1
|
Reyes-Sosa MB, Valle-Gough R, Ponce-Caballero MDC, Arena-Ortiz ML. Bacterial richness assessment in water and sediments in the northern coast of the Yucatan Peninsula. Rev Argent Microbiol 2024:S0325-7541(24)00130-5. [PMID: 39643486 DOI: 10.1016/j.ram.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 12/09/2024] Open
Abstract
Given the importance of the coastal environments and the multiple ecological services that they provide, it is important to explore and understand the interactions that occur within them. The microbiome is a key factor for the understanding of the dynamics of these fragile sites. A metagenomic study based on the profiling of the 16S ribosomal gene was carried out in order to assess the bacterial diversity present in the northern coastal zone of the Yucatan Peninsula. The results showed that water and sediment samples share some similarities regarding the bacterial genera found, only differing in the quantitative part. Through a PCO (principal coordinates) analysis clear differences between sediment and water samples could be observed. The highest relative diversity was found in wetland and lagoon sediment samples, respectively. It was observed that 3-8% of the total sequence reads belonged to opportunistic genera such as: Vibrio in the sea samples and Capnocytophaga in the other environments. Salinity and pH were the factors which contributed the most to the differences among the communities in the various environments in the coastal zone. There is an important similarity in the sediments across the different environments within the studied coastal zone. The data presented herein contribute to setting a baseline for research in the coastal region of the Yucatan Peninsula.
Collapse
Affiliation(s)
| | - Raúl Valle-Gough
- Instituto de Ciencias Agrícolas, UABC, Ejido Nuevo León, Mexicali, Baja California, México
| | | | - María Leticia Arena-Ortiz
- Unidad de Ciencias y Tecnología de la UNAM en Yucatán, Parque Científico y Tecnológico de Yucatán, Mérida, Yucatán, México.
| |
Collapse
|
2
|
Zheng Y, Su Z, Liu D, Huang B, Mu Q, Li Y, Wen D. Metagenomics reveals the influence of small microplastics on microbial communities in coastal sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169982. [PMID: 38215846 DOI: 10.1016/j.scitotenv.2024.169982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
The ecological impact of microplastics (MPs) in coastal environments has been widely studied. However, the influence of small microplastics in the actual environment is often overlooked due to measurement challenges. In this study, Hangzhou Bay (HZB), China, was selected as our study area. High-throughput metagenomic sequencing and micro-Raman spectrometry were employed to analyze the microbial communities and microplastics of coastal sediment samples, respectively. We aimed to explore the ecological impact of MPs with small sizes (≤ 100 μm) in real coastal sediment environments. Our results revealed that as microplastic size decreased, the environmental behavior of MPs underwent alterations. In the coastal sediments, no significant correlations were observed between the detected MPs and the whole microbial communities, but small MPs posed potential hazards to eukaryotic communities. Moreover, these small MPs were more prone to microbial degradation and significantly affected carbon metabolism in the habitat. This study is the first to reveal the comprehensive impact of small MPs on microbial communities in a real coastal sediment environment.
Collapse
Affiliation(s)
- Yuhan Zheng
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zhiguo Su
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Dantong Liu
- China Aviation Planning and Design Institute(Group)CO., LTD, Beijing 100120, China
| | - Bei Huang
- Marine Ecological Environmental Monitoring Center of Zhejiang Province, Zhoushan 316021, China
| | - Qinglin Mu
- Marine Ecological Environmental Monitoring Center of Zhejiang Province, Zhoushan 316021, China
| | - Yunong Li
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Donghui Wen
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
3
|
Bao Y, Ruan Y, Wu J, Wang WX, Leung KMY, Lee PKH. Metagenomics-Based Microbial Ecological Community Threshold and Indicators of Anthropogenic Disturbances in Estuarine Sediments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:780-794. [PMID: 38118133 DOI: 10.1021/acs.est.3c08076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Assessing the impacts of cumulative anthropogenic disturbances on estuarine ecosystem health is challenging. Using spatially distributed sediments from the Pearl River Estuary (PRE) in southern China, which are significantly influenced by anthropogenic activities, we demonstrated that metagenomics-based surveillance of benthic microbial communities is a robust approach to assess anthropogenic impacts on estuarine benthic ecosystems. Correlational and threshold analyses between microbial compositions and environmental conditions indicated that anthropogenic disturbances in the PRE sediments drove the taxonomic and functional variations in the benthic microbial communities. An ecological community threshold of anthropogenic disturbances was identified, which delineated the PRE sediments into two groups (H and L) with distinct taxa and functional traits. Group H, located nearshore and subjected to a higher level of anthropogenic disturbances, was enriched with pollutant degraders, putative human pathogens, fecal pollution indicators, and functional traits related to stress tolerance. In contrast, Group L, located offshore and subjected to a lower level of anthropogenic disturbances, was enriched with halotolerant and oligotrophic taxa and functional traits related to growth and resource acquisition. The machine learning random forest model identified a number of taxonomic and functional indicators that could differentiate PRE sediments between Groups H and L. The identified ecological community threshold and microbial indicators highlight the utility of metagenomics-based microbial surveillance in assessing the adverse impacts of anthropogenic disturbances in estuarine sediments, which can assist environmental management to better protect ecosystem health.
