1
|
Shin E, Dousa KM, Taracila MA, Bethel CR, Nantongo M, Nguyen DC, Akusobi C, Kurz SG, Plummer MS, Daley CL, Holland SM, Rubin EJ, Bulitta JB, Boom WH, Kreiswirth BN, Bonomo RA. Durlobactam in combination with β-lactams to combat Mycobacterium abscessus. Antimicrob Agents Chemother 2024:e0117424. [PMID: 39714147 DOI: 10.1128/aac.01174-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/11/2024] [Indexed: 12/24/2024] Open
Abstract
Mycobacterium abscessus (Mab) presents significant clinical challenges. This study evaluated the synergistic effects of a β-lactam and β-lactamase inhibitor combination against Mab and explored the underlying mechanisms. Synergy was assessed through MIC tests and time-kill studies, and binding affinities of nine β-lactams and BLIs to eight target receptors (L,D-transpeptidases [LDT] 1-5, D,D-carboxypeptidase, penicillin-binding protein [PBP] B, and PBP-lipo) were assessed using mass spectrometry and kinetic studies. Thermal stability and morphological changes were determined. Imipenem demonstrated high binding affinity to LDTs and PBPs, with extremely low inhibition constants (Ki,app; ≤0.002 mg/L for LDT1-2, ≤0.6 mg/L for PBPs), while cephalosporins, sulopenem, tebipenem, and amoxicillin exhibited moderate to low binding affinity. Durlobactam inactivated BlaMab and LDT/PBPs more potently than avibactam. The Ki,apps of durlobactam for PBP B, PBP-lipo, and LDT2 were below clinically achievable unbound concentrations, while avibactam's Ki,app for LDT/PBPs exceeded the clinical concentrations. Single β-lactam treatments resulted in minimal killing (~1 log10 reduction). Although avibactam yielded no effect, combinations with avibactam showed a significant reduction (~4 log10 CFU/mL). Durlobactam alone showed ~2 log10 reduction, and when combined with imipenem or two β-lactams, durlobactam achieved near-eradication of Mab, surpassing the current therapy (amikacin + clarithromycin + imipenem/cefoxitin). Inactivation of PBP-lipo by sulopenem, imipenem, durlobactam, and amoxicillin (with avibactam) led to morphological changes, showing filaments. This study demonstrates the mechanistic basis of combinations therapy, particularly imipenem + durlobactam, in overcoming β-lactam resistance in Mab.
Collapse
Affiliation(s)
- Eunjeong Shin
- Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Khalid M Dousa
- Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Magdalena A Taracila
- Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | | | - Mary Nantongo
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - David C Nguyen
- Division of Infectious Diseases, Department of Pediatrics and Division of Infectious Diseases, and Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Chidiebere Akusobi
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Sebastian G Kurz
- School of Medicine, Yale University, New Haven, Connecticut, USA
| | | | - Charles L Daley
- Division of Mycobacterial and Respiratory Infections, National Jewish Health, Denver, Colorado, USA
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institutes of Health, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Eric J Rubin
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Jürgen B Bulitta
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - W Henry Boom
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Barry N Kreiswirth
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Robert A Bonomo
- Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- CWRU-Cleveland VAMC Center for Antibiotic Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
- Departments of Biochemistry, Pharmacology, and Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Cleveland Geriatric Research Education and Clinical Center (GRECC), VANEOHS, Cleveland, Ohio, USA
| |
Collapse
|
2
|
Longo BM, Trunfio M, Calcagno A. Dual β-lactams for the treatment of Mycobacterium abscessus: a review of the evidence and a call to act against an antibiotic nightmare. J Antimicrob Chemother 2024; 79:2731-2741. [PMID: 39150384 DOI: 10.1093/jac/dkae288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024] Open
Abstract
Mycobacterium abscessus complex is a group of rapidly growing non-tuberculous mycobacteria (NTM), increasingly emerging as opportunistic pathogens. Current treatment options for these microorganisms are limited and associated with a high rate of treatment failure, toxicity and recurrence. In search of new therapeutic strategies, interest has grown in dual β-lactam (DBL) therapy, as research recently discovered that M. abscessus cell wall synthesis is mainly regulated by two types of enzymes (d,d-transpeptidases and l,d-transpeptidases) differently susceptible to inhibition by distinct β-lactams. In vitro studies testing several DBL combinations have shown synergy in extracellular broth cultures as well as in the intracellular setting: cefoxitin/imipenem, ceftaroline/imipenem, ceftazidime/ceftaroline and ceftazidime/imipenem. The addition of specific β-lactamase inhibitors (BLIs) targeting M. abscessus β-lactamase did not significantly enhance the activity of DBL combinations. However, in vivo data are lacking. We reviewed the literature on DBL/DBL-BLI-based therapies for M. abscessus infections to raise greater attention on this promising yet overlooked treatment option and to guide future preclinical and clinical studies.
Collapse
Affiliation(s)
- Bianca Maria Longo
- Department of Medical Sciences, Unit of Infectious Diseases, Amedeo di Savoia Hospital, University of Turin, 10149 Turin, Italy
| | - Mattia Trunfio
- Department of Medical Sciences, Unit of Infectious Diseases, Amedeo di Savoia Hospital, University of Turin, 10149 Turin, Italy
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California San Diego, La Jolla, CA 92037, USA
| | - Andrea Calcagno
- Department of Medical Sciences, Unit of Infectious Diseases, Amedeo di Savoia Hospital, University of Turin, 10149 Turin, Italy
| |
Collapse
|
3
|
Bonefont LE, Davenport HC, Chaton CT, Korotkov KV, Rohde KH. Atypical Mycobacterium abscessus BlaRI Ortholog Mediates Regulation of Energy Metabolism but Not β-Lactam Resistance. Mol Microbiol 2024; 122:583-597. [PMID: 39308125 DOI: 10.1111/mmi.15314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 10/17/2024]
Abstract
Mycobacterium abscessus (Mab) is highly drug resistant, and understanding regulation of antibiotic resistance is critical to future antibiotic development. Regulatory mechanisms controlling Mab's β-lactamase (BlaMab) that mediates β-lactam resistance remain unknown. S. aureus encodes a prototypical protease-mediated two-component system BlaRI regulating the β-lactamase BlaZ. BlaR binds extracellular β-lactams, activating an intracellular peptidase domain which cleaves BlaI to derepress blaZ. Mycobacterium tuberculosis (Mtb) encodes homologs of BlaRI (which we will denote as BlaIR to reflect the inverted gene order in mycobacteria) that regulate not only the Mtb β-lactamase, blaC, but also additional genes related to respiration. We identified orthologs of blaIRMtb in Mab and hypothesized that they regulate blaMab. Surprisingly, neither deletion of blaIRMab nor overexpression of only blaIMab altered blaMab expression or β-lactam susceptibility. However, BlaIMab did bind to conserved motifs upstream of several Mab genes involved in respiration, yielding a putative regulon that partially overlapped with BlaIMtb. Prompted by evidence that respiration inhibitors including clofazimine induce the BlaI regulon in Mtb, we found that clofazimine triggers induction of blaIRMab and its downstream regulon. Highlighting an important role for BlaIRMab in adapting to disruptions in energy metabolism, constitutive repression of the BlaIMab regulon rendered Mab highly susceptible to clofazimine. In addition to our unexpected findings that BlaIRMab does not regulate β-lactam resistance, this study highlights the novel role of mycobacterial BlaRI-type regulators in regulating electron transport and respiration.
Collapse
Affiliation(s)
- Lauren E Bonefont
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Haley C Davenport
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Catherine T Chaton
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Konstantin V Korotkov
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Kyle H Rohde
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
4
|
Liu X, Lin Z, Li Y, Zhong Z, Wu A, Jiang Y. Analysis of Clinical Isolation Characteristics of Nontuberculous Mycobacteria and Drug Sensitivity of Rapidly Growing Mycobacteria in the General Hospital of Guangzhou, China. Infect Drug Resist 2024; 17:4079-4088. [PMID: 39319037 PMCID: PMC11420897 DOI: 10.2147/idr.s465468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/18/2024] [Indexed: 09/26/2024] Open
Abstract
Purpose The clinical distribution characteristics of nontuberculous mycobacteria (NTM) in general hospital were explored to guide the clinical diagnosis and treatment of NTM infection. Methods Samples with positive mycobacterium culture in the First Affiliated Hospital of Guangzhou Medical University were collected and identified through PCR. Phenotypic drug sensitivity experiments were conducted on 44 Mycobacteroides abscessus isolated from clinical departments with broth microdilution method, and rrl, rrs and erm (41) genes associated with drug resistance were detected. Results From September 2020 to July 2023, 314 mycobacterium-positive isolates were separated from patients in the First Affiliated Hospital of Guangzhou Medical University, with 147 (46.8%) NTM isolates were included in our study. The samples were respiratory tract specimens mainly, with 64% bronchoalveolar lavage fluid. Of 144 cases identified, samples were from 133 patients (60 males and 73 females; gender ratio of 0.82:1). NTM was mainly isolated from the people aged 40 and above, especially females (χ2 = 10.688, P = 0.014). M. abscessus (61, 42.36%), M. intracellulare (35, 24.31%) were the two most NTMs in this hospital. Clinical strains of M. abscessus exhibited high resistance to antibiotics, except for cefoxitin (31.8%), linezolid (25.0%), amikacin (0%), and clarithromycin (18.2%). Among 8 strains of M. abscessus with clarithromycin acquired resistance, just 4 strains (50.0%) showed mutations (A2270G, A2271G) in rrl gene, but a new mutation (C2750T) was detected in 1 strain. Among 14 strains of M. abscessus with clarithromycin-induced resistance, 13 (93.0%) strains had T28 erm (41) gene and 1 (7.0%) strain had C28 erm (41) gene. Conclusion M. avium-intracellulare complex was gradually becoming predominant strain in Guangzhou area. The resistant situation of M. abscessus in general hospital had shown severe. Potential mutation in rrl gene associated with clarithromycin acquired resistance of M. abscessus were found, but drug-resistant mechanism remained unclear.
