1
|
Nordborg FM, Brinkman DL, Negri AP. Coral recruits are highly sensitive to heavy fuel oil exposure both in the presence and absence of UV light. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119799. [PMID: 35863709 DOI: 10.1016/j.envpol.2022.119799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/02/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Oil pollution remains a prominent local hazard to coral reefs, but the sensitivity of some coral life stages to oil exposure remains unstudied. Exposure to ultraviolet radiation (UVR), ubiquitous on coral reefs, may significantly increase oil toxicity towards these critical habitat-forming taxa. Here we present the first data on the sensitivity of two distinct post-settlement life stages of the model coral species Acropora millepora to a heavy fuel oil (HFO) water accommodated fraction (WAF) in the absence and presence of UVR. Assessment of lethal and sublethal endpoints indicates that both 1-week-old and 2-month-old recruits (1-wo and 2-mo) were negatively affected by chronic exposures to HFO (7 and 14 days, respectively). Relative growth (1-wo and 2-mo recruits) and survival (1-wo recruits) at end of exposure were the most sensitive endpoints in the absence of UVR, with no effect concentrations (NEC) of 34.3, 5.7 and 29.3 μg L-1 total aromatic hydrocarbons (TAH; ∑39 monocyclic- and polycyclic aromatic hydrocarbons), respectively. On average, UVR increased the negative effects by 10% for affected endpoints, and latent effects of exposure were evident for relative growth and symbiont uptake of recruits. Other sublethal endpoints, including maximum quantum yield and tissue colour score, were unaffected by chronic HFO exposure. A comparison of putative species-specific sensitivity constants for these ecologically relevant endpoints, indicates A. millepora recruits may be as sensitive as the most sensitive species currently included in oil toxicity databases. While the low intensity UVR only significantly increased the negative effects of the oil for one endpoint, the majority of endpoints showed trends towards increased toxicity in the presence of UVR. Therefore, the data presented here further support the standard incorporation of UVR in oil toxicity testing for tropical corals.
Collapse
Affiliation(s)
- F Mikaela Nordborg
- AIMS@JCU, Division of Research & Innovation, James Cook University and Australian Institute of Marine Science, Townsville, 4810, Queensland, Australia; College of Science & Engineering, Division of Tropical Environments and Societies, James Cook University, Townsville, 4810, Queensland, Australia; Australian Institute of Marine Science, Townsville, 4810, Queensland, Australia.
| | - Diane L Brinkman
- Australian Institute of Marine Science, Townsville, 4810, Queensland, Australia
| | - Andrew P Negri
- AIMS@JCU, Division of Research & Innovation, James Cook University and Australian Institute of Marine Science, Townsville, 4810, Queensland, Australia; Australian Institute of Marine Science, Townsville, 4810, Queensland, Australia
| |
Collapse
|
2
|
Maire J, Buerger P, Chan WY, Deore P, Dungan AM, Nitschke MR, van Oppen MJH. Effects of Ocean Warming on the Underexplored Members of the Coral Microbiome. Integr Comp Biol 2022; 62:1700-1709. [PMID: 35259253 PMCID: PMC9801979 DOI: 10.1093/icb/icac005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/01/2022] [Accepted: 03/05/2022] [Indexed: 01/05/2023] Open
Abstract
The climate crisis is one of the most significant threats to marine ecosystems. It is leading to severe increases in sea surface temperatures and in the frequency and magnitude of marine heatwaves. These changing conditions are directly impacting coral reef ecosystems, which are among the most biodiverse ecosystems on Earth. Coral-associated symbionts are particularly affected because summer heatwaves cause coral bleaching-the loss of endosymbiotic microalgae (Symbiodiniaceae) from coral tissues, leading to coral starvation and death. Coral-associated Symbiodiniaceae and bacteria have been extensively studied in the context of climate change, especially in terms of community diversity and dynamics. However, data on other microorganisms and their response to climate change are scarce. Here, we review current knowledge on how increasing temperatures affect understudied coral-associated microorganisms such as archaea, fungi, viruses, and protists other than Symbiodiniaceae, as well as microbe-microbe interactions. We show that the coral-microbe symbiosis equilibrium is at risk under current and predicted future climate change and argue that coral reef conservation initiatives should include microbe-focused approaches.
