1
|
Galindo-Rodriguez GR, Sarwar MS, Rios-Solis L, Dimartino S. Development, characterization and application of 3D printed adsorbents for in situ recovery of taxadiene from microbial cultivations. J Chromatogr A 2024; 1721:464815. [PMID: 38522406 DOI: 10.1016/j.chroma.2024.464815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
Microbial cell factories are an attractive alternative to produce high-value natural products using sustainable processes. However, product recovery is one of the main challenges to reduce production cost and make these technologies economically interesting. In this work, new resins were formulated to 3D print hydrophobic adsorbents for the recovery of biologics from microbial cultivations. Benzyl methacrylate (BEMA) and butyl methacrylate (BUMA) were selected as functional monomers suitable for the adsorption of hydrophobic compounds. Pore morphology was tailored through the inclusion of pore forming agents (porogens) in the resin. Different porogens and porogen concentrations were evaluated resulting in materials with different porous networks. Sudan 1 and the anticancer drug paclitaxel were employed as model compounds to test the adsorption performance of hydrophobic and terpene molecules onto the developed 3D printed materials. The material with greatest adsorption capacity was obtained using BEMA monomer with 40 % (v/v) porogen (BEMA40). The performance of BEMA40 to recover taxadiene from small-scale (5 mL) Saccharomyces cerevisiae cultivations was tested and compared with commercial Diaion HP-20 beads. Taxadiene titres on BEMA40 (46 ± 2 mg/L) and Diaion HP-20 (54 ± 4 mg/L) were comparable, with no taxadiene detected in the cells and cell-free media, suggesting near 100 % taxadiene partition on the adsorbents. Compared to commercial beads, 3D printed adsorbents can be customized with adjustments in the resin formulation, are well adaptable to diverse bioreactor types, do not clog sampling ports and columns and are easier to handle during post processing. The results of this work demonstrate the potential of 3D printing to fabricate hydrophobic interaction adsorbent materials and their application in the recovery of biological products.
Collapse
Affiliation(s)
| | - M Sulaiman Sarwar
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Leonardo Rios-Solis
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom; Centre for Engineering Biology, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Simone Dimartino
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom.
| |
Collapse
|
2
|
Wu H, Qi S, Yang R, Pan Q, Lu Y, Yao C, He N, Huang S, Ling X. Strategies for high cell density cultivation of Akkermansia muciniphila and its potential metabolism. Microbiol Spectr 2024; 12:e0238623. [PMID: 38059626 PMCID: PMC10782997 DOI: 10.1128/spectrum.02386-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023] Open
Abstract
IMPORTANCE Currently, there is significant interest in Akkermansia muciniphila as a promising next-generation probiotic, making it a hot topic in scientific research. However, to achieve efficient industrial production, there is an urgent need to develop an in vitro culture method to achieve high biomass using low-cost carbon sources such as glucose. This study aims to explore the high-density fermentation strategy of A. muciniphila by optimizing the culture process. This study also employs techniques such as LC-MS and RNA-Seq to explain the possible regulatory mechanism of high-density cell growth and increased cell surface hydrophobicity facilitating cell colonization of the gut in vitro culture. Overall, this research sheds light on the potential of A. muciniphila as a probiotic and provides valuable insights for future industrial production.
