1
|
Wu R, Xia H, Wu Y, Zhang S, Fang J, Wang Y, Wang H, Zhu Y, Liu L, Du S. Graphene oxide inhibits the transfer of ARGs in rice by reducing the root endophytic bacterial complexity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122241. [PMID: 39186855 DOI: 10.1016/j.jenvman.2024.122241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 08/28/2024]
Abstract
Antibiotic resistance genes (ARGs) as an emerging contaminant have attracted much attention for their transfer in agricultural ecosystems. Meanwhile, graphene oxide (GO), due to its high adsorption capacity and antibacterial properties, poses potential environmental ecological risks to the occurrence of ARGs, bacteria, and plant physiological ecology. However, the impact and mechanism of GO on the transfer of ARGs in host plants remain unclear. Therefore, this study selected rice as the research object and inoculated Bacillus subtilis carrying ARGs to investigate the influence of GO on the migration of ARGs into rice and its microbiological mechanism. The study found that GO had a certain inhibitory effect on the transfer of ARGs in rice. Although GO reduced the rhizosphere pH in rice, leading to a transition in endophytic bacteria from dominance by Burkholderia to dominance by Gordonia, this process did not directly affect the transfer of ARGs in rice. Further analysis of bacterial interactions revealed that GO could inhibit the transfer of ARGs in rice by reducing the network complexity of endophytic bacteria. Additionally, GO inhibited the formation of endophytic bacterial biofilms and mobile elements, which might affect ARGs' migration in rice. This study elucidated the key microbiological ecological processes of GO on the transfer of ARGs in rice, providing fundamental information for the ecological risk assessment of GO.
Collapse
Affiliation(s)
- Ran Wu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Hanche Xia
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Yue Wu
- Zhejiang Zhongyi Testing Research Institute Co., Ltd, Ningbo, 315040, China
| | - Siyu Zhang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Jin Fang
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yuying Wang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Hua Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Yaxin Zhu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Lijuan Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Shaoting Du
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China.
| |
Collapse
|
2
|
Riva F, Dechesne A, Eckert EM, Riva V, Borin S, Mapelli F, Smets BF, Crotti E. Conjugal plasmid transfer in the plant rhizosphere in the One Health context. Front Microbiol 2024; 15:1457854. [PMID: 39268528 PMCID: PMC11390587 DOI: 10.3389/fmicb.2024.1457854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
Introduction Horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs) is one of the primary routes of antimicrobial resistance (AMR) dissemination. In the One Health context, tracking the spread of mobile genetic elements (MGEs) carrying ARGs in agri-food ecosystems is pivotal in understanding AMR diffusion and estimating potential risks for human health. So far, little attention has been devoted to plant niches; hence, this study aimed to evaluate the conjugal transfer of ARGs to the bacterial community associated with the plant rhizosphere, a hotspot for microbial abundance and activity in the soil. We simulated a source of AMR determinants that could enter the food chain via plants through irrigation. Methods Among the bacterial strains isolated from treated wastewater, the strain Klebsiella variicola EEF15 was selected as an ARG donor because of the relevance of Enterobacteriaceae in the AMR context and the One Health framework. The strain ability to recolonize lettuce, chosen as a model for vegetables that were consumed raw, was assessed by a rifampicin resistant mutant. K. variicola EEF15 was genetically manipulated to track the conjugal transfer of the broad host range plasmid pKJK5 containing a fluorescent marker gene to the natural rhizosphere microbiome obtained from lettuce plants. Transconjugants were sorted by fluorescent protein expression and identified through 16S rRNA gene amplicon sequencing. Results and discussion K. variicola EEF15 was able to colonize the lettuce rhizosphere and inhabit its leaf endosphere 7 days past bacterial administration. Fluorescence stereomicroscopy revealed plasmid transfer at a frequency of 10-3; cell sorting allowed the selection of the transconjugants. The conjugation rates and the strain's ability to colonize the plant rhizosphere and leaf endosphere make strain EEF15::lacIq-pLpp-mCherry-gmR with pKJK5::Plac::gfp an interesting candidate to study ARG spread in the agri-food ecosystem. Future studies taking advantage of additional environmental donor strains could provide a comprehensive snapshot of AMR spread in the One Health context.
Collapse
Affiliation(s)
- Francesco Riva
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Arnaud Dechesne
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ester M Eckert
- CNR - IRSA Water Research Institute, Molecular Ecology Group (MEG), Verbania, Italy
- National Biodiversity Future Center, Palermo, Italy
| | - Valentina Riva
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Sara Borin
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Francesca Mapelli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Barth F Smets
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
- Department of Biological and Chemical Engineering, Center for Water Technology, Aarhus University, Aarhus, Denmark
| | - Elena Crotti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| |
Collapse
|
3
|
Li G, Long TF, Zhou SY, Xia LJ, Gao A, Wan L, Diao XY, He YZ, Sun RY, Yang JT, Tang SQ, Ren H, Fang LX, Liao XP, Liu YH, Chen L, Sun J. CRISPR-AMRtracker: A novel toolkit to monitor the antimicrobial resistance gene transfer in fecal microbiota. Drug Resist Updat 2024; 77:101142. [PMID: 39214042 DOI: 10.1016/j.drup.2024.101142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 08/04/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
The spread of antibiotic resistance genes (ARGs), particularly those carried on plasmids, poses a major risk to global health. However, the extent and frequency of ARGs transfer in microbial communities among human, animal, and environmental sectors is not well understood due to a lack of effective tracking tools. We have developed a novel fluorescent tracing tool, CRISPR-AMRtracker, to study ARG transfer. It combines CRISPR/Cas9 fluorescence tagging, fluorescence-activated cell sorting, 16S rRNA gene sequencing, and microbial community analysis. CRISPR-AMRtracker integrates a fluorescent tag immediately downstream of ARGs, enabling the tracking of ARG transfer without compromising the host cell's antibiotic susceptibility, fitness, conjugation, and transposition. Notably, our experiments demonstrate that sfGFP-tagged plasmid-borne mcr-1 can transfer across diverse bacterial species within fecal samples. This innovative approach holds the potential to illuminate the dynamics of ARG dissemination and provide valuable insights to shape effective strategies in mitigating the escalating threat of antibiotic resistance.