Collapse
Affiliation(s)
- Xiaoyi Liu
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Zhiwei Lin
- Department of Clinical Laboratory of the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, People’s Republic of China
| | - Yiwen Li
- Department of Clinical Laboratory, the Key Laboratory of Advanced Interdisciplinary Studies Center, the First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, Guangzhou, People’s Republic of China
| | - Zhiwei Zhong
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Aiwu Wu
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Yueting Jiang
- Department of Clinical Laboratory, the Key Laboratory of Advanced Interdisciplinary Studies Center, the First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, Guangzhou, People’s Republic of China
| |
Collapse
|
5
|
Tian X, Ma W, Yusuf B, Su B, Hu J, Zhang T. Assessment of the Efficacy of the Antihistamine Drug Rupatadine Used Alone or in Combination against Mycobacteria. Pharmaceutics 2024; 16:1049. [PMID: 39204394 PMCID: PMC11359651 DOI: 10.3390/pharmaceutics16081049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
The emergence of drug-resistant mycobacteria has rendered many clinical drugs and regimens ineffective, imposing significant economic and healthcare burden on individuals and society. Repurposing drugs intended for treating other diseases is a time-saving, cost-effective, and efficient approach for identifying excellent antimycobacterial candidates or lead compounds. This study is the first to demonstrate that rupatadine (RTD), a drug used to treat allergic rhinitis, possesses excellent activity against mycobacteria without detectable resistance, particularly Mycobacterium tuberculosis and Mycobacterium marinum, with a minimal inhibitory concentration as low as 3.13 µg/mL. Furthermore, RTD exhibited moderate activity against nonreplicating M. tuberculosis with minimal inhibitory concentrations lower than drugs targeting the cell wall, suggesting that RTD has great potential to be modified and used for the treatment of nonreplicating M. tuberculosis. Additionally, RTD exhibits partial synergistic effects when combined with clofazimine, pretomanid, and TB47 against M. tuberculosis, providing the theoretical foundation for the development of treatment regimens. Transcriptomic profiling leads us to speculate that eight essential genes may be the targets of RTD or may be closely associated with mycobacterial resistance to RTD. In summary, RTD may be a promising hit for further antimycobacterial drug or regimen optimization, especially in the case of nonreplicating mycobacteria.
Collapse
Affiliation(s)
- Xirong Tian
- State Key Laboratory of Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China; (X.T.); (W.M.); (B.Y.)
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Wanli Ma
- State Key Laboratory of Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China; (X.T.); (W.M.); (B.Y.)
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Buhari Yusuf
- State Key Laboratory of Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China; (X.T.); (W.M.); (B.Y.)
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Biyi Su
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou 510095, China;
| | - Jinxing Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou 510095, China;
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China; (X.T.); (W.M.); (B.Y.)
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou 510095, China;
| |
Collapse
|
6
|
Dousa KM, Shin E, Kurz SG, Plummer M, Nantongo M, Bethel CR, Taracila MA, Nguyen DC, Kreiswith BN, Daley CL, Remy KE, Holland SM, Bonomo RA. Synergistic effects of sulopenem in combination with cefuroxime or durlobactam against Mycobacterium abscessus. mBio 2024; 15:e0060924. [PMID: 38742824 PMCID: PMC11237399 DOI: 10.1128/mbio.00609-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 05/16/2024] Open
Abstract
Mycobacterium abscessus (Mab) affects patients with immunosuppression or underlying structural lung diseases such as cystic fibrosis (CF). Additionally, Mab poses clinical challenges due to its resistance to multiple antibiotics. Herein, we investigated the synergistic effect of dual β-lactams [sulopenem and cefuroxime (CXM)] or the combination of sulopenem and CXM with β-lactamase inhibitors [BLIs-avibactam (AVI) or durlobactam (DUR)]. The sulopenem-CXM combination yielded low minimum inhibitory concentration (MIC) values for 54 clinical Mab isolates and ATCC19977 (MIC50 and MIC90 ≤0.25 µg/mL). Similar synergistic effects were observed in time-kill studies conducted at concentrations achievable in clinical settings. Sulopenem-CXM outperformed monotherapy, yielding ~1.5 Log10 CFU/mL reduction during 10 days. Addition of BLIs enhanced this antibacterial effect, resulting in an additional reduction of CFUs (~3 Log10 for sulopenem-CXM and AVI and ~4 Log10 for sulopenem-DUR). Exploration of the potential mechanisms of the synergy focused on their interactions with L,D-transpeptidases (Ldts; LdtMab1-LdtMab4), penicillin-binding-protein B (PBP B), and D,D-carboxypeptidase (DDC). Acyl complexes, identified via mass spectrometry analysis, demonstrated the binding of sulopenem with LdtMab2-LdtMab4, DDC, and PBP B and CXM with LdtMab2 and PBP B. Molecular docking and mass spectrometry data suggest the formation of a covalent adduct between sulopenem and LdtMab2 after the nucleophilic attack of the cysteine residue at the β-lactam carbonyl carbon, leading to the cleavage of the β-lactam ring and the establishment of a thioester bond linking the LdtMab2 with sulopenem. In conclusion, we demonstrated the biochemical basis of the synergy of sulopenem-CXM with or without BLIs. These findings potentially broaden the selection of oral therapeutic agents to combat Mab. IMPORTANCE Treating infections from Mycobacterium abscessus (Mab), particularly those resistant to common antibiotics like macrolides, is notoriously difficult, akin to a never-ending struggle for healthcare providers. The rate of treatment failure is even higher than that seen with multidrug-resistant tuberculosis. The role of combination β-lactams in inhibiting L,D-transpeptidation, the major peptidoglycan crosslink reaction in Mab, is an area of intense investigation, and clinicians have utilized this approach in the treatment of macrolide-resistant Mab, with reports showing clinical success. In our study, we found that cefuroxime and sulopenem, when used together, display a significant synergistic effect. If this promising result seen in lab settings, translates well into real-world clinical effectiveness, it could revolutionize current treatment methods. This combination could either replace the need for more complex intravenous medications or serve as a "step down" to an oral medication regimen. Such a shift would be much easier for patients to manage, enhancing their comfort and likelihood of sticking to the treatment plan, which could lead to better outcomes in tackling these tough infections. Our research delved into how these drugs inhibit cell wall synthesis, examined time-kill data and binding studies, and provided a scientific basis for the observed synergy in cell-based assays.
Collapse
Affiliation(s)
- Khalid M. Dousa
- Louis Stokes Cleveland VA Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Eunjeong Shin
- Louis Stokes Cleveland VA Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | | | - Mark Plummer
- Yale Center for Molecular Discovery, Yale University, New Haven, Connecticut, USA
| | - Mary Nantongo
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, USA
| | - Christopher R. Bethel
- Louis Stokes Cleveland VA Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Magdalena A. Taracila
- Louis Stokes Cleveland VA Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - David C. Nguyen
- Department of Pediatrics, Division of Pediatric Infectious Diseases and Department of Internal Medicine, Division of Infectious Diseases, Rush Medical College, Chicago, Illinois, USA
| | - Barry N. Kreiswith
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Charles L. Daley
- Division of Mycobacterial and Respiratory Infections, National Jewish Health, Denver, Colorado, USA
| | - Kenneth E. Remy
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Steven M. Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Robert A. Bonomo
- Louis Stokes Cleveland VA Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| |
Collapse
|
7
|
Negatu DA, Aragaw WW, Dartois V, Dick T. A pairwise approach to revitalize β-lactams for the treatment of TB. Antimicrob Agents Chemother 2024; 68:e0003424. [PMID: 38690896 PMCID: PMC11620507 DOI: 10.1128/aac.00034-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/07/2024] [Indexed: 05/03/2024] Open
Abstract
The dual β-lactam approach has been successfully applied to overcome target redundancy in nontuberculous mycobacteria. Surprisingly, this approach has not been leveraged for Mycobacterium tuberculosis, despite the high conservation of peptidoglycan synthesis. Through a comprehensive screen of oral β-lactam pairs, we have discovered that cefuroxime strongly potentiates the bactericidal activity of tebipenem and sulopenem-advanced clinical candidates-and amoxicillin, at concentrations achieved clinically. β-lactam pairs thus have the potential to reduce TB treatment duration.