Collapse
Affiliation(s)
- Yingyu Bao
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Jiaxue Wu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Patrick K H Lee
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
4
|
Dai T, Su Z, Zeng Y, Bao Y, Zheng Y, Guo H, Yang Y, Wen D. Wastewater treatment plant effluent discharge decreases bacterial community diversity and network complexity in urbanized coastal sediment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121122. [PMID: 36681378 DOI: 10.1016/j.envpol.2023.121122] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/03/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
The wastewater treatment plant (WWTP) effluent discharge affects the microorganisms in the receiving water bodies. Despite the ecological significance of microbial communities in pollutant degradation and element cycling, how the community diversity is affected by effluent remains obscure. Here, we compared the sediment bacterial communities exposed to different intensities of WWTP effluent discharge in Hangzhou Bay, China: i) a severely polluted area that receives effluent from an industrial WWTP, ii) a moderately polluted area that receives effluent from a municipal WWTP, and iii) less affected area that inner the bay. We found that the sediment bacterial diversity decreased dramatically with pollution levels of inorganic nutrients, heavy metals, and organic halogens. Microbial community assembly model analysis revealed increased environmental selection and decreased species migration rate in the severely polluted area, resulting in high phylogenetic clustering of the bacterial communities. The ecological networks were less complex in the two WWTP effluent receiving areas than in the inner bay area, as suggested by the smaller network size and lower modularity. Fewer negative network associations were detected in the severely (6.7%) and moderately (8.3%) polluted areas than in the less affected area (16.7%), indicating more collaborative inter-species behaviors are required under stressful environmental conditions. Overall, our results reveal the fundamental impacts of WWTP effluents on the ecological processes shaping coastal microbial communities and point to the potential adverse effects of diversity loss on ecosystem functions.
Collapse
Affiliation(s)
- Tianjiao Dai
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, China; College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Zhiguo Su
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; School of Environment, Tsinghua University, Beijing, China
| | - Yufei Zeng
- School of Environment, Tsinghua University, Beijing, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Yingyu Bao
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Yuhan Zheng
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Huaming Guo
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, China
| | - Yunfeng Yang
- School of Environment, Tsinghua University, Beijing, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China.
| | - Donghui Wen
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
5
|
Sun H, Chen Q, Qu C, Tian Y, Song J, Liu Z, Guo J. Occurrence of OCPs & PCBs and their effects on multitrophic biological communities in riparian groundwater of the Beiluo River, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114713. [PMID: 36870171 DOI: 10.1016/j.ecoenv.2023.114713] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Persistent Organic Pollutants (POPs) may exert adverse effects on human and ecosystem health. However, as an ecologically fragile zone with strong interaction between river and groundwater, the POPs pollution in the riparian zone has received little attention. The goal of this research is to examine the concentrations, spatial distribution, potential ecological risks, and biological effects of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in the riparian groundwater of the Beiluo River, China. The results showed that the pollution level and ecological risk of OCPs in riparian groundwater of the Beiluo River were higher than PCBs. The presence of PCBs (Penta-CBs, Hexa-CBs) and CHLs, respectively, may have reduced the richness of bacteria (Firmicutes) and fungi (Ascomycota). Furthermore, the richness and Shannon's diversity index of algae (Chrysophyceae and Bacillariophyta) decreased, which could be linked to the presence of OCPs (DDTs, CHLs, DRINs), and PCBs (Penta-CBs, Hepta-CBs), while for metazoans (Arthropoda) the tendency was reversed, presumably as a result of SULPHs pollution. In the network analysis, core species belonging to bacteria (Proteobacteria), fungi (Ascomycota), and algae (Bacillariophyta) played essential roles in maintaining community function. Burkholderiaceae and Bradyrhizobium can be considered biological indicators of PCBs pollution in the Beiluo River. Note that the core species of interaction network, playing a fundamental role in community interactions, are strongly affected by POPs pollutants. This work provides insights into the functions of multitrophic biological communities in maintaining the stability of riparian ecosystems through the response of core species to riparian groundwater POPs contamination.
Collapse
Affiliation(s)
- Haotian Sun
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Qiqi Chen
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Chengkai Qu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Yulu Tian
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Jinxi Song
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Ziteng Liu
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China.
