1
|
Kandasamy S, Lee KH, Yoo J, Yun J, Kang HB, Kim JE, Oh MH, Ham JS. Whole genome sequencing of Lacticaseibacillus casei KACC92338 strain with strong antioxidant activity, reveals genes and gene clusters of probiotic and antimicrobial potential. Front Microbiol 2024; 15:1458221. [PMID: 39391606 PMCID: PMC11464305 DOI: 10.3389/fmicb.2024.1458221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024] Open
Abstract
Lacticaseibacillus casei KACC92338 was originally isolated from Korean raw milk. The antioxidant activities and protective effect in vitro of this strain were evaluated extensively. The results showed that KACC92338 can tolerate hydrogen peroxide up to 2 mM and cell-free supernatant (CFS) had higher scavenging rates for DPPH, hydroxyl radical, reducing power, and iron chelating activities with 95.61 ± 1.59%, 34.10 ± 1.93%, 2.220 ± 0.82 and 81.06 ± 1.06%, respectively. Meanwhile, the CFS showed a protective effect on yeast cells against 10 mM hydrogen peroxide with a survival rate of 76.05 ± 5.65%. To explore the probiotic potential of KACC92338, whole genome assembly and gene clusters with probiotic properties were further analyzed. The genome size was 3,050,901 bp with a 47.96% GC ratio, and 63 contigs. The genome contains 3,048 genes composed of 2,981 coding sequences and 67 RNAs (including 57 tRNAs +9 rRNAs +1 tmRNA). Average Nucleotide Identity and genome-based taxonomy showed that the KACC92338 genome had close similarity with L. casei strains with 96% ANI. Functional annotation by EggNOG and KEGG revealed the presence of numerous genes putatively involved in carbohydrate- and amino acid-transport and metabolism, genetic information processing, and signaling and cellular processes. Additionally, several genes conferring probiotic characteristics such as tolerance to stress, heat, cold, acid, bile salts, oxidative stress, immunomodulation, and adhesion to intestinal epithelium were identified. Notably absent were acquired antibiotic resistance genes, virulence, and pathogenic factors, that prove KACC92338 is a safe strain. Besides, the defense mechanisms of KACC92338 include six prophage regions and three clustered regularly interspaced short palindromic repeat (CRISPR) arrays as acquired immune systems against mobile elements. Further, the BAGEL4 database determined antimicrobial bacteriocin clusters of class IIb: sakacin-P, Enterolysin_A, sactipeptides, and Enterocin X, which suggests the strain could exhibit a wide range of antimicrobial functions. Together, these findings show that the L. casei KACC92338 strain can be a potential probiotic candidate in producing functional fermented foods-, health care- and skin care products- with antioxidant properties. However, a few more mechanistic studies are necessary on the safety assurance and potential application of the strain as a probiotic agent.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jun-Sang Ham
- Animal Products Research and Development Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Republic of Korea
| |
Collapse
|
2
|
Sonets IV, Solovyev MA, Ivanova VA, Vasiluev PA, Kachalkin AV, Ochkalova SD, Korobeynikov AI, Razin SV, Ulianov SV, Tyakht AV. Hi-C metagenomics facilitate comparative genome analysis of bacteria and yeast from spontaneous beer and cider. Food Microbiol 2024; 121:104520. [PMID: 38637082 DOI: 10.1016/j.fm.2024.104520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 04/20/2024]
Abstract
Sequence-based analysis of fermented foods and beverages' microbiomes offers insights into their impact on taste and consumer health. High-throughput metagenomics provide detailed taxonomic and functional community profiling, but bacterial and yeast genome reconstruction and mobile genetic elements tracking are to be improved. We established a pipeline for exploring fermented foods microbiomes using metagenomics coupled with chromosome conformation capture (Hi-C metagenomics). The approach was applied to analyze a collection of spontaneously fermented beers and ciders (n = 12). The Hi-C reads were used to reconstruct the metagenome-assembled genomes (MAGs) of bacteria and yeasts facilitating subsequent comparative genomic analysis, assembly scaffolding and exploration of "plasmid-bacteria" links. For a subset of beverages, yeasts were isolated and characterized phenotypically. The reconstructed Hi-C MAGs primarily belonged to the Lactobacillaceae family in beers, along with Acetobacteraceae and Enterobacteriaceae in ciders, exhibiting improved quality compared to conventional metagenomic MAGs. Comparative genomic analysis of Lactobacillaceae Hi-C MAGs revealed clustering by niche and suggested genetic determinants of survival and probiotic potential. For Pediococcus damnosus, Hi-C-based networks of contigs enabled linking bacteria with plasmids. Analyzing phylogeny and accessory genes in the context of known reference genomes offered insights into the niche specialization of beer lactobacilli. The subspecies-level diversity of cider Tatumella spp. was disentangled using a Hi-C-based graph. We obtained highly complete yeast Hi-C MAGs primarily represented by Brettanomyces and Saccharomyces, with Hi-C-facilitated chromosome-level genome assembly for the former. Utilizing Hi-C metagenomics to unravel the genomic content of individual species can provide a deeper understanding of the ecological interactions within the food microbiome, aid in bioprospecting beneficial microorganisms, improving quality control and improving innovative fermented products.