Collapse
Affiliation(s)
- Dereje A. Negatu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), Addis Ababa University, Addis Ababa, Ethiopia
| | - Wassihun Wedajo Aragaw
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
- Department of Microbiology and Immunology, Georgetown University, Washington, DC, USA
| |
Collapse
|
8
|
Simcox BS, Rohde KH. Orphan response regulator NnaR is critical for nitrate and nitrite assimilation in Mycobacterium abscessus. Front Cell Infect Microbiol 2024; 14:1411333. [PMID: 38854658 PMCID: PMC11162112 DOI: 10.3389/fcimb.2024.1411333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/10/2024] [Indexed: 06/11/2024] Open
Abstract
Mycobacterium abscessus (Mab) is an opportunistic pathogen afflicting individuals with underlying lung disease such as Cystic Fibrosis (CF) or immunodeficiencies. Current treatment strategies for Mab infections are limited by its inherent antibiotic resistance and limited drug access to Mab in its in vivo niches resulting in poor cure rates of 30-50%. Mab's ability to survive within macrophages, granulomas and the mucus laden airways of the CF lung requires adaptation via transcriptional remodeling to counteract stresses like hypoxia, increased levels of nitrate, nitrite, and reactive nitrogen intermediates. Mycobacterium tuberculosis (Mtb) is known to coordinate hypoxic adaptation via induction of respiratory nitrate assimilation through the nitrate reductase narGHJI. Mab, on the other hand, does not encode a respiratory nitrate reductase. In addition, our recent study of the transcriptional responses of Mab to hypoxia revealed marked down-regulation of a locus containing putative nitrate assimilation genes, including the orphan response regulator nnaR (nitrate/nitrite assimilation regulator). These putative nitrate assimilation genes, narK3 (nitrate/nitrite transporter), nirBD (nitrite reductase), nnaR, and sirB (ferrochelatase) are arranged contiguously while nasN (assimilatory nitrate reductase identified in this work) is encoded in a different locus. Absence of a respiratory nitrate reductase in Mab and down-regulation of nitrogen metabolism genes in hypoxia suggest interplay between hypoxia adaptation and nitrate assimilation are distinct from what was previously documented in Mtb. The mechanisms used by Mab to fine-tune the transcriptional regulation of nitrogen metabolism in the context of stresses e.g. hypoxia, particularly the role of NnaR, remain poorly understood. To evaluate the role of NnaR in nitrate metabolism we constructed a Mab nnaR knockout strain (MabΔnnaR ) and complement (MabΔnnaR+C ) to investigate transcriptional regulation and phenotypes. qRT-PCR revealed NnaR is necessary for regulating nitrate and nitrite reductases along with a putative nitrate transporter. Loss of NnaR compromised the ability of Mab to assimilate nitrate or nitrite as sole nitrogen sources highlighting its necessity. This work provides the first insights into the role of Mab NnaR setting a foundation for future work investigating NnaR's contribution to pathogenesis.
Collapse
Affiliation(s)
| | - Kyle H. Rohde
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
9
|
Chen L, Shashkina E, Kurepina N, Calado Nogueira de Moura V, Daley CL, Kreiswirth BN. In vitro activity of cefoxitin, imipenem, meropenem, and ceftaroline in combination with vaborbactam against Mycobacterium abscessus. Antimicrob Agents Chemother 2024; 68:e0017424. [PMID: 38557171 PMCID: PMC11064484 DOI: 10.1128/aac.00174-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Mycobacterium abscessus (MAB) infections pose a growing public health threat. Here, we assessed the in vitro activity of the boronic acid-based β-lactamase inhibitor, vaborbactam, with different β-lactams against 100 clinical MAB isolates. Enhanced activity was observed with meropenem and ceftaroline with vaborbactam (1- and >4-fold MIC50/90 reduction). CRISPRi-mediated blaMAB gene knockdown showed a fourfold MIC reduction to ceftaroline but not the other β-lactams. Our findings demonstrate vaborbactam's potential in combination therapy against MAB infections.
Collapse
Affiliation(s)
- Liang Chen
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Elena Shashkina
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Natalia Kurepina
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | | | - Charles L. Daley
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
- The University of Colorado, Aurora, Colorado, USA
| | - Barry N. Kreiswirth
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| |
Collapse
|
10
|
Nguyen TQ, Heo BE, Jeon S, Ash A, Lee H, Moon C, Jang J. Exploring antibiotic resistance mechanisms in Mycobacterium abscessus for enhanced therapeutic approaches. Front Microbiol 2024; 15:1331508. [PMID: 38380095 PMCID: PMC10877060 DOI: 10.3389/fmicb.2024.1331508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/17/2024] [Indexed: 02/22/2024] Open
Abstract
Mycobacterium abscessus, a leading cause of severe lung infections in immunocompromised individuals, poses significant challenges for current therapeutic strategies due to resistance mechanisms. Therefore, understanding the intrinsic and acquired antibiotic resistance of M. abscessus is crucial for effective treatment. This review highlights the mechanisms employed by M. abscessus to sustain antibiotic resistance, encompassing not only conventional drugs but also newly discovered drug candidates. This comprehensive analysis aims to identify novel entities capable of overcoming the notorious resistance exhibited by M. abscessus, providing insights for the development of more effective therapeutic interventions.
Collapse
Affiliation(s)
- Thanh Quang Nguyen
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Bo Eun Heo
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Seunghyeon Jeon
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Anwesha Ash
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Heehyun Lee
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Cheol Moon
- Department of Clinical Laboratory Science, Semyung University, Jecheon, Republic of Korea
| | - Jichan Jang
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
11
|
Fröberg G, Ahmed A, Chryssanthou E, Davies Forsman L. The in vitro effect of new combinations of carbapenem-β-lactamase inhibitors for Mycobacterium abscessus. Antimicrob Agents Chemother 2023; 67:e0052823. [PMID: 37671880 PMCID: PMC10583658 DOI: 10.1128/aac.00528-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/26/2023] [Indexed: 09/07/2023] Open
Abstract
As new treatment alternatives for Mycobacterium abscessus complex (MABC) are urgently needed, we determined the minimum inhibitory concentrations (MICs) for novel carbapenem combinations, including imipenem-relebactam and tebipenem-avibactam against 98 MABC isolates by broth microdilution. The MIC50 was reduced from 16 to 8 mg/L by adding relebactam to imipenem, while the addition of avibactam to tebipenem showed a more pronounced reduction from 256 to 16 mg/L, representing a promising non-toxic, oral treatment option for further exploration.
Collapse
Affiliation(s)
- Gabrielle Fröberg
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine, Division of Infectious Diseases, Karolinska Institutet, Solna, Sweden
| | - Ayan Ahmed
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Erja Chryssanthou
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Lina Davies Forsman
- Department of Medicine, Division of Infectious Diseases, Karolinska Institutet, Solna, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
12
|
Sullivan JR, Courtine C, Taylor L, Solomon O, Behr MA. Loss of allosteric regulation in α-isopropylmalate synthase identified as an antimicrobial resistance mechanism. NPJ ANTIMICROBIALS AND RESISTANCE 2023; 1:7. [PMID: 38686213 PMCID: PMC11057210 DOI: 10.1038/s44259-023-00005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/18/2023] [Indexed: 05/02/2024]
Abstract
Despite our best efforts to discover new antimicrobials, bacteria have evolved mechanisms to become resistant. Resistance to antimicrobials can be attributed to innate, inducible, and acquired mechanisms. Mycobacterium abscessus is one of the most antimicrobial resistant bacteria and is known to cause chronic pulmonary infections within the cystic fibrosis community. Previously, we identified epetraborole as an inhibitor against M. abscessus with in vitro and in vivo activities and that the efficacy of epetraborole could be improved with the combination of the non-proteinogenic amino acid norvaline. Norvaline demonstrated activity against the M. abscessus epetraborole resistant mutants thus, limiting resistance to epetraborole in wild-type populations. Here we show M. abscessus mutants with resistance to epetraborole can acquire resistance to norvaline in a leucyl-tRNA synthetase (LeuRS) editing-independent manner. After showing that the membrane hydrophobicity and efflux activity are not linked to norvaline resistance, whole-genome sequencing identified a mutation in the allosteric regulatory domain of α-isopropylmalate synthase (α-IPMS). We found that mutants with the α-IPMSA555V variant incorporated less norvaline in the proteome and produced more leucine than the parental strain. Furthermore, we found that leucine can rescue growth inhibition from norvaline challenge in the parental strain. Our results demonstrate that M. abscessus can modulate its metabolism through mutations in an allosteric regulatory site to upregulate the biosynthesis of the natural LeuRS substrate and outcompete norvaline. These findings emphasize the antimicrobial resistant nature of M. abscessus and describe a unique mechanism of substrate-inhibitor competition.
