1
|
Jayanthi P, Geetanjali AS. Molecular characterization to study the genetic diversity of begomoviruses occurring in the major chilli growing areas of Tamil Nadu state of India. Int Microbiol 2024:10.1007/s10123-024-00580-0. [PMID: 39230779 DOI: 10.1007/s10123-024-00580-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 09/05/2024]
Abstract
Chilli leaf curl disease (ChiLCD), which is a significant problem in chilli cultivation, is caused by begomoviruses that are transmitted by the whitefly Bemisia tabaci. This disease leads to severe impacts on crop yields. To determine the incidence of begomovirus in the chilli crop, infected chilli leaf samples exhibiting symptoms such as curling, yellowing, reduced leaf size, and overall stunted growth were collected from various districts of Tamil Nadu, namely, Coimbatore, Dharmapuri, Kancheepuram, Karur, Salem, Krishnagiri, Thoothukudi, Thiruvallur, Tiruchirappalli, Virudhunagar, Tiruvannamalai, Tenkasi, and Vellore, during the years 2018-2022. To determine the complete genome sequence of the begomoviruses, the rolling circle amplification (RCA) method was used to clone and sequence the begomovirus genomes from the chilli samples collected from various districts of Tamil Nadu. Here we characterized 17 DNA A genome sequences and 12 betasatellite sequences. BLAST results of the DNA A genome sequences revealed nucleotide identities ranging from 94.2 to 99.7% with five distinct begomovirus species of chilli, namely, chilli leaf curl Salem virus (HM007119), chilli leaf curl virus Bhavanisagar (NC_055130), chilli leaf curl Ahmedabad virus (MW795666), chilli leaf curl virus (NC_055131), and chilli leaf curl Sri Lanka virus (JN555600). BLAST results of the betasatellite sequences showed nucleotide identities of 96 to 98.8% with the tomato leaf curl Bangladesh betasatellite (MZ151286). In the present study, five distinct begomovirus species and one associated betasatellite were found to infect chilli crops in Tamil Nadu. This finding indicates a changing pattern of begomovirus occurrence in the different districts of Tamil Nadu. This study highlights the prevalence of chilli-infecting begomoviruses in the major chilli growing districts of Tamil Nadu, the identification of begomovirus species, and the significance of understanding and managing these viruses to safeguard chilli cultivation in the region.
Collapse
Affiliation(s)
- P Jayanthi
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - A Swapna Geetanjali
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India.
| |
Collapse
|
2
|
Prasad KSUD, Kavya SS, Sindhura KAV, Muttappagol M, Kruthika R, Basha CRJ, Shankarappa KS, Venkataravanappa V, Lakshminarayana Reddy CN. Molecular characterization of begomovirus and DNA satellites associated with mosaic and leaf curl disease of Jamaica cherry ( Muntingia calabura) in India: Uncovering a new host for chilli leaf curl India virus. Virusdisease 2024; 35:484-495. [PMID: 39464737 PMCID: PMC11502726 DOI: 10.1007/s13337-024-00891-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/23/2024] [Indexed: 10/29/2024] Open
Abstract
Begomoviruses, member of the Geminiviridae family, are responsible for significant economic losses in crops worldwide. Chilli leaf curl India virus (ChiLCINV) is a well-known begomovirus that causes leaf curl disease, primarily affecting plants in the Solanaceae family. In this study, sample from a Jamaica cherry (Muntingia calabura) tree showing typical begomovirus symptoms of mosaic and leaf curling was collected from Nagavara village in the Bengaluru Rural district of Karnataka State, India. The collected sample was designated as the MUT-1 isolate. The association of the begomovirus (DNA-A) and betasatellites with the sample was confirmed by PCR using begomovirus-specific primers, resulting in the expected amplicons of approximately 1.2 kb and 1.3 kb, respectively. No amplification was obtained for DNA-B and alphasatellite specific primers. The complete genome sequence of DNA-A of begomovirus isolate MUT-1 was obtained through rolling circle amplification and compared with other begomoviruses using Sequence Demarcation Tool which revealed that, DNA-A of MUT-1 isolate, (Acc.No. PP475538) showed maximum nucleotide (nt) identity of 98.7-99.4% with chilli leaf curl India virus. Further, sequence of betasattelite (Acc.No. PP493212) of this isolate shared maximum nt identity of 86.5-100% with tomato leaf curl Bangladesh betasatellite (ToLCBDB). Recombination and GC plot analysis showed that the presence of two and three intraspecific recombination event in DNA-A and betasatellite genomic regions, respectively and are derived from the previously reported begomoviruses. This study presents one more evidence of expanding host range for begomoviruses and first record of begomovirus associated with mosaic and leaf curl disease of Jamaica cherry (M. calabura) from India. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-024-00891-w.
Collapse
Affiliation(s)
- K S Uday Durga Prasad
- Department of Plant Pathology, College of Agriculture, University of Agricultural Sciences, GKVK, Bangalore, Karnataka 560065 India
| | - S S Kavya
- Department of Plant Pathology, College of Agriculture, University of Agricultural Sciences, GKVK, Bangalore, Karnataka 560065 India
| | - Kopparthi Amrutha Valli Sindhura
- Department of Agricultural Entomology, College of Agriculture, University of Agricultural Sciences, GKVK, Bangalore, Karnataka 560065 India
| | - Mantesh Muttappagol
- Department of Plant Pathology, College of Agriculture, University of Agricultural Sciences, GKVK, Bangalore, Karnataka 560065 India
| | - R Kruthika
- Department of Plant Pathology, College of Agriculture, University of Agricultural Sciences, GKVK, Bangalore, Karnataka 560065 India
| | - C. R. Jahir Basha
- Department of Plant Pathology, College of Agriculture, University of Agricultural Sciences, GKVK, Bangalore, Karnataka 560065 India
| | - K. S. Shankarappa
- Department of Plant Pathology, College of Horticulture, University of Horticultural Sciences, Bagalkot, Bengaluru, Karnataka 560065 India
| | - V. Venkataravanappa
- Division of Plant Protection, ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake PO, Bangalore, Karnataka 560089 India
| | - C. N. Lakshminarayana Reddy
- Department of Plant Pathology, College of Agriculture, University of Agricultural Sciences, GKVK, Bangalore, Karnataka 560065 India
| |
Collapse
|
3
|
Sam-On MFS, Mustafa S, Yusof MT, Mohd Hashim A, Ku Aizuddin KNA. Exploring the Global Trends of Bacillus, Trichoderma and Entomopathogenic Fungi for Pathogen and Pest Control in Chili Cultivation. Saudi J Biol Sci 2024; 31:104046. [PMID: 38983130 PMCID: PMC11231758 DOI: 10.1016/j.sjbs.2024.104046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/29/2024] [Accepted: 06/07/2024] [Indexed: 07/11/2024] Open
Abstract
Chili, renowned globally and deeply ingrained in various cultures. Regrettably, the onset of diseases instigated by pests and pathogens has inflicted substantial losses on chili crops, with some farms experiencing complete production decimation. Challenges confronting chili cultivation include threats from pathogenic microbes like Xanthomonas, Fusarium, Phytophthora, Verticillium, Rhizoctonia, Colletotrichium and Viruses, alongside pests such as whiteflies, mites, thrips, aphids, and fruit flies. While conventional farming practices often resort to chemical pesticides to combat these challenges, their utilization poses substantial risks to both human health and the environment. In response to this pressing issue, this review aims to evaluate the potential of microbe-based biological control as eco-friendly alternatives to chemical pesticides for chili cultivation. Biocontrol agents such as Bacillus spp., Trichoderma spp., and entomopathogenic fungi present safer and more environmentally sustainable alternatives to chemical pesticides. However, despite the recognised potential of biocontrol agents, research on their efficacy in controlling the array of pests and pathogens affecting chili farming remains limited. This review addresses this gap by evaluating the efficiency of biocontrol agents, drawing insights from existing studies conducted in other crop systems, regarding pest and pathogen management. Notably, an analysis of Scopus publications revealed fewer than 30 publications in 2023 focused on these three microbial agents. Intriguingly, India, as the world's largest chili producer, leads in the number of publications concerning Bacillus spp., Trichoderma spp., and entomopathogenic fungi in chili cultivation. Further research on microbial agents is imperative to mitigate infections and reduce reliance on chemical pesticides for sustainable chili production.
Collapse
Affiliation(s)
- Muhamad Firdaus Syahmi Sam-On
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Shuhaimi Mustafa
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohd Termizi Yusof
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Amalia Mohd Hashim
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Ku Nur Azwa Ku Aizuddin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
4
|
Rodríguez-Negrete EA, Grande-Pérez A. Quantification of Virion-Sense and Complementary-Sense DNA Strands of Circular Single-Stranded DNA Viruses. Methods Mol Biol 2024; 2724:93-109. [PMID: 37987901 DOI: 10.1007/978-1-0716-3485-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Circular ssDNA viruses are ubiquitous and can be found in both prokaryotes and eukaryotes. To understand the interaction of ssDNA viruses with their hosts, it is important to characterize the dynamics of viral sense (VS) and complementary-sense (CS) viral strands during the infection process. Here, we present a simple and rapid protocol that allows sensitive and accurate determination of the VS and CS strands generated during viral infection.The method consists of a two-step qPCR in which the first step uses a strand-specific (CS or VS) labeled primer and T4 DNA polymerase that lacks strand displacement activity and makes a single copy per VS or CS strand. Next, the T4 DNA polymerase and unincorporated oligonucleotides are removed by a silica membrane spin column. Finally, the purified VS or CS strands are quantified by qPCR in a second step in which amplification uses a tag primer and a specific primer. Absolute quantification of VS and CS strands is obtained by extrapolating the Cq data to a standard curve of ssDNA, which can be generated by phagemid expression. Quantification of VS and CS strands of two geminiviruses in infections of Solanum lycopersicum (tomato) and Nicotiana benthamiana plants using this method is shown.
