1
|
Awad MM, Suraweera CD, Vidor CJ, Ye-Lin AY, Williams GC, Mileto SJ, Barlow CK, McGowan S, Lyras D. A Clostridioides difficile endolysin modulates toxin secretion without cell lysis. Commun Biol 2024; 7:1044. [PMID: 39179651 PMCID: PMC11344133 DOI: 10.1038/s42003-024-06730-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/13/2024] [Indexed: 08/26/2024] Open
Abstract
The Clostridia produce and secrete Large Clostridial Glucosylating Toxins (LCGTs) responsible for disease symptoms, but the secretion mechanism is largely unknown. Recently, a holin-like protein was shown to be essential for toxin secretion. Holins, typically bacteriophage-specific proteins, are part of the holin-endo(lysin) system that releases phage progeny. To determine if the clostridia also use a lysin, we investigated two conserved putative lysins, M7404_01910 and M7404_02200, in the release of the LCGTs TcdA and TcdB from a Clostridioides difficile ribotype 027 strain, M7404. Sequence analysis and structural modelling indicates that both proteins are related to N-acetylmuramoyl-l-alanine amidases, similar to CD27L, a lysin from the C. difficile phage ΦCD27. Disruption of these genes reveal that only M7404_02200 contributes to toxin secretion and does so in a non-lytic fashion. Peptidoglycan hydrolysis assays show that recombinant M7404_02200 is an active peptidoglycan amidase, confirming its role in TcdA and TcdB secretion in C. difficile M7404.
Collapse
Affiliation(s)
- Milena M Awad
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia
| | - Chathura D Suraweera
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia
| | - Callum J Vidor
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia
| | - Auberon Y Ye-Lin
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia
| | - Galain C Williams
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia
| | - Steven J Mileto
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia
| | - Christopher K Barlow
- Department of Biochemistry, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia
- Monash Proteomics & Metabolomics Platform, Monash University, Clayton, 3800, Australia
| | - Sheena McGowan
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia
| | - Dena Lyras
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia.
| |
Collapse
|
2
|
Kempher ML, Shadid TM, Larabee JL, Ballard JD. A sequence invariable region in TcdB2 is required for toxin escape from Clostridioides difficile. J Bacteriol 2024; 206:e0009624. [PMID: 38888328 PMCID: PMC11323933 DOI: 10.1128/jb.00096-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
Sequence differences among the subtypes of Clostridioides difficile toxin TcdB (2,366 amino acids) are broadly distributed across the entire protein, with the notable exception of 76 residues at the protein's carboxy terminus. This sequence invariable region (SIR) is identical at the DNA and protein level among the TcdB variants, suggesting this string of amino acids has undergone selective pressure to prevent alterations. The functional role of the SIR domain in TcdB has not been determined. Analysis of a recombinantly constructed TcdB mutant lacking the SIR domain did not identify changes in TcdB's enzymatic or cytopathic activities. To further assess the SIR region, we constructed a C. difficile strain with the final 228 bp deleted from the tcdB gene, resulting in the production of a truncated form of TcdB lacking the SIR (TcdB2∆2291-2366). Using a combination of approaches, we found in the absence of the SIR sequence TcdB2∆2291-2366 retained cytotoxic activity but was not secreted from C. difficile. TcdB2∆2291-2366 was not released from the cell under autolytic conditions, indicating the SIR is involved in a more discrete step in toxin escape from the bacterium. Fractionation experiments combined with antibody detection found that TcdB2∆2291-2366 accumulates at the cell membrane but is unable to complete steps in secretion beyond this point. These data suggest conservation of the SIR domain across variants of TcdB could be influenced by the sequence's role in efficient escape of the toxin from C. difficile. IMPORTANCE Clostridioides difficile is a leading cause of antibiotic associated disease in the United States. The primary virulence factors produced by C. difficile are two large glucosylating toxins TcdA and TcdB. To date, several sequence variants of TcdB have been identified that differ in various functional properties. Here, we identified a highly conserved region among TcdB subtypes that is required for release of the toxin from C. difficile. This study reveals a putative role for the longest stretch of invariable sequence among TcdB subtypes and provides new details regarding toxin release into the extracellular environment. Improving our understanding of the functional roles of the conserved regions of TcdB variants aids in the development of new, broadly applicable strategies to treat CDI.