Collapse
Affiliation(s)
- Jaryd R. Sullivan
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1 Canada
- Department of Microbiology & Immunology, McGill University, Montreal, QC H3A 2B4 Canada
- McGill International TB Centre, Montreal, QC H4A 3S5 Canada
| | - Christophe Courtine
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1 Canada
- Department of Microbiology & Immunology, McGill University, Montreal, QC H3A 2B4 Canada
- Present Address: Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755 USA
| | - Lorne Taylor
- Clinical Proteomics Platform, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1 Canada
| | - Ori Solomon
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1 Canada
- Department of Microbiology & Immunology, McGill University, Montreal, QC H3A 2B4 Canada
- McGill International TB Centre, Montreal, QC H4A 3S5 Canada
| | - Marcel A. Behr
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1 Canada
- Department of Microbiology & Immunology, McGill University, Montreal, QC H3A 2B4 Canada
- McGill International TB Centre, Montreal, QC H4A 3S5 Canada
- Department of Medicine, McGill University Health Centre, Montreal, QC H3G 2M1 Canada
| |
Collapse
|
13
|
Moguillansky N, DeSear K, Dousa KM. A 40-Year-Old Female With Mycobacterium abscessus Successfully Treated With a Dual Beta-Lactam Combination. Cureus 2023; 15:e40993. [PMID: 37503487 PMCID: PMC10371195 DOI: 10.7759/cureus.40993] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2023] [Indexed: 07/29/2023] Open
Abstract
Nontuberculous mycobacteria (NTM) infections are difficult to treat conditions, specially Mycobacterium abscessus (Mab) lung disease. The most recent ATS/ERS/ESCMID/IDSA clinical practice guidelines (2020) recommend regimens of multiple intravenous (IV) and oral antibiotics. Recent in vitro studies on M. abscessus show that the combination of two beta-lactam antibiotics, as well as select beta-lactamase inhibitors, provides significant synergy in its treatment. We present the first in vivo case of the successful treatment of Mycobacterium abscessus with imipenem and amoxicillin in addition to macrolides, clofazimine, and inhaled liposomal amikacin.
Collapse
Affiliation(s)
- Natalia Moguillansky
- Department of Medicine, Division of Pulmonary Critical Care and Sleep Medicine, University of Florida Health, Gainesville, USA
| | - Kathryn DeSear
- Department of Pharmacy, University of Florida Shands Hospital, Gainesville, USA
| | - Khalid M Dousa
- Department of Infectious Disease, Case Western Reserve University School of Medicine, Cleveland, USA
| |
Collapse
|
14
|
Rimal B, Nicklas DA, Panthi CM, Lippincott CK, Belz DC, Ignatius EH, Deck DH, Serio AW, Lamichhane G. Efficacy of Omadacycline-Containing Regimen in a Mouse Model of Pulmonary Mycobacteroides abscessus Disease. mSphere 2023; 8:e0066522. [PMID: 36912629 PMCID: PMC10117123 DOI: 10.1128/msphere.00665-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/21/2023] [Indexed: 03/14/2023] Open
Abstract
Mycobacteroides abscessus is an opportunistic pathogen in people with structural lung conditions such as bronchiectasis, chronic obstructive pulmonary disease, and cystic fibrosis. Pulmonary M. abscessus infection causes progressive symptomatic and functional decline as well as diminished lung function and is often incurable with existing antibiotics. We investigated the efficacy of a new tetracycline, omadacycline, in combination with existing antibiotics recommended to treat this indication, in a mouse model of M. abscessus lung disease. Amikacin, azithromycin, bedaquiline, biapenem, cefoxitin, clofazimine, imipenem, linezolid, and rifabutin were selected as companions to omadacycline. M. abscessus burden in the lungs of mice over a 4-week treatment duration was considered the endpoint. Omadacycline in combination with linezolid, imipenem, cefoxitin, biapenem, or rifabutin exhibited early bactericidal activity compared to any single drug. Using three M. abscessus isolates, we also determined the in vitro frequency of spontaneous resistance against omadacycline to be between 1.9 × 10-10 and 6.2 × 10-10 and the frequency of persistence against omadacycline to be between 5.3 × 10-6 and 1.3 × 10-5. Based on these findings, the combination of omadacycline and select drugs that are included in the recent treatment guidelines may exhibit improved potency to treat M. abscessus lung disease. IMPORTANCE M. abscessus disease incidence is increasing in the United States. This disease is difficult to cure with existing antibiotics. In this study, we describe the efficacy of a new tetracycline antibiotic, omadacycline, in combination with an existing antibiotic to treat this disease. A mouse model of M. abscessus lung disease was used to assess the efficacies of these experimental treatment regimens. Omadacycline in combination with select existing antibiotics exhibited bactericidal activity during the early phase of treatment.
Collapse
Affiliation(s)
- Binayak Rimal
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Danielle A. Nicklas
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Chandra M. Panthi
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Christopher K. Lippincott
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Center for Nontuberculous Mycobacteria and Bronchiectasis, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Daniel C. Belz
- Center for Nontuberculous Mycobacteria and Bronchiectasis, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Elisa H. Ignatius
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Center for Nontuberculous Mycobacteria and Bronchiectasis, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Division of Clinical Pharmacology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Daniel H. Deck
- Paratek Pharmaceuticals, Inc., King of Prussia, Pennsylvania, USA
| | - Alisa W. Serio
- Paratek Pharmaceuticals, Inc., King of Prussia, Pennsylvania, USA
| | - Gyanu Lamichhane
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Center for Nontuberculous Mycobacteria and Bronchiectasis, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
15
|
Simcox BS, Tomlinson BR, Shaw LN, Rohde KH. Mycobacterium abscessus DosRS two-component system controls a species-specific regulon required for adaptation to hypoxia. Front Cell Infect Microbiol 2023; 13:1144210. [PMID: 36968107 PMCID: PMC10034137 DOI: 10.3389/fcimb.2023.1144210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/15/2023] [Indexed: 03/12/2023] Open
Abstract
Mycobacterium abscessus (Mab), an emerging opportunistic pathogen, predominantly infects individuals with underlying pulmonary diseases such as cystic fibrosis (CF). Current treatment outcomes for Mab infections are poor due to Mab's inherent antibiotic resistance and unique host interactions that promote phenotypic tolerance and hinder drug access. The hypoxic, mucus-laden airways in the CF lung and antimicrobial phagosome within macrophages represent hostile niches Mab must overcome via alterations in gene expression for survival. Regulatory mechanisms important for the adaptation and long-term persistence of Mab within the host are poorly understood, warranting further genetic and transcriptomics study of this emerging pathogen. DosRS Mab , a two-component signaling system (TCS), is one proposed mechanism utilized to subvert host defenses and counteract environmental stress such as hypoxia. The homologous TCS of Mycobacterium tuberculosis (Mtb), DosRS Mtb , is known to induce a ~50 gene regulon in response to hypoxia, carbon monoxide (CO) and nitric oxide (NO) in vitro and in vivo. Previously, a small DosR Mab regulon was predicted using bioinformatics based on DosR Mtb motifs however, the role and regulon of DosRS Mab in Mab pathogenesis have yet to be characterized in depth. To address this knowledge gap, our lab generated a Mab dosRS knockout strain (MabΔdosRS) to investigate differential gene expression, and phenotype in an in vitro hypoxia model of dormancy. qRT-PCR and lux reporter assays demonstrate Mab_dosR and 6 predicted downstream genes are induced in hypoxia. In addition, RNAseq revealed induction of a much larger hypoxia response comprised of >1000 genes, including 127 differentially expressed genes in a dosRS mutant strain. Deletion of DosRS Mab led to attenuated growth under low oxygen conditions, a shift in morphotype from smooth to rough, and down-regulation of 216 genes. This study provides the first look at the global transcriptomic response of Mab to low oxygen conditions encountered in the airways of CF patients and within macrophage phagosomes. Our data also demonstrate the importance of DosRS Mab for adaptation of Mab to hypoxia, highlighting a distinct regulon (compared to Mtb) that is significantly larger than previously described, including both genes conserved across mycobacteria as well as Mab-specific genes.
Collapse
Affiliation(s)
- Breven S. Simcox
- Division of Immunology and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Brooke R. Tomlinson
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Lindsey N. Shaw
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Kyle H. Rohde
- Division of Immunology and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
16
|
Activity of Oral Tebipenem-Avibactam in a Mouse Model of Mycobacterium abscessus Lung Infection. Antimicrob Agents Chemother 2023; 67:e0145922. [PMID: 36688684 PMCID: PMC9933631 DOI: 10.1128/aac.01459-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The combination of the β-lactam tebipenem and the β-lactamase inhibitor avibactam shows potent bactericidal activity against Mycobacterium abscessus in vitro. Here, we report that the combination of the respective oral prodrugs tebipenem-pivoxil and avibactam ARX-1796 showed efficacy in a mouse model of M. abscessus lung infection. The results suggest that tebipenem-avibactam presents an attractive oral drug candidate pair for the treatment of M. abscessus pulmonary disease and could inform the design of clinical trials.
Collapse
|
17
|
Updated Review on the Mechanisms of Pathogenicity in Mycobacterium abscessus, a Rapidly Growing Emerging Pathogen. Microorganisms 2022; 11:microorganisms11010090. [PMID: 36677382 PMCID: PMC9866562 DOI: 10.3390/microorganisms11010090] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023] Open
Abstract
In recent years, Mycobacterium abscessus has appeared as an emerging pathogen, with an increasing number of disease cases reported worldwide that mainly occur among patients with chronic lung diseases or impaired immune systems. The treatment of this pathogen represents a challenge due to the multi-drug-resistant nature of this species and its ability to evade most therapeutic approaches. However, although predisposing host factors for disease are well known, intrinsic pathogenicity mechanisms of this mycobacterium are still not elucidated. Like other mycobacteria, intracellular invasiveness and survival inside different cell lines are pathogenic factors related to the ability of M. abscessus to establish infection. Some of the molecular factors involved in this process are well-known and are present in the mycobacterial cell wall, such as trehalose-dimycolate and glycopeptidolipids. The ability to form biofilms is another pathogenic factor that is essential for the development of chronic disease and for promoting mycobacterial survival against the host immune system or different antibacterial treatments. This capability also seems to be related to glycopeptidolipids and other lipid molecules, and some studies have shown an intrinsic relationship between both pathogenic mechanisms. Antimicrobial resistance is also considered a mechanism of pathogenicity because it allows the mycobacterium to resist antimicrobial therapies and represents an advantage in polymicrobial biofilms. The recent description of hyperpathogenic strains with the potential interhuman transmission makes it necessary to increase our knowledge of pathogenic mechanisms of this species to design better therapeutic approaches to the management of these infections.