Collapse
Affiliation(s)
- Haiting Wu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, People's Republic of China
| | - Shuhua Qi
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, People's Republic of China
| | - Ruixiong Yang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, People's Republic of China
| | - Qihua Pan
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, People's Republic of China
| | - Yinghua Lu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, People's Republic of China
- Xiamen Key Laboratory of Synthetic Biotechnology, Xiamen University, Xiamen, People's Republic of China
- The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, People's Republic of China
| | - Chuanyi Yao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, People's Republic of China
- Xiamen Key Laboratory of Synthetic Biotechnology, Xiamen University, Xiamen, People's Republic of China
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, People's Republic of China
- Xiamen Key Laboratory of Synthetic Biotechnology, Xiamen University, Xiamen, People's Republic of China
| | - Song Huang
- Department of Microbiome and Health, Bluepha Co., Ltd, Shenzhen, People's Republic of China
| | - Xueping Ling
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, People's Republic of China
- Xiamen Key Laboratory of Synthetic Biotechnology, Xiamen University, Xiamen, People's Republic of China
| |
Collapse
|
3
|
Galindo-Rodriguez GR, Santoyo-Garcia JH, Rios-Solis L, Dimartino S. In situ recovery of taxadiene using solid adsorption in cultivations with Saccharomyces cerevisiae. Prep Biochem Biotechnol 2024; 54:86-94. [PMID: 37162336 DOI: 10.1080/10826068.2023.2207204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In this study, an engineered strain of Saccharomyces cerevisiae was used to produce taxadiene, a precursor in the biosynthetic pathway of the anticancer drug paclitaxel. Taxadiene was recovered in situ with the polymeric adsorbent Diaion © HP-20. Here we tested two bioreactor configurations and adsorbent concentrations to maximize the production and recovery of taxadiene. An external recovery configuration (ERC) was performed with the integration of an expanded bed adsorption column, whereas the internal recovery configuration (IRC) consisted in dispersed beads inside the bioreactor vessel. Taxadiene titers recovered in IRC were higher to ERC by 3.4 and 3.5 fold by using 3% and 12% (w/v) adsorbent concentration respectively. On the other hand, cell growth kinetics were faster in ERC which represents an advantage in productivity (mg of taxadiene/L*h). High resin bead concentration (12% w/v) improved the partition of taxadiene onto the beads up to 98%. This result represents an advantage over previous studies using a 3% resin concentration where the partition of taxadiene on the beads was around 50%. This work highlights the potential of in situ product recovery to improve product partition, reduce processing steps and promote cell growth. Nevertheless, a careful design of bioreactor configuration and process conditions is critical.
Collapse
Affiliation(s)
| | - Jorge H Santoyo-Garcia
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, UK
- Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, UK
| | - Leonardo Rios-Solis
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, UK
- Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, UK
| | - Simone Dimartino
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
4
|
Arumugam U, Sudarsanan GB, Karuppannan AK, Palaniappan S. Metagenomic Studies Reveal the Evidence of Akkermansia muciniphila and Other Probiotic Bacteria in the Gut of Healthy and Enterocytozoon hepatopenaei (EHP)-Infected Farmed Penaeus vannamei. Probiotics Antimicrob Proteins 2023:10.1007/s12602-023-10165-4. [PMID: 37749431 DOI: 10.1007/s12602-023-10165-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2023] [Indexed: 09/27/2023]
Abstract
Penaeus vannamei (whiteleg shrimp) is the most widely cultured shrimp globally. Enterocytozoon hepatopenaei (EHP), a microsporidian parasite, infects P. vannamei and causes severe growth retardation, subsequent production, and economic losses in the shrimp culture. The influence of EHP infection in the shrimp gut microbiota is poorly studied, and this would be an interesting area to investigate since the gut microbiome of shrimp influences a number of key host processes such as digestion and immunity. In this study, a metagenomic approach was followed to compare the overall species richness of the gut microbiota of EHP-infected and healthy P. vannamei. Bacterial genomic DNA from the healthy and EHP-infected gut sample were profiled for the bacterial 16S rRNA gene, targeting the V3-V4 conserved region. Operational taxonomic units (OTUs), an approximation of definitive taxonomic identity, were identified based on the sequence similarity within the sample reads and clustered together using a cut-off of 97% identity using UCLUST. The OTUs were then used for the computation of alpha diversity and beta diversity for each sample. EHP-infected gut sample showed lower bacterial abundance throughout the family, class, order, genus, and species levels when compared to healthy gut sample. This study shows that the shrimp gut microbiota is sensitive and exhibits a high level of plasticity during a microsporidian infection like EHP. Furthermore, Akkermansia muciniphila, a novel probiotic bacterium, has been reported in the shrimp gut for the first time.