Collapse
Affiliation(s)
- Ignat V Sonets
- Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia.
| | - Mikhail A Solovyev
- Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia; Lomonosov Moscow State University, Moscow, Russia
| | | | - Petr A Vasiluev
- Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia; Research Center for Medical Genetics, Moscow, Russia
| | - Aleksey V Kachalkin
- Department of Soil Biology, Faculty of Soil Science, Lomonosov Moscow State University, Moscow, Russia; G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of RAS, Pushchino, Russia
| | - Sofia D Ochkalova
- Applied Genomics Laboratory, SCAMT Institute, ITMO University, Saint Petersburg, 197101, Russia; Center for Algorithmic Biotechnology, Saint Petersburg State University, Saint Petersburg, 199004, Russia
| | - Anton I Korobeynikov
- Center for Algorithmic Biotechnology, Saint Petersburg State University, Saint Petersburg, 199004, Russia; Department of Statistical Modelling, Saint Petersburg State University, Saint Petersburg, 199004, Russia
| | - Sergey V Razin
- Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia; Lomonosov Moscow State University, Moscow, Russia
| | - Sergey V Ulianov
- Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia; Lomonosov Moscow State University, Moscow, Russia
| | - Alexander V Tyakht
- Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
3
|
Dong J, Cui Y, Qu X. Metabolism mechanism of glycosaminoglycans by the gut microbiota: Bacteroides and lactic acid bacteria: A review. Carbohydr Polym 2024; 332:121905. [PMID: 38431412 DOI: 10.1016/j.carbpol.2024.121905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/19/2024] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Glycosaminoglycans (GAGs), as a class of biopolymers, play pivotal roles in various biological metabolisms such as cell signaling, tissue development, cell apoptosis, immune modulation, and growth factor activity. They are mainly present in the colon in free forms, which are essential for maintaining the host's health by regulating the colonization and proliferation of gut microbiota. Therefore, it is important to explain the specific members of the gut microbiota for GAGs' degradation and their enzymatic machinery in vivo. This review provides an outline of GAGs-utilizing entities in the Bacteroides, highlighting their polysaccharide utilization loci (PULs) and the enzymatic machinery involved in chondroitin sulfate (CS) and heparin (Hep)/heparan sulfate (HS). While there are some variations in GAGs' degradation among different genera, we analyze the reputed GAGs' utilization clusters in lactic acid bacteria (LAB), based on recent studies on GAGs' degradation. The enzymatic machinery involved in Hep/HS and CS metabolism within LAB is also discussed. Thus, to elucidate the precise mechanisms utilizing GAGs by diverse gut microbiota will augment our understanding of their effects on human health and contribute to potential therapeutic strategies for diseases.
Collapse
Affiliation(s)
- Jiahuan Dong
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin 150090, China
| | - Yanhua Cui
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin 150090, China.
| | - Xiaojun Qu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China
| |
Collapse
|
4
|
Kim YB, Park J, Lee HG, Song JY, Kim DH, Ji W, Joo SS, Kim M, Jung JY, Kim M, Lee KW. Dietary probiotic Lacticaseibacillus paracasei NSMJ56 modulates gut immunity and microbiota in laying hens. Poult Sci 2024; 103:103505. [PMID: 38359769 PMCID: PMC10877954 DOI: 10.1016/j.psj.2024.103505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/17/2024] Open
Abstract
This study was performed to investigate supplementary effects of probiotic Lacticaseibacillus paracasei NSMJ56 strain on laying performance, egg quality, intestinal histology, antioxidant status, gut immunity and microbiota in laying hens. A total of ninety-six 21-wk-old Hy-Line Brown laying hens were randomly subjected to one of 2 dietary treatments: a control group fed a non-supplemented diet, or a probiotic group fed with a diet supplemented with 1 g of Lacticaseibacillus paracasei NSMJ56 (5 × 108 CFU/kg of diet). The trial lasted for 4 wk. Egg weight was increased (P < 0.05) in laying hens fed probiotic-fed diet compared with the control group. Dietary probiotics did not affect egg quality except for Haugh unit, which was improved (P < 0.05) in the probiotic-fed group. Neither jejunal histology nor cecal short-chain fatty acids were affected by dietary treatments. Dietary probiotics increased the activity of catalase compared with the control group. Flow cytometry analysis revealed that dietary probiotics elevated the CD4+ T cells, but not CD8+ T cells, in jejunal lamina propria. Based on the LEfSe analysis at the phylum and genus levels, Erysipelotrichales, Erysipelotrichia, Flintibater, Dielma, Hespellia, Coprobacter, Roseburia, Anaerotignum, and Coprococcus were enriched in the probiotic group compared with the control group. Taken together, our study showed that dietary probiotics could be used to improve some parameters associated with egg freshness and antioxidant capacity, and to partially alter T cell population and microbial community in laying hens.