| |
Collapse
|
6
|
Liu Q, Li Y, Wang H, Yang G, Kan J, Yang M, Yu X, Guo C, Wang M, Wang W, Zhang Q, Zhu J, Zhao X, Jiang Y. Assembly and Network Stability of Planktonic Microorganisms under the Influence of Salinity Gradient: an Arctic Case Study from the Lena River Estuary to the Laptev Sea. Microbiol Spectr 2023; 11:e0211522. [PMID: 36744927 PMCID: PMC10100684 DOI: 10.1128/spectrum.02115-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 01/18/2023] [Indexed: 02/07/2023] Open
Abstract
The diversity and primary productivity in the Arctic ecosystem are rapidly changing due to global warming. Microorganisms play a vital role in biogeochemical cycling. However, the diversity of planktonic microorganism communities in the Laptev Sea, one of the most important marginal seas of the Western Arctic Ocean, have not been studied sufficiently in depth. The diversity and community structure of the planktonic microorganisms in the surface water were investigated at 20 stations on the Lena River flowing into the Laptev Sea. Multivariate statistical analyses demonstrated clear spatial patterns in the α diversity and community structure for microorganisms under different salinity levels. Co-occurrence networks of microbial communities revealed that spatial variation promoted differentiation of the characteristics and stability of microbial networks in the Laptev Sea. Contrary to expectations, abundant taxa were found to not have a large influence on the stability and resilience of microbial interactions in the region. On the contrary, less-abundant taxa were found to have far greater influence. The stability and resilience of the prokaryotic and microeukaryotic networks in the Lena River estuary and the continental shelf provided valuable insights into the impact of freshwater and land inflow disturbances on microbial assemblage. Overall, these results enhance our understanding of the composition of microbial communities and provide insights into how spatial changes of abundant versus rare species alter the nature and stability of microbial networks from the Lena River estuary to the Laptev Sea. In addition, this study explored microbial interactions and their ability to resist future disturbances. IMPORTANCE The regime of the Laptev Sea depends closely on the runoff of the Lena River. Microorganisms are essential components of aquatic food webs and play a significant role in polar ecosystems. In this study, we provided a basic microbial data set as well as new insights into the microbial networks from the Lena River estuary to the Laptev Sea, while exploring their potential to resist future disturbances. A comprehensive and systematic study of the community structure and function of the planktonic microorganisms in the Laptev Sea would greatly enhance our understanding of how polar microbial communities respond to the salinity gradient under climate warming.
Collapse
Affiliation(s)
- Qian Liu
- College of Marine Life Science & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- Key Laboratory of Marine Chemistry Theory and Technology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yan Li
- College of Marine Life Science & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Hualong Wang
- College of Marine Life Science & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Guipeng Yang
- Key Laboratory of Marine Chemistry Theory and Technology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ministry of Education, Ocean University of China, Qingdao, China
| | - Jinjun Kan
- Microbiology Division, Stroud Water Research Center, Avondale, Pennsylvania, USA
| | - Mengyao Yang
- College of Marine Life Science & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Xiaowen Yu
- College of Marine Life Science & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Cui Guo
- College of Marine Life Science & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Min Wang
- College of Marine Life Science & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, China
| | - Wei Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Qingli Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Jiancheng Zhu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Xianyong Zhao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Yong Jiang
- College of Marine Life Science & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, China
| |
Collapse
|
7
|
Broman E, Izabel-Shen D, Rodríguez-Gijón A, Bonaglia S, Garcia SL, Nascimento FJA. Microbial functional genes are driven by gradients in sediment stoichiometry, oxygen, and salinity across the Baltic benthic ecosystem. MICROBIOME 2022; 10:126. [PMID: 35965333 PMCID: PMC9377124 DOI: 10.1186/s40168-022-01321-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/05/2022] [Indexed: 05/30/2023]
Abstract
BACKGROUND Microorganisms in the seafloor use a wide range of metabolic processes, which are coupled to the presence of functional genes within their genomes. Aquatic environments are heterogenous and often characterized by natural physiochemical gradients that structure these microbial communities potentially changing the diversity of functional genes and its associated metabolic processes. In this study, we investigated spatial variability and how environmental variables structure the diversity and composition of benthic functional genes and metabolic pathways across various fundamental environmental gradients. We analyzed metagenomic data from sediment samples, measured related abiotic data (e.g., salinity, oxygen and carbon content), covering 59 stations spanning 1,145 km across the Baltic Sea. RESULTS The composition of genes and microbial communities were mainly structured by salinity plus oxygen, and the carbon to nitrogen (C:N) ratio for specific metabolic pathways related to nutrient transport and carbon metabolism. Multivariate analyses indicated that the compositional change in functional genes was more prominent across environmental gradients compared to changes in microbial taxonomy even at genus level, and indicate functional diversity adaptation to local environments. Oxygen deficient areas (i.e., dead zones) were more different in gene composition when compared to oxic sediments. CONCLUSIONS This study highlights how benthic functional genes are structured over spatial distances and by environmental gradients and resource availability, and suggests that changes in, e.g., oxygenation, salinity, and carbon plus nitrogen content will influence functional metabolic pathways in benthic habitats. Video Abstract.