Collapse
Affiliation(s)
- Uma Arumugam
- State Referral Laboratory for Aquatic Animal Health, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Madhavaram Campus, Chennai, 600051, Tamil Nadu, India.
| | - Ganesh Babu Sudarsanan
- State Referral Laboratory for Aquatic Animal Health, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Madhavaram Campus, Chennai, 600051, Tamil Nadu, India
| | - Anbu Kumar Karuppannan
- Bioinformatics Center, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Vepery, Chennai, 600007, Tamil Nadu, India
| | - Subash Palaniappan
- State Referral Laboratory for Aquatic Animal Health, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Madhavaram Campus, Chennai, 600051, Tamil Nadu, India
| |
Collapse
|
5
|
Santoyo‐Garcia JH, Walls LE, Valdivia‐Cabrera M, Malcı K, Jonguitud‐Borrego N, Halliday KJ, Rios‐Solis L. The synergetic effect from the combination of different adsorption resins in batch and semi-continuous cultivations of S. Cerevisiae cell factories to produce acetylated Taxanes precursors of the anticancer drug Taxol. Biotechnol Bioeng 2023; 120:2160-2174. [PMID: 37428616 PMCID: PMC10952759 DOI: 10.1002/bit.28487] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 06/17/2023] [Accepted: 06/22/2023] [Indexed: 07/12/2023]
Abstract
In situ product recovery is an efficient way to intensify bioprocesses as it can perform adsorption of the desired natural products in the cultivation. However, it is common to use only one adsorbent (liquid or solid) to perform the product recovery. For this study, the use of an in situ product recovery method with three combined commercial resins (HP-20, XAD7HP, and HP-2MG) with different chemical properties was performed. A new yeast strain of Saccharomyces cerevisiae was engineered using CRISPR Cas9 (strain EJ2) to deliver heterologous expression of oxygenated acetylated taxanes that are precursors of the anticancer drug Taxol ® (paclitaxel). Microscale cultivations using a definitive screening design (DSD) were set to get the best resin combinations and concentrations to retrieve high taxane titers. Once the best resin treatment was selected by the DSD, semi-continuous cultivation in high throughput microscale was performed to increase the total taxanes yield up to 783 ± 33 mg/L. The best T5α-yl Acetate yield obtained was up to 95 ± 4 mg/L, the highest titer of this compound ever reported by a heterologous expression. It was also observed that by using a combination of the resins in the cultivation, 8 additional uncharacterized taxanes were found in the gas chromatograms compared to the dodecane overlay method. Lastly, the cell-waste reactive oxygen species concentrations from the yeast were 1.5-fold lower in the resin's treatment compared to the control with no adsorbent aid. The possible future implications of this method could be critical for bioprocess intensification, allowing the transition to a semi-continuous flow bioprocess. Further, this new methodology broadens the use of different organisms for natural product synthesis/discovery benefiting from clear bioprocess intensification advantages.
Collapse
Affiliation(s)
- Jorge H. Santoyo‐Garcia
- Institute for BioengineeringUniversity of EdinburghEdinburghUK
- Centre for Engineering BiologyUniversity of EdinburghEdinburghUK
| | - Laura E. Walls
- Institute for BioengineeringUniversity of EdinburghEdinburghUK
- Centre for Engineering BiologyUniversity of EdinburghEdinburghUK
| | - Marissa Valdivia‐Cabrera
- Institute of Molecular Plant SciencesSchool of Biological Sciences, University of EdinburghEdinburgh
| | - Koray Malcı
- Institute for BioengineeringUniversity of EdinburghEdinburghUK
- Centre for Engineering BiologyUniversity of EdinburghEdinburghUK
- Present address:
Koray MalcıDepartment of Bioengineering, Imperial College LondonLondonUK
| | - Nestor Jonguitud‐Borrego
- Institute for BioengineeringUniversity of EdinburghEdinburghUK
- Centre for Engineering BiologyUniversity of EdinburghEdinburghUK
| | - Karen J. Halliday
- Institute of Molecular Plant SciencesSchool of Biological Sciences, University of EdinburghEdinburgh
| | - Leonardo Rios‐Solis
- Institute for BioengineeringUniversity of EdinburghEdinburghUK
- Centre for Engineering BiologyUniversity of EdinburghEdinburghUK
- Division of Molecular Biology and BiotechnologySchool of Natural and Environmental Sciences, Newcastle UniversityNewcastle upon TyneUK
- Department of Biochemical Engineering, The Advanced Centre for Biochemical EngineeringUniversity College LondonLondonUnited Kingdom
| |
Collapse
|
6
|
Ichinose R, Yamasaki-Yashiki S, Katakura Y. Analysis of the effects of specific growth rate of Lactococcus lactis MG1363 on aerobic metabolism and its application to high-density culture. J Biosci Bioeng 2023:S1389-1723(23)00138-X. [PMID: 37301698 DOI: 10.1016/j.jbiosc.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023]
Abstract
Lactic acid bacteria (LAB) are known to produce a large amount of lactate when cultured under non-aerated conditions, which inhibits their growth at high concentrations. Our previous studies have shown that LAB can be cultured without lactate production under aerated conditions at a low specific growth rate. In this study, we investigated the effects of specific growth rate on cell yield and the specific production rates of metabolites in aerated fed-batch cultures of Lactococcus lactis MG1363. The results showed that lactate and acetoin production could be suppressed at specific growth rates below 0.2 h-1, whereas acetate production was the highest at a specific growth rate of 0.2 h-1. When LAB was cultured at a specific growth rate of 0.25 h-1 with the addition of 5 mg/L heme to assist ATP production by respiration, lactate and acetate production was suppressed, and cell concentration reached 19 g-dry-cell/L (5.6 × 10ˆ10 cfu/mL) with a high cell yield of 0.42 ± 0.02 g-dry-cell/g-glucose.