Collapse
Affiliation(s)
- Gong Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Teng-Fei Long
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Shi-Ying Zhou
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Li-Juan Xia
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Ang Gao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Lei Wan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Xiao-Yuan Diao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Yu-Zhang He
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Ruan-Yang Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Jin-Tao Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Sheng-Qiu Tang
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, PR China
| | - Hao Ren
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Liang-Xing Fang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Xiao-Ping Liao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Ya-Hong Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Liang Chen
- Department of Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214, United States.
| | - Jian Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
4
|
Bhattacharjee A, Singh AK. Delineating the Acquired Genetic Diversity and Multidrug Resistance in Alcaligenes from Poultry Farms and Nearby Soil. J Microbiol 2024; 62:511-523. [PMID: 38904697 DOI: 10.1007/s12275-024-00129-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/25/2024] [Accepted: 02/22/2024] [Indexed: 06/22/2024]
Abstract
Alcaligenes faecalis is one of the most important and clinically significant environmental pathogens, increasing in importance due to its isolation from soil and nosocomial environments. The Gram-negative soil bacterium is associated with skin endocarditis, bacteremia, dysentery, meningitis, endophthalmitis, urinary tract infections, and pneumonia in patients. With emerging antibiotic resistance in A. faecalis, it has become crucial to understand the origin of such resistance genes within this clinically significant environmental and gut bacterium. In this research, we studied the impact of antibiotic overuse in poultry and its effect on developing resistance in A. faecalis. We sampled soil and faecal materials from five poultry farms, performed whole genome sequencing & analysis and identified four strains of A. faecalis. Furthermore, we characterized the genes in the genomic islands of A. faecalis isolates. We found four multidrug-resistant A. faecalis strains that showed resistance against vancomycin (MIC >1000 μg/ml), ceftazidime (50 μg/ml), colistin (50 μg/ml) and ciprofloxacin (50 μg/ml). From whole genome comparative analysis, we found more than 180 resistance genes compared to the reference sequence. Parts of our assembled contigs were found to be similar to different bacteria which included pbp1A and pbp2 imparting resistance to amoxicillin originally a part of Helicobacter and Bordetella pertussis. We also found the Mycobacterial insertion element IS6110 in the genomic islands of all four genomes. This prominent insertion element can be transferred and induce resistance to other bacterial genomes. The results thus are crucial in understanding the transfer of resistance genes in the environment and can help in developing regimes for antibiotic use in the food and poultry industry.
Collapse
Affiliation(s)
- Abhilash Bhattacharjee
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 220002, India
- Department of Botany, Dibrugarh Hanumanbax Surajmall Kanoi College, Dibrugarh, 786001, Assam, India
| | - Anil Kumar Singh
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 220002, India.
| |
Collapse
|
5
|
Lin Z, Zhou Z, Shuai X, Zeng G, Bao R, Chen H. Landscape of plasmids encoding β-lactamases in disinfection residual Enterobacteriaceae from wastewater treatment plants. WATER RESEARCH 2024; 255:121549. [PMID: 38564891 DOI: 10.1016/j.watres.2024.121549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/12/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Conventional disinfection processes, such as chlorination and UV radiation, are ineffective in controling antibiotic-resistant bacteria, especially disinfection residual Enterobacteriaceae (DRE) encoding β-lactamases, some of which have been classified as "critical priority pathogens" by the World Health Organization. However, few studies have focused on the transferability, phenotype, and genetic characteristics of DRE-derived plasmids encoding β-lactamases, especially extended-spectrum β-lactamases and carbapenemases. In this study, we isolated 10 typical DRE harboring plasmid-mediated blaNDM, blaCTX-M, or blaTEM in post-disinfection effluent from two wastewater treatment plants (WWTPs), with transfer frequency ranging from 1.69 × 10-6 to 3.02 × 10-5. According to genomic maps of plasmids, all blaNDM and blaTEM were cascaded with IS26, and blaCTX-M was adjacent to ISEcp1 or IS26, indicating the important role of these elements in the movement of β-lactamase-encoding genes. The presence of intact class 1 integrons on pWTPN-01 and pWTPC-03 suggested the ability of these DRE-derived plasmids to integrate other exogenous antibiotic resistance genes (ARGs). The coexistence of antibiotic, disinfectant, and heavy metal resistance genes on the same plasmid (e.g., pWTPT-03) implied the facilitating role of disinfectants and heavy metals in the transmission of DRE-derived ARGs. Notably, two plasmid transconjugants exhibited no discernible competitive fitness cost, suggesting a heightened environmental persistence. Furthermore, enhanced virulence induced by β-lactamase-encoding plasmids in their hosts was confirmed using Galleria mellonella infection models, which might be attributed to plasmid-mediated virulence genes. Overall, this study describes the landscape of β-lactamase-encoding plasmids in DRE, and highlights the urgent need for advanced control of DRE to keep environmental and ecological security.