Collapse
Affiliation(s)
- Edgar A Rodríguez-Negrete
- Instituto Politécnico Nacional, CIIDIR Unidad Sinaloa, Departamento de Biotecnología Agrícola, Guasave, Sinaloa, Mexico
| | - Ana Grande-Pérez
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain.
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.
| |
Collapse
|
5
|
Sáez C, Kheireddine A, García A, Sifres A, Moreno A, Font-San-Ambrosio MI, Picó B, López C. Further Molecular Diagnosis Determines Lack of Evidence for Real Seed Transmission of Tomato Leaf Curl New Delhi Virus in Cucurbits. PLANTS (BASEL, SWITZERLAND) 2023; 12:3773. [PMID: 37960129 PMCID: PMC10650430 DOI: 10.3390/plants12213773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/26/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
Begomoviruses (family Geminiviridae) cause serious diseases in many crop families. Since 2013, the Spanish isolate of tomato leaf curl New Delhi virus (ToLCNDV) has been a limiting factor for cucurbits production in the Mediterranean basin, forcing farmers to adapt new management and control techniques. Although it is well-known that begomoviruses are naturally transmitted by the whitefly Bemisia tabaci, the capacity of these viruses to be vertically transmitted through seeds remains controversial. Clarifying the potential ToLCNDV seed transmission is essential to understand the epidemiology of this threating-for-cucurbits virus and to design appropriate control strategies. We assessed ToLCNDV distribution in the leaves, flowers and seeds of the infected plants of susceptible Cucumis melo accessions and toleration to the infected genotypes of Cucurbita moschata by conventional and quantitative PCR. We analyzed whether the viral particle was transmitted to offspring. We also evaluated ToLCNDV presence in commercial seeds of cucurbits (zucchini (Cucurbita pepo), melon (C. melo), cucumber (Cucumis sativus) and watermelon (Citrullus lanatus)) and in their progenies. As the assayed seedlings remained symptomless, we increased the reliability and accuracy of detection in these samples by searching for replicative forms of ToLCNDV by combining Southern blot hybridization and rolling-circle amplification (RCA). However, integral genomic DNA was not identified in the plants of offspring. Although the seedborne nature of ToLCNDV was confirmed, our results do not support the transmission of this virus from contaminated seeds to progeny.
Collapse
Affiliation(s)
- Cristina Sáez
- Institute for the Conservation and Breeding of Valencian Agro-Diversity, Universitat Politècnica de València (COMAV-UPV), Camino de Vera s/n, 46022 Valencia, Spain; (A.K.); (A.S.); (B.P.)
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28031 Madrid, Spain
| | - Amina Kheireddine
- Institute for the Conservation and Breeding of Valencian Agro-Diversity, Universitat Politècnica de València (COMAV-UPV), Camino de Vera s/n, 46022 Valencia, Spain; (A.K.); (A.S.); (B.P.)
| | - Arcadio García
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas—Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain;
| | - Alicia Sifres
- Institute for the Conservation and Breeding of Valencian Agro-Diversity, Universitat Politècnica de València (COMAV-UPV), Camino de Vera s/n, 46022 Valencia, Spain; (A.K.); (A.S.); (B.P.)
| | | | - María Isabel Font-San-Ambrosio
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València (IAM-UPV), Camino de Vera s/n, 46022 Valencia, Spain;
| | - Belén Picó
- Institute for the Conservation and Breeding of Valencian Agro-Diversity, Universitat Politècnica de València (COMAV-UPV), Camino de Vera s/n, 46022 Valencia, Spain; (A.K.); (A.S.); (B.P.)
| | - Carmelo López
- Institute for the Conservation and Breeding of Valencian Agro-Diversity, Universitat Politècnica de València (COMAV-UPV), Camino de Vera s/n, 46022 Valencia, Spain; (A.K.); (A.S.); (B.P.)
| |
Collapse
|
6
|
Nalla MK, Schafleitner R, Pappu HR, Barchenger DW. Current status, breeding strategies and future prospects for managing chilli leaf curl virus disease and associated begomoviruses in Chilli ( Capsicum spp.). FRONTIERS IN PLANT SCIENCE 2023; 14:1223982. [PMID: 37936944 PMCID: PMC10626458 DOI: 10.3389/fpls.2023.1223982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023]
Abstract
Chilli leaf curl virus disease caused by begomoviruses, has emerged as a major threat to global chilli production, causing severe yield losses and economic harm. Begomoviruses are a highly successful and emerging group of plant viruses that are primarily transmitted by whiteflies belonging to the Bemisia tabaci complex. The most effective method for mitigating chilli leaf curl virus disease losses is breeding for host resistance to Begomovirus. This review highlights the current situation of chilli leaf curl virus disease and associated begomoviruses in chilli production, stressing the significant issues that breeders and growers confront. In addition, the various breeding methods used to generate begomovirus resistant chilli cultivars, and also the complicated connections between the host plant, vector and the virus are discussed. This review highlights the importance of resistance breeding, emphasising the importance of multidisciplinary approaches that combine the best of traditional breeding with cutting-edge genomic technologies. subsequently, the article highlights the challenges that must be overcome in order to effectively deploy begomovirus resistant chilli varieties across diverse agroecological zones and farming systems, as well as understanding the pathogen thus providing the opportunities for improving the sustainability and profitability of chilli production.
Collapse
Affiliation(s)
- Manoj Kumar Nalla
- World Vegetable Center, South and Central Asia Regional Office, Hyderabad, India
| | | | - Hanu R. Pappu
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | | |
Collapse
|
7
|
Cai L, Mei Y, Ye R, Deng Y, Zhang X, Hu Z, Zhou X, Zhang M, Yang J. Tomato leaf curl New Delhi virus: an emerging plant begomovirus threatening cucurbit production. ABIOTECH 2023; 4:257-266. [PMID: 37970471 PMCID: PMC10638221 DOI: 10.1007/s42994-023-00118-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/12/2023] [Indexed: 11/17/2023]
Abstract
Tomato leaf curl New Delhi virus (ToLCNDV), a bipartite begomovirus, was first reported to infect tomato and has recently spread rapidly as an emerging disease to Cucurbitaceae crops. To date, the virus has been reported to infect more than 11 cucurbit crops, in 16 countries and regions, causing severe yield losses. In autumn 2022, ToLCNDV was first isolated from cucurbit plants in Southeastern coastal areas of China. Phylogenetic analysis established that these isolates belong to the Asian ToLCNDV clade, and shared high nucleotide identity and closest genetic relationship with the DNA-A sequence from the Chinese tomato-infecting ToLCNDV isolate (Accession no. OP356207) and the tomato New Delhi ToLCNDV-Severe isolate (Accession no. HM159454). In this review, we summarize the occurrence and distribution, host range, detection and diagnosis, control strategies, and genetic resistance of ToLCNDV in the Cucurbitaceae. We then summarize pathways that could be undertaken to improve our understanding of this emerging disease, with the objective to develop ToLCNDV-resistant cucurbit cultivars. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-023-00118-4.
Collapse
Affiliation(s)
- Lingmin Cai
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058 China
| | - Yuzhen Mei
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Ruyi Ye
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058 China
| | - Yun Deng
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261000 China
| | - Xuejun Zhang
- Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091 China
| | - Zhongyuan Hu
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058 China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, 572025 China
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture and Rural Affairs, Hangzhou, 310058 China
| | - Xueping Zhou
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Mingfang Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058 China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, 572025 China
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture and Rural Affairs, Hangzhou, 310058 China
| | - Jinghua Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058 China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, 572025 China
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture and Rural Affairs, Hangzhou, 310058 China
| |
Collapse
|
8
|
Kolchenko M, Kapytina A, Kerimbek N, Pozharskiy A, Nizamdinova G, Khusnitdinova M, Taskuzhina A, Gritsenko D. Genetic Characterization of Raspberry Bushy Dwarf Virus Isolated from Red Raspberry in Kazakhstan. Viruses 2023; 15:v15040975. [PMID: 37112955 PMCID: PMC10143182 DOI: 10.3390/v15040975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Raspberry bushy dwarf virus (RBDV) is an economically significant pathogen of raspberry and grapevine, and it has also been found in cherry. Most of the currently available RBDV sequences are from European raspberry isolates. This study aimed to sequence genomic RNA2 of both cultivated and wild raspberry in Kazakhstan and compare them to investigate their genetic diversity and phylogenetic relationships, as well as to predict their protein structure. Phylogenetic and population diversity analyses were performed on all available RBDV RNA2, MP and CP sequences. Nine of the isolates investigated in this study formed a new, well-supported clade, while the wild isolates clustered with the European isolates. Predicted protein structure analysis revealed two regions that differed between α- and β-structures among the isolates. For the first time, the genetic composition of Kazakhstani raspberry viruses has been characterized.
Collapse
Affiliation(s)
- Mariya Kolchenko
- Laboratory of Molecular Biology, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan
| | - Anastasiya Kapytina
- Laboratory of Molecular Biology, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan
| | - Nazym Kerimbek
- Laboratory of Molecular Biology, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan
| | - Alexandr Pozharskiy
- Laboratory of Molecular Biology, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan
- Department of Molecular Biology and Genetics, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Gulnaz Nizamdinova
- Laboratory of Molecular Biology, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan
| | - Marina Khusnitdinova
- Laboratory of Molecular Biology, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan
| | - Aisha Taskuzhina
- Laboratory of Molecular Biology, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan
| | - Dilyara Gritsenko
- Laboratory of Molecular Biology, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan
| |
Collapse
|
9
|
Farina A, Rapisarda C, Fiallo-Olivé E, Navas-Castillo J. Tomato Leaf Curl New Delhi Virus Spain Strain Is Not Transmitted by Trialeurodes vaporariorum and Is Inefficiently Transmitted by Bemisia tabaci Mediterranean between Zucchini and the Wild Cucurbit Ecballium elaterium. INSECTS 2023; 14:384. [PMID: 37103199 PMCID: PMC10146520 DOI: 10.3390/insects14040384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
Tomato leaf curl New Delhi virus (ToLCNDV) is a bipartite begomovirus (genus Begomovirus, family Geminiviridae) persistently transmitted, as with all other begomoviruses, by whiteflies (Hemiptera: Aleyrodidae) of the Bemisia tabaci cryptic species complex. The virus, originally from the Indian subcontinent, was recently introduced in the Mediterranean basin, where it is currently a major concern for protected and open-field horticulture. The Mediterranean ToLCNDV isolates belong to a novel strain named "Spain strain" (ToLCNDV-ES), which infects zucchini and other cucurbit crops but is poorly adapted to tomato. Recently, it has been reported that another whitefly, Trialeurodes vaporariorum, is able to transmit an isolate of ToLCNDV from India which infects the chayote plant, a cucurbit. The present work aimed to clarify some aspects of whitefly transmission of ToLCNDV-ES. It was shown that T. vaporariorum is not able to transmit ToLCNDV-ES between zucchini plants. In addition, Ecballium elaterium may not act as a relevant reservoir for this virus strain in the Mediterranean basin, as B. tabaci Mediterranean (MED), the most prevalent species of the complex in the region, is not an efficient vector of this begomovirus between cultivated zucchini and wild E. elaterium plants.