Collapse
Affiliation(s)
- Yoo Bhin Kim
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, South Korea; Animal Nutrition and Physiology Division, National Institute of Animal Science, Rural Development Administration (NIAS-RDA), Wanju 55365, South Korea
| | - Jina Park
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, South Korea
| | - Hyun-Gwan Lee
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, South Korea
| | - Ju-Yong Song
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, South Korea
| | - Da-Hye Kim
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, South Korea
| | - Woonhak Ji
- Department of Animal Science, College of Natural Resource & Life Sciences, Pusan National University, Miryang 50463, South Korea
| | - Sang Seok Joo
- Department of Animal Science, College of Natural Resource & Life Sciences, Pusan National University, Miryang 50463, South Korea
| | - Myunghoo Kim
- Department of Animal Science, College of Natural Resource & Life Sciences, Pusan National University, Miryang 50463, South Korea; Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, South Korea; Institute for Future Earth, JYS Institute for Basic Science, Pusan National University, Busan 46241, South Korea
| | - Ji Young Jung
- Biological Resources Research Department, Nakdonggang National Institute of Biological Resources (NNIBR), Sangju 37242, South Korea
| | - Minji Kim
- Animal Nutrition and Physiology Division, National Institute of Animal Science, Rural Development Administration (NIAS-RDA), Wanju 55365, South Korea
| | - Kyung-Woo Lee
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, South Korea.
| |
Collapse
|
5
|
Barreto Pinilla CM, Guzman Escudero F, Torres Silva E Alves A, Spadoti LM, Brandelli A. Draft Genome Sequence and Comparative Genome Analysis Reveal Potential Functional Properties in Lacticaseibacillus paracasei ItalPN16. Curr Microbiol 2023; 80:399. [PMID: 37910267 DOI: 10.1007/s00284-023-03515-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/06/2023] [Indexed: 11/03/2023]
Abstract
Nowadays, there is a great interest on rapid and effective methods for initial identification of probiotic bacteria. In this work, potential probiotic features of the lactic acid bacteria strain ItalPN16 isolated from a traditional Brazilian cheese were studied using bioinformatic tools. The complete genome sequence was obtained, and in silico analyses were carried out to identify the strain and its potential probiotic properties. The sequenced genome (3.02 Mb) presented 3126 protein-coding sequences distributed on 244 SEED subsystems, classifying the strain as nomadic lactobacilli. Phylogenetic and ANI analyses allowed to locate the ItalPN16 strain as a member of the Lacticaseibacillus paracasei group, due to the highest number of orthologous genes in common with reference L. paracasei strains (>98%). In silico analyses revealed the presence of CDSs related to microbe-host interactions, such as adhesion proteins and exopolysaccharide biosynthesis genes. The comparative analysis reveals the presence of a strain-specific glycosyl transferases, compared with other three L. paracasei strains and a high level of protein expression (92%) with the probiotic L. paracasei BL29. The results obtained here indicated interesting probiotic features of the strain L. paracasei ItalPN16 that could favor a future application in the food industry.
Collapse
Affiliation(s)
| | | | - Adriana Torres Silva E Alves
- Dairy Technology Center (TECNOLAT) of the Food Technology Institute (ITAL), Campinas, São Paulo, 13070-178, Brazil
| | - Leila Maria Spadoti
- Dairy Technology Center (TECNOLAT) of the Food Technology Institute (ITAL), Campinas, São Paulo, 13070-178, Brazil
| | - Adriano Brandelli
- Laboratory of Applied Microbiology and Biochemistry, Institute of Food Science and Technology (ICTA), Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, 91501-970, Brazil
| |
Collapse
|
6
|
Fontana A, Falasconi I, Bellassi P, Fanfoni E, Puglisi E, Morelli L. Comparative Genomics of Halobacterium salinarum Strains Isolated from Salted Foods Reveals Protechnological Genes for Food Applications. Microorganisms 2023; 11:microorganisms11030587. [PMID: 36985161 PMCID: PMC10058572 DOI: 10.3390/microorganisms11030587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Archaeal cell factories are becoming of great interest given their ability to produce a broad range of value-added compounds. Moreover, the Archaea domain often includes extremophilic microorganisms, facilitating their cultivation at the industrial level under nonsterile conditions. Halophilic archaea are studied for their ability to grow in environments with high NaCl concentrations. In this study, nine strains of Halobacterium salinarum were isolated from three different types of salted food, sausage casings, salted codfish, and bacon, and their genomes were sequenced along with the genome of the collection strain CECT 395. A comparative genomic analysis was performed on these newly sequenced genomes and the publicly available ones for a total of 19 H. salinarum strains. We elucidated the presence of unique gene clusters of the species in relation to the different ecological niches of isolation (salted foods, animal hides, and solar saltern sediments). Moreover, genome mining at the single-strain level highlighted the metabolic potential of H. salinarum UC4242, which revealed the presence of different protechnological genes (vitamins and myo-inositol biosynthetic pathways, aroma- and texture-related features, and antimicrobial compounds). Despite the presence of genes of potential concern (e.g., those involved in biogenic amine production), all the food isolates presented archaeocin-related genes (halocin-C8 and sactipeptides).