Collapse
Affiliation(s)
- Zejun Lin
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhenchao Zhou
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinyi Shuai
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Guangshu Zeng
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ruiqi Bao
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hong Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, China; International Cooperation Base of Environmental Pollution and Ecological Health, Science and Technology Agency of Zhejiang, Zhejiang University, China.
| |
Collapse
|
6
|
Zhang Y, Ji Y, Tang X, Chen M, Su J. Spread of plasmids carrying antibiotic resistance genes in soil-lettuce-snail food chain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:34295-34308. [PMID: 38700770 DOI: 10.1007/s11356-024-33509-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/26/2024] [Indexed: 05/31/2024]
Abstract
Fertilization can change the composition of antibiotic resistance genes(ARGs) and their host bacteria in agricultural fields, while complex microbial activities help ARGs into crops and transmit them to humans through agricultural products.Therefore, this study constructed a farmland food chain with soil-lettuce-snail as a typical structure, added genetically engineered Pseudomonas fluorescens containing multidrug-resistant plasmid RP4 to track its spread in the farmland food chain, and used different fertilization methods to explore its influence on the spread and diffusion of ARGs and intl1 in the farmland food chain. It was found that exogenous Pseudomonas can enter plants from soil and pass into snails' intestines, and there is horizontal gene transfer phenomenon of RP4 plasmid in bacteria. At different interfaces of the constructed food chain, the addition of exogenous drug-resistant bacteria had different effects on the total abundance of ARGs and intl1. Fertilization, especially manure, not only promoted the spread of Pseudomonas aeruginosa and the transfer of RP4 plasmid levels, but also significantly increased the total abundance of ARGs and intl1 at all interfaces of the constructed food chain. The main ARGs host bacteria in the constructed food chain include Proteobacteria, Bacteroides, and Firmicutes, while Flavobacterium of Bacteroides is the unique potential host bacteria of RP4 plasmid. In conclusion, this study provides a reference for the risk assessment of ARGs transmitted to the human body through the food chain, and has important practical significance to reduce the antibiotic resistance contamination of agricultural products and ensure the safety of vegetable basket.
Collapse
Affiliation(s)
- Yuan Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Yan Ji
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xinyue Tang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Minglong Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jianqiang Su
- Key Laboratory of Urban Pollutant Conversion, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| |
Collapse
|
7
|
Vergani L, Patania J, Riva V, Nerva L, Nuzzo F, Gambino G, Borin S, Mapelli F. Deciphering the interaction of bacteria inoculants with the recipient endophytic community in grapevine micropropagated plants. Appl Environ Microbiol 2024; 90:e0207823. [PMID: 38289136 PMCID: PMC10880630 DOI: 10.1128/aem.02078-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/03/2024] [Indexed: 02/22/2024] Open
Abstract
Engineering the plant microbiome with beneficial endophytic bacteria can improve the growth, health, and productivity of the holobiont. Here, we administered two beneficial bacterial strains, Kosakonia VR04 sp. and Rhizobium GR12 sp., to micropropagated grapevine cuttings obtained via somatic embryogenesis. While both strains colonized the plant endosphere, only Rhizobium GR12 sp. increased root biomass under nutritional-deficit conditions, as supported by the plant growth promotion traits detected in its genome. Phylogenetic and co-occurrence analyses revealed that the plant native bacterial community, originally dominated by Streptococcaceae and Micrococcaceae, dramatically changed depending on the inoculation treatments, as invading strains differently affected the relative abundance and the interactions of pre-existing taxa. After 30 days of plantlets' growth, Pantoea became a predominant taxon, and considering untreated plantlets as references, Rhizobium sp. GR12 showed a minor impact on the endophytic bacterial community. On the other hand, Kosakonia sp. VR04 caused a major change in community composition, suggesting an opportunistic colonization pattern. Overall, the results corroborate the importance of preserving the native endophytic community structure and functions during plant microbiome engineering.IMPORTANCEA better comprehension of bacterial colonization processes and outcomes could benefit the use of plant probiotics in the field. In this study, we applied two different beneficial bacteria to grapevine micropropagated plantlets and described how the inoculation of these strains impacts endophytic microbiota assembly. We showed that under nutritional deficit conditions, the response of the receiving endophytic bacterial communities to the invasion of the beneficial strains related to the manifestation of plant growth promotion effects by the inoculated invading strains. Rhizobium sp. GR12 was able to preserve the native microbiome structure despite its effective colonization, highlighting the importance of the plant-endophyte associations for the holobiont performance. Moreover, our approach showed that the use of micropropagated plantlets could be a valuable strategy to study the interplay among the plant, its native microbiota, and the invader on a wider portfolio of species besides model plants, facilitating the application of new knowledge in agriculture.