Collapse
Affiliation(s)
- Alessia Farina
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, 29750 Algarrobo-Costa, Spain; (A.F.); (E.F.-O.)
- Applied Entomology Section, Department of Agriculture, Food and Environment (Di3A), University of Catania, 95123 Catania, Italy;
| | - Carmelo Rapisarda
- Applied Entomology Section, Department of Agriculture, Food and Environment (Di3A), University of Catania, 95123 Catania, Italy;
| | - Elvira Fiallo-Olivé
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, 29750 Algarrobo-Costa, Spain; (A.F.); (E.F.-O.)
| | - Jesús Navas-Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, 29750 Algarrobo-Costa, Spain; (A.F.); (E.F.-O.)
| |
Collapse
|
10
|
Moya-Ruiz CD, Gómez P, Juárez M. Occurrence, Distribution, and Management of Aphid-Transmitted Viruses in Cucurbits in Spain. Pathogens 2023; 12:422. [PMID: 36986344 PMCID: PMC10057868 DOI: 10.3390/pathogens12030422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/10/2023] Open
Abstract
The effectiveness of pest and disease management in crops relies on knowledge about their presence and distribution in crop-producing areas. Aphids and whiteflies are among the main threats to vegetable crops since these hemipterans feed on plants, causing severe damage, and are also able to transmit a large number of devastating plant viral diseases. In particular, the widespread occurrence of aphid-transmitted viruses in cucurbit crops, along with the lack of effective control measures, makes surveillance programs and virus epidemiology necessary for providing sound advice and further integration into the management strategies that can ensure sustainable food production. This review describes the current presence and distribution of aphid-transmitted viruses in cucurbits in Spain, providing valuable epidemiological information, including symptom expressions of virus-infected plants for further surveillance and viral detection. We also provide an overview of the current measures for virus infection prevention and control strategies in cucurbits and indicate the need for further research and innovative strategies against aphid pests and their associated viral diseases.
Collapse
Affiliation(s)
- Celia De Moya-Ruiz
- Centro de Edafología y Biología Aplicada del Segura (CEBAS), CSIC, Departamento de Biología del Estrés y Patología Vegetal, 30100 Murcia, Spain
| | - Pedro Gómez
- Centro de Edafología y Biología Aplicada del Segura (CEBAS), CSIC, Departamento de Biología del Estrés y Patología Vegetal, 30100 Murcia, Spain
| | - Miguel Juárez
- Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO), Universidad Miguel Hernández de Elche, 03312 Orihuela, Spain
| |
Collapse
|
11
|
Naganur P, Shankarappa KS, Mesta RK, Rao CD, Venkataravanappa V, Maruthi MN, Reddy LRCN. Detecting Tomato Leaf Curl New Delhi Virus Causing Ridge Gourd Yellow Mosaic Disease, and Other Begomoviruses by Antibody-Based Methods. PLANTS (BASEL, SWITZERLAND) 2023; 12:490. [PMID: 36771575 PMCID: PMC9919216 DOI: 10.3390/plants12030490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/03/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
The incidence and severity of begomovirus diseases have been increasing around the world recently, and the ridge gourd [Luffa acutangula (Roxb.) L.] is the latest example of a crop that has become highly susceptible to the outbreak of the tomato leaf curl New Delhi virus (ToLCNDV, genus Begomovirus) in India. Accurate diagnosis of causal agents is important in designing disease management strategies. In this study the coat protein (CP) gene from a ToLCNDV-Rg ridge gourd isolate was used to produce polyclonal antibodies (ToLCNDV-Rg-CP-PAb) in a rabbit. The antibodies successfully detected a 30.5 kDa ToLCNDV-Rg-CP in extracts of symptomatic ridge gourd leaf samples by several assays, such as Western Blotting (WB), Dot Immuno Binding Assay (DIBA), Direct Antigen Coating Enzyme Linked Immuno Sorbent Assay (DAC-ELISA), Immuno Capture Polymerase Chain Reaction (IC-PCR), and Immuno Capture Loop-Mediated Isothermal Amplification (IC-LAMP) assays. However, none of the negative samples tested positive in either of the detection methods. Among all the methods tested, the immunocapture assay, IC-LAMP, was the most sensitive in detecting ToLCNDV-Rg. Furthermore, antibodies generated in this study also detected other commonly occurring begomoviruses in South India, such as tomato leaf curl Palampur virus and squash leaf curl China virus in cucurbits. Together, ToLCNDV-Rg-CP-PAb can be used for detecting at least three species of begomoviruses infecting cucurbits. The obtained antibodies will contribute to monitoring disease outbreaks in multiple crops.
Collapse
Affiliation(s)
- Priya Naganur
- Department of Plant Pathology, College of Horticulture, University of Horticultural Sciences, Bengaluru 560065, Karnataka, India
- Department of Plant Pathology, College of Horticulture, University of Horticultural Sciences, Bagalkot 587101, Karnataka, India
| | - Kodegandlu Subbanna Shankarappa
- Department of Plant Pathology, College of Horticulture, University of Horticultural Sciences, Bengaluru 560065, Karnataka, India
| | - Raghavendra K. Mesta
- Department of Plant Pathology, College of Horticulture, University of Horticultural Sciences, Bagalkot 587101, Karnataka, India
| | - Chilakalapudi Durga Rao
- Department of Biology, SRM University, Mangalagiri Mandal, Neerukonda, Amaravati 522502, Andhra Pradesh, India
| | - Venkataravanappa Venkataravanappa
- Division of Crop Protection, ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake PO, Bengaluru 560089, Karnataka, India
| | - Midatharahally Narasegowda Maruthi
- Agriculture, Health and Environment Department, Natural Resources Institute, University of Greenwich, Medway Campus, Chatham, Kent ME4 4TB, UK
| | | |
Collapse
|
12
|
Sattar MN, Khurshid M, El-Beltagi HS, Iqbal Z. Identification and estimation of sequence variation dynamics of Tomato Leaf curl Palampur virus and betasatellite complex infecting a new weed host. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2112911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Affiliation(s)
- Muhammad Naeem Sattar
- Central Laboratories, Department of Biotechnology, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Muhammad Khurshid
- School of Biochemistry and Biotechnology, Faculty of Life Sciences, University of the Punjab, Lahore, Pakistan
| | - Hossam S. El-Beltagi
- Department of Biotechnology, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
- Biochemistry Department, Faculty of Agriculture, Cairo University, Cairo, Egypt
| | - Zafar Iqbal
- Central Laboratories, Department of Biotechnology, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
13
|
Maachi A, Donaire L, Hernando Y, Aranda MA. Genetic Differentiation and Migration Fluxes of Viruses from Melon Crops and Crop Edge Weeds. J Virol 2022; 96:e0042122. [PMID: 35924924 PMCID: PMC9400485 DOI: 10.1128/jvi.00421-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/03/2022] [Indexed: 11/20/2022] Open
Abstract
Weeds surrounding crops may act as alternative hosts, playing important epidemiological roles as virus reservoirs and impacting virus evolution. We used high-throughput sequencing to identify viruses in Spanish melon crops and plants belonging to three pluriannual weed species, Ecballium elaterium, Malva sylvestris, and Solanum nigrum, sampled at the edges of the crops. Melon and E. elaterium, both belonging to the family Cucurbitaceae, shared three virus species, whereas there was no virus species overlap between melon and the other two weeds. The diversity of cucurbit aphid-borne yellows virus (CABYV) and tomato leaf curl New Delhi virus (ToLCNDV), both in melon and E. elaterium, was further studied by amplicon sequencing. Phylogenetic and population genetics analyses showed that the CABYV population was structured by the host, identifying three sites in the CABYV RNA-dependent RNA polymerase under positive selection, perhaps reflecting host adaptation. The ToLCNDV population was much less diverse than the CABYV one, likely as a consequence of the relatively recent introduction of ToLCNDV in Spain. In spite of its low diversity, we identified geographical but no host differentiation for ToLCNDV. Potential virus migration fluxes between E. elaterium and melon plants were also analyzed. For CABYV, no evidence of migration between the populations of the two hosts was found, whereas important fluxes were identified between geographically distant subpopulations for each host. For ToLCNDV, in contrast, evidence of migration from melon to E. elaterium was found, but not the other way around. IMPORTANCE It has been reported that about half of the emerging diseases affecting plants are caused by viruses. Alternative hosts often play critical roles in virus emergence as virus reservoirs, bridging host species that are otherwise unconnected and/or favoring virus diversification. In spite of this, the viromes of potential alternative hosts remain largely unexplored. In the case of crops, pluriannual weeds at the crop edges may play these roles. Here, we took advantage of the power of high-throughput sequencing to characterize the viromes of three weed species frequently found at the edges of melon crops. We identified three viruses shared by melon and the cucurbit weed, with two of them being epidemiologically relevant for melon crops. Further genetic analyses showed that these two viruses had contrasting patterns of diversification and migration, providing an interesting example on the role that weeds may play in the ecology and evolution of viruses affecting crops.