Collapse
Affiliation(s)
- Megan L. Kempher
- Department of
Microbiology and Immunology, University of Oklahoma Health Sciences
Center, Oklahoma City,
Oklahoma, USA
- Department of
Chemistry and Biochemistry, University of
Oklahoma, Norman,
Oklahoma, USA
| | - Tyler M. Shadid
- Department of
Microbiology and Immunology, University of Oklahoma Health Sciences
Center, Oklahoma City,
Oklahoma, USA
| | - Jason L. Larabee
- Department of
Microbiology and Immunology, University of Oklahoma Health Sciences
Center, Oklahoma City,
Oklahoma, USA
| | - Jimmy D. Ballard
- Department of
Microbiology and Immunology, University of Oklahoma Health Sciences
Center, Oklahoma City,
Oklahoma, USA
| |
Collapse
|
3
|
Cassona CP, Ramalhete S, Amara K, Candela T, Kansau I, Denève-Larrazet C, Janoir-Jouveshomme C, Mota LJ, Dupuy B, Serrano M, Henriques AO. Spores of Clostridioides difficile are toxin delivery vehicles. Commun Biol 2024; 7:839. [PMID: 38987278 PMCID: PMC11237016 DOI: 10.1038/s42003-024-06521-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/28/2024] [Indexed: 07/12/2024] Open
Abstract
Clostridioides difficile causes a wide range of intestinal diseases through the action of two main cytotoxins, TcdA and TcdB. Ingested spores germinate in the intestine establishing a population of cells that produce toxins and spores. The pathogenicity locus, PaLoc, comprises several genes, including those coding for TcdA/B, for the holin-like TcdE protein, and for TcdR, an auto-regulatory RNA polymerase sigma factor essential for tcdA/B and tcdE expression. Here we show that tcdR, tcdA, tcdB and tcdE are expressed in a fraction of the sporulating cells, in either the whole sporangium or in the forespore. The whole sporangium pattern is due to protracted expression initiated in vegetative cells by σD, which primes the TcdR auto-regulatory loop. In contrast, the forespore-specific regulatory proteins σG and SpoVT control TcdR production and tcdA/tcdB and tcdE expression in this cell. We detected TcdA at the spore surface, and we show that wild type and ΔtcdA or ΔtcdB spores but not ΔtcdR or ΔtcdA/ΔtcdB spores are cytopathic against HT29 and Vero cells, indicating that spores may serve as toxin-delivery vehicles. Since the addition of TcdA and TcdB enhance binding of spores to epithelial cells, this effect may occur independently of toxin production by vegetative cells.
Collapse
Affiliation(s)
- Carolina P Cassona
- Instituto de Tecnologia Química e Biológica, NOVA University Lisbon, Oeiras, Portugal
| | - Sara Ramalhete
- Instituto de Tecnologia Química e Biológica, NOVA University Lisbon, Oeiras, Portugal
| | - Khira Amara
- Instituto de Tecnologia Química e Biológica, NOVA University Lisbon, Oeiras, Portugal
| | - Thomas Candela
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Imad Kansau
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | | | | | - Luís Jaime Mota
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Bruno Dupuy
- Institut Pasteur, Université Paris-Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015, Paris, France
| | - Mónica Serrano
- Instituto de Tecnologia Química e Biológica, NOVA University Lisbon, Oeiras, Portugal
| | - Adriano O Henriques
- Instituto de Tecnologia Química e Biológica, NOVA University Lisbon, Oeiras, Portugal.
| |
Collapse
|
4
|
Schüler MA, Riedel T, Overmann J, Daniel R, Poehlein A. Comparative genome analyses of clinical and non-clinical Clostridioides difficile strains. Front Microbiol 2024; 15:1404491. [PMID: 38993487 PMCID: PMC11238072 DOI: 10.3389/fmicb.2024.1404491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/05/2024] [Indexed: 07/13/2024] Open
Abstract
The pathogenic bacterium Clostridioides difficile is a worldwide health burden with increasing morbidity, mortality and antibiotic resistances. Therefore, extensive research efforts are made to unravel its virulence and dissemination. One crucial aspect for C. difficile is its mobilome, which for instance allows the spread of antibiotic resistance genes (ARG) or influence strain virulence. As a nosocomial pathogen, the majority of strains analyzed originated from clinical environments and infected individuals. Nevertheless, C. difficile can also be present in human intestines without disease development or occur in diverse environmental habitats such as puddle water and soil, from which several strains could already be isolated. We therefore performed comprehensive genome comparisons of closely related clinical and non-clinical strains to identify the effects of the clinical background. Analyses included the prediction of virulence factors, ARGs, mobile genetic elements (MGEs), and detailed examinations of the pan genome. Clinical-related trends were thereby observed. While no significant differences were identified in fundamental C. difficile virulence factors, the clinical strains carried more ARGs and MGEs, and possessed a larger accessory genome. Detailed inspection of accessory genes revealed higher abundance of genes with unknown function, transcription-associated, or recombination-related activity. Accessory genes of these functions were already highlighted in other studies in association with higher strain virulence. This specific trend might allow the strains to react more efficiently on changing environmental conditions in the human host such as emerging stress factors, and potentially increase strain survival, colonization, and strain virulence. These findings indicated an adaptation of the strains to the clinical environment. Further, implementation of the analysis results in pairwise genome comparisons revealed that the majority of these accessory genes were encoded on predicted MGEs, shedding further light on the mobile genome of C. difficile. We therefore encourage the inclusion of non-clinical strains in comparative analyses.
Collapse
Affiliation(s)
- Miriam A Schüler
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University, Göttingen, Germany
| | - Thomas Riedel
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Braunschweig-Hannover, Braunschweig, Germany
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Braunschweig-Hannover, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University, Göttingen, Germany
| | - Anja Poehlein
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University, Göttingen, Germany
| |
Collapse
|
5
|
Pourliotopoulou E, Karampatakis T, Kachrimanidou M. Exploring the Toxin-Mediated Mechanisms in Clostridioides difficile Infection. Microorganisms 2024; 12:1004. [PMID: 38792835 PMCID: PMC11124097 DOI: 10.3390/microorganisms12051004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Clostridioides difficile infection (CDI) is the leading cause of nosocomial antibiotic-associated diarrhea, and colitis, with increasing incidence and healthcare costs. Its pathogenesis is primarily driven by toxins produced by the bacterium C. difficile, Toxin A (TcdA) and Toxin B (TcdB). Certain strains produce an additional toxin, the C. difficile transferase (CDT), which further enhances the virulence and pathogenicity of C. difficile. These toxins disrupt colonic epithelial barrier integrity, and induce inflammation and cellular damage, leading to CDI symptoms. Significant progress has been made in the past decade in elucidating the molecular mechanisms of TcdA, TcdB, and CDT, which provide insights into the management of CDI and the future development of novel treatment strategies based on anti-toxin therapies. While antibiotics are common treatments, high recurrence rates necessitate alternative therapies. Bezlotoxumab, targeting TcdB, is the only available anti-toxin, yet limitations persist, prompting ongoing research. This review highlights the current knowledge of the structure and mechanism of action of C. difficile toxins and their role in disease. By comprehensively describing the toxin-mediated mechanisms, this review provides insights for the future development of novel treatment strategies and the management of CDI.