Collapse
Affiliation(s)
- Lorenzo Vergani
- Department of Food, Environmental and Nutritional Science (DeFENS), University of Milan, Milan, Italy
| | - Joa Patania
- Department of Food, Environmental and Nutritional Science (DeFENS), University of Milan, Milan, Italy
| | - Valentina Riva
- Department of Food, Environmental and Nutritional Science (DeFENS), University of Milan, Milan, Italy
| | - Luca Nerva
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Turin, Italy
- Italy Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics, Conegliano, Italy
| | - Floriana Nuzzo
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Turin, Italy
| | - Giorgio Gambino
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Turin, Italy
| | - Sara Borin
- Department of Food, Environmental and Nutritional Science (DeFENS), University of Milan, Milan, Italy
| | - Francesca Mapelli
- Department of Food, Environmental and Nutritional Science (DeFENS), University of Milan, Milan, Italy
| |
Collapse
|
8
|
Xin R, Zhang Y, Zhang K, Yang Y, Ma Y, Niu Z. Investigation of the antimicrobial susceptibility patterns of marine cyanobacteria in Bohai Bay: Cyanobacteria may be important hosts of antibiotic resistance genes in marine environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168516. [PMID: 37972772 DOI: 10.1016/j.scitotenv.2023.168516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
Marine cyanobacteria, as widely distributed and photosynthetically autotrophic bacteria in the ocean, may contribute to the global dissemination of antibiotic resistance genes (ARGs) and develop a different antimicrobial susceptibility pattern from heterotrophic bacteria and cyanobacteria from freshwater environments. However, studies on antimicrobial susceptibility and the carriage of ARGs in marine cyanobacteria are still very limited. In this study, the antibiotic resistance characteristics of cyanobacteria in nearshore waters were examined through field monitoring and laboratory investigations, which included PCR detection and ARG transformation. The results showed a positive correlation between marine cyanobacteria and some ARGs in the nearshore waters of Bohai Bay. Moreover, most screened cyanobacteria showed high minimum inhibitory concentration (MIC) values for polymyxins, tetracyclines, kanamycin, and sulfonamides, moderate MIC values for streptomycin, chloramphenicol, rifampicin, and norfloxacin, and low MIC values for roxithromycin and cephalosporins. The blaTEM, blaKPC, sul1, sul2, strA, tetA, tetB, tetC, tetM, mdfA, and intI1 genes were detected in the screened marine cyanobacteria. The highest detection rates were observed for blaTEM (93.3 %), sul1 (56.6 %), sul2 (90 %), and strA (73.3 %). The detection rate of tetA (33.3 %) was the highest among the tetracycline resistance genes, and mdfA, a multidrug-resistant pump gene with resistance to tetracycline, also showed a high detection level (23.3 %). Overall, most of the screened marine cyanobacteria were found to tolerate multiple antibiotics in seawater, and the condition of the ARGs carriage was serious. Furthermore, the screened marine Synechocystis sp. C12-2 demonstrated the ability to accept ARGs on the RP4 plasmid through natural transformation and showed reduced sensitivity to ampicillin, suggesting the possibility that some marine cyanobacteria could acquire ARGs from the environment through horizontal gene transfer. Thus, marine cyanobacteria may play an important role in the propagation of marine ARGs.
Collapse
Affiliation(s)
- Rui Xin
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
| | - Ying Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Kai Zhang
- Henan Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution, School of Geographic Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Yichen Yang
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yongzheng Ma
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Zhiguang Niu
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China; The International Joint Institute of Tianjin University, Fuzhou 350207, China.
| |
Collapse
|
9
|
Gan D, Lin Z, Zeng L, Deng H, Walsh TR, Zhou S, Yang QE. Housefly gut microbiomes as a reservoir and facilitator for the spread of antibiotic resistance. THE ISME JOURNAL 2024; 18:wrae128. [PMID: 39030691 PMCID: PMC11456846 DOI: 10.1093/ismejo/wrae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/23/2024] [Accepted: 07/18/2024] [Indexed: 07/21/2024]
Abstract
Arthropods, such as houseflies, play a significant role in the dissemination of antimicrobial resistance (AMR); however, their impact has often been overlooked in comparison to other AMR vectors. Understanding the contribution of arthropods to the spread of AMR is critical for implementing robust policies to mitigate the spread of AMR across One Health sectors, affecting animals and environmental habitats as well as humans. In this study, we investigated the in situ transfer of a gfp-labelled AMR plasmid (IncA/C carrying an mcr-8 gene, pA/C_MCR-8) in the gut microbiota of houseflies (Musca domestica) by applying single-cell sorting, 16S rRNA gene amplicon sequencing and whole-genome sequencing. Our findings demonstrate that the pA/C_MCR-8-positive Escherichia coli donor strain is capable of colonizing the gut microbiome of houseflies and persists in the housefly intestine for 5 days; however, no transfer was detectable above the detection threshold of 10-5 per cell. The conjugative plasmid pA/C_MCR-8 demonstrated a high transfer frequency ranging from 4.1 × 10-3 to 5.0 × 10-3 per cell in vitro and exhibited transfer across various bacterial phyla, primarily encompassing Pseudomonadota and Bacillota. Phylogenic analysis has revealed that Providencia stuartii, a human opportunistic pathogen, is a notable recipient of pA/C_MCR-8. The conjugation assays further revealed that newly formed P. stuartii transconjugants readily transfer pA/C_MCR-8 to other clinically relevant pathogens (e.g. Klebsiella pneumoniae). Our findings indicate the potential transfer of AMR plasmids from houseflies to human opportunistic pathogens and further support the adoption of a One Health approach in developing infection control policies that address AMR across clinical settings.