Collapse
Affiliation(s)
- Ayoub Maachi
- Abiopep S.L., Parque Científico de Murcia, Complejo de Espinardo, Espinardo, Murcia, Spain
| | - Livia Donaire
- Abiopep S.L., Parque Científico de Murcia, Complejo de Espinardo, Espinardo, Murcia, Spain
- Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, Department of Stress Biology and Plant Pathology, Espinardo, Murcia, Spain
| | - Yolanda Hernando
- Abiopep S.L., Parque Científico de Murcia, Complejo de Espinardo, Espinardo, Murcia, Spain
| | - Miguel A. Aranda
- Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, Department of Stress Biology and Plant Pathology, Espinardo, Murcia, Spain
| |
Collapse
|
14
|
Shingote PR, Wasule DL, Parma VS, Holkar SK, Karkute SG, Parlawar ND, Senanayake DMJB. An Overview of Chili Leaf Curl Disease: Molecular Mechanisms, Impact, Challenges, and Disease Management Strategies in Indian Subcontinent. Front Microbiol 2022; 13:899512. [PMID: 35847087 PMCID: PMC9277185 DOI: 10.3389/fmicb.2022.899512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Leaf curl disease in a chili plant is caused mainly by Chili leaf curl virus (ChiLCV) (Family: Geminiviridae, Genus: Begomovirus). ChiLCV shows a widespread occurrence in most of the chili (Capsicum spp.) growing regions. ChiLCV has a limited host range and infects tomatoes (Solanum lycopersicum), potatoes (S. tuberosum), and amaranth (Amaranthus tricolor). The virus genome is a monopartite circular single-stranded DNA molecule of 2.7 kb and associated with α and β-satellites of 1.3 and 1.4 kb, respectively. The virus genome is encapsulated in distinct twinned icosahedral particles of around 18-30 nm in size and transmitted by Bemisia tabaci (Family: Aleyrodidae, Order: Hemiptera). Recently, bipartite begomovirus has been found to be associated with leaf curl disease. The leaf curl disease has a widespread distribution in the major equatorial regions viz., Australia, Asia, Africa, Europe, and America. Besides the PCR, qPCR, and LAMP-based detection systems, recently, localized surface-plasmon-resonance (LPSR) based optical platform is used for ChiLCV detection in a 20-40 μl of sample volume using aluminum nanoparticles. Management of ChiLCV is more challenging due to the vector-borne nature of the virus, therefore integrated disease management strategies need to be followed to contain the spread and heavy crop loss. CRISPR/Cas-mediated virus resistance has gained importance in disease management of DNA and RNA viruses due to certain advantages over the conventional approaches. Therefore, CRISPR/Cas system-mediated resistance needs to be explored in chili against ChiLCV.
Collapse
Affiliation(s)
- Prashant Raghunath Shingote
- Department of Agricultural Biotechnology, Dr. Panjabrao Deshmukh Krishi Veedyapeeth, Akola, India.,Department of Agricultural Biotechnology, Vasantrao Naik College of Agricultural Biotechnology, Yavatmal, India
| | - Dhiraj Lalji Wasule
- Department of Agricultural Biotechnology, Dr. Panjabrao Deshmukh Krishi Veedyapeeth, Akola, India
| | - Vaishnavi Sanjay Parma
- Department of Agricultural Biotechnology, Dr. Panjabrao Deshmukh Krishi Veedyapeeth, Akola, India
| | - Somnath Kadappa Holkar
- Indian Council of Agricultural Research (ICAR)-National Research Centre for Grapes, Pune, India
| | - Suhas Gorakh Karkute
- Division of Vegetable Improvement, Indian Council of Agricultural Research (ICAR)-Indian Institute of Vegetable Research, Varanasi, India
| | - Narsing Devanna Parlawar
- Department of Agricultural Biotechnology, Dr. Panjabrao Deshmukh Krishi Veedyapeeth, Akola, India
| | - D M J B Senanayake
- Deparment of Agriculture, Rice Research and Development Institute, Bathalagoda, Sri Lanka
| |
Collapse
|
15
|
Mishra M, Verma RK, Pandey V, Srivastava A, Sharma P, Gaur R, Ali A. Role of Diversity and Recombination in the Emergence of Chilli Leaf Curl Virus. Pathogens 2022; 11:pathogens11050529. [PMID: 35631050 PMCID: PMC9146097 DOI: 10.3390/pathogens11050529] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/16/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023] Open
Abstract
Chilli leaf curl virus (ChiLCV), (Genus Begomovirus, family Geminiviridae) and associated satellites pose a serious threat to chilli production, worldwide. This study highlights the factors accountable for genetic diversity, recombination, and evolution of ChiLCV, and associated chilli leaf curl alphasatellite (ChiLCA) and chilli leaf curl betasatellite (ChiLCB). Phylogenetic analysis of complete genome (DNA-A) sequences of 132 ChiLCV isolates from five countries downloaded from NCBI database clustered into three major clades and showed high population diversity. The dN/dS ratio and Tajima D value of all viral DNA-A and associated betasatellite showed selective control on evolutionary relationships. Negative values of neutrality tests indicated purified selection and an excess of low-frequency polymorphism. Nucleotide diversity (π) for C4 and Rep genes was higher than other genes of ChiLCV with an average value of π = 18.37 × 10−2 and π = 17.52 × 10−2 respectively. A high number of mutations were detected in TrAP and Rep genes, while ChiLCB has a greater number of mutations than ChiLCA. In addition, significant recombination breakpoints were detected in all regions of ChiLCV genome, ChiLCB and, ChiLCA. Our findings indicate that ChiLCV has the potential for rapid evolution and adaptation to a range of geographic conditions and could be adopted to infect a wide range of crops, including diverse chilli cultivars.
Collapse
Affiliation(s)
- Megha Mishra
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, Sikar 332311, Rajasthan, India; (M.M.); (R.K.V.)
| | - Rakesh Kumar Verma
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, Sikar 332311, Rajasthan, India; (M.M.); (R.K.V.)
| | - Vineeta Pandey
- Department of Biotechnology, D.D.U. Gorakhpur University, Gorakhpur 273006, Uttar Pradesh, India; (V.P.); (A.S.)
| | - Aarshi Srivastava
- Department of Biotechnology, D.D.U. Gorakhpur University, Gorakhpur 273006, Uttar Pradesh, India; (V.P.); (A.S.)
| | - Pradeep Sharma
- Department of Biotechnology, ICAR—Indian Institute of Wheat & Barley Research, Agarsain Road, Karnal 132001, Haryana, India;
| | - Rajarshi Gaur
- Department of Biotechnology, D.D.U. Gorakhpur University, Gorakhpur 273006, Uttar Pradesh, India; (V.P.); (A.S.)
- Correspondence: (R.G.); (A.A.); Tel.: +1-918-631-2018 (A.A.)
| | - Akhtar Ali
- Department of Biological Science, The University of Tulsa, 800 S Tucker Drive, Tulsa, OK 74104-3189, USA
- Correspondence: (R.G.); (A.A.); Tel.: +1-918-631-2018 (A.A.)
| |
Collapse
|
16
|
Vo TTB, Lal A, Ho PT, Troiano E, Parrella G, Kil EJ, Lee S. Different Infectivity of Mediterranean and Southern Asian Tomato Leaf Curl New Delhi Virus Isolates in Cucurbit Crops. PLANTS (BASEL, SWITZERLAND) 2022; 11:704. [PMID: 35270174 PMCID: PMC8912351 DOI: 10.3390/plants11050704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Tomato leaf curl New Delhi virus (ToLCNDV) became an alerting virus in Europe from 2017 to 2020 because of its significant damage to Cucurbitaceae cultivation. Until now, just some cucurbit crops including sponge gourd, melon, pumpkin, and cucumber were reported to be resistant to ToLCNDV, but no commercial cultivars are available. In this study, a new isolate of ToLCNDV was identified in Pakistan and analyzed together with ToLCNDV-ES which was previously isolated in Italy. Furthermore, infectious clones of two ToLCNDV isolates were constructed and agroinoculated into different cucurbit crops to verify their infectivity. Results showed that both isolates exhibited severe infection on all tested cucurbit (>70%) except watermelon. Thus, those cultivars may be good candidates in the first step of screening genetic resources for resistance on both Southeast Asian and Mediterranean ToLCNDV isolates. Additional, comparison pathogenicity of different geographical ToLCNDV isolates will be aided to understand viral characterization as such knowledge could facilitate breeding resistance to this virus.
Collapse
Affiliation(s)
- Thuy T. B. Vo
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (T.T.B.V.); (A.L.); (P.T.H.)
| | - Aamir Lal
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (T.T.B.V.); (A.L.); (P.T.H.)
| | - Phuong T. Ho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (T.T.B.V.); (A.L.); (P.T.H.)
| | - Elisa Troiano
- Institute for Sustainable Plant Protection of the National Research Council (IPSP-CNR), 80055 Portici, Italy;
| | - Giuseppe Parrella
- Institute for Sustainable Plant Protection of the National Research Council (IPSP-CNR), 80055 Portici, Italy;
| | - Eui-Joon Kil
- Department of Plant Medicals, Andong National University, Andong 36729, Korea
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (T.T.B.V.); (A.L.); (P.T.H.)