Collapse
Affiliation(s)
- Evdokia Pourliotopoulou
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | | | - Melania Kachrimanidou
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| |
Collapse
|
6
|
Sitsel O, Wang Z, Janning P, Kroczek L, Wagner T, Raunser S. Yersinia entomophaga Tc toxin is released by T10SS-dependent lysis of specialized cell subpopulations. Nat Microbiol 2024; 9:390-404. [PMID: 38238469 PMCID: PMC10847048 DOI: 10.1038/s41564-023-01571-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 11/29/2023] [Indexed: 02/04/2024]
Abstract
Disease-causing bacteria secrete numerous toxins to invade and subjugate their hosts. Unlike many smaller toxins, the secretion machinery of most large toxins remains enigmatic. By combining genomic editing, proteomic profiling and cryo-electron tomography of the insect pathogen Yersinia entomophaga, we demonstrate that a specialized subset of these cells produces a complex toxin cocktail, including the nearly ribosome-sized Tc toxin YenTc, which is subsequently exported by controlled cell lysis using a transcriptionally coupled, pH-dependent type 10 secretion system (T10SS). Our results dissect the Tc toxin export process by a T10SS, identifying that T10SSs operate via a previously unknown lytic mode of action and establishing them as crucial players in the size-insensitive release of cytoplasmically folded toxins. With T10SSs directly embedded in Tc toxin operons of major pathogens, we anticipate that our findings may model an important aspect of pathogenesis in bacteria with substantial impact on agriculture and healthcare.
Collapse
Affiliation(s)
- Oleg Sitsel
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Zhexin Wang
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Petra Janning
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Lara Kroczek
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Thorsten Wagner
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
| |
Collapse
|
7
|
Lin Q, Li Z, Ke H, Fei J, Zhang T, Wang P, Chen Y. Linked mutations within the pathogenicity locus of Clostridioides difficile increase virulence. Infect Dis (Lond) 2023; 55:847-856. [PMID: 37615633 DOI: 10.1080/23744235.2023.2249551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND The clinical manifestations of Clostridioides difficile infections range from diarrhoea to pseudomembranous colitis (PMC) and death. We evaluated the association between gene content in C. difficile clinical isolates and disease severity. METHODS Fifty-three C. difficile isolates were subjected to Sanger sequencing, clinical data were used to analyse the association of gene content with disease severity, and 83 non-duplicate isolates were collected to confirm the results. Virulence was further examined by functional in vitro and in vivo experiments. RESULTS Among the 53 C. difficile isolates, ribotypes 017 (n = 9, 17.0%) and 012 (n = 8, 15.1%) were predominant. Fifteen strains exhibited a correlation between mutations of pathogenicity locus genes (tcdB, tcdC, tcdR, and tcdE) and were named linked-mutation strains. Ribotypes are not associated with clinical PMC and Linked-mutation strains. The proportion of patients with PMC was higher in the group infected with linked-mutation strains than in the non-linked-mutation group (57.14% vs. 0%, p < 0.001). The linked-mutation rate of C. difficile was higher in patients with PMC than in patients without PMC (89.47% vs. 7.8%, p < 0.0001). Linked-mutation strains showed greater cytotoxicity in vitro and caused more severe tissue damage in a mouse model. CONCLUSIONS Linked-mutation strains are associated with high virulence and PMC development. This result will help monitor the clinical prognosis of C. difficile infection and provide key insights for developing therapeutic targets and monoclonal antibodies.
Collapse
Affiliation(s)
- Qianyun Lin
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zitong Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haoran Ke
- Hepatology Unit, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiaxi Fei
- Graceland Medical Center, the, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ting Zhang
- Department of Gastroenterology, the Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Pu Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ye Chen
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Integrative Microecology Center, Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
8
|
DiBenedetto NV, Oberkampf M, Cersosimo L, Yeliseyev V, Bry L, Peltier J, Dupuy B. The TcdE holin drives toxin secretion and virulence in Clostridioides difficile. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.16.558055. [PMID: 37745472 PMCID: PMC10516005 DOI: 10.1101/2023.09.16.558055] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Clostridioides difficile is the leading cause of healthcare associated infections. The Pathogenicity Locus (PaLoc) toxins TcdA and TcdB promote host disease. These toxins lack canonical N-terminal signal sequences for translocation across the bacterial membrane, suggesting alternate mechanisms of release, which have included targeted secretion and passive release from cell lysis. While the holin TcdE has been implicated in TcdA and TcdB release, its role in vivo remains unknown. Here, we show profound reductions in toxin secretion in ΔtcdE mutants in the highly virulent strains UK1 (epidemic ribotype 027, Clade 3) and VPI10463 (ribotype 087, Clade 1). Notably, tcdE deletion in either strain rescued highly susceptible gnotobiotic mice from lethal infection by reducing acute extracellular toxin to undetectable levels, limiting mucosal damage, and enabling long-term survival, in spite of continued toxin gene expression in ΔtcdE mutants. Our findings confirm TcdE's critical functions in vivo for toxin secretion and C. difficile virulence.