Collapse
|
18
|
Strongly Bactericidal All-Oral β-Lactam Combinations for the Treatment of Mycobacterium abscessus Lung Disease. Antimicrob Agents Chemother 2022; 66:e0079022. [PMID: 36047786 PMCID: PMC9487536 DOI: 10.1128/aac.00790-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Bioactive forms of oral β-lactams were screened in vitro against Mycobacterium abscessus with and without the bioactive form of the oral β-lactamase inhibitor avibactam ARX1796. Sulopenem was equally active without avibactam, while tebipenem, cefuroxime, and amoxicillin required avibactam for optimal activity. Systematic pairwise combination of the four β-lactams revealed strong bactericidal synergy for each of sulopenem, tebipenem, and cefuroxime combined with amoxicillin in the presence of avibactam. These all-oral β-lactam combinations warrant clinical evaluation.
Collapse
|
19
|
New therapies for nontuberculous mycobacterial lung infection. Curr Opin Infect Dis 2022; 35:176-184. [PMID: 34966084 DOI: 10.1097/qco.0000000000000815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW Although nontuberculous mycobacterial pulmonary disease is increasing in incidence, outcomes remain less than optimal highlighting the unmet need for developing novel therapies. RECENT FINDINGS Several new antibiotic formulations, novel antibiotics, and novel nonantibiotic treatments have recently demonstrated positive results in treating nontuberculous mycobacterial pulmonary disease. SUMMARY Promising novel therapies are currently under investigation fueling much needed interest and enthusiasm in the nontuberculous mycobacterial pulmonary disease space and will hopefully lead to improved understanding and outcomes in this complex disease.
Collapse
|
20
|
CRISPR Inhibition of Essential Peptidoglycan Biosynthesis Genes in Mycobacterium abscessus and Its Impact on β-Lactam Susceptibility. Antimicrob Agents Chemother 2022; 66:e0009322. [PMID: 35311518 DOI: 10.1128/aac.00093-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We utilized a CRISPR interference (CRISPRi) assay to control the gene expressions of two predicted essential peptidoglycan biosynthesis genes, pbpB and cwIM, in Mycobacterium abscessus and to evaluate their contribution to β-lactam susceptibility. Our results showed that CRISPR inhibition of each gene led to a significant 3-log10 reduction in CFU in the presence of imipenem but not for cefoxitin. These results demonstrate that CRISPRi provides an experimental approach to study drug/target interactions in M. abscessus.
Collapse
|
21
|
Nontuberculous Mycobacterial Resistance to Antibiotics and Disinfectants: Challenges Still Ahead. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8168750. [PMID: 35257011 PMCID: PMC8898113 DOI: 10.1155/2022/8168750] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/21/2021] [Accepted: 02/16/2022] [Indexed: 12/11/2022]
Abstract
The mortality incidence from nontuberculous mycobacteria (NTM) infections has been steadily developing globally. These bacterial agents were once thought to be innocent environmental saprophytic that are only dangerous to patients with defective lungs or the immunosuppressed. Nevertheless, the emergence of highly resistant NTM to different antibiotics and disinfectants increased the importance of these agents in the health system. Currently, NTM frequently infect seemingly immunocompetent individuals at rising rates. This is of concern as the resistant NTM are difficult to control and treat. The details behind this NTM development are only beginning to be clarified. The current study will provide an overview of the most important NTM resistance mechanisms to not only antibiotics but also the most commonly used disinfectants. Such evaluations can open new doors to improving control strategies and reducing the risk of NTM infection. Moreover, further studies are crucial to uncover this association.
Collapse
|
22
|
Inhibiting Mycobacterium abscessus Cell Wall Synthesis: Using a Novel Diazabicyclooctane β-Lactamase Inhibitor To Augment β-Lactam Action. mBio 2022; 13:e0352921. [PMID: 35073757 PMCID: PMC8787486 DOI: 10.1128/mbio.03529-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mycobacterium abscessus (Mab) infections are a growing menace to the health of many patients, especially those suffering from structural lung disease and cystic fibrosis. With multidrug resistance a common feature and a growing understanding of peptidoglycan synthesis in Mab, it is advantageous to identify potent β-lactam and β-lactamase inhibitor combinations that can effectively disrupt cell wall synthesis. To improve existing therapeutic regimens to address serious Mab infections, we evaluated the ability of durlobactam (DUR), a novel diazobicyclooctane β-lactamase inhibitor to restore in vitro susceptibilities in combination with β-lactams and provide a biochemical rationale for the activity of this compound. In cell-based assays, susceptibility of Mab subsp. abscessus isolates to amoxicillin (AMOX), imipenem (IMI), and cefuroxime (CXM) was significantly enhanced with the addition of DUR. The triple drug combinations of CXM-DUR-AMOX and IMI-DUR-AMOX were most potent, with MIC ranges of ≤0.06 to 1 μg/mL and an MIC50/MIC90 of ≤0.06/0.25 μg/mL, respectively. We propose a model by which this enhancement may occur, DUR potently inhibited the β-lactamase BlaMab with a relative Michaelis constant (Ki app) of 4 × 10-3 ± 0.8 × 10-3 μM and acylation rate (k2/K) of 1 × 107 M-1 s-1. Timed mass spectrometry captured stable formation of carbamoyl-enzyme complexes between DUR and LdtMab2-4 and Mab d,d-carboxypeptidase, potentially contributing to the intrinsic activity of DUR. Molecular modeling showed unique and favorable interactions of DUR as a BlaMab inhibitor. Similarly, modeling showed how DUR might form stable Michaelis-Menten complexes with LdtMab2-4 and Mab d,d-carboxypeptidase. The ability of DUR combined with amoxicillin or cefuroxime and imipenem to inactivate multiple targets such as d,d-carboxypeptidase and LdtMab2,4 supports new therapeutic approaches using β-lactams in eradicating Mab. IMPORTANCE Durlobactam (DUR) is a potent inhibitor of BlaMab and provides protection of amoxicillin and imipenem against hydrolysis. DUR has intrinsic activity and forms stable acyl-enzyme complexes with LdtMab2 and LdtMab4. The ability of DUR to protect amoxicillin and imipenem against BlaMab and its intrinsic activity along with the dual β-lactam target redundancy can explain the rationale behind the potent activity of this combination.
Collapse
|
23
|
Antimicrobial resistance spectrum conferred by pRErm46 of emerging macrolide (multidrug)-resistant Rhodococcus equi. J Clin Microbiol 2021; 59:e0114921. [PMID: 34319806 DOI: 10.1128/jcm.01149-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clonal multidrug resistance recently emerged in Rhodococcus equi, complicating the therapeutic management of this difficult-to-treat animal and human pathogenic actinomycete. The currently spreading multidrug-resistant (MDR) "2287" clone arose in equine farms upon acquisition, and co-selection by mass macrolide-rifampin therapy, of the pRErm46 plasmid carrying the erm(46) macrolides-lincosamides-streptogramins resistance determinant, and an rpoBS531F mutation. Here, we screened a collection of susceptible and macrolide-rifampin-resistant R. equi from equine clinical cases using a panel of 15 antimicrobials against rapidly growing mycobacteria (RGM), nocardiae and other aerobic actinomycetes (NAA). R. equi -including MDR isolates- was generally susceptible to linezolid, minocycline, tigecycline, amikacin and tobramycin according to Staphylococcus aureus interpretive criteria, plus imipenem, cefoxitin and ceftriaxone based on Clinical & Laboratory Standards Institute (CLSI) guidelines for RGM/NAA. Ciprofloxacin and moxifloxacin were in the borderline category according to European Committee on Antimicrobial Susceptibility Testing (EUCAST) criteria. Molecular analyses linked pRErm46 to significantly increased MICs for trimethoprim-sulfamethoxazole and doxycycline in addition to clarithromycin within the RGM/NAA panel, and to streptomycin, spectinomycin and tetracycline resistance. pRErm46 variants with spontaneous deletions in the class 1 integron (C1I) region, observed in ≈30% of erm(46)-positive isolates, indicated that the newly identified resistances were attributable to C1I's sulfonamide (sul1) and aminoglycoside (aaA9) resistance cassettes and adjacent tetRA(33) determinant. Most MDR isolates carried the rpoBS531F mutation of the 2287 clone, while different rpoB mutations (S531L, S531Y) detected in two cases suggest the emergence of novel MDR R. equi strains.