| |
Collapse
|
17
|
Pandey V, Srivastava A, Mishra M, Gaur RK. Chilli leaf curl disease populations in India are highly recombinant, and rapidly segregated. 3 Biotech 2022; 12:83. [PMID: 35251885 PMCID: PMC8882514 DOI: 10.1007/s13205-022-03139-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 02/02/2022] [Indexed: 11/01/2022] Open
Abstract
Capsicum annuum, a valuable spice and vegetable crop belonging to the Solanaceae family, is extensively grown across the Indian subcontinent. Chilli production is restricted by a begomoviral infection named as chilli leaf curl disease (ChiLCD) mainly in tropical and subtropical regions which leads to considerable economic losses, thus affecting chilli cultivation. Here, we studied the genetic diversity with structural evaluation of chilli leaf curl disease and satellite molecules infecting Chilli in India. We retrieved 121 reference sequences of ChiLCD including DNA-A, DNA-B, beta-satellite and alpha-satellites from GenBank reported from India. The population diversity and genetic variation were estimated through various parameters which decipher the four major groups of phylogenetic divergence for DNA-A and five groups of beta-satellite showing percentage similarity with isolates within and across India. Further, transitional and transversional bias for ORFs were observed highest in C4 and REn genes, respectively, and for DNA-A and DNA-B, these values were 1.07 and 1.22, respectively. The recombination breakpoints for DNA-A were estimated 49 majorly in V1, C1,C2 and C4 genome region and highest 22 breakpoints were determined for Rep (AC1) of ORFs, similarly 9 events for beta-satellite were found less around βC1ORF. Moreover, the evolution and genetic variability were also contributed through parameters such as nucleotide substitution which were found within the range of RNA viruses for DNA-A, DNA-B, for all 6 ORFs (relaxed clock) and beta-satellite. Additionally, total numbers of mutations (η) for DNA-A, DNA-B, alpha-satellites and beta-satellites were 2505, 419, 807 and 1288 detected, respectively, while it was found 987 highest for Rep gene among all ORFs. Further, neutrality tests determine the dominant nature of population expansion and purifying selection for all the genes of begomovirus associated with ChiLCD and satellite molecules supporting conserved nature of gene. The combined Tajima's D and Fu and Li'S D* negative values in tests indicated that population are under purified selection and an excess of low-frequency polymorphism. Our analysis indicates the potential contribution of genetic mutations and recombination of ChiLCD which leads to rapid adaptation and evolution of begomovirus and its satellite molecules accelerating its host range and diversity within and across the Indian subcontinent. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-022-03139-w.
Collapse
Affiliation(s)
- Vineeta Pandey
- grid.411985.00000 0001 0662 4146Department of Biotechnology, D.D.U. Gorakhpur University, Gorakhpur, Uttar Pradesh 273009 India
| | - Aarshi Srivastava
- grid.411985.00000 0001 0662 4146Department of Biotechnology, D.D.U. Gorakhpur University, Gorakhpur, Uttar Pradesh 273009 India
| | - Megha Mishra
- grid.444560.70000 0004 1793 810XDepartment of Biosciences, Mody University of Science and Technology, Lakshmangarh, Sikar, Rajasthan 332311 India
| | - R. K. Gaur
- grid.411985.00000 0001 0662 4146Department of Biotechnology, D.D.U. Gorakhpur University, Gorakhpur, Uttar Pradesh 273009 India
| |
Collapse
|
18
|
Janssen D, Simón A, Boulares M, Ruiz L. Host Species-Dependent Transmission of Tomato Leaf Curl New Delhi Virus-ES by Bemisia tabaci. PLANTS (BASEL, SWITZERLAND) 2022; 11:390. [PMID: 35161372 PMCID: PMC8837991 DOI: 10.3390/plants11030390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
The tomato leaf curl New Delhi virus (ToLCNDV) is a bipartite, single-stranded begomovirus that was first identified in India in 1995 affecting solanaceous crops. A different strain, named ToLCNDV-ES, was introduced in Spain in 2012 and causes severe symptoms in zucchini crops. Virus transmission experiments with the whitefly Bemisia tabaci, were used to compare the transmission parameters in zucchini and tomato plants. The minimum acquisition access period and inoculation access period of ToLCNDV-ES transmission was similar in zucchini and tomato. However, the transmission efficiency was significantly higher in zucchini (96%) compared to tomato (2%). The maximum retention of the virus in the vector was 16 days. B. tabaci feeding on, or recently emerged from infected zucchini plants, accumulated more virus than those from infected tomato, as determined by real-time PCR. A total of 20% of B. tabaci that were recently emerged from infected zucchini, and none from infected tomato, were able to transmit the virus to virus-free zucchini. The results may explain the different incidences of ToLCNDV-ES in zucchini and tomato crops in Spain. But they are also relevant for ToLCNDV-ES management of crops and the role of the trade and transport of infected plant material, when small-sized immature stages of B. tabaci could be a source of infection.
Collapse
|
19
|
Kumar M, Zarreen F, Chakraborty S. Roles of two distinct alphasatellites modulating geminivirus pathogenesis. Virol J 2021; 18:249. [PMID: 34903259 PMCID: PMC8670188 DOI: 10.1186/s12985-021-01718-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/29/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alphasatellites are small coding DNA satellites frequently associated with a begomovirus/betasatellite complex, where they are known to modulate virulence and symptom development. Two distinct alphasatellites, namely, Cotton leaf curl Multan alphasatellite (CLCuMuA), and Gossypium darwinii symptomless alphasatellite (GDarSLA) associated with Cotton leaf curl Multan virus-India (CLCuMuV-IN) and Ludwigia leaf distortion betasatellite (LuLDB) were found to be associated with yellow mosaic disease of hollyhock (Alcea rosea) plants. In this study, we show that alphasatellites CLCuMuA and GDarSLA attenuate and delay symptom development in Nicotiana benthamiana. The presence of either alphasatellites reduce the accumulation of the helper virus CLCuMuV-IN. However, the levels of the associated betasatellite, LuLDB, remains unchanged. These results suggest that the alphasatellites could contribute to the host defence and understanding their role in disease development is important for developing resistance strategies. METHODS Tandem repeat constructs of two distinct alphasatellites, namely, CLCuMuA and GDarSLA associated with CLCuMuV-IN and LuLDB were generated. N. benthamiana plants were co-agroinoculated with CLCuMuV and its associated alphasatellites and betasatellite molecules and samples were collected at 7, 14 and 21 days post inoculation (dpi). The viral DNA molecules were quantified in N. benthamiana plants by qPCR. The sequences were analysed using the MEGA-X tool, and a phylogenetic tree was generated. Genetic diversity among the CLCuMuA and GDarSLA was analysed using the DnaSP tool. RESULTS We observed a reduction in symptom severity and accumulation of helper virus in the presence of two alphasatellites isolated from naturally infected hollyhock plants. However, no reduction in the accumulation of betasatellite was observed. The phylogenetic and genetic variability study revealed the evolutionary dynamics of these distinct alphasatellites , which could explain the role of hollyhock-associated alphasatellites in plants. CONCLUSIONS This study provides evidence that alphasatellites have a role in symptom modulation and suppress helper virus replication without any discernible effect on the replication of the associated betasatellite.
Collapse
Affiliation(s)
- Manish Kumar
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110 067 India
| | - Fauzia Zarreen
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110 067 India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110 067 India
| |
Collapse
|
20
|
Natural occurrence of mesta yellow vein mosaic virus and DNA-satellites in ornamental sunflower ( Helianthus spp.) in Pakistan. Saudi J Biol Sci 2021; 28:6621-6630. [PMID: 34764778 PMCID: PMC8568841 DOI: 10.1016/j.sjbs.2021.07.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/07/2021] [Accepted: 07/11/2021] [Indexed: 11/23/2022] Open
Abstract
Weeds and ornamental plants serve as a reservoir for geminiviruses and contribute to their dissemination, genome recombination and/or satellite capture. Ornamental sunflower (Helianthus spp.) plants exhibiting mild leaf curl symptoms were subjected to begomovirus and DNA-satellites isolation. The full-length genome of the isolated begomovirus clone (Od1-A) showed 96.8% nucleotide (nt) sequence identity with mesta yellow vein mosaic virus (MeYVMV; accession no. FR772081) whereas, alphasatellite (Od1-a) and betasatellite (Od1-b) clones showed their highest nt sequence identities at 97.4% and 98.2% with ageratum enation alphasatellite (AEA; accession no. FR772085) and papaya leaf curl betasatellite (PaLCuB; accession. no. LN878112), respectively. The evolutionary relationships, average evolutionary divergence and the recombination events were also inferred. The MeYVMV exhibited 9.5% average evolutionary divergence and its CP and Rep had 9.3% and 12.2%, concomitantly; the alphasatellite and the betasatellite had 8.3% and 5.2%, respectively. The nt substitution rates (site-1 year−1) were found to be 6.983 × 10-04 and 5.702 × 10-05 in the CP and Rep of MeYVMV, respectively. The dN/dS ratio and the Tajima D value of MeYVMV CP demonstrated its possible role in host switching. The absolute quantification of the begomovirus demonstrated that mild symptoms might have a correlation with low virus titer. This is the first identification of MeYVMV and associated DNA-satellites from ornamental sunflower in Pakistan. The role of sequence divergence, recombination and importance of MeYVMV along with DNA-satellites in extending its host range is discussed.
Collapse
|
21
|
Ortega-Del Campo S, Grigoras I, Timchenko T, Gronenborn B, Grande-Pérez A. Twenty years of evolution and diversification of digitaria streak virus in Digitaria setigera. Virus Evol 2021; 7:veab083. [PMID: 34659796 PMCID: PMC8516820 DOI: 10.1093/ve/veab083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 09/09/2021] [Accepted: 09/20/2021] [Indexed: 11/21/2022] Open
Abstract
Within the family Geminiviridae, the emergence of new species results from their high mutation and recombination rates. In this study, we report the variability and evolution of digitaria streak virus (DSV), a mastrevirus isolated in 1986 from the grass Digitaria setigera in an island of the Vanuatu archipelago. Viral DNA of DSV samples was amplified from D. setigera specimens, derived from the naturally infected original plant, which were propagated in different laboratories in France and Italy for more than 20 years. From the consensus sequences, the nucleotide substitution rate was estimated for the period between a sample and the original sequence published in 1987, as well as for the period between samples. In addition, the intra-host genetic complexity and diversity of 8 DSV populations with a total of 165 sequenced haplotypes was characterized. The evolutionary rate of DSV was estimated to be between 1.13 × 10−4 and 9.87 × 10−4 substitutions/site/year, within the ranges observed in other single-stranded DNA viruses and RNA viruses. Bioinformatic analyses revealed high variability and heterogeneity in DSV populations, which confirmed that mutant spectra are continuously generated and are organized as quasispecies. The analysis of polymorphisms revealed nucleotide substitution biases in viral genomes towards deamination and oxidation of single-stranded DNA. The differences in variability in each of the genomic regions reflected a dynamic and modular evolution in the mutant spectra that was not reflected in the consensus sequences. Strikingly, the most variable region of the DSV genome, encoding the movement protein, showed rapid fixation of the mutations in the consensus sequence and a concomitant dN/dS ratio of 6.130, which suggests strong positive selection in this region. Phylogenetic analyses revealed a possible divergence in three genetic lineages from the original Vanuatu DSV isolate.