Collapse
Affiliation(s)
- Alessandra Fontana
- Department for Sustainable Food Process—DiSTAS, Università Cattolica del Sacro Cuore, Via Bissolati, 74, 26100 Cremona, Italy
- Correspondence: (A.F.); (L.M.)
| | - Irene Falasconi
- Department for Sustainable Food Process—DiSTAS, Università Cattolica del Sacro Cuore, Via Bissolati, 74, 26100 Cremona, Italy
| | - Paolo Bellassi
- Department for Sustainable Food Process—DiSTAS, Università Cattolica del Sacro Cuore, Via Bissolati, 74, 26100 Cremona, Italy
| | - Elisabetta Fanfoni
- Department for Sustainable Food Process—DiSTAS, Università Cattolica del Sacro Cuore, Via Bissolati, 74, 26100 Cremona, Italy
| | - Edoardo Puglisi
- Department for Sustainable Food Process—DiSTAS, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy
| | - Lorenzo Morelli
- Department for Sustainable Food Process—DiSTAS, Università Cattolica del Sacro Cuore, Via Bissolati, 74, 26100 Cremona, Italy
- Department for Sustainable Food Process—DiSTAS, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy
- Correspondence: (A.F.); (L.M.)
| |
Collapse
|
7
|
Kiousi DE, Efstathiou C, Tegopoulos K, Mantzourani I, Alexopoulos A, Plessas S, Kolovos P, Koffa M, Galanis A. Genomic Insight Into Lacticaseibacillus paracasei SP5, Reveals Genes and Gene Clusters of Probiotic Interest and Biotechnological Potential. Front Microbiol 2022; 13:922689. [PMID: 35783439 PMCID: PMC9244547 DOI: 10.3389/fmicb.2022.922689] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/16/2022] [Indexed: 12/22/2022] Open
Abstract
The Lacticaseibacillus paracasei species is comprised by nomadic bacteria inhabiting a wide variety of ecological niches, from fermented foodstuffs to host-associated microenvironments. Lc. paracasei SP5 is a novel strain, originally isolated from kefir grains that presents desirable probiotic and biotechnological attributes. In this study, we applied genomic tools to further characterize the probiotic and biotechnological potential of the strain. Firstly, whole genome sequencing and assembly, were performed to construct the chromosome map of the strain and determine its genomic stability. Lc. paracasei SP5 carriers several insertion sequences, however, no plasmids or mobile elements were detected. Furthermore, phylogenomic and comparative genomic analyses were utilized to study the nomadic attributes of the strain, and more specifically, its metabolic capacity and ability to withstand environmental stresses imposed during food processing and passage through the gastrointestinal (GI) tract. More specifically, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Carbohydrate-active enzyme (CAZymes) analyses provided evidence for the ability of the stain to utilize an array of carbohydrates as growth substrates. Consequently, genes for heat, cold, osmotic shock, acidic pH, and bile salt tolerance were annotated. Importantly bioinformatic analysis showed that the novel strain does not harbor acquired antimicrobial resistance genes nor virulence factors, in agreement with previous experimental data. Putative bacteriocin biosynthesis clusters were identified using BAGEL4, suggesting its potential antimicrobial activity. Concerning microbe-host interactions, adhesins, moonlighting proteins, exopolysaccharide (EPS) biosynthesis genes and pilins mediating the adhesive phenotype were, also, pinpointed in the genome of Lc. paracasei SP5. Validation of this phenotype was performed by employing a microbiological method and confocal microscopy. Conclusively, Lc. paracasei SP5 harbors genes necessary for the manifestation of the probiotic character and application in the food industry. Upcoming studies will focus on the mechanisms of action of the novel strain at multiple levels.