Collapse
Affiliation(s)
- N V DiBenedetto
- Massachusetts Host-Microbiome Center, Dept. Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - M Oberkampf
- Institut Pasteur, Université Paris-Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France
| | - L Cersosimo
- Massachusetts Host-Microbiome Center, Dept. Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - V Yeliseyev
- Massachusetts Host-Microbiome Center, Dept. Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - L Bry
- Massachusetts Host-Microbiome Center, Dept. Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - J Peltier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - B Dupuy
- Institut Pasteur, Université Paris-Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France
| |
Collapse
|
9
|
Kordus SL, Rodríguez RC, Krystofiak E, Loveridge N, Childress K, Borden Lacy D. Understanding the Roles of tcdE and tcdL During Toxin Secretion in Clostridioides difficile. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:942. [PMID: 37613384 DOI: 10.1093/micmic/ozad067.469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- Shannon L Kordus
- Department of Pathology, Microbiology, Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- The Center for Structural Biology , Vanderbilt University, Nashville, TN, United States
| | - Rubén Cano Rodríguez
- Department of Pathology, Microbiology, Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- The Center for Structural Biology , Vanderbilt University, Nashville, TN, United States
- Veterans Affairs, Nashville, TN, United States
| | - Evan Krystofiak
- Vanderbilt Cell Imaging Shared Resource Core, Vanderbilt University, Nashville, TN, United States
| | - Natalie Loveridge
- Department of Pathology, Microbiology, Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- The Center for Structural Biology , Vanderbilt University, Nashville, TN, United States
| | - Kevin Childress
- Department of Pathology, Microbiology, Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- The Center for Structural Biology , Vanderbilt University, Nashville, TN, United States
| | - D Borden Lacy
- Department of Pathology, Microbiology, Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- The Center for Structural Biology , Vanderbilt University, Nashville, TN, United States
- Veterans Affairs, Nashville, TN, United States
| |
Collapse
|
10
|
Sänger PA, Knüpfer M, Kegel M, Spanier B, Liebler-Tenorio EM, Fuchs TM. Regulation and Functionality of a Holin/Endolysin Pair Involved in Killing of Galleria mellonella and Caenorhabditis elegans by Yersinia enterocolitica. Appl Environ Microbiol 2023; 89:e0003623. [PMID: 37184385 PMCID: PMC10304863 DOI: 10.1128/aem.00036-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/30/2023] [Indexed: 05/16/2023] Open
Abstract
The insecticidal toxin complex (Tc) proteins are produced by several insect-associated bacteria, including Yersinia enterocolitica strain W22703, which oscillates between two distinct pathogenicity phases in invertebrates and humans. The mechanism by which this high-molecular-weight toxin is released into the extracellular surrounding, however, has not been deciphered. In this study, we investigated the regulation and functionality of a phage-related holin/endolysin (HE) cassette located within the insecticidal pathogenicity island Tc-PAIYe of W22703. Using the Galleria mellonella infection model and luciferase reporter fusions, we revealed that quorum sensing contributes to the insecticidal activity of W22703 upon influencing the transcription of tcaR2, which encodes an activator of the tc and HE genes. In contrast, a lack of the Yersinia modulator, YmoA, stimulated HE gene transcription, and mutant W22703 ΔymoA exhibited a stronger toxicity toward insect larvae than did W22703. A luciferase reporter fusion demonstrated transcriptional activation of the HE cassette in vivo, and a significantly larger extracellular amount of subunit TcaA was found in W22703 ΔymoA relative to its ΔHE mutant. Using competitive growth assays, we demonstrated that at least in vitro, the TcaA release upon HE activity is not mediated by cell lysis of a significant part of the population. Oral infection of Caenorhabditis elegans with a HE deletion mutant attenuated the nematocidal activity of the wild type, similar to the case with a mutant lacking a Tc subunit. We conclude that the dual holin/endolysin cassette of yersiniae is a novel example of a phage-related function adapted for the release of a bacterial toxin. IMPORTANCE Members of the genus Yersinia cause gastroenteritis in humans but also exhibit toxicity toward invertebrates. A virulence factor required for this environmental life cycle stage is the multisubunit toxin complex (Tc), which is distinct from the insecticidal toxin of Bacillus thuringiensis and has the potential to be used in pest control. The mechanism by which this high-molecular-weight Tc is secreted from bacterial cells has not been uncovered. Here, we show that a highly conserved phage-related holin/endolysin pair, which is encoded by the genes holY and elyY located between the Tc subunit genes, is essential for the insecticidal activity of Y. enterocolitica and that its activation increases the amount of Tc subunits in the supernatant. Thus, the dual holY-elyY cassette of Y. enterocolitica constitutes a new example for a type 10 secretion system to release bacterial toxins.