Collapse
Affiliation(s)
- Elias Broman
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
- Baltic Sea Centre, Stockholm University, Stockholm, Sweden
| | - Dandan Izabel-Shen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Alejandro Rodríguez-Gijón
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
- Science for Life Laboratory, Stockholm, Sweden
| | - Stefano Bonaglia
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Sarahi L. Garcia
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
- Science for Life Laboratory, Stockholm, Sweden
| | - Francisco J. A. Nascimento
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
- Baltic Sea Centre, Stockholm University, Stockholm, Sweden
| |
Collapse
|
8
|
Yang J, Li G, Sheng Y, Zhang F. Response and contribution of bacterial and archaeal communities to eutrophication in urban river sediments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119397. [PMID: 35513192 DOI: 10.1016/j.envpol.2022.119397] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/21/2022] [Accepted: 04/30/2022] [Indexed: 06/14/2023]
Abstract
Excessive loading of nitrogen (N) and phosphorus (P) that leads to eutrophication mutually interacts with sediment microbial community. To unravel the microbial community structures and interaction networks in the urban river sediments with the disturbance of N and P loadings, we used high-throughput sequencing analysis and ecological co-occurrence network methods to investigate the responses of diversity and community composition of bacteria and archaea and identify the keystone species in river sediments. The alpha-diversity of archaea significantly decreased with the increased total nitrogen (TN), whereas the operational taxonomic unit (OTU) number of bacteria increased with the increase of available phosphorus (AP). The beta-diversity of archaea and bacteria was more sensitive to N content than P content. The relative abundance of predominant bacterial and archaeal taxa varied differently in terms of different N and P contents. Complexity and connectivity of bacteria and archaea interaction networks showed significant variations with eutrophication, and competition between bacteria became more significant with the increase of N content. The sensitive and the highest connective species (keystone species) were identified for different N and P loadings. Total carbon (TC), water content (WC), microbial alpha-diversity and interaction networks played pivotal roles in the N and P transformation in urban river sediments.
Collapse
Affiliation(s)
- Juejie Yang
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China
| | - Guanghe Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yizhi Sheng
- Department of Geology and Environmental Earth Science, Miami University, Oxford, OH, 45056, USA
| | - Fang Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
9
|
Zhao G, He H, Wang H, Liang Y, Guo C, Shao H, Jiang Y, Wang M. Variations in Marine Bacterial and Archaeal Communities during an Ulva prolifera Green Tide in Coastal Qingdao Areas. Microorganisms 2022; 10:microorganisms10061204. [PMID: 35744722 PMCID: PMC9228619 DOI: 10.3390/microorganisms10061204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 11/23/2022] Open
Abstract
Green tides caused by Ulva prolifera occur annually in the Yellow Sea, potentially influencing the marine microorganisms. Here, we focused on the variations in marine bacterial and archaeal communities during an U. prolifera green tide in coastal Qingdao areas with Illumina high-throughput sequencing analysis. Our results revealed that the diversity and structure of bacterial and archaeal communities, as well as the organization and structure of microbial co-occurrence networks, varied during the green tide. The decline phase may be favorable to the bacterial and archaeal diversity and richness. The bacterial community, as well as the archaeal community, showed clear variations between the outbreak and decline phases. A simpler and less connected microbial co-occurrence network was observed during the outbreak phase compared with the decline phase. Flavobacteriales and Rhodobacterales separately dominated the bacterial community during the outbreak and decline phase, and Marine Group II (MGII) dominated the archaeal community during the green tide. Combined with microbial co-occurrence network analysis, Flavobacteriales, Rhodobacterales and MGII may be important organisms during the green tide. Temperature, chlorophyll a content and salinity may have an important impact on the variations in bacterial and archaeal communities during the green tide.
Collapse
Affiliation(s)
- Guihua Zhao
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; (G.Z.); (H.W.); (Y.L.); (C.G.); (H.S.); (Y.J.)
| | - Hui He
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; (G.Z.); (H.W.); (Y.L.); (C.G.); (H.S.); (Y.J.)
- Correspondence: (H.H.); (M.W.)
| | - Hualong Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; (G.Z.); (H.W.); (Y.L.); (C.G.); (H.S.); (Y.J.)
| | - Yantao Liang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; (G.Z.); (H.W.); (Y.L.); (C.G.); (H.S.); (Y.J.)
| | - Cui Guo
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; (G.Z.); (H.W.); (Y.L.); (C.G.); (H.S.); (Y.J.)
| | - Hongbing Shao
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; (G.Z.); (H.W.); (Y.L.); (C.G.); (H.S.); (Y.J.)
| | - Yong Jiang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; (G.Z.); (H.W.); (Y.L.); (C.G.); (H.S.); (Y.J.)
| | - Min Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; (G.Z.); (H.W.); (Y.L.); (C.G.); (H.S.); (Y.J.)
- The Affiliated Hospital of Qingdao University, Qingdao 266000, China
- OUC-UMT Joint Academic Centre for Marine Studies, Qingdao 266003, China
- Correspondence: (H.H.); (M.W.)