Collapse
|
24
|
Treatment of Mycobacterium abscessus Pulmonary Disease. Chest 2021; 161:64-75. [PMID: 34314673 DOI: 10.1016/j.chest.2021.07.035] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/02/2021] [Accepted: 07/19/2021] [Indexed: 11/21/2022] Open
Abstract
Mycobacterium abscessus is the second most common nontuberculous mycobacterial lung disease pathogen and comprises three subspecies: abscessus, massiliense, and bolletii. Subspecies identification is critical for disease management, as subspecies abscessus and bolletii have an inducible macrolide resistance gene [erm(41)] that results in clinical macrolide resistance. In contrast, subspecies massiliense does not have an active erm(41) gene and is therefore susceptible in vitro and clinically to macrolide-containing regimens. M abscessus is also vulnerable to acquired mutational macrolide resistance. Macrolide resistance has such a profoundly negative impact on M abscessus treatment response that preserving macrolide susceptibility with adequate companion drugs for macrolides is among the highest treatment priorities. After the macrolides, amikacin is regarded as the next most important drug for M abscessus treatment, although data validating that assertion are lacking. The considerations for preventing acquired macrolide resistance also apply to amikacin. Recent guidelines suggest that treatment should be guided by in vitro susceptibilities but, aside from macrolides and amikacin, no other antibiotics have a validated minimum inhibitory concentration for M abscessus. Currently, phase therapy (intensive and continuation) is recommended for M abscessus. This approach is successful with macrolide-susceptible M abscessus but not with macrolide-resistant M abscessus, in which even more aggressive therapy is not predictably successful. Newer drugs have become available, with encouraging in vitro activity against M abscessus, but in vivo validation of their superiority to current agents is not yet available. In the absence of unequivocally effective regimens, we offer suggestions for managing this treatment-refractory organism.
Collapse
|
25
|
Nguyen DC, Dousa KM, Kurz SG, Brown ST, Drusano G, Holland SM, Kreiswirth BN, Boom WH, Daley CL, Bonomo RA. "One-two Punch": Synergistic β-lactam Combinations for Mycobacterium abscessus and Target Redundancy in the Inhibition of Peptidoglycan Synthesis Enzymes. Clin Infect Dis 2021; 73:1532-1536. [PMID: 34113990 DOI: 10.1093/cid/ciab535] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Indexed: 11/13/2022] Open
Abstract
Mycobacterium abscessus subsp. abscessus is one of the most difficult pathogens to treat and its incidence in disease is increasing. Dual β-lactam combinations act synergistically in vitro, but are not widely employed in practice. A recent study shows that a combination of imipenem and ceftaroline significantly lowers the minimum inhibitory concentration (MIC) of clinical isolates despite both drugs targeting the same peptidoglycan synthesis enzymes. The underlying mechanism of this effect provides a basis for further investigations of dual β-lactam combinations in the treatment of M. abscessus subsp. abscessus eventually leading to a clinical trial. Furthermore, dual β-lactam strategies may be explored for other difficult mycobacterial infections.
Collapse
Affiliation(s)
- David C Nguyen
- Division of Infectious Diseases & HIV Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.,Division of Pediatric Infectious Diseases, Rainbow Babies and Children's Hospital, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Khalid M Dousa
- Department of Internal Medicine and Infectious Diseases, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Sebastian G Kurz
- Mount Sinai National Jewish Respiratory Institute, New York City, NY, USA
| | - Sheldon T Brown
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Medicine, James J. Peters VA Medical Center, Bronx, NY, USA
| | - George Drusano
- Institute for Therapeutic Innovation, University of Florida, Orlando, FL, USA
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Barry N Kreiswirth
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - W Henry Boom
- Division of Infectious Diseases & HIV Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.,Tuberculosis Research Unit, Case Western Reserve University, Cleveland, OH, USA
| | - Charles L Daley
- Division of Mycobacterial and Respiratory Infections, National Jewish Health, Denver, CO, USA
| | - Robert A Bonomo
- Department of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, USA.,Medical Service, Research Service, and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA.,CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology, Cleveland, OH, USA
| |
Collapse
|
26
|
Burke A, Smith D, Coulter C, Bell SC, Thomson R, Roberts JA. Clinical Pharmacokinetic and Pharmacodynamic Considerations in the Drug Treatment of Non-Tuberculous Mycobacteria in Cystic Fibrosis. Clin Pharmacokinet 2021; 60:1081-1102. [PMID: 33982266 DOI: 10.1007/s40262-021-01010-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2021] [Indexed: 10/21/2022]
Abstract
Non-tuberculous mycobacteria (NTM) are an emerging group of pulmonary infectious pathogens of increasing importance to the management of patients with cystic fibrosis (CF). NTM include slow-growing mycobacteria such as Mycobacterium avium complex (MAC) and rapidly growing mycobacteria such as Mycobacterium abscessus. The incidence of NTM in the CF population is increasing and infection contributes to significant morbidity to the patient and costs to the health system. Treating M. abscessus requires the combination of multiple costly antibiotics for months, with potentially significant toxicity associated with treatment. Although international guidelines for the treatment of NTM infection in CF are available, there are a lack of robust pharmacokinetic studies in CF patients to inform dosing and drug choice. This paper aims to outline the pharmacokinetic and pharmacodynamic factors informing the optimal treatment of NTM infections in CF.
Collapse
Affiliation(s)
- Andrew Burke
- Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland School of Medicine, Brisbane, QLD, Australia
| | - Daniel Smith
- Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland School of Medicine, Brisbane, QLD, Australia
| | - Chris Coulter
- Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland School of Medicine, Brisbane, QLD, Australia
| | - Scott C Bell
- Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland School of Medicine, Brisbane, QLD, Australia.,QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Rachel Thomson
- Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland School of Medicine, Brisbane, QLD, Australia.,Immunology Department, Gallipoli Medical Research Institute, Brisbane, QLD, Australia
| | - Jason A Roberts
- Faculty of Medicine, University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia. .,Department of Pharmacy, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia. .,Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia. .,Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France.
| |
Collapse
|
27
|
Mycobacterium abscessus Strain Morphotype Determines Phage Susceptibility, the Repertoire of Therapeutically Useful Phages, and Phage Resistance. mBio 2021; 12:mBio.03431-20. [PMID: 33785625 PMCID: PMC8092298 DOI: 10.1128/mbio.03431-20] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mycobacterium abscessus infections in cystic fibrosis patients are challenging to treat due to widespread antibiotic resistance. The therapeutic use of lytic bacteriophages presents a new potential strategy, but the great variation among clinical M. abscessus isolates demands determination of phage susceptibility prior to therapy. Mycobacterium abscessus is an opportunistic pathogen whose treatment is confounded by widespread multidrug resistance. The therapeutic use of bacteriophages against Mycobacterium abscessus infections offers a potential alternative approach, although the spectrum of phage susceptibilities among M. abscessus isolates is not known. We determined the phage infection profiles of 82 M. abscessus recent clinical isolates and find that colony morphotype—rough or smooth—is a key indicator of phage susceptibility. None of the smooth strains are efficiently killed by any phages, whereas 80% of rough strains are infected and efficiently killed by at least one phage. The repertoire of phages available for potential therapy of rough morphotype infections includes those with relatively broad host ranges, host range mutants of Mycobacterium smegmatis phages, and lytically propagated viruses derived from integrated prophages. The rough colony morphotype results from indels in the glycopeptidolipid synthesis genes mps1 and mps2, negating reversion to smooth as a common route to phage resistance. Resistance is thus rare, and although mutations in polyketide synthesis, uvrD2, and rpoZ can confer resistance, these likely also impair survival in vivo. The expanded therapeutic repertoire and the resistance profiles show that small cocktails or single phages could be suitable for controlling infections with rough strains.
Collapse
|
28
|
Guo Y, Cao X, Yu J, Zhan Q, Yang J, Wu X, Wan B, Liu Y, Yu F. Antimicrobial Susceptibility of Mycobacterium abscessus Complex Clinical Isolates from a Chinese Tertiary Hospital. Infect Drug Resist 2020; 13:2001-2010. [PMID: 32617011 PMCID: PMC7326206 DOI: 10.2147/idr.s252485] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/09/2020] [Indexed: 12/26/2022] Open
Abstract
Introduction Mycobacterium abscessus complex (MABC) is a group of important infectious agents that are highly associated with drug resistance, and antibiotic treatment is usually ineffective. This study investigated the characteristics of antimicrobial susceptibility of MABC isolates and the synergy between certain β-lactam combinations against MABC infection. Methods We collected 129 MABC isolates from patients with lower respiratory tract infections and categorized them into three subspecies. The minimum inhibitory concentrations (MICs) of 15 antimicrobials for the MABC isolates were determined using commercial Sensititre RAPMYCOI MIC plates and the broth microdilution method, as recommended in the CLSI (M24-A2). In addition, the MICs of imipenem, alone and with ceftazidime and/or avibactam, were assessed in vitro for all isolates. The erm(41) and rrl genes were also sequenced. Results The MABC isolates exhibited >80% resistance to 11 of the 15 antimicrobials. Regarding the remaining four antimicrobials, the isolates were least resistant to tigecycline (12.4%) and amikacin (3.9%), and only partially resistant to two cefoxitin (39.5%) and imipenem (40.3%). Compared with M. massiliense isolates, M. abscessus and M. bolletii isolates were more resistant to amikacin and imipenem, whereas M. abscessus was significantly less resistant to tigecycline relative to M. massiliense and M. bolletii isolates. The clarithromycin inducible resistance rate was 68.4% and 74.3% among M. bolletii and M. abscessus isolates. Furthermore, 88.7% of the M. abscessus isolates carried a T at position 28 of erm(41), which is associated with inducible clarithromycin resistance. In addition, compared to imipenem with avibactam only, the MIC50 and MIC90values of imipenem after adding ceftazidime plus avibactam were decreased fourfold. Conclusion The antimicrobial resistance rates and the characteristics of the erm(41) gene associated with inducible clarithromycin resistance were different among the three MABC subspecies. There was also synergy between imipenem and 100μg/mL ceftazidime against MABC isolates.