Collapse
Affiliation(s)
- Despoina Eugenia Kiousi
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - Christos Efstathiou
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - Konstantinos Tegopoulos
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ioanna Mantzourani
- Department of Agricultural Development, Democritus University of Thrace, Orestiada, Greece
| | - Athanasios Alexopoulos
- Department of Agricultural Development, Democritus University of Thrace, Orestiada, Greece
| | - Stavros Plessas
- Department of Agricultural Development, Democritus University of Thrace, Orestiada, Greece
- *Correspondence: Stavros Plessas,
| | - Petros Kolovos
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - Maria Koffa
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - Alex Galanis
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
- Alex Galanis,
| |
Collapse
|
8
|
Variability of Genetic Characters Associated with Probiotic Functions in Lacticaseibacillus Species. Microorganisms 2022; 10:microorganisms10051023. [PMID: 35630465 PMCID: PMC9145642 DOI: 10.3390/microorganisms10051023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022] Open
Abstract
This study aims to explore the intra-species distribution of genetic characteristics that favor the persistence in the gastrointestinal tract (GIT) and host interaction of bacteria belonging to species of the Lacticaseibacillus genus. These bacterial species comprise commercial probiotics with the widest use among consumers and strains naturally occurring in GIT and in fermented food. Since little is known about the distribution of genetic traits for adhesion capacity, polysaccharide production, biofilm formation, and utilization of substrates critically important for survival in GIT, which influence probiotic characteristics, a list of genetic determinants possibly involved in such functions was created by a search for specific genes involved in the above aspects in the genome of the extensively characterized probiotic L. rhamnosus GG. Eighty-two gene loci were retrieved and their presence and variability in other Lacticaseibacillus spp. genomes were assessed by alignment with the publicly available fully annotated genome sequences of L. casei, L. paracasei, L. rhamnosus, and L. zeae. Forty-nine of these genes were found to be absent in some strains or species. The remaining genes were conserved and covered almost all the functions considered, indicating that all strains of the genus may exert some probiotic effects. Among the variable loci, a taurine utilization operon and a α-L-fucosidase were examined for the presence/absence in 26 strains isolated from infant feces by PCR-based tests. Results were variable among the isolates, though their common origin indicated the capacity to survive in the intestinal niche. This study indicated that the capacity to exert probiotic actions of Lacticaseibacillus spp. depends on a conserved set of genes but variable genetic factors, whose role is only in part elucidated, are more numerous and can explain the enhanced probiotic characteristics for some strains. The selection of the most promising probiotic candidates to be used in food is feasible by analyzing the presence/absence of a set of variable traits.
Collapse
|
9
|
Tsuchihashi H, Ichikawa A, Takeda M, Koizumi A, Mizoguchi C, Ishida T, Kimura K. Genetic diversity of Lactobacillus delbrueckii isolated from raw milk in Hokkaido, Japan. J Dairy Sci 2021; 105:2082-2093. [PMID: 34955279 DOI: 10.3168/jds.2021-21135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/03/2021] [Indexed: 11/19/2022]
Abstract
Lactic acid bacteria (LAB) play important roles in acid production and flavor formation in fermented dairy products. Lactic acid bacteria strains with distinct characteristics confer unique features to products. Diverse LAB have been identified in raw milk and traditional fermented milk prepared from raw milk. However, little is known about LAB in raw milk in Japan. To preserve diverse LAB as potential starters or probiotics for future use, we have isolated and identified various kinds of LAB from raw milk produced in Japan. In this study, we focused on Lactobacillus delbrueckii, one of the most important species in the dairy industry. We identified L. delbrueckii subspecies isolated from raw milk in Hokkaido, Japan, by analyzing intraspecific diversity using 4 distinct methods, hsp60 cluster analysis, multilocus sequence analysis, core-genome analysis, and whole-genome analysis based on average nucleotide identity. The subspecies distribution and a new dominant subset of L. delbrueckii from raw milk in Japan were revealed. The discovery of new strains with different genotypes is important for understanding the geographic distribution and characteristics of the bacteria and further their use as a microbial resource with the potential to express unconventional flavors and functionalities. The strains identified in this study may have practical applications in the development of fermented dairy products.
Collapse
Affiliation(s)
- H Tsuchihashi
- Basic Microbiology Research Department, Food Microbiology Research Laboratories, R&D Division, Meiji Co. Ltd., Hachioji, Tokyo 192-0919, Japan.