Collapse
Affiliation(s)
| | - Patrick Buerger
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia,Applied BioSciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Wing Yan Chan
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Pranali Deore
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ashley M Dungan
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | | | - Madeleine J H van Oppen
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia,Australian Institute of Marine Science, Townsville, QLD 4810, Australia
| |
Collapse
|
3
|
Matsuda SB, Chakravarti LJ, Cunning R, Huffmyer AS, Nelson CE, Gates RD, van Oppen MJH. Temperature-mediated acquisition of rare heterologous symbionts promotes survival of coral larvae under ocean warming. GLOBAL CHANGE BIOLOGY 2022; 28:2006-2025. [PMID: 34957651 PMCID: PMC9303745 DOI: 10.1111/gcb.16057] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Reef-building corals form nutritional symbioses with endosymbiotic dinoflagellates (Symbiodiniaceae), a relationship that facilitates the ecological success of coral reefs. These symbionts are mostly acquired anew each generation from the environment during early life stages ("horizontal transmission"). Symbiodiniaceae species exhibit trait variation that directly impacts the health and performance of the coral host under ocean warming. Here, we test the capacity for larvae of a horizontally transmitting coral, Acropora tenuis, to establish symbioses with Symbiodiniaceae species in four genera that have varying thermal thresholds (the common symbiont genera, Cladocopium and Durusdinium, and the less common Fugacium and Gerakladium). Over a 2-week period in January 2018, a series of both no-choice and four-way choice experiments were conducted at three temperatures (27, 30, and 31°C). Symbiont acquisition success and cell proliferation were measured in individual larvae. Larvae successfully acquired and maintained symbionts of all four genera in no-choice experiments, and >80% of larvae were infected with at least three genera when offered a four-way choice. Unexpectedly, Gerakladium symbionts increased in dominance over time, and at high temperatures outcompeted Durusdinium, which is regarded as thermally tolerant. Although Fugacium displayed the highest thermal tolerance in culture and reached similar cell densities to the other three symbionts at 31°C, it remained a background symbiont in choice experiments, suggesting host preference for other symbiont species. Larval survivorship at 1 week was highest in larvae associated with Gerakladium and Fugacium symbionts at 27 and 30°C, however at 31°C, mortality was similar for all treatments. We hypothesize that symbionts that are currently rare in corals (e.g., Gerakladium) may become more common and widespread in early life stages under climate warming. Uptake of such symbionts may function as a survival strategy in the wild, and has implications for reef restoration practices that use sexually produced coral stock.
Collapse
Affiliation(s)
- Shayle B. Matsuda
- Hawai‘i Institute of Marine BiologyUniversity of Hawai‘i at MānoaKāne‘oheHawai‘iUSA
| | | | - Ross Cunning
- Daniel P. Haerther Center for Conservation and ResearchJohn G. Shedd AquariumChicagoIllinoisUSA
| | - Ariana S. Huffmyer
- Department of Biological SciencesUniversity of Rhode IslandKingstonRhode IslandUSA
| | - Craig E. Nelson
- Daniel K. Inouye Center for Microbial Oceanography: Research and EducationDepartment of Oceanography and Sea Grant College ProgramUniversity of Hawai‘i at MānoaHonoluluHawai‘iUSA
| | - Ruth D. Gates
- Hawai‘i Institute of Marine BiologyUniversity of Hawai‘i at MānoaKāne‘oheHawai‘iUSA
| | - Madeleine J. H. van Oppen
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
- School of BioSciencesThe University of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
4
|
Marzonie M, Flores F, Sadoun N, Thomas MC, Valada-Mennuni A, Kaserzon S, Mueller JF, Negri AP. Toxicity thresholds of nine herbicides to coral symbionts (Symbiodiniaceae). Sci Rep 2021; 11:21636. [PMID: 34737333 PMCID: PMC8568975 DOI: 10.1038/s41598-021-00921-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/14/2021] [Indexed: 01/22/2023] Open
Abstract