Collapse
Affiliation(s)
- Dehao Gan
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhenyan Lin
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lingshuang Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hui Deng
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Timothy R Walsh
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiu E Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
10
|
Yuan B, Zhang Y, Zhang Z, Lin Z, Ma Y, Sun Y. Fluorescent tag reveals the potential mechanism of how indigenous soil bacteria affect the transfer of the wild fecal antibiotic resistance plasmid pKANJ7 in different habitat soils. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131659. [PMID: 37209559 DOI: 10.1016/j.jhazmat.2023.131659] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/24/2023] [Accepted: 05/16/2023] [Indexed: 05/22/2023]
Abstract
Plasmids have increasingly become a point of concern since they act as a vital medium for the dissemination of antibiotic resistance genes (ARGs). Although indigenous soil bacteria are critical hosts for these plasmids, the mechanisms driving the transfer of antibiotic resistance plasmids (ARPs) have not been well researched. In this study, we tracked and visualized the colonization of the wild fecal antibiotic resistance plasmid pKANJ7 in indigenous bacteria of different habitat soils (unfertilized soil (UFS), chemical fertilized soil (CFS), and manure fertilized soil (MFS)). The results showed that plasmid pKANJ7 mainly transferred to the dominant genera in the soil and genera that were highly related to the donor. More importantly, plasmid pKANJ7 also transferred to intermediate hosts which aid in the survival and persistence of these plasmids in soil. Nitrogen levels also raised the plasmid transfer rate (14th day: UFS: 0.09%, CFS: 1.21%, MFS: 4.57%). Lastly, our structural equation model (SEM) showed that dominant bacteria shifts caused by nitrogen and loam were the major driver shaping the difference in the transfer of plasmid pKANJ7. Overall, our findings enhance the mechanistic understanding of indigenous soil bacteria's role in plasmid transfer and inform potential methods to prevent the transmission of plasmid-borne resistance in the environment.
Collapse
Affiliation(s)
- Bo Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yue Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Zishuai Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Zhaoye Lin
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yanwen Ma
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Ying Sun
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
11
|
Tripathi A, Kumar D, Chavda P, Rathore DS, Pandit R, Blake D, Tomley F, Joshi M, Joshi CG, Dubey SK. Resistome profiling reveals transmission dynamics of antimicrobial resistance genes from poultry litter to soil and plant. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121517. [PMID: 36990341 DOI: 10.1016/j.envpol.2023.121517] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/26/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
Poultry farming is a major livelihood in South and Southeast Asian economies where it is undergoing rapid intensification to meet the growing human demand for dietary protein. Intensification of poultry production systems is commonly supported by increased antimicrobial drug use, risking greater selection and dissemination of antimicrobial resistance genes (ARGs). Transmission of ARGs through food chains is an emerging threat. Here, we investigated transmission of ARGs from chicken (broiler and layer) litter to soil and Sorghum bicolor (L.) Moench plants based on field and pot experiments. The results demonstrate ARGs transmission from poultry litter to plant systems under field as well as experimental pot conditions. The most common ARGs could be tracked for transmission from litter to soil to plants were identified as detected were cmx, ErmX, ErmF, lnuB, TEM-98 and TEM-99, while common microorganisms included Escherichia coli, Staphylococcus aureus, Enterococcus faecium, Pseudomonas aeruginosa, and Vibrio cholerae. Using next generation sequencing and digital PCR assays we detected ARGs transmitted from poultry litter in both the roots and stems of S. bicolor (L.) Moench plants. Poultry litter is frequently used as a fertiliser because of its high nitrogen content; our studies show that ARGs can transmit from litter to plants and illustrates the risks posed to the environment by antimicrobial treatment of poultry. This knowledge is useful for formulating intervention strategies that can reduce or prevent ARGs transmission from one value chain to another, improving understanding of impacts on human and environmental health. The research outcome will help in further understanding the transmission and risks posed by ARGs from poultry to environmental and human/animal health.
Collapse
Affiliation(s)
- Animesh Tripathi
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Dinesh Kumar
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology; (DST), Government of Gujarat, Gandhinagar, Gujarat, 382011, India
| | - Priyank Chavda
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology; (DST), Government of Gujarat, Gandhinagar, Gujarat, 382011, India
| | - Dalip Singh Rathore
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology; (DST), Government of Gujarat, Gandhinagar, Gujarat, 382011, India
| | - Ramesh Pandit
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology; (DST), Government of Gujarat, Gandhinagar, Gujarat, 382011, India
| | - Damer Blake
- Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hertfordshire, UK
| | - Fiona Tomley
- Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hertfordshire, UK
| | - Madhvi Joshi
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology; (DST), Government of Gujarat, Gandhinagar, Gujarat, 382011, India
| | - Chaitanya G Joshi
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology; (DST), Government of Gujarat, Gandhinagar, Gujarat, 382011, India
| | - Suresh Kumar Dubey
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
12
|
Wei H, Wu D, Zheng M, Wang W, Wang D. Elucidating the role of two types of essential oils in regulating antibiotic resistance in soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131443. [PMID: 37094440 DOI: 10.1016/j.jhazmat.2023.131443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/05/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Although several approaches for reducing antibiotic resistance genes (ARGs) in soil have been proposed, the application of environmentally friendly approaches is now attracting much more attention. In the present study, two types of essential oils (EOs), namely lavender essential oil (LEO) and oregano essential oil (OEO), were selected to investigate their roles in regulating ARGs in soil. In a 28-day microcosm experiment, it was found that the different types and doses of EOs significantly changed the composition of microbial communities. The LEO treatments enriched more taxa belonging to Actinobacteria than the control, whereas the low dose of OEO reduced Actinobacteria enrichment. Besides, the control and the treatments with a high dose of LEO and OEO all significantly enriched the functional pathways related to Human Diseases, which were positively associated with ARGs. However, the low dose of these EOs helped to reduce the pathways. Because of inhibition of the functional pathways and ARG hosts, the low dose of OEO reduce the ARGs related to antibiotic efflux by 71.8% and the resistance genes to multidrug by 56.4%, but these roles did not occur in LEO treatments. These outcomes provide practical and theoretical support for the application of EOs in remediating ARG-contaminated soils.