| | - A Ichikawa
- Basic Microbiology Research Department, Food Microbiology Research Laboratories, R&D Division, Meiji Co. Ltd., Hachioji, Tokyo 192-0919, Japan
| | - M Takeda
- Basic Microbiology Research Department, Food Microbiology Research Laboratories, R&D Division, Meiji Co. Ltd., Hachioji, Tokyo 192-0919, Japan
| | - A Koizumi
- Basic Microbiology Research Department, Food Microbiology Research Laboratories, R&D Division, Meiji Co. Ltd., Hachioji, Tokyo 192-0919, Japan
| | - C Mizoguchi
- Applied Microbiology Research Department, Food Microbiology Research Laboratories, R&D Division, Meiji Co. Ltd., Hachioji, Tokyo 192-0919, Japan
| | - T Ishida
- Basic Microbiology Research Department, Food Microbiology Research Laboratories, R&D Division, Meiji Co. Ltd., Hachioji, Tokyo 192-0919, Japan
| | - K Kimura
- Basic Microbiology Research Department, Food Microbiology Research Laboratories, R&D Division, Meiji Co. Ltd., Hachioji, Tokyo 192-0919, Japan
| |
Collapse
|
10
|
Ren Y, Zhang Y, Li X, Gao D, Sun Y, Ping W, Ge J. Bacteriocin production and inhibition of Bacillus subtilis by Lactobacillus paracasei HD1.7 in an indirect coculture system. Prep Biochem Biotechnol 2021; 52:783-788. [PMID: 34694193 DOI: 10.1080/10826068.2021.1995412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A broad-spectrum antimicrobial peptide named Paracin 1.7 was produced by Lactobacillus paracasei HD1.7, which was isolated from Chinese sauerkraut juice. In this study, the influence of cocultivation on the communication mechanism of L. paracasei HD1.7 and Bacillus subtilis was investigated. The two bacterial strains were grown in monoculture and indirect coculture, and the growth of both bacteria and bacteriocin production as well as the transcriptional level of luxS in L. paracasei HD1.7 and spo0A in B. subtilis were monitored. Bacteriocin production and cell numbers were increased significantly when L. paracasei HD1.7 cells were indirectly cocultured with B. subtilis, and bacteriocin-producing L. paracasei HD1.7 can prevent the growth and sporulation of B. subtilis. After indirect coculture with B. subtilis, the expression of luxS in L. paracasei HD1.7 increased in the exponential growth phase and decreased in the stationary phase compared to monoculture. The expression of spo0A in B. subtilis dropped in the indirect coculture compared to the monoculture. It indicate that the upregulation of luxS is due to a response to a secreted compound produced by B. subtilis. The results show L. paracasei HD1.7 has an amensalism on B. subtilis, while B. subtilis has a commensalism on L. paracasei HD1.7.
Collapse
Affiliation(s)
- Yanxin Ren
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Yan Zhang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Xinglin Li
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Dongni Gao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Yanyang Sun
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Wenxiang Ping
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Jingping Ge
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, China
| |
Collapse
|
11
|
Health-Promoting Properties of Lacticaseibacillus paracasei: A Focus on Kefir Isolates and Exopolysaccharide-Producing Strains. Foods 2021; 10:foods10102239. [PMID: 34681288 PMCID: PMC8534925 DOI: 10.3390/foods10102239] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 01/13/2023] Open
Abstract
Among artisanal fermented beverages, kefir (fermented milk drink) and water kefir (fermented nondairy beverage) are of special interest because their grains can be considered natural reservoirs of safe and potentially probiotic strains. In the last years, several reports on Lacticaseibacillus paracasei (formerly Lactobacillus paracasei) isolated from both artisanal fermented beverages were published focusing on their health-promoting properties. Although this is not the predominant species in kefir or water kefir, it may contribute to the health benefits associated to the consumption of the fermented beverage. Since the classification of L. paracasei has been a difficult task, the selection of an adequate method for identification, which is essential to avoid mislabeling in products, publications, and some publicly available DNA sequences, is discussed in the present work. The last findings in health promoting properties of L. paracasei and the bioactive compounds are described and compared to strains isolated from kefir, providing a special focus on exopolysaccharides as effector molecules. The knowledge of the state of the art of Lacticaseibacillus paracasei from kefir and water kefir can help to understand the contribution of these microorganisms to the health benefits of artisanal beverages as well as to discover new probiotic strains for applications in food industry.
Collapse
|
12
|
Cui Y, Qu X. Genetic mechanisms of prebiotic carbohydrate metabolism in lactic acid bacteria: Emphasis on Lacticaseibacillus casei and Lacticaseibacillus paracasei as flexible, diverse and outstanding prebiotic carbohydrate starters. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
13
|
Levante A, Lazzi C, Vatsellas G, Chatzopoulos D, Dionellis VS, Makrythanasis P, Neviani E, Folli C. Genome Sequencing of five Lacticaseibacillus Strains and Analysis of Type I and II Toxin-Antitoxin System Distribution. Microorganisms 2021; 9:microorganisms9030648. [PMID: 33800997 PMCID: PMC8003834 DOI: 10.3390/microorganisms9030648] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/10/2021] [Accepted: 03/18/2021] [Indexed: 11/16/2022] Open
Abstract
The analysis of bacterial genomes is a potent tool to investigate the distribution of specific traits related to the ability of surviving in particular environments. Among the traits associated with the adaptation to hostile conditions, toxin–antitoxin (TA) systems have recently gained attention in lactic acid bacteria. In this work, genome sequences of Lacticaseibacillus strains of dairy origin were compared, focusing on the distribution of type I TA systems homologous to Lpt/RNAII and of the most common type II TA systems. A high number of TA systems have been identified spread in all the analyzed strains, with type I TA systems mainly located on plasmid DNA. The type II TA systems identified in these strains highlight the diversity of encoded toxins and antitoxins and their organization. This study opens future perspectives on the use of genomic data as a resource for the study of TA systems distribution and prevalence in microorganisms of industrial relevance.