Collapse
Affiliation(s)
- Yinjuan Guo
- Department of Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200082, People's Republic of China.,Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200082, People's Republic of China
| | - Xingwei Cao
- Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Nanchang 330000, People's Republic of China
| | - Jingyi Yu
- Department of Laboratory Medicine, Wenzhou Medical University, Wenzhou 325000, People's Republic of China
| | - Qing Zhan
- Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Nanchang 330000, People's Republic of China
| | - Jinghui Yang
- Department of Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200082, People's Republic of China
| | - Xiaocui Wu
- Department of Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200082, People's Republic of China
| | - Baoshan Wan
- Department of Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200082, People's Republic of China
| | - Yin Liu
- Department of Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200082, People's Republic of China
| | - Fangyou Yu
- Department of Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200082, People's Republic of China.,Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200082, People's Republic of China
| |
Collapse
|
29
|
In vitro efficacy of combinations of eight antimicrobial agents against Mycobacteroides abscessus complex. Int J Infect Dis 2020; 97:270-277. [PMID: 32526389 DOI: 10.1016/j.ijid.2020.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES A standard treatment regimen against Mycobacteroides abscessus complex (MABC) infections has not yet been established, making MABC difficult to treat successfully. In this study, we sought to develop an active ingredient for the clinical treatment of MABC infections. METHODS We screened 102 MABC strains isolated from clinical specimens using DNA sequence analysis with the housekeeping genes hsp65 and rpoB. Drug susceptibility testing was performed against two subspecies-Mycobacteroides abscessus subsp. abscessus (M. abscessus) and Mycobacteroides abscessus subsp. massiliense (M. massiliense)-using eight antimicrobial agents (clarithromycin, amikacin, doxycycline, imipenem, linezolid, moxifloxacin, faropenem, and rifampicin). The combined efficacy of the antimicrobial agents was investigated using a checkerboard method. RESULTS We identified 51 isolates as M. abscessus, 46 as M. massiliense, and five as others. Most of the M. abscessus isolates (83.0 %) exhibited inducible resistance to clarithromycin via the expression of the erm(41) gene. Combinations of imipenem with linezolid, moxifloxacin, and rifampicin exhibited additive effects against 81.0 %, 40.7 %, and 26.9 % of M. abscessus, respectively, and against 54.5 %, 69.2 %, and 30.8 % of M. massiliense, respectively. CONCLUSIONS These results demonstrated the potential efficacy of a regimen containing imipenem against M. abscessus and M. massiliense infections.
Collapse
|
30
|
Satyam R, Bhardwaj T, Jha NK, Jha SK, Nand P. Toward a chimeric vaccine against multiple isolates of Mycobacteroides - An integrative approach. Life Sci 2020; 250:117541. [PMID: 32169520 DOI: 10.1016/j.lfs.2020.117541] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/07/2020] [Accepted: 03/08/2020] [Indexed: 01/31/2023]
Abstract
AIM Nontuberculous mycobacterial (NTM) infection such as endophthalmitis, dacryocystitis, and canaliculitis are pervasive across the globe and are currently managed by antibiotics. However, the recent cases of Mycobacteroides developing drug resistance reported along with the improper practice of medicine intrigued us to explore its genomic and proteomic canvas at a global scale and develop a chimeric vaccine against Mycobacteroides. MAIN METHODS We carried out a vivid genomic study on five recently sequenced strains of Mycobacteroides and explored their Pan-core genome/proteome in three different phases. The promiscuous antigenic proteins were identified via a subtractive proteomics approach that qualified for virulence causation, resistance and essentiality factors for this notorious bacterium. An integrated pipeline was developed for the identification of B-Cell, MHC (Major histocompatibility complex) class I and II epitopes. KEY FINDINGS Phase I identified the shreds of evidence of reductive evolution and propensity of the Pan-genome of Mycobacteroides getting closed soon. Phase II and Phase III produced 8 vaccine constructs. Our final vaccine construct, V6 qualified for all tests such as absence for allergenicity, presence of antigenicity, etc. V6 contains β-defensin as an adjuvant, linkers, Lysosomal-associated membrane protein 1 (LAMP1) signal peptide, and PADRE (Pan HLA-DR epitopes) amino acid sequence. Besides, V6 also interacts with a maximum number of MHC molecules and the TLR4/MD2 (Toll-like receptor 4/Myeloid differentiation factor 2) complex confirmed by docking and molecular dynamics simulation studies. SIGNIFICANCE The knowledge harnessed from the current study can help improve the current treatment regimens or in an event of an outbreak and propel further related studies.
Collapse
Affiliation(s)
- Rohit Satyam
- Department of Biotechnology, Noida Institute of Engineering and Technology (NIET), Greater Noida, India
| | - Tulika Bhardwaj
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio Campus, Finland
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, India.
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, India
| | - Parma Nand
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, India
| |
Collapse
|
31
|
Degiacomi G, Sammartino JC, Chiarelli LR, Riabova O, Makarov V, Pasca MR. Mycobacterium abscessus, an Emerging and Worrisome Pathogen among Cystic Fibrosis Patients. Int J Mol Sci 2019; 20:ijms20235868. [PMID: 31766758 PMCID: PMC6928860 DOI: 10.3390/ijms20235868] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 01/09/2023] Open
Abstract
Nontuberculous mycobacteria (NTM) have recently emerged as important pathogens among cystic fibrosis (CF) patients worldwide. Mycobacterium abscessus is becoming the most worrisome NTM in this cohort of patients and recent findings clarified why this pathogen is so prone to this disease. M. abscessus drug therapy takes up to 2 years and its failure causes an accelerated lung function decline. The M. abscessus colonization of lung alveoli begins with smooth strains producing glycopeptidolipids and biofilm, whilst in the invasive infection, "rough" mutants are responsible for the production of trehalose dimycolate, and consequently, cording formation. Human-to-human M. abscessus transmission was demonstrated among geographically separated CF patients by whole-genome sequencing of clinical isolates worldwide. Using a M. abscessus infected CF zebrafish model, it was demonstrated that CFTR (cystic fibrosis transmembrane conductance regulator) dysfunction seems to have a specific role in the immune control of M. abscessus infections only. This pathogen is also intrinsically resistant to many drugs, thanks to its physiology and to the acquisition of new mechanisms of drug resistance. Few new compounds or drug formulations active against M. abscessus are present in preclinical and clinical development, but recently alternative strategies have been investigated, such as phage therapy and the use of β-lactamase inhibitors.
Collapse
Affiliation(s)
- Giulia Degiacomi
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (G.D.); (J.C.S.); (L.R.C.)
| | - José Camilla Sammartino
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (G.D.); (J.C.S.); (L.R.C.)
- IUSS—University School for Advanced Studies, 27100 Pavia, Italy
| | - Laurent Roberto Chiarelli
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (G.D.); (J.C.S.); (L.R.C.)
| | - Olga Riabova
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (O.R.); (V.M.)
| | - Vadim Makarov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (O.R.); (V.M.)
| | - Maria Rosalia Pasca
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (G.D.); (J.C.S.); (L.R.C.)
- Correspondence: ; Tel.: +39-0382-985576
| |
Collapse
|
32
|
Nathavitharana RR, Strnad L, Lederer PA, Shah M, Hurtado RM. Top Questions in the Diagnosis and Treatment of Pulmonary M. abscessus Disease. Open Forum Infect Dis 2019; 6:ofz221. [PMID: 31289727 PMCID: PMC6608938 DOI: 10.1093/ofid/ofz221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/09/2019] [Indexed: 12/17/2022] Open
Abstract
Mycobacterium abscessus disease is particularly challenging to treat, given the intrinsic drug resistance of this species and the limited data on which recommendations are based, resulting in a greater reliance on expert opinion. We address several commonly encountered questions and management considerations regarding pulmonary Mycobacterium abscessus disease, including the role of subspecies identification, diagnostic criteria for determining disease, interpretation of drug susceptibility test results, approach to therapy including the need for parenteral antibiotics and the role for new and repurposed drugs, and the use of adjunctive strategies such as airway clearance and surgical resection.
Collapse
Affiliation(s)
- Ruvandhi R Nathavitharana
- Division of Infectious Diseases, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Luke Strnad
- Division of Infectious Diseases, Department of Medicine, Oregon Health and Sciences University, Portland, Oregon
- Epidemiology Programs, Oregon Health and Sciences University and Portland State University School of Public Health, Portland, Oregon
| | - Philip A Lederer
- Section of Infectious Diseases, Department of Medicine, Boston Medical Center, Boston, Massachusetts
| | - Maunank Shah
- Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, Maryland
- Baltimore City Health Department, Baltimore, Maryland
| | - Rocio M Hurtado
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Global Health Committee, Ethiopia and Cambodia
| |
Collapse
|
33
|
Liu H, Dong F, Liu J, Liu J, Pang Y, Zhao S, Lu J, Li H. Successful management of Mycobacterium abscessus complex lung disease in an otherwise healthy infant. Infect Drug Resist 2019; 12:1277-1283. [PMID: 31190915 PMCID: PMC6529672 DOI: 10.2147/idr.s198461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/10/2019] [Indexed: 12/14/2022] Open
Abstract
Mycobacterium abscessus complex (MABC) is an uncommon but increasingly important cause of invasive pulmonary disease, a condition associated with diagnostic and management challenges. MABC has mainly been reported in children with certain medical conditions, such as preexisting structural lung disorders and immunocompromised status. In this article, we describe a rare case of MABC pulmonary disease in an otherwise healthy infant. A 4-month-old female presented with cough and fever for 4 days. Computed tomography showed multiple masses and small nodules across both lungs. Isolated mycobacteria from her bronchoalveolar lavage fluid and gastric aspirate were identified as MABC by using matrix-assisted laser desorption ionization time-of-flight mass spectrometry and M. abscessus subsp. massiliense was ultimately identified by DNA sequence analysis. Prolonged treatment with a combination of azithromycin, cefoxitin, and moxifloxacin achieved a successful treatment outcome.