Collapse
Affiliation(s)
- Huawei Wei
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang 550025, Guizhou, PR China.
| | - Dong Wu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Mingying Zheng
- Guizhou Province Bureau of Geology and Mineral Exploration and Development, Guiyang 550004, PR China
| | - Wanjin Wang
- Guizhou Province Bureau of Geology and Mineral Exploration and Development, Guiyang 550004, PR China
| | - Dapeng Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang 550025, Guizhou, PR China.
| |
Collapse
|
13
|
Mitchell SW, Moran RA, Elbourne LDH, Chapman B, Bull M, Muscatello G, Coleman NV. Impacts of Domestication and Veterinary Treatment on Mobile Genetic Elements and Resistance Genes in Equine Fecal Bacteria. Appl Environ Microbiol 2023; 89:e0159022. [PMID: 36988354 PMCID: PMC10057962 DOI: 10.1128/aem.01590-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/05/2023] [Indexed: 03/09/2023] Open
Abstract
Antimicrobial resistance in bacteria is a threat to both human and animal health. We aimed to understand the impact of domestication and antimicrobial treatment on the types and numbers of resistant bacteria, antibiotic resistance genes (ARGs), and class 1 integrons (C1I) in the equine gut microbiome. Antibiotic-resistant fecal bacteria were isolated from wild horses, healthy farm horses, and horses undergoing veterinary treatment, and isolates (9,083 colonies) were screened by PCR for C1I; these were found at frequencies of 9.8% (vet horses), 0.31% (farm horses), and 0.05% (wild horses). A collection of 71 unique C1I+ isolates (17 Actinobacteria and 54 Proteobacteria) was subjected to resistance profiling and genome sequencing. Farm horses yielded mostly C1I+ Actinobacteria (Rhodococcus, Micrococcus, Microbacterium, Arthrobacter, Glutamicibacter, Kocuria), while vet horses primarily yielded C1I+ Proteobacteria (Escherichia, Klebsiella, Enterobacter, Pantoea, Acinetobacter, Leclercia, Ochrobactrum); the vet isolates had more extensive resistance and stronger PC promoters in the C1Is. All integrons in Actinobacteria were flanked by copies of IS6100, except in Micrococcus, where a novel IS5 family element (ISMcte1) was implicated in mobilization. In the Proteobacteria, C1Is were predominantly associated with IS26 and also IS1, Tn21, Tn1721, Tn512, and a putative formaldehyde-resistance transposon (Tn7489). Several large C1I-containing plasmid contigs were retrieved; two of these (plasmid types Y and F) also had extensive sets of metal resistance genes, including a novel copper-resistance transposon (Tn7519). Both veterinary treatment and domestication increase the frequency of C1Is in equine gut microflora, and each of these anthropogenic factors selects for a distinct group of integron-containing bacteria. IMPORTANCE There is increasing acknowledgment that a "one health" approach is required to tackle the growing problem of antimicrobial resistance. This requires that the issue is examined from not only the perspective of human medicine but also includes consideration of the roles of antimicrobials in veterinary medicine and agriculture and recognizes the importance of other ecological compartments in the dissemination of ARGs and mobile genetic elements such as C1I. We have shown that domestication and veterinary treatment increase the frequency of occurrence of C1Is in the equine gut microflora and that, in healthy farm horses, the C1I are unexpectedly found in Actinobacteria, while in horses receiving antimicrobial veterinary treatments, a taxonomic shift occurs, and the more typical integron-containing Proteobacteria are found. We identified several new mobile genetic elements (plasmids, insertion sequences [IS], and transposons) on genomic contigs from the integron-containing equine bacteria.
Collapse
Affiliation(s)
- Scott W. Mitchell
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Robert A. Moran
- Institute of Microbiology and Infection, School of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Liam D. H. Elbourne
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Belinda Chapman
- Quantal Bioscience Pty Ltd, Carlingford, New South Wales, Australia
| | - Michelle Bull
- Quantal Bioscience Pty Ltd, Carlingford, New South Wales, Australia
| | - Gary Muscatello
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Nicholas V. Coleman
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
14
|
Soil Component: A Potential Factor Affecting the Occurrence and Spread of Antibiotic Resistance Genes. Antibiotics (Basel) 2023; 12:antibiotics12020333. [PMID: 36830244 PMCID: PMC9952537 DOI: 10.3390/antibiotics12020333] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/21/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
In recent years, antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) in soil have become research hotspots in the fields of public health and environmental ecosystems, but the effects of soil types and soil components on the occurrence and spread of ARGs still lack systematic sorting and in-depth research. Firstly, investigational information about ARB and ARGs contamination of soil was described. Then, existing laboratory studies about the influence of the soil component on ARGs were summarized in the following aspects: the influence of soil types on the occurrence of ARGs during natural or human activities and the control of exogenously added soil components on ARGs from the macro perspectives, the effects of soil components on the HGT of ARGs in a pure bacterial system from the micro perspectives. Following that, the similarities in pathways by which soil components affect HGT were identified, and the potential mechanisms were discussed from the perspectives of intracellular responses, plasmid activity, quorum sensing, etc. In the future, related research on multi-component systems, multi-omics methods, and microbial communities should be carried out in order to further our understanding of the occurrence and spread of ARGs in soil.