Collapse
Affiliation(s)
- Alessia Levante
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (C.L.); (E.N.)
- Correspondence: (A.L.); (C.F.); Tel.: +39-0521-906524 (A.L.); +39-0521-905174 (C.F.)
| | - Camilla Lazzi
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (C.L.); (E.N.)
| | - Giannis Vatsellas
- Biomedical Research Foundation of the Academy of Athens (BRFAA), 115 27 Athens, Greece; (G.V.); (D.C.); (V.S.D.); (P.M.)
| | - Dimitris Chatzopoulos
- Biomedical Research Foundation of the Academy of Athens (BRFAA), 115 27 Athens, Greece; (G.V.); (D.C.); (V.S.D.); (P.M.)
| | - Vasilis S. Dionellis
- Biomedical Research Foundation of the Academy of Athens (BRFAA), 115 27 Athens, Greece; (G.V.); (D.C.); (V.S.D.); (P.M.)
- Department of Molecular Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Periklis Makrythanasis
- Biomedical Research Foundation of the Academy of Athens (BRFAA), 115 27 Athens, Greece; (G.V.); (D.C.); (V.S.D.); (P.M.)
| | - Erasmo Neviani
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (C.L.); (E.N.)
| | - Claudia Folli
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (C.L.); (E.N.)
- Correspondence: (A.L.); (C.F.); Tel.: +39-0521-906524 (A.L.); +39-0521-905174 (C.F.)
| |
Collapse
|
14
|
Bourdichon F, Patrone V, Fontana A, Milani G, Morelli L. Safety demonstration of a microbial species for use in the food chain: Weissella confusa. Int J Food Microbiol 2020; 339:109028. [PMID: 33352462 DOI: 10.1016/j.ijfoodmicro.2020.109028] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023]
Abstract
Due to their traditional use in food fermentation process for centuries, microbial food cultures are considered to have a safe history of use. A specific microbial risk assessment is therefore rarely conducted for fermented foods and their food cultures, inoculated or naturally present. Some of those food cultures have been also considered for their potential health effect as probiotic strain candidates, for which a specific safety demonstration process has been proposed by a joint expert report of FAO and WHO. The European Food Safety Authority (EFSA) Biohazard panel also provides an approach for evaluating the safety of a strain to be added in the food chain, the Qualified Presumption of Safety (QPS). Weissella confusa, former taxon Lactobacillus confusus, is a food culture characterized in the fermentation process of sourdough. Some strains have been recently proposed for their probiotic potential. The species is also documented in recent infection case reports. It is considered nevertheless to be opportunistic as underlying factors have been suggested to explain the infection. We report here the microbial risk assessment of the species, by studying a collection of 26 food and 17 clinical isolates of Weissella confusa. The phenotypic study, genomic characterization and bibliographical survey will allow us to conclude about the safety of the species and confirm its use for food fermentation and consider specific strains for demonstration of their respective health effects as probiotic candidates.
Collapse
Affiliation(s)
- François Bourdichon
- Food Safety, Microbiology, Hygiene, 74 Boulevard Blossac, 86100 Châtellerault, France; Facoltà di Scienze Agrarie, Alimentarie Ambientali, Università Cattolica del Sacro Cuore, Piacenza-Cremona, Italy.