Collapse
Affiliation(s)
| | - Ioana Grigoras
- CNRS, Institut des Sciences du Végétal, Gif-sur-Yvette 91198, France
| | - Tatiana Timchenko
- CNRS, Institut des Sciences du Végétal, Gif-sur-Yvette 91198, France
| | - Bruno Gronenborn
- CNRS, Institut des Sciences du Végétal, Gif-sur-Yvette 91198, France
| | - Ana Grande-Pérez
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Área de Genética, Facultad de Ciencias, Campus de Teatinos, Málaga 29071, Spain
| |
Collapse
|
22
|
Yan Z, Wolters AMA, Navas-Castillo J, Bai Y. The Global Dimension of Tomato Yellow Leaf Curl Disease: Current Status and Breeding Perspectives. Microorganisms 2021; 9:740. [PMID: 33916319 PMCID: PMC8066563 DOI: 10.3390/microorganisms9040740] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/20/2022] Open
Abstract
Tomato yellow leaf curl disease (TYLCD) caused by tomato yellow leaf curl virus (TYLCV) and a group of related begomoviruses is an important disease which in recent years has caused serious economic problems in tomato (Solanum lycopersicum) production worldwide. Spreading of the vectors, whiteflies of the Bemisia tabaci complex, has been responsible for many TYLCD outbreaks. In this review, we summarize the current knowledge of TYLCV and TYLV-like begomoviruses and the driving forces of the increasing global significance through rapid evolution of begomovirus variants, mixed infection in the field, association with betasatellites and host range expansion. Breeding for host plant resistance is considered as one of the most promising and sustainable methods in controlling TYLCD. Resistance to TYLCD was found in several wild relatives of tomato from which six TYLCV resistance genes (Ty-1 to Ty-6) have been identified. Currently, Ty-1 and Ty-3 are the primary resistance genes widely used in tomato breeding programs. Ty-2 is also exploited commercially either alone or in combination with other Ty-genes (i.e., Ty-1, Ty-3 or ty-5). Additionally, screening of a large collection of wild tomato species has resulted in the identification of novel TYLCD resistance sources. In this review, we focus on genetic resources used to date in breeding for TYLCVD resistance. For future breeding strategies, we discuss several leads in order to make full use of the naturally occurring and engineered resistance to mount a broad-spectrum and sustainable begomovirus resistance.
Collapse
Affiliation(s)
- Zhe Yan
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands; (Z.Y.); (A.-M.A.W.)
| | - Anne-Marie A. Wolters
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands; (Z.Y.); (A.-M.A.W.)
| | - Jesús Navas-Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Consejo Superior de Investigaciones Científicas Universidad de Málaga (IHSM-CSIC-UMA), Avenida Dr. Weinberg s/n, 29750 Algarrobo-Costa, Málaga, Spain;
| | - Yuling Bai
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands; (Z.Y.); (A.-M.A.W.)
| |
Collapse
|
23
|
De Moya-Ruiz C, Rabadán P, Juárez M, Gómez P. Assessment of the Current Status of Potyviruses in Watermelon and Pumpkin Crops in Spain: Epidemiological Impact of Cultivated Plants and Mixed Infections. PLANTS (BASEL, SWITZERLAND) 2021; 10:138. [PMID: 33445406 PMCID: PMC7827711 DOI: 10.3390/plants10010138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/17/2022]
Abstract
Viral infections on cucurbit plants cause substantial quality and yield losses on their crops. The diseased plants can often be infected by multiple viruses, and their epidemiology may depend, in addition to the agro-ecological management practices, on the combination of these viral infections. Watermelon mosaic virus (WMV) is one of the most prevalent viruses in cucurbit crops, and Moroccan watermelon mosaic virus (MWMV) emerged as a related species that threatens these crops. The occurrence of WMV and MWMV was monitored in a total of 196 apical-leaf samples of watermelon and pumpkin plants that displayed mosaic symptoms. The samples were collected from 49 fields in three major cucurbit-producing areas in Spain (Castilla La-Mancha, Alicante, and Murcia) for three consecutive (2018-2020) seasons. A molecular hybridization dot-blot method revealed that WMV was mainly (53%) found in both cultivated plants, with an unadvertised occurrence of MWMV. To determine the extent of cultivated plant species and mixed infections on viral dynamics, two infectious cDNA clones were constructed from a WMV isolate (MeWM7), and an MWMV isolate (ZuM10). Based on the full-length genomes, both isolates were grouped phylogenetically with the Emergent and European clades, respectively. Five-cucurbit plant species were infected steadily with either WMV or MWMV cDNA clones, showing variations on symptom expressions. Furthermore, the viral load varied depending on the plant species and infection type. In single infections, the WMV isolate showed a higher viral load than the MWMV isolate in melon and pumpkin, and MWMV only showed higher viral load than the WMV isolate in zucchini plants. However, in mixed infections, the viral load of the WMV isolate was greater than MWMV isolate in melon, watermelon and zucchini, whereas MWMV isolate was markedly reduced in zucchini. These results suggest that the impaired distribution of MWMV in cucurbit crops may be due to the cultivated plant species, in addition to the high prevalence of WMV.
Collapse
Affiliation(s)
- Celia De Moya-Ruiz
- Centro de Edafología y Biología Aplicada del Segura (CEBAS)—CSIC, Departamento de Biología del Estrés y Patología Vegetal, P.O. Box 164, 30100 Murcia, Spain; (C.D.M.-R.); (P.R.)
| | - Pilar Rabadán
- Centro de Edafología y Biología Aplicada del Segura (CEBAS)—CSIC, Departamento de Biología del Estrés y Patología Vegetal, P.O. Box 164, 30100 Murcia, Spain; (C.D.M.-R.); (P.R.)
| | - Miguel Juárez
- Escuela Politécnica Superior de Orihuela, Universidad Miguel Hernández de Elche, Orihuela, 03312 Alicante, Spain;
| | - Pedro Gómez
- Centro de Edafología y Biología Aplicada del Segura (CEBAS)—CSIC, Departamento de Biología del Estrés y Patología Vegetal, P.O. Box 164, 30100 Murcia, Spain; (C.D.M.-R.); (P.R.)
| |
Collapse
|
24
|
Sáez C, Flores-León A, Montero-Pau J, Sifres A, Dhillon NPS, López C, Picó B. RNA-Seq Transcriptome Analysis Provides Candidate Genes for Resistance to Tomato Leaf Curl New Delhi Virus in Melon. FRONTIERS IN PLANT SCIENCE 2021; 12:798858. [PMID: 35116050 PMCID: PMC8805612 DOI: 10.3389/fpls.2021.798858] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/29/2021] [Indexed: 05/10/2023]
Abstract
Tomato leaf curl New Delhi virus (ToLCNDV) emerged in the Mediterranean Basin in 2012 as the first DNA bipartite begomovirus (Geminiviridae family), causing severe yield and economic losses in cucurbit crops. A major resistance locus was identified in the wild melon accession WM-7 (Cucumis melo kachri group), but the mechanisms involved in the resistant response remained unknown. In this work, we used RNA-sequencing to identify disease-associated genes that are differentially expressed in the course of ToLCNDV infection and could contribute to resistance. Transcriptomes of the resistant WM-7 genotype and the susceptible cultivar Piñonet Piel de Sapo (PS) (C. melo ibericus group) in ToLCNDV and mock inoculated plants were compared at four time points during infection (0, 3, 6, and 12 days post inoculation). Different gene expression patterns were observed over time in the resistant and susceptible genotypes in comparison to their respective controls. Differentially expressed genes (DEGs) in ToLCNDV-infected plants were classified using gene ontology (GO) terms, and genes of the categories transcription, DNA replication, and helicase activity were downregulated in WM-7 but upregulated in PS, suggesting that reduced activity of these functions reduces ToLCNDV replication and intercellular spread and thereby contributes to resistance. DEGs involved in the jasmonic acid signaling pathway, photosynthesis, RNA silencing, transmembrane, and sugar transporters entail adverse consequences for systemic infection in the resistant genotype, and lead to susceptibility in PS. The expression levels of selected candidate genes were validated by qRT-PCR to corroborate their differential expression upon ToLCNDV infection in resistant and susceptible melon. Furthermore, single nucleotide polymorphism (SNPs) with an effect on structural functionality of DEGs linked to the main QTLs for ToLCNDV resistance have been identified. The obtained results pinpoint cellular functions and candidate genes that are differentially expressed in a resistant and susceptible melon line in response to ToLCNDV, an information of great relevance for breeding ToLCNDV-resistant melon cultivars.