Over 30 herbicides have been detected in catchments and waters of the Great Barrier Reef (GBR) and their toxicity to key tropical species, including the coral endosymbiotic algae Symbiodiniaceae, is not generally considered in current water quality guideline values (WQGVs). Mutualistic symbionts of the family Symbiodiniaceae are essential for the survival of scleractinian corals. We tested the effects of nine GBR-relevant herbicides on photosynthetic efficiency (ΔF/Fm′) and specific growth rate (SGR) over 14 days of cultured coral endosymbiont Cladocopium goreaui (formerly Symbiodinium clade C1). All seven Photosystem II (PSII) herbicides tested inhibited ΔF/Fm′ and SGR, with toxicity thresholds for SGR ranging between 2.75 and 320 µg L−1 (no effect concentration) and 2.54–257 µg L−1 (EC10). There was a strong correlation between EC50s for ΔF/Fm′ and SGR for all PSII herbicides indicating that inhibition of ΔF/Fm′ can be considered a biologically relevant toxicity endpoint for PSII herbicides to this species. The non-PSII herbicides haloxyfop and imazapic did not affect ΔF/Fm′ or SGR at the highest concentrations tested. The inclusion of this toxicity data for Symbiodiniaceae will contribute to improving WQGVs to adequately inform risk assessments and the management of herbicides in tropical marine ecosystems.
Collapse
Affiliation(s)
- Magena Marzonie
- Australian Institute of Marine Science, PMB No. 3, Townsville, QLD, 4810, Australia.,AIMS@JCU: Australian Institute of Marine Science and College of Marine and Environmental Sciences, James Cook University, Townsville, QLD, 4811, Australia
| | - Florita Flores
- Australian Institute of Marine Science, PMB No. 3, Townsville, QLD, 4810, Australia. .,AIMS@JCU: Australian Institute of Marine Science and College of Marine and Environmental Sciences, James Cook University, Townsville, QLD, 4811, Australia.
| | - Nora Sadoun
- Australian Institute of Marine Science, PMB No. 3, Townsville, QLD, 4810, Australia
| | - Marie C Thomas
- Australian Institute of Marine Science, PMB No. 3, Townsville, QLD, 4810, Australia
| | - Anais Valada-Mennuni
- Australian Institute of Marine Science, PMB No. 3, Townsville, QLD, 4810, Australia
| | - Sarit Kaserzon
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Andrew P Negri
- Australian Institute of Marine Science, PMB No. 3, Townsville, QLD, 4810, Australia.,AIMS@JCU: Australian Institute of Marine Science and College of Marine and Environmental Sciences, James Cook University, Townsville, QLD, 4811, Australia
| |
Collapse
|
5
|
Maire J, Blackall LL, van Oppen MJH. Intracellular Bacterial Symbionts in Corals: Challenges and Future Directions. Microorganisms 2021; 9:2209. [PMID: 34835335 PMCID: PMC8619543 DOI: 10.3390/microorganisms9112209] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 02/07/2023] Open
Abstract
Corals are the main primary producers of coral reefs and build the three-dimensional reef structure that provides habitat to more than 25% of all marine eukaryotes. They harbor a complex consortium of microorganisms, including bacteria, archaea, fungi, viruses, and protists, which they rely on for their survival. The symbiosis between corals and bacteria is poorly studied, and their symbiotic relationships with intracellular bacteria are only just beginning to be acknowledged. In this review, we emphasize the importance of characterizing intracellular bacteria associated with corals and explore how successful approaches used to study such microorganisms in other systems could be adapted for research on corals. We propose a framework for the description, identification, and functional characterization of coral-associated intracellular bacterial symbionts. Finally, we highlight the possible value of intracellular bacteria in microbiome manipulation and mitigating coral bleaching.
Collapse
Affiliation(s)
- Justin Maire
- School of Biosciences, The University of Melbourne, Melbourne, VIC 3010, Australia; (L.L.B.); (M.J.H.v.O.)
| | - Linda L. Blackall
- School of Biosciences, The University of Melbourne, Melbourne, VIC 3010, Australia; (L.L.B.); (M.J.H.v.O.)
| | - Madeleine J. H. van Oppen
- School of Biosciences, The University of Melbourne, Melbourne, VIC 3010, Australia; (L.L.B.); (M.J.H.v.O.)