Collapse
Affiliation(s)
| | - Mandy Knüpfer
- Chair for Microbial Ecology, Institute for Food and Health (ZIEL), TUM School of Life Sciences, Technische Universität München, Freising, Germany
| | - Marcel Kegel
- Chair for Microbial Ecology, Institute for Food and Health (ZIEL), TUM School of Life Sciences, Technische Universität München, Freising, Germany
| | - Britta Spanier
- Chair for Metabolic Programming, Institute for Food and Health (ZIEL), TUM School of Life Sciences, Technische Universität München, Freising, Germany
| | | | - Thilo M. Fuchs
- Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis, Jena, Germany
- Chair for Microbial Ecology, Institute for Food and Health (ZIEL), TUM School of Life Sciences, Technische Universität München, Freising, Germany
| |
Collapse
|
11
|
Zhang X, Li J, Chen C, Liu YJ, Cui Q, Hong W, Chen Z, Feng Y, Cui G. Molecular Basis of TcdR-Dependent Promoter Activity for Toxin Production by Clostridioides difficile Studied by a Heterologous Reporter System. Toxins (Basel) 2023; 15:toxins15050306. [PMID: 37235341 DOI: 10.3390/toxins15050306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
The alternative σ factor TcdR controls the synthesis of two major enterotoxins: TcdA and TcdB in Clostridioides difficile. Four potential TcdR-dependent promoters in the pathogenicity locus of C. difficile showed different activities. In this study, we constructed a heterologous system in Bacillus subtilis to investigate the molecular basis of TcdR-dependent promoter activity. The promoters of the two major enterotoxins showed strong TcdR-dependent activity, while the two putative TcdR-dependent promoters in the upstream region of the tcdR gene did not show detectable activity, suggesting that the autoregulation of TcdR may need other unknown factors involved. Mutation analysis indicated that the divergent -10 region is the key determinant for different activities of the TcdR-dependent promoters. Analysis of the TcdR model predicted by AlphaFold2 suggested that TcdR should be classified into group 4, i.e., extracytoplasmic function, σ70 factors. The results of this study provide the molecular basis of the TcdR-dependent promoter recognition for toxin production. This study also suggests the feasibility of the heterologous system in analyzing σ factor functions and possibly in drug development targeting these factors.
Collapse
Affiliation(s)
- Xinyue Zhang
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Joint Laboratory of Helicobacter Pylori and Intestinal Microecology of Affiliated Hospital of Guizhou Medical University, Guiyang 550025, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Jie Li
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Chen
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ya-Jun Liu
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiu Cui
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Hong
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
| | - Zhenghong Chen
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
- Joint Laboratory of Helicobacter Pylori and Intestinal Microecology of Affiliated Hospital of Guizhou Medical University, Guiyang 550025, China
| | - Yingang Feng
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guzhen Cui
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
- Joint Laboratory of Helicobacter Pylori and Intestinal Microecology of Affiliated Hospital of Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
12
|
Brüser T, Mehner-Breitfeld D. Occurrence and potential mechanism of holin-mediated non-lytic protein translocation in bacteria. MICROBIAL CELL (GRAZ, AUSTRIA) 2022; 9:159-173. [PMID: 36262927 PMCID: PMC9527704 DOI: 10.15698/mic2022.10.785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022]
Abstract
Holins are generally believed to generate large membrane lesions that permit the passage of endolysins across the cytoplasmic membrane of prokaryotes, ultimately resulting in cell wall degradation and cell lysis. However, there are more and more examples known for non-lytic holin-dependent secretion of proteins by bacteria, indicating that holins somehow can transport proteins without causing large membrane lesions. Phage-derived holins can be used for a non-lytic endolysin translocation to permeabilize the cell wall for the passage of secreted proteins. In addition, clostridia, which do not possess the Tat pathway for transport of folded proteins, most likely employ non-lytic holin-mediated transport also for secretion of toxins and bacteriocins that are incompatible with the general Sec pathway. The mechanism for non-lytic holin-mediated transport is unknown, but the recent finding that the small holin TpeE mediates a non-lytic toxin secretion in Clostridium perfringens opened new perspectives. TpeE contains only one short transmembrane helix that is followed by an amphipathic helix, which is reminiscent of TatA, the membrane-permeabilizing component of the Tat translocon for folded proteins. Here we review the known cases of non-lytic holin-mediated transport and then focus on the structural and functional comparison of TatA and TpeE, resulting in a mechanistic model for holin-mediated transport. This model is strongly supported by a so far not recognized naturally occurring holin-endolysin fusion protein.
Collapse
Affiliation(s)
- Thomas Brüser
- Institute of Microbiology, Leibniz Universität Hannover, Hannover, Germany
| | | |
Collapse
|
13
|
Kordus SL, Thomas AK, Lacy DB. Clostridioides difficile toxins: mechanisms of action and antitoxin therapeutics. Nat Rev Microbiol 2022; 20:285-298. [PMID: 34837014 PMCID: PMC9018519 DOI: 10.1038/s41579-021-00660-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 01/03/2023]
Abstract
Clostridioides difficile is a Gram-positive anaerobe that can cause a spectrum of disorders that range in severity from mild diarrhoea to fulminant colitis and/or death. The bacterium produces up to three toxins, which are considered the major virulence factors in C. difficile infection. These toxins promote inflammation, tissue damage and diarrhoea. In this Review, we highlight recent biochemical and structural advances in our understanding of the mechanisms that govern host-toxin interactions. Understanding how C. difficile toxins affect the host forms a foundation for developing novel strategies for treatment and prevention of C. difficile infection.