Collapse
Affiliation(s)
- Cristina Sáez
- Institute for the Conservation and Breeding of Agricultural Biodiversity, Universitat Politècnica de València, Valencia, Spain
- *Correspondence: Cristina Sáez,
| | - Alejandro Flores-León
- Institute for the Conservation and Breeding of Agricultural Biodiversity, Universitat Politècnica de València, Valencia, Spain
| | - Javier Montero-Pau
- Cavanilles Institute of Biodiversity and Evolutionary Biology, Universitat de València, Valencia, Spain
| | - Alicia Sifres
- Institute for the Conservation and Breeding of Agricultural Biodiversity, Universitat Politècnica de València, Valencia, Spain
| | - Narinder P. S. Dhillon
- World Vegetable Center, East and Southeast Asia, Research and Training Station, Kasetsart University, Nakhon Pathom, Thailand
| | - Carmelo López
- Institute for the Conservation and Breeding of Agricultural Biodiversity, Universitat Politècnica de València, Valencia, Spain
- Carmelo López,
| | - Belén Picó
- Institute for the Conservation and Breeding of Agricultural Biodiversity, Universitat Politècnica de València, Valencia, Spain
- Belén Picó,
| |
Collapse
|
25
|
Mishra M, Verma RK, Marwal A, Sharma P, Gaur RK. Biology and Interaction of the Natural Occurrence of Distinct Monopartite Begomoviruses Associated With Satellites in Capsicum annum From India. Front Microbiol 2020; 11:512957. [PMID: 33117300 PMCID: PMC7575687 DOI: 10.3389/fmicb.2020.512957] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 09/03/2020] [Indexed: 01/29/2023] Open
Abstract
Chili (Capsicum annuum L.) is an important vegetable and spice crop of tropical and sub-tropical regions. Chili plants showing upward leaf curling, leaf crinkling, and leaf yellowing symptoms, collected from Sikar district of Rajasthan, India, were found to be associated with begomovirus and satellite molecules. The presence of virus was confirmed by PCR using virus-specific primer. The full-length genomic DNA-A of three begomovirus (MM-1, CS-1 and RV-1) and two satellites (MM-2 and MM-3) were cloned which was identified from single symptomatic chili plant. The genome organization of isolated three viruses is similar to those of other Old World monopartite begomoviruses. The comparison of the sequences and closest phylogenetic relationships for the begomoviruses, betasatellite and alphasatellite DNAs revealed that MM-1 was designated as DNA-A of Chili leaf curl virus (ChiLCV), CS-1 is considered to be a new distinct species of Tomato leaf curl Gujrat virus (ToLCGV) whereas RV-1 as a new strain of Cotton leaf curl Multan virus (CLCuMuV). The DNA-A component of ChiLCV showed 8.6%, ToLCGV of 16.6% and CLCuMuV of 7.7% average evolutionary divergence, concomitantly, the betasatellite and alphasatellite molecule had 9.9% and 5.9% overall sequence divergence, respectively. Interestingly, most of the begomoviruses were found to be intra-species recombinants. The dN/dS ratio and Tajima D value of all viral DNA-A component and their associated betasatellite showed their selective control on evolutionary relationships. The nucleotide substitution rates were determined for the DNA-A genomes of ChiLCV (7.22 × 10–4 substitutions site–1 year–1), CLCuMuV (1.49 × 10–4 substitutions site–1 year–1), ToLCGV (7.47 × 10–4 substitutions site–1 year–1), the genome of associated ChiLCB (4.20 × 10–4 substitutions site–1 year–1) and CLCuMuA (1.49 × 10–4 substitutions site–1 year–1). Agro-inoculation studies indicate that the presence of DNA betasatellite induce severe symptoms in N. benthamiana and chili, suggesting prerequisite association for typical disease development.
Collapse
Affiliation(s)
- Megha Mishra
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Sikar, India
| | - Rakesh Kumar Verma
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Sikar, India
| | - Avinash Marwal
- Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, India
| | - Pradeep Sharma
- Biotechnology Unit, ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - R K Gaur
- Department of Biotechnology, D.D.U Gorakhpur University, Gorakhpur, India
| |
Collapse
|
26
|
Bragard C, Dehnen-Schmutz K, Di Serio F, Gonthier P, Jacques MA, Jaques Miret JA, Justesen AF, MacLeod A, Magnusson CS, Milonas P, Navas-Cortes JA, Parnell S, Potting R, Reignault PL, Thulke HH, Van der Werf W, Vicent Civera A, Yuen J, Zappalà L, Candresse T, Chatzivassiliou E, Winter S, Bottex B. Pest categorisation of tomato leaf curl New Delhi virus. EFSA J 2020; 18:e06179. [PMID: 32665794 PMCID: PMC7339215 DOI: 10.2903/j.efsa.2020.6179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Following a request from the European Commission, the Panel on Plant Health performed a pest categorisation on tomato leaf curl New Delhi virus (ToLCNDV). ToLCNDV is a well-defined bipartite Begomovirus species, sometimes associated with satellite molecules. It is transmitted by Bemisia tabaci to a wide range of hosts. ToLCNDV is reported from Estonia, Greece, Italy, Portugal and Spain, with limited distribution. The prevalent strain (ToLCNDV-ES) in these countries is particularly adapted to cucurbits and is different from isolates reported outside the EU, which are better adapted to solanaceous crops and could therefore pose additional risk for EU agriculture. The virus is regulated under Commission Implementing Regulation (EU) 2019/2072. The main pathway of entry identified is plants for planting of susceptible hosts, even if entry could also occur via commodities carrying viruliferous B. tabaci and possibly by seeds. While establishment and local spread rely on B. tabaci, the virus can also be dispersed over long distances by movement of infected plants for planting. Establishment and spread are limited to regions with ecoclimatic conditions suitable for the establishment of vector populations (southern regions of Europe) or can occur as outbreaks wherever crops are grown under protected cultivation. The main uncertainties associated with this pest categorisation are the distribution and prevalence of ToLCNDV in the EU, the magnitude of the virus impact particularly on hosts different from Cucurbitaceae, and seed transmission. ToLCNDV meets all the criteria evaluated by EFSA to qualify as potential Union Quarantine Pest (QP); conversely, ToLCNDV does not meet the criterion of being widespread in the EU to qualify as a Regulated Non-Quarantine Pest (RNQP). Should new data show that ToLCNDV is widespread in the EU, the possibility would exist for non-EU isolates to qualify as QP, while ToLCNDV EU isolates (ToLCNDV-ES) could qualify as RNQP.
Collapse
|
27
|
Venkataravanappa V, Ashwathappa KV, Reddy CNL, Shankarappa KS, Reddy MK. Characterization of Tomato leaf curl New Delhi virus associated with leaf curl and yellowing disease of Watermelon and development of LAMP assay for its detection. 3 Biotech 2020; 10:282. [PMID: 32550101 DOI: 10.1007/s13205-020-02245-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 05/04/2020] [Indexed: 12/19/2022] Open
Abstract
Diseases caused by begomoviruses are becoming the major limiting factors for the production of watermelon in India. Survey for the incidence of plants showing symptoms typical to begomovirus infection was conducted in watermelon fields. The study revealed that 40% of the watermelon plants were showing the yellowing and downward curling symptoms. Twenty infected samples were collected from the different farmer's fields to know the association of begomoviruses. The PCR amplification using begomovirus-specific primers resulted in an expected 1.2 kb PCR product indicating the begomovirus association with the watermelon samples. The sequence comparison results of 1.2 kb representing partial genome revealed that all sequences obtained from watermelon samples have a nucleotide (nt) identity of more than 98% among them and are maximum homology with Tomato leaf curl New Delhi virus (ToLCNDV). One watermelon sample (WM1) was selected for complete genome amplification using RCA method (rolling-circle amplification). Amplification of DNA B and no amplification of betasatellites and alphasatellite indicated this virus as bipartite. Sequence Demarcation Tool (SDT) analysis of the DNA A component of the WM1 isolate showed the maximum nt identity of 94.6-97.9% and 85.2-95.8% with ToLCNDV infecting cucurbits. The recombinant analysis showed that the genome was likely to be derived from the recombination of already reported begomoviruses (ToLCNDV, ToLCPalV, and MYMIV) infecting diverse crops. The whitefly cryptic species predominant in the begomovirus-infected watermelon fields were identified as Asia-II-5 group. The LAMP assay developed based on coat protein gene sequence was able to detect the ToLCNDV in the infected samples. Visual detection of the LAMP-amplified products was observed with the hydroxy naphthol blue. LAMP assay was also validated with ToLCNDV infected sponge gourd, spine gourd, ivy gourd, ridge gourd, and cucumber. This is the first report of ToLCNDV association with leaf curl and yellowing disease of watermelon from India and World based on complete genome sequencing.
Collapse
Affiliation(s)
- V Venkataravanappa
- ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake PO, Bangalore, 560089 Karnataka India
- Division of Plant Pathology, Central Horticultural Experiment Station, Chettalli, ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake PO, Bangalore, India
| | - K V Ashwathappa
- ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake PO, Bangalore, 560089 Karnataka India
| | - C N Lakshminarayana Reddy
- Department of Plant Pathology, College of Agriculture, University of Agricultural Sciences, GKVK, Bangalore, 560065 Karnataka India
| | - K S Shankarappa
- Department of Plant Pathology, College of Horticulture, Bangaluru, 560065 India
- University of Horticultural Sciences, Bagalkot, Karnataka India
| | - M Krishna Reddy
- ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake PO, Bangalore, 560089 Karnataka India
| |
Collapse
|
28
|
Hančinský R, Mihálik D, Mrkvová M, Candresse T, Glasa M. Plant Viruses Infecting Solanaceae Family Members in the Cultivated and Wild Environments: A Review. PLANTS 2020; 9:plants9050667. [PMID: 32466094 PMCID: PMC7284659 DOI: 10.3390/plants9050667] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 12/01/2022]
Abstract
Plant viruses infecting crop species are causing long-lasting economic losses and are endangering food security worldwide. Ongoing events, such as climate change, changes in agricultural practices, globalization of markets or changes in plant virus vector populations, are affecting plant virus life cycles. Because farmer’s fields are part of the larger environment, the role of wild plant species in plant virus life cycles can provide information about underlying processes during virus transmission and spread. This review focuses on the Solanaceae family, which contains thousands of species growing all around the world, including crop species, wild flora and model plants for genetic research. In a first part, we analyze various viruses infecting Solanaceae plants across the agro-ecological interface, emphasizing the important role of virus interactions between the cultivated and wild zones as global changes affect these environments on both local and global scales. To cope with these changes, it is necessary to adjust prophylactic protection measures and diagnostic methods. As illustrated in the second part, a complex virus research at the landscape level is necessary to obtain relevant data, which could be overwhelming. Based on evidence from previous studies we conclude that Solanaceae plant communities can be targeted to address complete life cycles of viruses with different life strategies within the agro-ecological interface. Data obtained from such research could then be used to improve plant protection methods by taking into consideration environmental factors that are impacting the life cycles of plant viruses.