| |
Collapse
|
10
|
Shi J, Zhang B, Liu J, Fang Y, Wang A. Spatiotemporal dynamics in microbial communities mediating biogeochemical cycling of nutrients across the Xiaowan Reservoir in Lancang River. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:151862. [PMID: 34826492 DOI: 10.1016/j.scitotenv.2021.151862] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/27/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Microbes drive biogeochemical cycles of nutrients controlling water quality in freshwater ecosystems, yet little is known regarding how spatiotemporal variation in the microbial community affects this ecosystem-level functional processes to resist perturbations. Here we examined spatiotemporal dynamics of microbial communities in paired stratified water columns and sediments collected from the Xiaowan Reservoir of Lancang-Mekong River over a year long period. Results highlighted distinctive spatiotemporal patterns of microbial communities in water columns mainly driven by sulfate, dissolved oxygen, nitrate and temperature, whilst sediment communities only showed a seasonal variation pattern governed by pH, reduced inorganic sulfur, sulfate, organic matter and total nitrogen. Microbial co-occurrence networks revealed the succession of keystone taxa in both water columns and sediments, reflecting core ecological functions in response to altered environmental conditions. Specifically, in shallow water, keystone nitrogen fixers and denitrifiers were responsible for providing nitrogen nutrients in summer, while recalcitrant substance degraders likely supplied microbially available organic matters to maintain ecosystem stability in winter. But in deep water, methane oxidation was the critical process linked to microbial-mediated cycle of carbon, nitrogen and sulfur. In addition, carbon metabolism and mercury methylation mediated by sulfate reducers, denitrifiers and nitrogen fixers were core functioning features of sediments in summer and winter, respectively. This work expands our knowledge of the importance of keystone taxa in maintaining stability of reservoir ecosystems under changing environments, providing new perspectives for water resource conservation and management.
Collapse
Affiliation(s)
- Jiaxin Shi
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Baogang Zhang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Jun Liu
- State Key Laboratory of Agricultural Microbiology, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yun Fang
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resources and Environments, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
11
|
Zhang H, Yang L, Li Y, Wang C, Zhang W, Wang L, Niu L. Pollution gradients shape the co-occurrence networks and interactions of sedimentary bacterial communities in Taihu Lake, a shallow eutrophic lake. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 305:114380. [PMID: 34995945 DOI: 10.1016/j.jenvman.2021.114380] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/30/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
The co-occurrence networks and interactions of bacterial communities in sediments are highly variable with environmental factors, which are vital to the nutrient biogeochemical cycle, pollutants biodegradation, and microbial community stability in lake ecosystems. Although pollution gradients reflect environmental variation comprehensively, few studies have characterized the changes in co-occurrence networks and interactions of bacterial communities along sediment pollution gradients. In order to investigate the impact of pollution gradients on compositions, co-occurrence networks, and interactions of sedimentary microbial communities, we studied the bacterial communities in the sediments of a typical shallow eutrophic lake, Taihu Lake, along pollution gradients using 16S rRNA gene high-throughput sequencing technology. All the sediment sampling sites were classified into mild, moderate, and severe pollution groups according to the sediments' physicochemical properties. Our results showed that the taxon richness was lowest in the severe pollution group, and the diversity of species decreased with the level of pollution. The complexity of the co-occurrence network decreased as the level of pollution increased, and the severe pollution group was characterized by a small-world network. The relative abundance of Proteobacteria, Bacteroidetes, and Chlorobi increased significantly as the level of pollution increased (P < 0.05). Strong inter-phyla co-occurrence or co-exclusion patterns demonstrated that the strength of interactions was enhanced in the severe pollution group, indicating stronger cooperative or competitive relationships. Chloroflexales and Chlorobiales were unique keystone taxa in the severe pollution group. The results of this study indicate that severe pollution reduces microbial diversity and network complexity, which may lead to community instability. The competition for nutrients of some copiotrophic bacteria may be enhanced as the level of pollution increased. The unique keystone taxa may contribute to photosynthesis and pollutant degradation in the severe pollution group. These findings expand our understanding of variation in bacterial co-occurrence networks and interactions along sediment pollution gradients.
Collapse
Affiliation(s)
- Huanjun Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Liu Yang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Chao Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, PR China.
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| |
Collapse
|
12
|
Wang H, Chen F, Zhang C, Wang M, Kan J. Estuarine gradients dictate spatiotemporal variations of microbiome networks in the Chesapeake Bay. ENVIRONMENTAL MICROBIOME 2021; 16:22. [PMID: 34838139 PMCID: PMC8627074 DOI: 10.1186/s40793-021-00392-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/10/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND Annually reoccurring microbial populations with strong spatial and temporal variations have been identified in estuarine environments, especially in those with long residence time such as the Chesapeake Bay (CB). However, it is unclear how microbial taxa cooccurr and how the inter-taxa networks respond to the strong environmental gradients in the estuaries. RESULTS Here, we constructed co-occurrence networks on prokaryotic microbial communities in the CB, which included seasonal samples from seven spatial stations along the salinity gradients for three consecutive years. Our results showed that spatiotemporal variations of planktonic microbiomes promoted differentiations of the characteristics and stability of prokaryotic microbial networks in the CB estuary. Prokaryotic microbial networks exhibited a clear seasonal pattern where microbes were more closely connected during warm season compared to the associations during cold season. In addition, microbial networks were more stable in the lower Bay (ocean side) than those in the upper Bay (freshwater side). Multivariate regression tree (MRT) analysis and piecewise structural equation modeling (SEM) indicated that temperature, salinity and total suspended substances along with nutrient availability, particulate carbon and Chl a, affected the distribution and co-occurrence of microbial groups, such as Actinobacteria, Bacteroidetes, Cyanobacteria, Planctomycetes, Proteobacteria, and Verrucomicrobia. Interestingly, compared to the abundant groups (such as SAR11, Saprospiraceae and Actinomarinaceae), the rare taxa including OM60 (NOR5) clade (Gammaproteobacteria), Micrococcales (Actinobacteria), and NS11-12 marine group (Bacteroidetes) contributed greatly to the stability of microbial co-occurrence in the Bay. Modularity and cluster structures of microbial networks varied spatiotemporally, which provided valuable insights into the 'small world' (a group of more interconnected species), network stability, and habitat partitioning/preferences. CONCLUSION Our results shed light on how estuarine gradients alter the spatiotemporal variations of prokaryotic microbial networks in the estuarine ecosystem, as well as their adaptability to environmental disturbances and co-occurrence network complexity and stability.