Collapse
Affiliation(s)
- Shannon L. Kordus
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA,Center for Structural Biology, Vanderbilt University, Nashville, TN, USA,These authors contributed equally: Shannon L. Kordus, Audrey K. Thomas
| | - Audrey K. Thomas
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA,Center for Structural Biology, Vanderbilt University, Nashville, TN, USA,These authors contributed equally: Shannon L. Kordus, Audrey K. Thomas
| | - D. Borden Lacy
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA,Center for Structural Biology, Vanderbilt University, Nashville, TN, USA,The Veterans Affairs, Tennessee Valley Healthcare, System, Nashville, TN, USA,
| |
Collapse
|
14
|
Vidor CJ, Hamiot A, Wisniewski J, Mathias RA, Dupuy B, Awad M, Lyras D. A Highly Specific Holin-Mediated Mechanism Facilitates the Secretion of Lethal Toxin TcsL in Paeniclostridium sordellii. Toxins (Basel) 2022; 14:toxins14020124. [PMID: 35202151 PMCID: PMC8878733 DOI: 10.3390/toxins14020124] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 12/10/2022] Open
Abstract
Protein secretion is generally mediated by a series of distinct pathways in bacteria. Recently, evidence of a novel bacterial secretion pathway involving a bacteriophage-related protein has emerged. TcdE, a holin-like protein encoded by toxigenic isolates of Clostridioides difficile, mediates the release of the large clostridial glucosylating toxins (LCGTs), TcdA and TcdB, and TpeL from C. perfringens uses another holin-like protein, TpeE, for its secretion; however, it is not yet known if TcdE or TpeE secretion is specific to these proteins. It is also unknown if other members of the LCGT-producing clostridia, including Paeniclostridium sordellii (previously Clostridium sordellii), use a similar toxin-release mechanism. Here, we confirm that each of the LCGT-producing clostridia encode functional holin-like proteins in close proximity to the toxin genes. To characterise the respective roles of these holin-like proteins in the release of the LCGTs, P. sordellii and its lethal toxin, TcsL, were used as a model. Construction and analysis of mutants of the P. sordellii tcsE (holin-like) gene demonstrated that TcsE plays a significant role in TcsL release. Proteomic analysis of the secretome from the tcsE mutant confirmed that TcsE is required for efficient TcsL secretion. Unexpectedly, comparative sample analysis showed that TcsL was the only protein significantly altered in its release, suggesting that this holin-like protein has specifically evolved to function in the release of this important virulence factor. This specificity has, to our knowledge, not been previously shown and suggests that this protein may function as part of a specific mechanism for the release of all LCGTs.
Collapse
Affiliation(s)
- Callum J. Vidor
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia; (C.J.V.); (J.W.); (R.A.M.); (M.A.)
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Audrey Hamiot
- Laboratoire Pathogenèse des Bactéries Anaérobies, UMR-CNRS 6047, Institut Pasteur, Université de Paris, F-75015 Paris, France; (A.H.); (B.D.)
| | - Jessica Wisniewski
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia; (C.J.V.); (J.W.); (R.A.M.); (M.A.)
| | - Rommel A. Mathias
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia; (C.J.V.); (J.W.); (R.A.M.); (M.A.)
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Bruno Dupuy
- Laboratoire Pathogenèse des Bactéries Anaérobies, UMR-CNRS 6047, Institut Pasteur, Université de Paris, F-75015 Paris, France; (A.H.); (B.D.)
| | - Milena Awad
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia; (C.J.V.); (J.W.); (R.A.M.); (M.A.)
| | - Dena Lyras
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia; (C.J.V.); (J.W.); (R.A.M.); (M.A.)
- Correspondence:
| |
Collapse
|
15
|
Li X, Zhang C, Wei F, Yu F, Zhao Z. Bactericidal activity of a holin-endolysin system derived from Vibrio alginolyticus phage HH109. Microb Pathog 2021; 159:105135. [PMID: 34390766 DOI: 10.1016/j.micpath.2021.105135] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/27/2021] [Accepted: 08/09/2021] [Indexed: 11/26/2022]
Abstract
Vibrio alginolyticus is a common opportunistic pathogen that can cause vibriosis of marine aquatic animals. The application of phages or particularly associated protein products for the treatment of vibriosis has shown prominent advantages compared with the treatment with traditional antibiotics. In this study, the function of a holin-endolysin system from V. alginolyticus phage HH109 was characterized by examining the effect of their overexpression on Escherichia coli and V. alginolyticus. Our data revealed that the endolysin of the phage HH109 has stronger bactericidal activity than the holin, as evidenced by observing more cell death and severe structural damage of cells in the endolysin-expressing E. coli. Furthermore, the two proteins displayed the synergistic effect when the holA and lysin were co-expressed in E. coli, although no interaction between them was detected using the bacterial two-hybrid assay. Transmission electron microscopy observation revealed disruptions of cell envelopes accompanied by leakage of intracellular contents. Similarly, the bactericidal activity of the holin and endolysin against V. alginolyticus was also examined whatever the host is sensitive or resistant to phage HH109. Together, our study contributes to a better understanding of the mechanism of phage HH109 destroying the bacterial cell wall to lyse their host and may offer alternative applications potentially for vibriosis treatment.