Collapse
Affiliation(s)
- Ryo Ichinose
- Graduate School of Science and Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan.
| | - Shino Yamasaki-Yashiki
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan.
| | - Yoshio Katakura
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan.
| |
Collapse
|
7
|
Swetha TA, Ananthi V, Bora A, Sengottuvelan N, Ponnuchamy K, Muthusamy G, Arun A. A review on biodegradable polylactic acid (PLA) production from fermentative food waste - Its applications and degradation. Int J Biol Macromol 2023; 234:123703. [PMID: 36801291 DOI: 10.1016/j.ijbiomac.2023.123703] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/04/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023]
Abstract
Due to its low carbon footprint and environmental friendliness, polylactic acid (PLA) is one of the most widely produced bioplastics in the world. Manufacturing attempts to partially replace petrochemical plastics with PLA are growing year over year. Although this polymer is typically used in high-end applications, its use will increase only if it can be produced at the lowest cost. As a result, food wastes rich in carbohydrates can be used as the primary raw material for the production of PLA. Lactic acid (LA) is typically produced through biological fermentation, but a suitable downstream separation process with low production costs and high product purity is also essential. The global PLA market has been steadily expanding with the increased demand, and PLA has now become the most widely used biopolymer across a range of industries, including packaging, agriculture, and transportation. Therefore, the necessity for an efficient manufacturing method with reduced production costs and a vital separation method is paramount. The primary goal of this study is to examine the various methods of lactic acid synthesis, together with their characteristics and the metabolic processes involved in producing lactic acid from food waste. In addition, the synthesis of PLA, possible difficulties in its biodegradation, and its application in diverse industries have also been discussed.
Collapse
Affiliation(s)
- T Angelin Swetha
- Bioenergy and Bioremediation Laboratory, Department of Microbiology, Alagappa University, Karaikudi, Tamil Nadu 630003, India
| | - V Ananthi
- Bioenergy and Bioremediation Laboratory, Department of Microbiology, Alagappa University, Karaikudi, Tamil Nadu 630003, India; Department of Molecular Biology, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Abhispa Bora
- Bioenergy and Bioremediation Laboratory, Department of Microbiology, Alagappa University, Karaikudi, Tamil Nadu 630003, India
| | | | - Kumar Ponnuchamy
- Department of Animal Health and Management, Alagappa University, Karaikudi, Tamil Nadu 630003, India
| | - Govarthanan Muthusamy
- Department of Environmental Engineering, Kyungpook National University, 41566 Daegu, Republic of Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India
| | - A Arun
- Bioenergy and Bioremediation Laboratory, Department of Microbiology, Alagappa University, Karaikudi, Tamil Nadu 630003, India.