Collapse
Affiliation(s)
- Hui Liu
- Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Fang Dong
- Department of Laboratory Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Jinrong Liu
- Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Jianhua Liu
- Department of Pediatrics, Maternal and Child Health Care Hospital of Shunyi District, Beijing, People's Republic of China
| | - Yu Pang
- Beijing Chest Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Shunying Zhao
- Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Jie Lu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Huimin Li
- Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| |
Collapse
|
34
|
Singh UB, Das R, Shrestha P, Bala K, Pandey P, Verma SK, Gautam H, Story-Roller E, Lamichhane G, Guleria R. Compromised longevity due to Mycobacterium abscessus pulmonary disease in lungs scarred by tuberculosis. Access Microbiol 2019; 1:e000003. [PMID: 32974490 PMCID: PMC7470354 DOI: 10.1099/acmi.0.000003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/03/2019] [Indexed: 11/18/2022] Open
Abstract
Structural lung diseases or scarring related to prior infections such as tuberculosis (TB) are risk factors for the development of invasive nontuberculous mycobacterial (NTM) pulmonary infections, such as Mycobacterium abscessus . M. abscessus is intrinsically resistant to many antibiotics and in vitro susceptibility correlates poorly with clinical response, especially in pulmonary disease. Treatment is often difficult due to the lack of effective antibiotic regimens. We present a case of a 56-year-old male previously treated for TB, with presumed exacerbation, who was diagnosed after much delay with pulmonary M. abscessus disease and subsequently failed initial treatment with an empirical antibiotic regimen. When placed on a synergistic combination regimen that included amikacin, linezolid, clarithromycin, ethambutol and faropenem, the patient showed a favourable response and was culture-negative for over 12 months when the treatment was stopped as per American Thoracic Society (ATS) recommendations. Unfortunately, he developed recurrent symptoms and died 9 months after stopping treatment, following an acute exacerbation of fever and respiratory failure.
Collapse
Affiliation(s)
- Urvashi B. Singh
- All India Institute of Medical Sciences, Department of Microbiology, New Delhi, India
| | - Rojaleen Das
- All India Institute of Medical Sciences, Department of Microbiology, New Delhi, India
| | - Prajowl Shrestha
- All India Institute of Medical Sciences, Department of Pulmonary Medicine and Sleep Disorders, New Delhi, India
| | - Kiran Bala
- All India Institute of Medical Sciences, Department of Microbiology, New Delhi, India
| | - Pooja Pandey
- All India Institute of Medical Sciences, Department of Microbiology, New Delhi, India
| | - Santosh Kumar Verma
- All India Institute of Medical Sciences, Department of Microbiology, New Delhi, India
| | - Hitender Gautam
- All India Institute of Medical Sciences, Department of Microbiology, New Delhi, India
| | - Elizabeth Story-Roller
- Division of Infectious Diseases, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Gyanu Lamichhane
- Division of Infectious Diseases, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Randeep Guleria
- All India Institute of Medical Sciences, Department of Pulmonary Medicine and Sleep Disorders, New Delhi, India
| |
Collapse
|
35
|
In Vitro Activity of the New β-Lactamase Inhibitors Relebactam and Vaborbactam in Combination with β-Lactams against Mycobacterium abscessus Complex Clinical Isolates. Antimicrob Agents Chemother 2019; 63:AAC.02623-18. [PMID: 30642943 DOI: 10.1128/aac.02623-18] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 01/04/2019] [Indexed: 12/22/2022] Open
Abstract
Pulmonary disease due to infection with Mycobacterium abscessus complex (MABC) is notoriously difficult to treat, in large part due to the intrinsic resistance of MABC strains to most antibiotics, including β-lactams. MABC organisms express a broad-spectrum β-lactamase that is resistant to traditional β-lactam-based β-lactamase inhibitors but inhibited by a newer non-β-lactam-based β-lactamase inhibitor, avibactam. Consequently, the susceptibility of MABC members to some β-lactams is increased in the presence of avibactam. Therefore, we hypothesized that two new non-β-lactam-based β-lactamase inhibitors, relebactam and vaborbactam, would also increase the susceptibility of MABC organisms to β-lactams. The objective of the present study was to evaluate the in vitro activity of various marketed β-lactams alone and in combination with either relebactam or vaborbactam against multidrug-resistant MABC clinical isolates. Our data demonstrate that both β-lactamase inhibitors significantly improved the anti-MABC activity of many carbapenems (including imipenem and meropenem) and cephalosporins (including cefepime, ceftaroline, and cefuroxime). As a meropenem-vaborbactam combination is now marketed and an imipenem-relebactam combination is currently in phase III trials, these fixed combinations may become the β-lactams of choice for the treatment of MABC infections. Furthermore, given the evolving interest in dual β-lactam regimens, our results identify select cephalosporins, such as cefuroxime, with superior activity in the presence of a β-lactamase inhibitor that are deserving of further evaluation in combination with these carbapenem-β-lactamase inhibitor products.
Collapse
|
36
|
Pandey R, Chen L, Manca C, Jenkins S, Glaser L, Vinnard C, Stone G, Lee J, Mathema B, Nuermberger EL, Bonomo RA, Kreiswirth BN. Dual β-Lactam Combinations Highly Active against Mycobacterium abscessus Complex In Vitro. mBio 2019; 10:e02895-18. [PMID: 30755518 PMCID: PMC6372805 DOI: 10.1128/mbio.02895-18] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 01/07/2019] [Indexed: 01/25/2023] Open
Abstract
As a consequence of a growing population of immunocompromised individuals, including transplant recipients and cystic fibrosis patients, there has been a dramatic increase in chronic infections caused by Mycobacterium abscessus complex (MABC) strains that are usually recalcitrant to effective antibiotic therapy. The recent rise of macrolide resistance in MABC has further complicated this clinical dilemma, dramatizing the need for novel agents. The repurposing of current antibiotics is one rapid path from discovery to patient care. In this study, we have discovered that dual β-lactams, and specifically the combination of ceftazidime with either ceftaroline or imipenem, are synergistic and have clinically relevant activities, with MIC50s of 0.25 (ceftaroline with 100 µg/ml ceftazidime) and 0.5 µg/ml (imipenem with 100 µg/ml ceftazidime) against clinical MABC isolates. Similar synergy was observed in time-kill studies against the M. abscessus ATCC 19977 strain using clinically achievable concentrations of either imipenem (4 µg/ml) or ceftaroline (2 µg/ml), as the addition of ceftazidime at concentrations of ≥50 µg/ml showed a persistent bactericidal effect over 5 days. Treatment of THP-1 human macrophages infected with three different M. abscessus clinical isolates supported the in vitro findings, as the combination of 100 µg/ml ceftazidime and 0.125 µg/ml ceftaroline or 100 µg/ml ceftazidime and 0.25 µg/ml imipenem dramatically reduced the CFU counts to near baseline levels of infection. This study's finding that there is synergy between certain β-lactam combinations against M. abscessus infection provides optimism toward identifying an optimum dual β-lactam treatment regimen.IMPORTANCE The emergence of chronic MABC infections among immunocompromised populations and their inherent and acquired resistance to effective antibiotic therapy have created clinical challenges in advancing patients for transplant surgery and treating those with disease. There is an urgent need for new treatment regimens, and the repurposing of existing antibiotics provides a rapid strategy to advance a laboratory finding to patient care. Our recent discoveries that dual β-lactams, specifically the combination of ceftazidime with ceftaroline or ceftazidime with imipenem, have significant in vitro MIC values and kill curve activities and are effective against infected THP-1 human macrophages provide optimism for a dual β-lactam treatment strategy against MABC infections. The unexpected synergistic activities reported in this study create a new path of discovery to repurpose the large family of β-lactam drugs.
Collapse
Affiliation(s)
- R Pandey
- Public Health Research Institute Tuberculosis Center, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - L Chen
- Public Health Research Institute Tuberculosis Center, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - C Manca
- Public Health Research Institute Tuberculosis Center, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - S Jenkins
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical Center, New York, New York, USA
| | - L Glaser
- Department of Clinical Microbiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - C Vinnard
- Public Health Research Institute Tuberculosis Center, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - G Stone
- Pfizer, Groton, Connecticut, USA
| | - J Lee
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - B Mathema
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - E L Nuermberger
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - R A Bonomo
- Medical Service and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - B N Kreiswirth
- Public Health Research Institute Tuberculosis Center, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| |
Collapse
|