- Australian Institute of Marine Science, Townsville, QLD 4810, Australia
| |
Collapse
|
6
|
Brunner CA, Uthicke S, Ricardo GF, Hoogenboom MO, Negri AP. Climate change doubles sedimentation-induced coral recruit mortality. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:143897. [PMID: 33454467 DOI: 10.1016/j.scitotenv.2020.143897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Coral reef replenishment is threatened by global climate change and local water-quality degradation, including smothering of coral recruits by sediments generated by anthropogenic activities. Here we show that the ability of Acropora millepora recruits to remove sediments diminishes under future climate conditions, leading to increased mortality. Recruits raised under future climate scenarios for fourteen weeks (highest treatment: +1.2 °C, pCO2: 950 ppm) showed twofold higher mortality following repeated sediment deposition (50% lethal sediment concentration LC50: 14-24 mg cm-2) compared to recruits raised under current climate conditions (LC50: 37-51 mg cm-2), depending on recruit age at the time of sedimentation. Older and larger recruits were more resistant to sedimentation and only ten-week-old recruits grown under current climate conditions survived sediment loads possible during dredging operations. This demonstrates that water-quality guidelines for managing sediment concentrations will need to be climate-adjusted to protect future coral recruitment.
Collapse
Affiliation(s)
- Christopher A Brunner
- James Cook University School of Marine and Tropical Biology, Townsville, Queensland, Australia; Australian Research Council Centre of Excellence for Coral Reef Studies, Townsville, Queensland, Australia; Australian Institute of Marine Science, Townsville, Queensland, Australia; AIMS@JCU, School of Marine and Tropical Biology, James Cook University and Australian Institute of Marine Science, Townsville, Queensland, Australia.
| | - Sven Uthicke
- Australian Institute of Marine Science, Townsville, Queensland, Australia; AIMS@JCU, School of Marine and Tropical Biology, James Cook University and Australian Institute of Marine Science, Townsville, Queensland, Australia.
| | - Gerard F Ricardo
- Australian Institute of Marine Science, Townsville, Queensland, Australia.
| | - Mia O Hoogenboom
- James Cook University School of Marine and Tropical Biology, Townsville, Queensland, Australia; Australian Research Council Centre of Excellence for Coral Reef Studies, Townsville, Queensland, Australia.
| | - Andrew P Negri
- Australian Institute of Marine Science, Townsville, Queensland, Australia; AIMS@JCU, School of Marine and Tropical Biology, James Cook University and Australian Institute of Marine Science, Townsville, Queensland, Australia.
| |
Collapse
|
7
|
Raven JA, Suggett DJ, Giordano M. Inorganic carbon concentrating mechanisms in free-living and symbiotic dinoflagellates and chromerids. JOURNAL OF PHYCOLOGY 2020; 56:1377-1397. [PMID: 32654150 DOI: 10.1111/jpy.13050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
Photosynthetic dinoflagellates are ecologically and biogeochemically important in marine and freshwater environments. However, surprisingly little is known of how this group acquires inorganic carbon or how these diverse processes evolved. Consequently, how CO2 availability ultimately influences the success of dinoflagellates over space and time remains poorly resolved compared to other microalgal groups. Here we review the evidence. Photosynthetic core dinoflagellates have a Form II RuBisCO (replaced by Form IB or Form ID in derived dinoflagellates). The in vitro kinetics of the Form II RuBisCO from dinoflagellates are largely unknown, but dinoflagellates with Form II (and other) RuBisCOs have inorganic carbon concentrating mechanisms (CCMs), as indicated by in vivo internal inorganic C accumulation and affinity for external inorganic C. However, the location of the membrane(s) at which the essential active transport component(s) of the CCM occur(s) is (are) unresolved; isolation and characterization of functionally competent chloroplasts would help in this respect. Endosymbiotic Symbiodiniaceae (in Foraminifera, Acantharia, Radiolaria, Ciliata, Porifera, Acoela, Cnidaria, and Mollusca) obtain inorganic C by transport from seawater through host tissue. In corals this transport apparently provides an inorganic C concentration around the photobiont that obviates the need for photobiont CCM. This is not the case for tridacnid bivalves, medusae, or, possibly, Foraminifera. Overcoming these long-standing knowledge gaps relies on technical advances (e.g., the in vitro kinetics of Form II RuBisCO) that can functionally track the fate of inorganic C forms.