Collapse
Affiliation(s)
- Hualong Wang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, USA
| | - Feng Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, USA
| | - Chuanlun Zhang
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, People's Republic of China
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen, People's Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Min Wang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Jinjun Kan
- Microbiology Division, Stroud Water Research Center, Avondale, PA, USA.
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, People's Republic of China.
| |
Collapse
|
13
|
Song X, Song J, Yan Q, Zhou J, Cai Z. Assembly of a Benthic Microbial Community in a Eutrophic Bay with a Long History of Oyster Culturing. Microorganisms 2021; 9:microorganisms9102019. [PMID: 34683340 PMCID: PMC8536970 DOI: 10.3390/microorganisms9102019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 11/27/2022] Open
Abstract
The introduction of oysters to a waterbody is an efficient method for decreasing levels of eutrophication. Oysters affect sedimental environments and benthic microbes via their roles in nutrient cycling. However, little is known about how long-term oyster culturing affects benthic microbial community assembly. In the present study, top and bottom sediments from an oyster-culture area and non-culture area, in a eutrophic bay with a long history of oyster culturing, were obtained for environmental parameter measurement and microbe identification. Deterministic and stochastic processes in microbial community assembly were assessed. In particular, keystone species identification through network analysis was combined with measured environmental parameters to determine the factors related to community assembly processes. Our results suggest that oyster culturing relates to greater variation in both biological and non-biological sediment profiles. In benthic communities, Proteobacteria and Chloroflexi were the most abundant phyla, and community compositions were significantly different between sample groups. We also found that community assembly was more affected by deterministic factors than stochastic ones, when oysters were present. Moisture, or water content, and pH were identified as affecting deterministic and stochastic processes, respectively, but only water content was a driver associated with oyster culturing. Additionally, although keystone species presented a similar pattern of composition to peripheral species, they responded to their environments differently. Furthermore, model selection, fitting keystone species to community assembly processes, indicates their role in shaping microbial communities.
Collapse
Affiliation(s)
- Xiao Song
- School of Life Sciences, Tsinghua University, Beijing 100084, China; (X.S.); (J.S.); (Q.Y.)
- Shenzhen Public Platform of Screening and Application of Marine Microbial Resources, The Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China;
| | - Junting Song
- School of Life Sciences, Tsinghua University, Beijing 100084, China; (X.S.); (J.S.); (Q.Y.)
- Shenzhen Public Platform of Screening and Application of Marine Microbial Resources, The Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China;
| | - Qi Yan
- School of Life Sciences, Tsinghua University, Beijing 100084, China; (X.S.); (J.S.); (Q.Y.)
- Shenzhen Public Platform of Screening and Application of Marine Microbial Resources, The Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China;
| | - Jin Zhou
- Shenzhen Public Platform of Screening and Application of Marine Microbial Resources, The Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China;
| | - Zhonghua Cai
- Shenzhen Public Platform of Screening and Application of Marine Microbial Resources, The Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China;
- Correspondence:
| |
Collapse
|
14
|
Wang J, Wang L, Hu W, Pan Z, Zhang P, Wang C, Wang J, Wu S, Li YZ. Assembly processes and source tracking of planktonic and benthic bacterial communities in the Yellow River estuary. Environ Microbiol 2021; 23:2578-2591. [PMID: 33754415 DOI: 10.1111/1462-2920.15480] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/15/2021] [Accepted: 03/20/2021] [Indexed: 01/04/2023]
Abstract
Estuaries connect rivers with the ocean and are considered transition regions due to the continuous inputs from rivers. Microbiota from different sources converge and undergo succession in these transition regions, but their assembly mechanisms along environmental gradients remain unclear. Here, we found that salinity had a stronger effect on planktonic than on benthic microbial communities, and the dominant planktonic bacteria changed more distinctly than the dominant benthic bacteria with changes in salinity. The planktonic bacteria in the brackish water came mainly from seawater, which was confirmed in the laboratory, whereas the benthic bacteria were weakly affected by salinity, which appeared to be a mixture of the bacteria from riverine and oceanic sediments. Benthic bacterial community assembly in the sediments was mainly controlled by homogeneous selection and almost unaffected by changes in salinity, the dominant assemblage processes for planktonic bacteria changed dramatically along the salinity gradient, from homogeneous selection in freshwater to drift in seawater. Our results highlight that salinity is the key driver of estuarine microbial succession and that salinity is more important in shaping planktonic than benthic bacterial communities in the Yellow River estuary.