Collapse
Affiliation(s)
- Richard Hančinský
- Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Nám. J. Herdu 2, 91701 Trnava, Slovakia; (R.H.); (D.M.); (M.M.)
| | - Daniel Mihálik
- Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Nám. J. Herdu 2, 91701 Trnava, Slovakia; (R.H.); (D.M.); (M.M.)
- Institute of High Mountain Biology, University of Žilina, Univerzitná 8215/1, 01026 Žilina, Slovakia
- National Agricultural and Food Centre, Research Institute of Plant Production, Bratislavská cesta 122, 92168 Piešťany, Slovakia
| | - Michaela Mrkvová
- Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Nám. J. Herdu 2, 91701 Trnava, Slovakia; (R.H.); (D.M.); (M.M.)
| | - Thierry Candresse
- INRAE, University Bordeaux, UMR BFP, 33140 Villenave d’Ornon, France;
| | - Miroslav Glasa
- Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Nám. J. Herdu 2, 91701 Trnava, Slovakia; (R.H.); (D.M.); (M.M.)
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Dúbravská cesta 9, 84505 Bratislava, Slovakia
- Correspondence: ; Tel.: +421-2-5930-2447
| |
Collapse
|
29
|
Parisi M, Alioto D, Tripodi P. Overview of Biotic Stresses in Pepper ( Capsicum spp.): Sources of Genetic Resistance, Molecular Breeding and Genomics. Int J Mol Sci 2020; 21:E2587. [PMID: 32276403 PMCID: PMC7177692 DOI: 10.3390/ijms21072587] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 12/16/2022] Open
Abstract
Pepper (Capsicum spp.) is one of the major vegetable crops grown worldwide largely appreciated for its economic importance and nutritional value. This crop belongs to the large Solanaceae family, which, among more than 90 genera and 2500 species of flowering plants, includes commercially important vegetables such as tomato and eggplant. The genus includes over 30 species, five of which (C. annuum, C. frutescens, C. chinense, C. baccatum, and C. pubescens) are domesticated and mainly grown for consumption as food and for non-food purposes (e.g., cosmetics). The main challenges for vegetable crop improvement are linked to the sustainable development of agriculture, food security, the growing consumers' demand for food. Furthermore, demographic trends and changes to climate require more efficient use of plant genetic resources in breeding programs. Increases in pepper consumption have been observed in the past 20 years, and for maintaining this trend, the development of new resistant and high yielding varieties is demanded. The range of pathogens afflicting peppers is very broad and includes fungi, viruses, bacteria, and insects. In this context, the large number of accessions of domesticated and wild species stored in the world seed banks represents a valuable resource for breeding in order to transfer traits related to resistance mechanisms to various biotic stresses. In the present review, we report comprehensive information on sources of resistance to a broad range of pathogens in pepper, revisiting the classical genetic studies and showing the contribution of genomics for the understanding of the molecular basis of resistance.
Collapse
Affiliation(s)
- Mario Parisi
- CREA Research Centre for Vegetable and Ornamental Crops, 84098 Pontecagnano Faiano, Italy;
| | - Daniela Alioto
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, 80055 Portici, Naples, Italy;
| | - Pasquale Tripodi
- CREA Research Centre for Vegetable and Ornamental Crops, 84098 Pontecagnano Faiano, Italy;
| |
Collapse
|
30
|
Sáez C, Martínez C, Montero-Pau J, Esteras C, Sifres A, Blanca J, Ferriol M, López C, Picó B. A Major QTL Located in Chromosome 8 of Cucurbita moschata Is Responsible for Resistance to Tomato Leaf Curl New Delhi Virus. FRONTIERS IN PLANT SCIENCE 2020; 11:207. [PMID: 32265946 PMCID: PMC7100279 DOI: 10.3389/fpls.2020.00207] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/11/2020] [Indexed: 05/25/2023]
Abstract
Tomato leaf curl New Delhi virus (ToLCNDV) is a bipartite whitefly transmitted begomovirus, responsible since 2013 of severe damages in cucurbit crops in Southeastern Spain. Zucchini (Cucurbita pepo) is the most affected species, but melon (Cucumis melo) and cucumber (Cucumis sativus) are also highly damaged by the infection. The virus has spread across Mediterranean basin and European countries, and integrated control measures are not being enough to reduce economic losses. The identification of resistance genes is required to develop resistant cultivars. In this assay, we studied the inheritance of the resistance to ToLCNDV previously identified in two Cucurbita moschata accessions. We generated segregating populations crossing both resistant pumpkins, an American improved cultivar Large Cheese (PI 604506) and an Indian landrace (PI 381814), with a susceptible C. moschata genotype (PI 419083). The analysis of symptoms and viral titers of all populations established the same monogenic recessive genetic control in both resistant accessions, and the allelism tests suggest the occurrence of alleles of the same locus. By genotyping with a single nucleotide polymorphism (SNP) collection evenly distributed along the C. moschata genome, a major quantitative trait locus (QTL) was identified in chromosome 8 controlling resistance to ToLCNDV. This major QTL was also confirmed in the interspecific C. moschata × C. pepo segregating populations, although C. pepo genetic background affected the resistance level. Molecular markers here identified, linked to the ToLCNDV resistance locus, are highly valuable for zucchini breeding programs, allowing the selection of improved commercial materials. The duplication of the candidate region within the C. moschata genome was studied, and genes with paralogs or single-copy genes were identified. Its synteny with the region of chromosome 17 of the susceptible C. pepo revealed an INDEL including interesting candidate genes. The chromosome 8 candidate region of C. moschata was also syntenic to the region in chromosome 11 of melon, previously described as responsible of ToLCNDV resistance. Common genes in the candidate regions of both cucurbits, with high- or moderate-impact polymorphic SNPs between resistant and susceptible C. moschata accessions, are interesting to study the mechanisms involved in this recessive resistance.
Collapse
Affiliation(s)
- Cristina Sáez
- Institute for the Conservation and Breeding of Agricultural Biodiversity, Universitat Politècnica de València, Valencia, Spain
| | - Cecilia Martínez
- Agrifood Campus of International Excellence (ceiA3), Department of Biology and Geology, Universidad de Almería, Almería, Spain
| | - Javier Montero-Pau
- Department of Biochemistry and Molecular Biology, Universitat de València, Valencia, Spain
| | - Cristina Esteras
- Institute for the Conservation and Breeding of Agricultural Biodiversity, Universitat Politècnica de València, Valencia, Spain
| | | | - José Blanca
- Institute for the Conservation and Breeding of Agricultural Biodiversity, Universitat Politècnica de València, Valencia, Spain
| | - María Ferriol
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Valencia, Spain
| | - Carmelo López
- Institute for the Conservation and Breeding of Agricultural Biodiversity, Universitat Politècnica de València, Valencia, Spain
| | - Belén Picó
- Institute for the Conservation and Breeding of Agricultural Biodiversity, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
31
|
Singh A, Mohorianu I, Green D, Dalmay T, Dasgupta I, Mukherjee SK. Artificially induced phased siRNAs promote virus resistance in transgenic plants. Virology 2019; 537:208-215. [PMID: 31513956 DOI: 10.1016/j.virol.2019.08.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/27/2019] [Accepted: 08/30/2019] [Indexed: 11/29/2022]
Abstract
We previously developed transgenic tobacco plants that were resistant to two geminiviruses. We generated resistance using RNAi constructs that produced trans-acting siRNA (tasiRNA) like secondary siRNAs known as phased siRNA (phasiRNA) that targeted several regions of Tomato Leaf Curl New Delhi Virus (ToLCNDV) and Tomato Leaf Curl Gujarat Virus (ToLCGV) transcripts encoding the RNA silencing suppressor proteins AC2 and AC4. Here, we performed degradome analysis to determine the precise cleavage sites of RNA-RNA interaction between phasiRNA and viral transcripts. We then applied our RNAi technology in tomato, which is the natural host for ToLCNDV and ToLCGV. The relative ease of developing and using phasiRNA constructs represents a significant technical advance in imparting virus resistance in crops and/or important model systems.
Collapse
Affiliation(s)
- Archana Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India; School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Irina Mohorianu
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Darrell Green
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Tamas Dalmay
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Indranil Dasgupta
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India.
| | - Sunil Kumar Mukherjee
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi 110012, India
| |
Collapse
|
32
|
Rodríguez E, Téllez MM, Janssen D. Whitefly Control Strategies against Tomato Leaf Curl New Delhi Virus in Greenhouse Zucchini. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16152673. [PMID: 31357394 PMCID: PMC6696309 DOI: 10.3390/ijerph16152673] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/02/2022]
Abstract
(1) Background: Tomato leaf curl New Delhi virus (ToLCNDV), transmitted by tobacco whitefly (Bemisia tabaci Gennadius) (Hemiptera: Aleyrodidae), is of major concern in the cultivation of zucchini. The threat of this virus motivates reliance on chemical vector control but European consumers’ demands for vegetables grown free of pesticides provides an important incentive for alternative pest management; (2) Methods: Different whitefly management strategies and ToLCNDV incidences were surveyed in commercial zucchini greenhouses in south-east Spain. In an experimental greenhouse, three different whitefly control strategies, biological, chemical, and integrated (IPM), were evaluated in a replicated trial to determine the most effective strategy for virus suppression (3) Results: Whitefly was present in all commercial zucchini crops surveyed, whereas fewer crops had Amblyseius swirskii or other natural enemies. During three consecutive years, pest management was increasingly based on chemical treatments. Yet, ToLCNDV was widespread in zucchini greenhouses. Experimental results showed that the order of best strategy for virus suppressing was integrated management (73%) > biological control (58%) > chemical control (44%); and (4) Conclusions: IPM was the best strategy for virus suppression. The results can assist in the design of appropriate control strategies for chemical pesticide reduction and decision-making in pest management.
Collapse
|