Collapse
Affiliation(s)
- John A Raven
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- Faculty of Science, University of Technology, Sydney, Climate Change Cluster, Ultimo, Sydney, New South Wales, 2007, Australia
- School of Biological Science, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - David J Suggett
- Faculty of Science, University of Technology, Sydney, Climate Change Cluster, Ultimo, Sydney, New South Wales, 2007, Australia
| | - Mario Giordano
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Algatech, Trebon, Czech Republic
- National Research Council, Institute of Marine Science ISMAR, Venezia, Italy
| |
Collapse
|
8
|
Mohamed AR, Chan CX, Ragan MA, Zhang J, Cooke I, Ball EE, Miller DJ. Comparative transcriptomic analyses of Chromera and Symbiodiniaceae. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:435-443. [PMID: 32452166 DOI: 10.1111/1758-2229.12859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 05/12/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Reef-building corals live in a mutualistic relationship with photosynthetic algae (family Symbiodiniaceae) that usually provide most of the energy required by the coral host. This relationship is sensitive to temperature stress; as little as a 1°C increase often leads to the collapse of the association. This sensitivity has led to an interest in the potential of more stress-tolerant algae to supplement or substitute for the normal Symbiodiniaceae mutualists. In this respect, the apicomplexan-like microalga Chromera is of particular interest due to its greater temperature tolerance. We generated a de novo transcriptome for a Chromera strain isolated from a GBR coral ('GBR Chromera') and compared with those of the reference strain of Chromera ('Sydney Chromera'), and to those of Symbiodiniaceae (Fugacium kawagutii, Cladocopium goreaui and Breviolum minutum), as well as the apicomplexan parasite, Plasmodium falciparum. In contrast to the high sequence divergence amongst representatives of different genera within the family Symbiodiniaceae, the two Chromera strains featured low sequence divergence at orthologous genes, implying that they are likely to be conspecifics. Although KEGG categories provide few criteria by which true coral mutualists might be identified, they do supply a molecular rationalization that explains the ecological dominance of Cladocopium spp. amongst Indo-Pacific reef corals. The presence of HSP20 genes may contribute to the high thermal tolerance of Chromera.
Collapse
Affiliation(s)
- Amin R Mohamed
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St Lucia, Brisbane, Qld, 4067, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, 4811, Australia
- Molecular and Cell Biology, James Cook University, Townsville, Qld, 4811, Australia
- Department of Molecular and Cell Biology, AIMS@JCU, Australian Institute of Marine Science, James Cook University, Townsville, Qld, 4811, Australia
- Zoology Department, Faculty of Science, Benha University, Benha, 13518, Egypt
| | - Cheong Xin Chan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Mark A Ragan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Jia Zhang
- Molecular and Cell Biology, James Cook University, Townsville, Qld, 4811, Australia
| | - Ira Cooke
- Molecular and Cell Biology, James Cook University, Townsville, Qld, 4811, Australia
| | - Eldon E Ball
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, 4811, Australia
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Acton ACT, 2601, Australia
| | - David J Miller
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, 4811, Australia
- Molecular and Cell Biology, James Cook University, Townsville, Qld, 4811, Australia
| |
Collapse
|
9
|
Oborník M. Photoparasitism as an Intermediate State in the Evolution of Apicomplexan Parasites. Trends Parasitol 2020; 36:727-734. [PMID: 32680786 DOI: 10.1016/j.pt.2020.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/08/2020] [Accepted: 06/16/2020] [Indexed: 01/23/2023]
Abstract
Despite the benefits of phototrophy, many algae have lost photosynthesis and have converted back to heterotrophy. Parasitism is a heterotrophic strategy, with apicomplexans being among the most devastating parasites for humans. The presence of a nonphotosynthetic plastid in apicomplexan parasites suggests their phototrophic ancestry. The discovery of related phototrophic chromerids has unlocked the possibility to study the transition between phototrophy and parasitism in the Apicomplexa. The chromerid Chromera velia can live as an intracellular parasite in coral larvae as well as a free-living phototroph, combining phototrophy and parasitism in what I call photoparasitism. Since early-branching apicomplexans live extracellularly, their evolution from an intracellular symbiont is unlikely. In this opinion article I discuss possible evolutionary trajectories from an extracellular photoparasite to an obligatory apicomplexan parasite.