Collapse
|
15
|
Yu Y, Zhang Q, Zhang Z, Zhou S, Jin M, Zhu D, Yang X, Qian H, Lu T. Plants select antibiotic resistome in rhizosphere in early stage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159847. [PMID: 36461576 DOI: 10.1016/j.scitotenv.2022.159847] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
Knowledge of the dissemination and emergence of antibiotic resistance genes (ARGs) in the plant rhizosphere is essential for evaluating the risk of the modern ARGs in soil planetary health. However, little is known about the selection mechanism in the plant rhizosphere. Here, we firstly analyzed the dynamic changes in the rhizosphere antibiotic resistome during the process of three passage enrichment of the rhizosphere microbiome in Arabidopsis thaliana (Col-0) and found evidence that plants directionally enriched levels of beneficial functional bacteria with many ARGs. Using the metagenome, we next evaluated the enrichment potential of the resistome in four common crops (barley, indica rice, japonica rice, and wheat) and found that the wheat rhizosphere harbored more abundant ARGs. Therefore, we finally cultivated the rhizosphere microbiome of wheat for three generations and found that approximately 60 % of ARGs were associated with beneficial bacteria enriched in the wheat rhizosphere, which might enter the soil food web and threaten human health, despite also performing beneficial functions in the plant rhizosphere. Our study provides new insights into the dissemination of ARGs in the plant rhizosphere, and the obtained data may be useful for sustainable and ecologically safe agricultural development.
Collapse
Affiliation(s)
- Yitian Yu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Qi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Shuyidan Zhou
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Mingkang Jin
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Dong Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10085, China
| | - Xiaoru Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
16
|
Wang L, Yan X, Zhu L, Wang J, Xing B, Kim YM, Wang J. Spread and driving factors of antibiotic resistance genes in soil-plant system in long-term manured greenhouse under lead (Pb) stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158756. [PMID: 36113785 DOI: 10.1016/j.scitotenv.2022.158756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/05/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
Livestock manure is often used as fertilizer in greenhouses, resulting in simultaneous enrichment of heavy metals and antibiotic resistance genes (ARGs) in soils. The soil-plant system is a non-negligible way to spread ARGs; however, the effects of lead (Pb) on the spread of ARGs and their driving factors in the greenhouse soil-plant system remain unclear. In this present study, the occurrence of ARGs in greenhouse soils and their spread into plants under Pb stress were studied. Overall, Pb promoted the accumulation of ARGs in root endophytes at 10, 50, and 100 mg/kg as well as in soils at 10 and 200 mg/kg, but reduced the total relative abundance of ARGs in leaf endophytes. Particularly, Pb increased the mobile genetic elements (MGEs) relative abundance and endophytic bacterial community diversity in roots, consistent with the change in the total relative abundance of ARGs. Network analysis revealed that bacterial community and MGEs may jointly affect the migration of ARGs in the soil-plant system of greenhouses. Overall, this study extended our knowledge of how Pb can promote the transmission of ARGs to plant roots from greenhouse soils receiving long-term manure applications, which must be considered when assessing the risk of ARGs to public health.
Collapse
Affiliation(s)
- Lanjun Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian 271018, China
| | - Xiaojing Yan
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian 271018, China
| | - Lusheng Zhu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian 271018, China
| | - Jun Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian 271018, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA.
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul 04763, Republic of Korea.
| | - Jinhua Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
17
|
Lu J, Yu Z, Ding P, Guo J. Triclosan Promotes Conjugative Transfer of Antibiotic Resistance Genes to Opportunistic Pathogens in Environmental Microbiome. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15108-15119. [PMID: 36251935 DOI: 10.1021/acs.est.2c05537] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Although triclosan, as a widely used antiseptic chemical, is known to promote the transmission of antibiotic resistance to diverse hosts in pure culture, it is still unclear whether and how triclosan could affect the transmission of broad-host-range plasmids among complex microbial communities. Here, bacterial culturing, fluorescence-based cell sorting, and high-throughput 16S rRNA gene amplicon sequencing were combined to investigate contributions of triclosan on the transfer rate and range of an IncP-type plasmid from a proteobacterial donor to an activated sludge microbiome. Our results demonstrate that triclosan significantly enhances the conjugative transfer of the RP4 plasmid among activated sludge communities at environmentally relevant concentrations. High-throughput 16S rRNA gene sequencing on sorted transconjugants demonstrates that triclosan not only promoted the intergenera transfer but also the intragenera transfer of the RP4 plasmid among activated sludge communities. Moreover, triclosan mediated the transfer of the RP4 plasmid to opportunistic human pathogens, for example, Legionella spp. The mechanism of triclosan-mediated conjugative transfer is primarily associated with excessive oxidative stress, followed by increased membrane permeability and provoked SOS response. Our findings offer insights into the impacts of triclosan on the dissemination of antibiotic resistance in the aquatic environmental microbiome.