| |
Collapse
|
8
|
Abdullah Thaidi NI, Mohamad R, Wasoh H, Kapri MR, Ghazali AB, Tan JS, Rios-Solis L, Halim M. Development of In Situ Product Recovery (ISPR) System Using Amberlite IRA67 for Enhanced Biosynthesis of Hyaluronic Acid by Streptococcus zooepidemicus. Life (Basel) 2023; 13:life13020558. [PMID: 36836914 PMCID: PMC9966800 DOI: 10.3390/life13020558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
High broth viscosity due to the accumulation of hyaluronic acid (HA) causes a limited yield of HA. It is a major problem of HA production using Streptococcus zooepidemicus. Extractive fermentation via in situ product recovery (ISPR) was utilized to enhance the HA production. Resins from Amberlite: IRA400 Cl; IRA900 Cl; IRA410 Cl; IRA402 Cl; and IRA67 were tested for the HA adsorption. IRA67 showed high adsorption capacity on HA. The study of the adsorption via a 2 L stirred tank bioreactor of S. zooepidemicus fermentation was investigated to elucidate the adsorption of HA onto IRA67 in dispersed and integrated internal column systems. The application of a dispersed IRA67 improved the HA production compared to the fermentation without resin addition by 1.37-fold. The HA production was further improved by 1.36-fold with an internal column (3.928 g/L) over that obtained with dispersed IRA67. The cultivation with an internal column shows the highest reduction of viscosity value after the addition of IRA67 resin: from 58.8 to 23.7 (mPa·s), suggesting the most effective ISPR of HA. The improved biosynthesis of HA indicated that an extractive fermentation by ISPR adsorption is effective and may streamline the HA purification.
Collapse
Affiliation(s)
- Nur Imanina Abdullah Thaidi
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Malaysia
- Bioprocessing and Biomanufacturing Research Complex, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Rosfarizan Mohamad
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Malaysia
- Bioprocessing and Biomanufacturing Research Complex, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Helmi Wasoh
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Malaysia
- Bioprocessing and Biomanufacturing Research Complex, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Mohammad Rizal Kapri
- Bioprocessing and Biomanufacturing Research Complex, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Ahmad Badruddin Ghazali
- Department of Oral Maxillofacial Surgery and Oral Diagnosis, Kulliyyah of Dentistry, International Islamic University Malaysia, 25200 Kuantan, Malaysia
| | - Joo Shun Tan
- Bioprocessing and Biomanufacturing Research Complex, Universiti Putra Malaysia, 43400 Serdang, Malaysia
- School of Industrial Technology, Universiti Sains Malaysia, 11800 Gelugor, Malaysia
| | - Leonardo Rios-Solis
- School of Natural and Environmental Sciences, Molecular Biology and Biotechnology Group, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
- School of Engineering, Institute for Bioengineering, University of Edinburgh, Edinburgh EH9 3JL, UK
| | - Murni Halim
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Malaysia
- Bioprocessing and Biomanufacturing Research Complex, Universiti Putra Malaysia, 43400 Serdang, Malaysia
- Correspondence:
| |
Collapse
|
9
|
Microbial D-lactic acid production, In Situ separation and recovery from mature and young coconut husk hydrolysate fermentation broth. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Santoyo-Garcia JH, Walls LE, Nowrouzi B, Galindo-Rodriguez GR, Ochoa-Villarreal M, Loake GJ, Dimartino S, Rios-Solis L. In situ solid-liquid extraction enhances recovery of taxadiene from engineered Saccharomyces cerevisiae cell factories. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
11
|
Yankov D. Fermentative Lactic Acid Production From Lignocellulosic Feedstocks: From Source to Purified Product. Front Chem 2022; 10:823005. [PMID: 35308791 PMCID: PMC8931288 DOI: 10.3389/fchem.2022.823005] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/21/2022] [Indexed: 01/10/2023] Open
Abstract
The second (lignocellulosic biomass and industrial wastes) and third (algal biomass) generation feedstocks gained substantial interest as a source of various value-added chemicals, produced by fermentation. Lactic acid is a valuable platform chemical with both traditional and newer applications in many industries. The successful fractionation, separation, and hydrolysis of lignocellulosic biomass result in sugars' rich raw material for lactic acid fermentation. This review paper aims to summarize the investigations and progress in the last 5 years in lactic acid production from inexpensive and renewable resources. Different aspects are discussed-the type of raw materials, pretreatment and detoxification methods, lactic acid-producers (bacteria, fungi, and yeasts), use of genetically manipulated microorganisms, separation techniques, different approaches of process organization, as well as main challenges, and possible solutions for process optimization.