Collapse
Affiliation(s)
- Miroslav Oborník
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic.
| |
Collapse
|
10
|
Ding G, Wang J, Wang L, Zou J, Tian P, Zhang Y, Pan X, Li D. Quantitative viability detection for a single microalgae cell by two-level photoexcitation. Analyst 2020; 145:3931-3938. [PMID: 32314762 DOI: 10.1039/d0an00450b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel method for quantitative detection of the viability of a single microalgae cell by two-level photoexcitation is proposed in this paper. This method overcomes the difficulty of traditional methods in determining the cell viability by a fixed standard under a single photoexcitation. It is experimentally confirmed that this method is not limited by the species, morphology, size and structure of microalgae cells. An evaluation criterion of universal applicability is presented for the assessment of cell viability based on the large amount of experimental data. To the best of our knowledge, this is the first time that the relative fluorescence yield ratio Fr has been used to characterize the viability of single microalgae cells during cell migration. By using the relative fluorescence yield ratio, this method does not require the intensity of the excitation light to be very low for the assessment of the fluorescence yield of a dark-adapted microalgae cell, nor to be very strong to reach the saturated light level to assess the maximum fluorescence yield. Therefore, this method greatly reduces the technical difficulties of developing a sensor device. Well balanced portability, accuracy and universal applicability make it suitable for on-site real-time detection.
Collapse
Affiliation(s)
- Gege Ding
- Center of Microfluidic Optoelectronic Sensing, Dalian Maritime University, Dalian, 116026, China.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Live imaging of Aiptasia larvae, a model system for coral and anemone bleaching, using a simple microfluidic device. Sci Rep 2019; 9:9275. [PMID: 31239506 PMCID: PMC6592900 DOI: 10.1038/s41598-019-45167-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 05/22/2019] [Indexed: 11/13/2022] Open
Abstract
Coral reefs, and their associated diverse ecosystems, are of enormous ecological importance. In recent years, coral health has been severely impacted by environmental stressors brought on by human activity and climate change, threatening the extinction of several major reef ecosystems. Reef damage is mediated by a process called ‘coral bleaching’ where corals, sea anemones, and other cnidarians lose their photosynthetic algal symbionts (family Symbiodiniaceae) upon stress induction, resulting in drastically decreased host energy harvest and, ultimately, coral death. The mechanism by which this critical cnidarian-algal symbiosis is lost remains poorly understood. The larvae of the sea anemone, Exaiptasia pallida (commonly referred to as ‘Aiptasia’) are an attractive model organism to study this process, but they are large (∼100 mm in length, ∼75 mm in diameter), deformable, and highly motile, complicating long-term imaging and limiting study of this critical endosymbiotic relationship in live organisms. Here, we report ‘Traptasia’, a simple microfluidic device with multiple traps designed to isolate and image individual, live larvae of Aiptasia and their algal symbionts over extended time courses. Using a trap design parameterized via fluid flow simulations and polymer bead loading tests, we trapped Aiptasia larvae containing algal symbionts and demonstrated stable imaging for >10 hours. We visualized algae within Aiptasia larvae and observed algal expulsion under an environmental stressor. To our knowledge, this device is the first to enable time-lapsed, high-throughput live imaging of cnidarian larvae and their algal symbionts and, in further implementation, could provide important insights into the cellular mechanisms of cnidarian bleaching under different environmental stressors. The ‘Traptasia’ device is simple to use, requires minimal external equipment and no specialized training to operate, and can easily be adapted using the trap optimization data presented here to study a variety of large, motile organisms.
Collapse
|