Collapse
Affiliation(s)
- Xixi Li
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, Jiangsu, China
| | - Ce Zhang
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, Jiangsu, China
| | - Fucheng Wei
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, Jiangsu, China
| | - Fei Yu
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, Jiangsu, China
| | - Zhe Zhao
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, Jiangsu, China.
| |
Collapse
|
16
|
Riedel T, Neumann-Schaal M, Wittmann J, Schober I, Hofmann JD, Lu CW, Dannheim A, Zimmermann O, Lochner M, Groß U, Overmann J. Characterization of Clostridioides difficile DSM 101085 with A-B-CDT+ Phenotype from a Late Recurrent Colonization. Genome Biol Evol 2021; 12:566-577. [PMID: 32302381 PMCID: PMC7250501 DOI: 10.1093/gbe/evaa072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2020] [Indexed: 12/29/2022] Open
Abstract
During the last decades, hypervirulent strains of Clostridioides difficile with frequent disease recurrence and increased mortality appeared. Clostridioides difficile DSM 101085 was isolated from a patient who suffered from several recurrent infections and colonizations, likely contributing to a fatal outcome. Analysis of the toxin repertoire revealed the presence of a complete binary toxin locus and an atypical pathogenicity locus consisting of only a tcdA pseudogene and a disrupted tcdC gene sequence. The pathogenicity locus shows upstream a transposon and has been subject to homologous recombination or lateral gene transfer events. Matching the results of the genome analysis, neither TcdA nor TcdB production but the expression of cdtA and cdtB was detected. This highlights a potential role of the binary toxin C. difficile toxin in this recurrent colonization and possibly further in a host-dependent virulence. Compared with the C. difficile metabolic model strains DSM 28645 (630Δerm) and DSM 27147 (R20291), strain DSM 101085 showed a specific metabolic profile, featuring changes in the threonine degradation pathways and alterations in the central carbon metabolism. Moreover, products originating from Stickland pathways processing leucine, aromatic amino acids, and methionine were more abundant in strain DSM 101085, indicating a more efficient use of these substrates. The particular characteristics of strain C. difficile DSM 101085 may represent an adaptation to a low-protein diet in a patient with recurrent infections.
Collapse
Affiliation(s)
- Thomas Riedel
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Meina Neumann-Schaal
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,Department of Bioinformatics and Biochemistry and Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Germany
| | - Johannes Wittmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Isabel Schober
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Julia Danielle Hofmann
- Department of Bioinformatics and Biochemistry and Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Germany
| | - Chia-Wen Lu
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Antonia Dannheim
- Department of Bioinformatics and Biochemistry and Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Germany
| | - Ortrud Zimmermann
- Institute of Medical Microbiology, University Medical Center Göttingen, Germany
| | - Matthias Lochner
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Uwe Groß
- Institute of Medical Microbiology, University Medical Center Göttingen, Germany.,Göttingen International Health Network, Göttingen, Germany
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany.,Institute of Microbiology, Technical University of Braunschweig, Germany
| |
Collapse
|
17
|
Fujimoto K, Kimura Y, Allegretti JR, Yamamoto M, Zhang YZ, Katayama K, Tremmel G, Kawaguchi Y, Shimohigoshi M, Hayashi T, Uematsu M, Yamaguchi K, Furukawa Y, Akiyama Y, Yamaguchi R, Crowe SE, Ernst PB, Miyano S, Kiyono H, Imoto S, Uematsu S. Functional Restoration of Bacteriomes and Viromes by Fecal Microbiota Transplantation. Gastroenterology 2021; 160:2089-2102.e12. [PMID: 33577875 PMCID: PMC8684800 DOI: 10.1053/j.gastro.2021.02.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/27/2021] [Accepted: 02/03/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Fecal microbiota transplantation (FMT) is an effective therapy for recurrent Clostridioides difficile infection (rCDI). However, the overall mechanisms underlying FMT success await comprehensive elucidation, and the safety of FMT has recently become a serious concern because of the occurrence of drug-resistant bacteremia transmitted by FMT. We investigated whether functional restoration of the bacteriomes and viromes by FMT could be an indicator of successful FMT. METHODS The human intestinal bacteriomes and viromes from 9 patients with rCDI who had undergone successful FMT and their donors were analyzed. Prophage-based and CRISPR spacer-based host bacteria-phage associations in samples from recipients before and after FMT and in donor samples were examined. The gene functions of intestinal microorganisms affected by FMT were evaluated. RESULTS Metagenomic sequencing of both the viromes and bacteriomes revealed that FMT does change the characteristics of intestinal bacteriomes and viromes in recipients after FMT compared with those before FMT. In particular, many Proteobacteria, the fecal abundance of which was high before FMT, were eliminated, and the proportion of Microviridae increased in recipients. Most temperate phages also behaved in parallel with the host bacteria that were altered by FMT. Furthermore, the identification of bacterial and viral gene functions before and after FMT revealed that some distinctive pathways, including fluorobenzoate degradation and secondary bile acid biosynthesis, were significantly represented. CONCLUSIONS The coordinated action of phages and their host bacteria restored the recipients' intestinal flora. These findings show that the restoration of intestinal microflora functions reflects the success of FMT.