Collapse
Affiliation(s)
- Jianing Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Lidong Wang
- National Nature Reserve Administration of Yellow River Delta, Dongying, 257091, China
| | - Weifeng Hu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Zhuo Pan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Peng Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Chuandong Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Jingjing Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Shuge Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| |
Collapse
|
15
|
Coclet C, Garnier C, D’Onofrio S, Durrieu G, Pasero E, Le Poupon C, Omanović D, Mullot JU, Misson B, Briand JF. Trace Metal Contamination Impacts Predicted Functions More Than Structure of Marine Prokaryotic Biofilm Communities in an Anthropized Coastal Area. Front Microbiol 2021; 12:589948. [PMID: 33679628 PMCID: PMC7933014 DOI: 10.3389/fmicb.2021.589948] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/29/2021] [Indexed: 12/25/2022] Open
Abstract
Trace metal (TM) contamination in marine coastal areas is a worldwide threat for aquatic communities. However, little is known about the influence of a multi-chemical contamination on both marine biofilm communities' structure and functioning. To determine how TM contamination potentially impacted microbial biofilms' structure and their functions, polycarbonate (PC) plates were immerged in both surface and bottom of the seawater column, at five sites, along strong TM contamination gradients, in Toulon Bay. The PC plates were incubated during 4 weeks to enable colonization by biofilm-forming microorganisms on artificial surfaces. Biofilms from the PC plates, as well as surrounding seawaters, were collected and analyzed by 16S rRNA amplicon gene sequencing to describe prokaryotic community diversity, structure and functions, and to determine the relationships between bacterioplankton and biofilm communities. Our results showed that prokaryotic biofilm structure was not significantly affected by the measured environmental variables, while the functional profiles of biofilms were significantly impacted by Cu, Mn, Zn, and salinity. Biofilms from the contaminated sites were dominated by tolerant taxa to contaminants and specialized hydrocarbon-degrading microorganisms. Functions related to major xenobiotics biodegradation and metabolism, such as methane metabolism, degradation of aromatic compounds, and benzoate degradation, as well as functions involved in quorum sensing signaling, extracellular polymeric substances (EPS) matrix, and biofilm formation were significantly over-represented in the contaminated site relative to the uncontaminated one. Taken together, our results suggest that biofilms may be able to survive to strong multi-chemical contamination because of the presence of tolerant taxa in biofilms, as well as the functional responses of biofilm communities. Moreover, biofilm communities exhibited significant variations of structure and functional profiles along the seawater column, potentially explained by the contribution of taxa from surrounding sediments. Finally, we found that both structure and functions were significantly distinct between the biofilm and bacterioplankton, highlighting major differences between the both lifestyles, and the divergence of their responses facing to a multi-chemical contamination.
Collapse
Affiliation(s)
- Clément Coclet
- Université de Toulon, Laboratoire MAPIEM, EA 4323, Toulon, France
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography, UM110, La Garde, France
| | - Cédric Garnier
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography, UM110, La Garde, France
| | - Sébastien D’Onofrio
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography, UM110, La Garde, France
| | - Gaël Durrieu
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography, UM110, La Garde, France
| | - Emilie Pasero
- Microbia Environnement Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Christophe Le Poupon
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography, UM110, La Garde, France
| | - Dario Omanović
- Division for Marine and Environmental Research, Ruðer Bošković Institute, Zagreb, Croatia
| | | | - Benjamin Misson
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography, UM110, La Garde, France
| | | |
Collapse
|
16
|
Walker AM, Leigh MB, Mincks SL. Patterns in Benthic Microbial Community Structure Across Environmental Gradients in the Beaufort Sea Shelf and Slope. Front Microbiol 2021; 12:581124. [PMID: 33584606 PMCID: PMC7876419 DOI: 10.3389/fmicb.2021.581124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/05/2021] [Indexed: 11/13/2022] Open
Abstract
The paradigm of tight pelagic-benthic coupling in the Arctic suggests that current and future fluctuations in sea ice, primary production, and riverine input resulting from global climate change will have major impacts on benthic ecosystems. To understand how these changes will affect benthic ecosystem function, we must characterize diversity, spatial distribution, and community composition for all faunal components. Bacteria and archaea link the biotic and abiotic realms, playing important roles in organic matter (OM) decomposition, biogeochemical cycling, and contaminant degradation, yet sediment microbial communities have rarely been examined in the North American Arctic. Shifts in microbial community structure and composition occur with shifts in OM inputs and contaminant exposure, with implications for shifts in ecological function. Furthermore, the characterization of benthic microbial communities provides a foundation from which to build focused experimental research. We assessed diversity and community structure of benthic prokaryotes in the upper 1 cm of sediments in the southern Beaufort Sea (United States and Canada), and investigated environmental correlates of prokaryotic community structure over a broad spatial scale (spanning 1,229 km) at depths ranging from 17 to 1,200 m. Based on hierarchical clustering, we identified four prokaryotic assemblages from the 85 samples analyzed. Two were largely delineated by the markedly different environmental conditions in shallow shelf vs. upper continental slope sediments. A third assemblage was mainly comprised of operational taxonomic units (OTUs) shared between the shallow shelf and upper slope assemblages. The fourth assemblage corresponded to sediments receiving heavier OM loading, likely resulting in a shallower anoxic layer. These sites may also harbor microbial mats and/or methane seeps. Substructure within these assemblages generally reflected turnover along a longitudinal gradient, which may be related to the quantity and composition of OM deposited to the seafloor; bathymetry and the Mackenzie River were the two major factors influencing prokaryote distribution on this scale. In a broader geographical context, differences in prokaryotic community structure between the Beaufort Sea and Norwegian Arctic suggest that benthic microbes may reflect regional differences in the hydrography, biogeochemistry, and bathymetry of Arctic shelf systems.
