [PMID: 31921001 PMCID: PMC6914704 DOI: 10.3389/fmicb.2019.02741] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/11/2019] [Indexed: 01/04/2023] Open
Abstract
Microcystins are potent hepatotoxins that are frequently detected in fresh water lakes plagued by toxic cyanobacteria. Microbial biodegradation has been referred to as the most important avenue for removal of microcystin from aquatic environments. The biochemical pathway most commonly associated with the degradation of microcystin is encoded by the mlrABCD (mlr) cassette. The ecological significance of this pathway remains unclear as no studies have examined the expression of these genes in natural environments. Six metatranscriptomes were generated from microcystin-producing Microcystis blooms and analyzed to assess the activity of this pathway in environmental samples. Seventy-eight samples were collected from Lake Erie, United States/Canada and Lake Tai (Taihu), China, and screened for the presence of mlr gene transcripts. Read mapping to the mlr cassette indicated transcripts for these genes were absent, with only 77 of the collective 3.7 billion reads mapping to any part of the mlr cassette. Analysis of the assembled metatranscriptomes supported this, with only distantly related sequences identified as mlrABC-like. These observations were made despite the presence of microcystin and over 500,000 reads mapping to the mcy cassette for microcystin production. Glutathione S-transferases and alkaline proteases have been previously hypothesized to be alternative pathways for microcystin biodegradation, and expression of these genes was detected across space and time in both lakes. While the activity of these alternative pathways needs to be experimentally confirmed, they may be individually or collectively more important than mlr genes in the natural environment. Importantly, the lack of mlr expression could indicate microcystin biodegradation was not occurring in the analyzed samples. This study raises interesting questions about the ubiquity, specificity and locality of microcystin biodegradation, and highlights the need for the characterization of relevant mechanisms in natural communities to understand the fate of microcystin in the environment and risk to public health.
Collapse
Affiliation(s)
- Lauren E. Krausfeldt
- Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Morgan M. Steffen
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - Robert M. McKay
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| | - George S. Bullerjahn
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, United States
| | - Gregory L. Boyer
- Department of Chemistry, College of Environmental Science and Forestry, State University of New York, Syracuse, NY, United States
| | - Steven W. Wilhelm
- Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
33
|
Song D, Chen X, Xu M, Hai R, Zhou A, Tian R, Van Nostrand JD, Kempher ML, Guo J, Sun G, Zhou J. Adaptive Evolution of Sphingobium hydrophobicum C1 T in Electronic Waste Contaminated River Sediment. Front Microbiol 2019; 10:2263. [PMID: 31632374 PMCID: PMC6783567 DOI: 10.3389/fmicb.2019.02263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/17/2019] [Indexed: 11/13/2022] Open
Abstract
Electronic waste (e-waste) has caused a severe worldwide pollution problem. Despite increasing isolation of degradative microorganisms from e-waste contaminated environments, the mechanisms underlying their adaptive evolution in such habitats remain unclear. Sphingomonads generally have xenobiotic-degrading ability and may play important roles in bioremediation. Sphingobium hydrophobicum C1T, characterized with superior cell surface hydrophobicity, was recently isolated from e-waste contaminated river sediment. To dissect the mechanisms driving its adaptive evolution, we evaluated its stress resistance, sequenced its genome and performed comparative genomic analysis with 19 other Sphingobium strains. Strain C1T can feed on several kinds of e-waste-derived xenobiotics, exhibits a great resistance to heavy metals and possesses a high colonization ability. It harbors abundant genes involved in environmental adaptation, some of which are intrinsic prior to experiencing e-waste contamination. The extensive genomic variations between strain C1T and other Sphingobium strains, numerous C1T-unique genes, massive mobile elements and frequent genome rearrangements reflect a high genome plasticity. Positive selection, gene duplication, and especially horizontal gene transfer drive the adaptive evolution of strain C1T. Moreover, presence of type IV secretion systems may allow strain C1T to be a source of beneficial genes for surrounding microorganisms. This study provides new insights into the adaptive evolution of sphingomonads, and potentially guides bioremediation strategies.
Collapse
Affiliation(s)
- Da Song
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China.,State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xingjuan Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Meiying Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Rong Hai
- Department of Plant Pathology and Microbiology, University of California, Riverside, Riverside, CA, United States
| | - Aifen Zhou
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
| | - Renmao Tian
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
| | - Joy D Van Nostrand
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
| | - Megan L Kempher
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
| | - Jun Guo
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Guoping Sun
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jizhong Zhou
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
| |
Collapse
|
34
|
Wang J, Wang C, Li Q, Shen M, Bai P, Li J, Lin Y, Gan N, Li T, Zhao J. Microcystin-LR Degradation and Gene Regulation of Microcystin-Degrading Novosphingobium sp. THN1 at Different Carbon Concentrations. Front Microbiol 2019; 10:1750. [PMID: 31447804 PMCID: PMC6691742 DOI: 10.3389/fmicb.2019.01750] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/15/2019] [Indexed: 11/18/2022] Open
Abstract
The bacterium Novosphingobium sp. THN1 (THN1) is capable of degrading microcystin-LR (MC-LR). To study the ability of THN1 to degrade MC-LR and its possible mechanism(s) of regulation, we analyzed the effect of carbon concentrations on the degradation process. The MC-LR degradation rate peaked early and then declined during MC-LR biodegradation. Decreased levels of carbon in the medium caused the degradation peak to occur earlier. The expression of the functional gene mlrA, encoding a microcystinase, showed a similar trend to the MC-LR degradation rate at various carbon concentrations (r2 = 0.717, p < 0.05), suggesting that regulation of mlrA expression may play an important role in MC-LR degradation by THN1. The total bacterial biomass decreased when the carbon source was limited and did not correlate with the MC-LR degradation rate. Transcriptomic analysis showed that MC-LR degradation differentially regulated 62.16% (2597/4178) of THN1 genes. A considerable number of differentially expressed genes (DEGs) during MC-LR degradation encoded proteins related to carbon-, nitrogen-, and amino acid-related pathways. At 2 h of MC-LR degradation, most DEGs (29/33) involved in carbon and nitrogen metabolism were downregulated. This indicated that MC-LR may regulate carbon and nitrogen pathways of Novosphingobium sp. THN1. KEGG pathway analysis indicated that the upregulated DEGs during MC-LR degradation were mainly related to amino acid degradation and substrate metabolism pathways. Particularly, we detected increased expression of glutathione metabolism-related genes from transcriptomic data at 2 h of MC-LR degradation compared with the gene expression of 0 h, such as GST family protein, glutathione peroxidase, S-(hydroxymethyl) glutathione dehydrogenase, and glutathione-dependent disulfide-bond oxidoreductase that have been reported to be involved in microcystin degradation.
Collapse
Affiliation(s)
- Juanping Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Chang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Mengyuan Shen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Peng Bai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jionghui Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yan Lin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Nanqin Gan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Tao Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jindong Zhao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,State Key Laboratory of Protein and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing, China
| |
Collapse
|