Collapse
Affiliation(s)
- Dragomir Yankov
- Chemical and Biochemical Reactors Laboratory, Institute of Chemical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
12
|
Teke GM, Tai SL, Pott RWM. Extractive Fermentation Processes: Modes of Operation and Application. CHEMBIOENG REVIEWS 2021. [DOI: 10.1002/cben.202100028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- George M. Teke
- University of Stellenbosch Department of Process Engineering Stellenbosch South Africa
| | - Siew L. Tai
- University of Cape Town Department of Chemical Engineering Cape Town South Africa
| | - Robert W. M. Pott
- University of Stellenbosch Department of Process Engineering Stellenbosch South Africa
| |
Collapse
|
13
|
|
14
|
Din NAS, Lim SJ, Maskat MY, Mutalib SA, Zaini NAM. Lactic acid separation and recovery from fermentation broth by ion-exchange resin: A review. BIORESOUR BIOPROCESS 2021; 8:31. [PMID: 38650212 PMCID: PMC10991309 DOI: 10.1186/s40643-021-00384-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 04/13/2021] [Indexed: 12/24/2022] Open
Abstract
Lactic acid has become one of the most important chemical substances used in various sectors. Its global market demand has significantly increased in recent years, with a CAGR of 18.7% from 2019 to 2025. Fermentation has been considered the preferred method for producing high-purity lactic acid in the industry over chemical synthesis. However, the recovery and separation of lactic acid from microbial fermentation media are relatively complicated and expensive, especially in the process relating to second-generation (2G) lactic acid recovery. This article reviews the development and progress related to lactic acid separation and recovery from fermentation broth. Various aspects are discussed thoroughly, such as the mechanism of lactic acid production through fermentation, the crucial factors that influence the fermentation process, and the separation and recovery process of conventional and advanced lactic acid separation methods. This review's highlight is the recovery of lactic acid by adsorption technique using ion-exchange resins with a brief focus on the potential of in-site separation strategies alongside the important factors that influenced the lactic acid recovery process by ion exchange. Apart from that, other lactic acid separation techniques, such as chemical neutralization, liquid-liquid extraction, membrane separation, and distillation, are also thoroughly reviewed.
Collapse
Affiliation(s)
- Nur Akmal Solehah Din
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| | - Seng Joe Lim
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| | - Mohamad Yusof Maskat
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| | - Sahilah Abd Mutalib
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| | - Nurul Aqilah Mohd Zaini
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia.
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
15
|
Influence of Lactic Acid on Cell Cycle Progressions in Lactobacillus bulgaricus During Batch Culture. Appl Biochem Biotechnol 2020; 193:912-924. [PMID: 33206317 DOI: 10.1007/s12010-020-03459-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/08/2020] [Indexed: 02/02/2023]
Abstract
Lactic acid has been proved to inhibit the proliferation of lactic acid bacteria in the fermentation process. To shed light on the cell cycle alterations in acidic conditions, the cell division of Lactobacillus bulgaricus sp1.1 in batch culture was analyzed directly by implementing of the intracellular fluorescent tracking assay in different pH adjusted by lactic acid. Cell proliferation and cell division were investigated to be negatively controlled by the decrease of pH, and pH 4.1 was the critical condition of downregulating cell division but retains cell culturability. The cell area and cell length in pH 4.1 were examined by using fluorescent labeling, and they reduced to about 29.18-34.89% and 32.67-40% of cells cultured in the unacidified medium, respectively. The DNA replication initiation was undergoing prompted by the low extent of DNA condensation and higher expression of the dnaA gene in this critical pH. The results indicated that the cell cycle progressions of Lactobacillus bulgaricus sp1.1 in acidic conditions were arrested at intracellular biomass accumulation and cell division stage. These findings provide fundamental insight into cell cycle control of the acidic environment in Lactobacillus bulgaricus sp1.1.
Collapse
|
16
|
Chen S, Gong P, Zhang J, Shan Y, Han X, Zhang L. Quantitative analysis of Lactobacillus delbrueckii subsp. bulgaricus cell division and death using fluorescent dye tracking. J Microbiol Methods 2020; 169:105832. [DOI: 10.1016/j.mimet.2020.105832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/29/2019] [Accepted: 01/01/2020] [Indexed: 12/30/2022]
|