Collapse
Affiliation(s)
- Alexis M Walker
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Mary Beth Leigh
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Sarah L Mincks
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, AK, United States
| |
Collapse
|
17
|
Su Z, Huang B, Mu Q, Wen D. Evaluating the Potential Antibiotic Resistance Status in Environment Based on the Trait of Microbial Community. Front Microbiol 2020; 11:575707. [PMID: 33123107 PMCID: PMC7573184 DOI: 10.3389/fmicb.2020.575707] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/07/2020] [Indexed: 01/03/2023] Open
Abstract
The overuse of antibiotics has promoted the propagation and dissemination of antibiotic resistance genes (ARGs) in environment. Due to the dense human population and intensive activities in coastal areas, the health risk of ARGs in coastal environment is becoming a severe problem. To date, there still lacks of a quantitative method to assess properly the gross antibiotic resistance at microbial community level. Here, we collected sediment samples from Hangzhou Bay (HB), Taizhou Bay (TB), and Xiangshan Bay (XB) of the East China Sea for community-level ARGs analysis. Based on the 16S rRNA genes and predictive metagenomics, we predicted the composition of intrinsic ARGs (piARGs) and some related functional groups. Firstly, a total of 40 piARG subtypes, belonging to nine drug classes and five resistance mechanisms, were obtained, among which the piARGs encoding multidrug efflux pumps were the most dominant in the three bays. Secondly, XB had higher relative abundances of piARGs and pathogens than the other two bays, which posed higher potential health risk and implied the heavier impact of long-term maricultural activities in this bay. Thirdly, the co-occurrence network analysis identified that there were more connections between piARGs and some potential pathogenic bacteria. Several piARG subtypes (e.g., tetA, aacA, aacC, and aadK) distributed widely in the microbial communities. And finally, the microbial diversity correlated negatively with the relative abundance of piARGs. Oil, salinity, and arsenic had significant effects on the variations of piARGs and potential pathogenic bacteria. The abundance-weighted average ribosomal RNA operon (rrn) copy number of microbial communities could be regarded as an indicator to evaluate the antibiotic resistance status. In conclusion, this study provides a new insight on how to evaluate antibiotic resistance status and their potential risk in environment based on a quantitative analysis of microbial communities.
Collapse
Affiliation(s)
- Zhiguo Su
- College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Bei Huang
- Zhejiang Provincial Zhoushan Marine Ecological Environmental Monitoring Station, Zhoushan, China
| | - Qinglin Mu
- Zhejiang Provincial Zhoushan Marine Ecological Environmental Monitoring Station, Zhoushan, China
| | - Donghui Wen
- College of Environmental Sciences and Engineering, Peking University, Beijing, China
| |
Collapse
|
18
|
Zhao Y, Chen W, Wen D. The effects of crude oil on microbial nitrogen cycling in coastal sediments. ENVIRONMENT INTERNATIONAL 2020; 139:105724. [PMID: 32305744 DOI: 10.1016/j.envint.2020.105724] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
Crude oil could affect certain critical microbial processes of nitrogen cycling (N-cycling) in coastal sediments, and disturb the nitrogen balance. However, the understanding of the effects of crude oil on coastal sediments N-cycling under human disturbance was still limited. In this study, two sediments (named SY and HB with heavy and slight pollution, respectively) were sampled from Hangzhou Bay, China. After an incubation with exposure to different amounts of crude oil in above two sediments for 30 days, we found that crude oil affected microbial N-cycling in multiple levels. Potential rate measurements revealed that crude oil stimulated potential denitrification and N2O emissions in both sediments, which showed a higher influence on denitrification rates in higher concentration of oil. Quantitative PCR revealed that crude oil greatly increased abundances of bacterial and archaeal 16S rRNA genes and N-cycling genes (nirS, nosZ, nrfA, part of AOA and AOB amoA). On the other hand, only a few genes (16S rRNA and nrfA) showed higher transcriptional activities in oil-addition treatments. Results about relative changes of N-cycling genes revealed that the variations of N-cycling genes in oil-addition treatments were related to sediment types but not crude oil concentrations, and the genes in HB were more sensitive to crude oil than SY. Network analysis of N-cycling genes found that crude oil decreased the complexity of N-cycling gene networks in SY, while increased complexity in HB, and led to more competition among N-cycling microbes. Our findings help to look into the effects of crude oil on key N-cycling processes, and improve the understanding of the interactions among N-cycling under crude oil contamination.
Collapse
Affiliation(s)
- Yanan Zhao
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Weidong Chen
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Donghui Wen
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|