Collapse
Affiliation(s)
- Kosuke Fujimoto
- Department of Immunology and Genomics, Osaka City University, Graduate School of Medicine, Abeno-ku, Osaka, Japan,Division of Metagenome Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan,Division of Innate Immune Regulation, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Yasumasa Kimura
- Division of Systems Immunology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Jessica R. Allegretti
- Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Mako Yamamoto
- Division of Health Medical Intelligence, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Yao-zhong Zhang
- Division of Health Medical Intelligence, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Kotoe Katayama
- Division of Health Medical Intelligence, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Georg Tremmel
- Laboratory of DNA Information Analysis, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Yunosuke Kawaguchi
- Department of Immunology and Genomics, Osaka City University, Graduate School of Medicine, Abeno-ku, Osaka, Japan
| | - Masaki Shimohigoshi
- Department of Immunology and Genomics, Osaka City University, Graduate School of Medicine, Abeno-ku, Osaka, Japan
| | - Tetsuya Hayashi
- Department of Immunology and Genomics, Osaka City University, Graduate School of Medicine, Abeno-ku, Osaka, Japan
| | - Miho Uematsu
- Department of Immunology and Genomics, Osaka City University, Graduate School of Medicine, Abeno-ku, Osaka, Japan
| | - Kiyoshi Yamaguchi
- Division of Clinical Genome Research, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Yoichi Furukawa
- Division of Clinical Genome Research, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Yutaka Akiyama
- Department of Computer Science, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Rui Yamaguchi
- Laboratory of DNA Information Analysis, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Sheila E. Crowe
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Peter B. Ernst
- Division of Gastroenterology, Department of Medicine, CU-UCSD Center for Mucosal Immunology, Allergy and Vaccines, University of California San Diego, San Diego, La Jolla, California,Division of Comparative Pathology and Medicine, Department of Pathology, University of California San Diego, San Diego, La Jolla, California,Center for Veterinary Sciences and Comparative Medicine, University of California, San Diego, La Jolla, California
| | - Satoru Miyano
- Laboratory of DNA Information Analysis, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Hiroshi Kiyono
- Division of Gastroenterology, Department of Medicine, CU-UCSD Center for Mucosal Immunology, Allergy and Vaccines, University of California San Diego, San Diego, La Jolla, California,Division of Comparative Pathology and Medicine, Department of Pathology, University of California San Diego, San Diego, La Jolla, California,Department of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan,International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Seiya Imoto
- Division of Health Medical Intelligence, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| | - Satoshi Uematsu
- Department of Immunology and Genomics, Osaka City University, Graduate School of Medicine, Abeno-ku, Osaka, Japan; Division of Metagenome Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan; Division of Innate Immune Regulation, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
18
|
Modulation of OMV Production by the Lysis Module of the DLP12 Defective Prophage of Escherichia coli K12. Microorganisms 2021; 9:microorganisms9020369. [PMID: 33673345 PMCID: PMC7918800 DOI: 10.3390/microorganisms9020369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/06/2021] [Accepted: 02/07/2021] [Indexed: 12/12/2022] Open
Abstract
Outer membrane vesicles (OMVs) are nanostructures mostly produced by blebbing of the outer membrane in Gram negative bacteria. They contain biologically active proteins and perform a variety of processes. OMV production is also a typical response to events inducing stress in the bacterial envelope. In these cases, hypervesiculation is regarded as a strategy to avoid the dangerous accumulation of undesired products within the periplasm. Several housekeeping genes influence the biogenesis of OMVs, including those correlated with peptidoglycan and cell wall dynamics. In this work, we have investigated the relationship between OMV production and the lysis module of the E. coli DLP12 cryptic prophage. This module is an operon encoding a holin, an endolysin and two spannins, and is known to be involved in cell wall maintenance. We find that deleting the lysis module increases OMV production, suggesting that during evolution this operon has been domesticated to regulate vesiculation, likely through the elimination of non-recyclable peptidoglycan fragments. We also show that the expression of the lysis module is negatively regulated by environmental stress stimuli as high osmolarity, low pH and low temperature. Our data further highlight how defective prophages finely contribute to bacterial host fitness.
Collapse
|
19
|
Hays SG, Seed KD. Dominant Vibrio cholerae phage exhibits lysis inhibition sensitive to disruption by a defensive phage satellite. eLife 2020; 9:e53200. [PMID: 32329714 PMCID: PMC7182436 DOI: 10.7554/elife.53200] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/01/2020] [Indexed: 12/28/2022] Open
Abstract
Bacteria, bacteriophages that prey upon them, and mobile genetic elements (MGEs) compete in dynamic environments, evolving strategies to sense the milieu. The first discovered environmental sensing by phages, lysis inhibition, has only been characterized and studied in the limited context of T-even coliphages. Here, we discover lysis inhibition in the etiological agent of the diarrheal disease cholera, Vibrio cholerae, infected by ICP1, a phage ubiquitous in clinical samples. This work identifies the ICP1-encoded holin, teaA, and antiholin, arrA, that mediate lysis inhibition. Further, we show that an MGE, the defensive phage satellite PLE, collapses lysis inhibition. Through lysis inhibition disruption a conserved PLE protein, LidI, is sufficient to limit the phage produced from infection, bottlenecking ICP1. These studies link a novel incarnation of the classic lysis inhibition phenomenon with conserved defensive function of a phage satellite in a disease context, highlighting the importance of lysis timing during infection and parasitization.
Collapse
Affiliation(s)
- Stephanie G Hays
- Department of Plant and Microbial Biology, University of CaliforniaBerkeleyUnited States
| | - Kimberley D Seed
- Department of Plant and Microbial Biology, University of CaliforniaBerkeleyUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| |
Collapse
|