| | - Vania Patrone
- Facoltà di Scienze Agrarie, Alimentarie Ambientali, Università Cattolica del Sacro Cuore, Piacenza-Cremona, Italy
| | - Alessandra Fontana
- Facoltà di Scienze Agrarie, Alimentarie Ambientali, Università Cattolica del Sacro Cuore, Piacenza-Cremona, Italy
| | - Giovanni Milani
- Facoltà di Scienze Agrarie, Alimentarie Ambientali, Università Cattolica del Sacro Cuore, Piacenza-Cremona, Italy
| | - Lorenzo Morelli
- Facoltà di Scienze Agrarie, Alimentarie Ambientali, Università Cattolica del Sacro Cuore, Piacenza-Cremona, Italy
| |
Collapse
|
15
|
Hu T, Cui Y, Zhang Y, Qu X, Zhao C. Genome Analysis and Physiological Characterization of Four Streptococcus thermophilus Strains Isolated From Chinese Traditional Fermented Milk. Front Microbiol 2020; 11:184. [PMID: 32184766 PMCID: PMC7059025 DOI: 10.3389/fmicb.2020.00184] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 01/24/2020] [Indexed: 11/13/2022] Open
Abstract
Streptococcus thermophilus plays important roles in the dairy industry and is widely used as a dairy starter in the production of fermented dairy products. The genomes of S. thermophilus strains CS5, CS9, CS18, and CS20 from fermented milk in China were sequenced and used for biodiversity analysis. In the present study, the phylogenetic analysis of all 34 S. thermophilus genomes publicly available including these four strains reveals that the phylogenetic reconstruction does not match geographic distribution as strains isolated from the same continent are not even clustered on the nearby branches. The core and variable genes were also identified, which vary among strains from 0 to 202. CS9 strain contained 127 unique genes from a variety of distantly related species. It was speculated that CS9 had undergone horizontal gene transfer (HGT) during the long evolutionary process. The safety evaluation of these four strains indicated that none of them contains antibiotic resistance genes and that they are all sensitive to multiple antibiotics. In addition, the strains do not contain any pathogenic virulence factors or plasmids and thus can be considered safe. Furthermore, these strains were investigated in terms of their technological properties including milk acidification, exopolysaccharide (EPS) and γ-aminobutyric acid (GABA) production, and in vitro survival capacity in the gastrointestinal tract. CS9 possesses a special eps gene cluster containing significant traces of HGT, while the eps gene clusters of CS5, CS18, and CS20 are almost the same. The monosaccharide compositional analysis indicated that crude EPS-CS5, EPS-CS9, EPS-CS18, and EPS-CS20 contain similar monosaccharide compositions with different ratios. Furthermore, CS9 was one of a few GABA-producing strains that could ferment glutamate to produce GABA, which is beneficial for improving the acid tolerance of the strain. CS18 has the most potential for the production of fermented food among these four strains because of its fast growth rate, rapid acidifying capacity, and stronger acid and bile salt resistance capacity. This study focused on the genome analysis of the four new S. thermophilus strains to investigate the diversity of strains and provides a reference for selecting excellent strains by use of the genome data.
Collapse
Affiliation(s)
- Tong Hu
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Yanhua Cui
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Yishuang Zhang
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Xiaojun Qu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, China
| | - Chunyu Zhao
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
16
|
Seol D, Jhang SY, Kim H, Kim SY, Kwak HS, Kim SH, Lee W, Park S, Kim H, Cho S, Kwak W. Accurate and Strict Identification of Probiotic Species Based on Coverage of Whole-Metagenome Shotgun Sequencing Data. Front Microbiol 2019; 10:1683. [PMID: 31440213 PMCID: PMC6693478 DOI: 10.3389/fmicb.2019.01683] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 07/08/2019] [Indexed: 11/13/2022] Open
Abstract
Identifying the microbes present in probiotic products is an important issue in product quality control and public health. The most common methods used to identify genera containing species that produce lactic acid are matrix-assisted laser desorption/ionization–time of flight mass spectrometry (MALDI-TOF MS) and 16S rRNA sequence analysis. However, the high cost of operation, difficulty in distinguishing between similar species, and limitations of the current sequencing technologies have made it difficult to obtain accurate results using these tools. To overcome these problems, a whole-genome shotgun sequencing approach has been developed along with various metagenomic classification tools. Widely used tools include the marker gene and k-mer methods, but their inevitable false-positives (FPs) hampered an accurate analysis. We therefore, designed a coverage-based pipeline to reduce the FP problem and to achieve a more reliable identification of species. The coverage-based pipeline described here not only shows higher accuracy for the detection of species and proportion analysis, based on mapping depth, but can be applied regardless of the sequencing platform. We believe that the coverage-based pipeline described in this study can provide appropriate support for probiotic quality control, addressing current labeling issues.
Collapse
Affiliation(s)
- Donghyeok Seol
- C&K Genomics, Songpa-gu, South Korea.,Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - So Yun Jhang
- C&K Genomics, Songpa-gu, South Korea.,Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, South Korea
| | - Hyaekang Kim
- C&K Genomics, Songpa-gu, South Korea.,Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Se-Young Kim
- R&D Center, CTCBIO, Inc., Hwaseong-si, South Korea
| | - Hyo-Sun Kwak
- Division of Microbiology, Ministry of Food and Drug Safety, Cheongju-si, South Korea
| | - Soon Han Kim
- Division of Microbiology, Ministry of Food and Drug Safety, Cheongju-si, South Korea
| | - Woojung Lee
- Division of Microbiology, Ministry of Food and Drug Safety, Cheongju-si, South Korea
| | - Sewook Park
- Division of Microbiology, Ministry of Food and Drug Safety, Cheongju-si, South Korea
| | - Heebal Kim
- C&K Genomics, Songpa-gu, South Korea.,Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea.,Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, South Korea
| | - Seoae Cho
- C&K Genomics, Songpa-gu, South Korea
| | | |
Collapse
|