Collapse
Affiliation(s)
- Ji Lu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Zhigang Yu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Pengbo Ding
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
18
|
Li N, Li H, Zhu C, Liu C, Su G, Chen J. Controlling AMR in the Pig Industry: Is It Enough to Restrict Heavy Metals? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11265. [PMID: 36141538 PMCID: PMC9517514 DOI: 10.3390/ijerph191811265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Heavy metals have the potential to influence the transmission of antimicrobial resistance (AMR). However, the effect on AMR caused by heavy metals has not been clearly revealed. In this study, we used a microcosm experiment and metagenomics to examine whether common levels of Cu and Zn in pig manure influence AMR transmission in manured soil. We found that the abundance of 204 ARGs significantly increased after manure application, even though the manure did not contain antibiotic residuals. However, the combined addition of low Cu and Zn (500 and 1000 mg/kg, respectively) only caused 14 ARGs to significantly increase, and high Cu and Zn (1000 and 3000 mg/kg, respectively) caused 27 ARGs to significantly increase. The disparity of these numbers suggested that factors within the manure were the primary driving reasons for AMR transmission, rather than metal amendments. A similar trend was found for biocide and metal resistance genes (BMRGs) and mobile genetic elements (MGEs). This study offers deeper insights into AMR transmission in relation to the effects of manure application and heavy metals at commonly reported levels. Our findings recommend that more comprehensive measures in controlling AMR in the pig industry are needed apart from restricting heavy metal additions.
Collapse
Affiliation(s)
- Na Li
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
- Institute for Public Safety Research, Tsinghua University, Beijing 100084, China
| | - Hongna Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Changxiong Zhu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chong Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guofeng Su
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
- Institute for Public Safety Research, Tsinghua University, Beijing 100084, China
| | - Jianguo Chen
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
- Institute for Public Safety Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
19
|
Shen L, Qiu T, Guo Y, Gao M, Gao H, Zhao G, Wang X. Enhancing control of multidrug-resistant plasmid and its host community with a prolonged thermophilic phase during composting. Front Microbiol 2022; 13:989085. [PMID: 36060751 PMCID: PMC9428157 DOI: 10.3389/fmicb.2022.989085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/05/2022] [Indexed: 12/02/2022] Open
Abstract
The plasmid-mediated horizontal transfer of antibiotic resistance genes (ARGs) among bacteria facilitates the evolution and dissemination of antibiotic resistance. Broad-host-range plasmids can be transferred to different bacterial hosts in soil, plant rhizospheres, and wastewater treatment plants. Although composting is an effective way to convert organic waste into fertilizer and reduce some ARGs, few studies have focused on its effects on the spread of ARG-carrying plasmids and their bacterial host communities during composting. In this study, a fluorescently labeled Pseudomonas putida (P. putida) harboring a broad-host-range plasmid RP4 carrying three ARGs was inoculated into a raw material microcosm and composted with different durations of the thermophilic phase. The fate of the donor and RP4 in composting was investigated. The prolonged thermophilic composting removed 95.1% of dsRed and 98.0% of gfp, and it inhibited the rebound of P. putida and RP4 during the maturation phase. The spread potential of RP4 decreased from 10−4 to 10−6 transconjugants per recipient after composting. In addition, we sorted and analyzed the composition of RP4 recipient bacteria using fluorescence-activated cell sorting combined with 16S rRNA gene amplicon sequencing. The recipient bacteria of RP4 belonged to eight phyla, and Firmicutes, accounting for 75.3%–90.1%, was the dominant phylum in the transconjugants. The diversity and richness of the RP4 recipient community were significantly reduced by prolonged thermophilic periods. Overall, these findings provide new insights for assessing the contribution of composting in mitigating the dissemination of plasmid-mediated ARGs, and the prolonged thermophilic phase of composting can limit the transfer of multidrug-resistant plasmids.
Collapse
Affiliation(s)
- Lei Shen
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- College of Life Sciences, Langfang Normal University, Langfang, China
| | - Tianlei Qiu
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yajie Guo
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Min Gao
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Haoze Gao
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Guozhu Zhao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- *Correspondence: Guozhu Zhao,
| | - Xuming Wang
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Xuming Wang,
| |
Collapse
|
20
|
Macedo G, Olesen AK, Maccario L, Hernandez Leal L, v. d. Maas P, Heederik D, Mevius D, Sørensen SJ, Schmitt H. Horizontal Gene Transfer of an IncP1 Plasmid to Soil Bacterial Community Introduced by Escherichia coli through Manure Amendment in Soil Microcosms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11398-11408. [PMID: 35896060 PMCID: PMC9387108 DOI: 10.1021/acs.est.2c02686] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 05/13/2023]
Abstract
The quantification and identification of new plasmid-acquiring bacteria in representative mating conditions is critical to characterize the risk of horizontal gene transfer in the environment. This study aimed to quantify conjugation events resulting from manure application to soils and identify the transconjugants resulting from these events. Conjugation was quantified at multiple time points by plating and flow cytometry, and the transconjugants were recovered by fluorescence-activated cell sorting and identified by 16S rRNA sequencing. Overall, transconjugants were only observed within the first 4 days after manure application and at values close to the detection limits of this experimental system (1.00-2.49 log CFU/g of manured soil, ranging between 10-5 and 10-4 transconjugants-to-donor ratios). In the pool of recovered transconjugants, we found amplicon sequence variants (ASVs) of genera whose origin was traced to soils (Bacillus and Nocardioides) and manure (Comamonas and Rahnella). This work showed that gene transfer from fecal to soil bacteria occurred despite the less-than-optimal conditions faced by manure bacteria when transferred to soils, but these events were rare, mainly happened shortly after manure application, and the plasmid did not colonize the soil community. This study provides important information to determine the risks of AMR spread via manure application.
Collapse
Affiliation(s)
- Gonçalo Macedo
- Department
of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
- Wetsus,
European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Asmus K. Olesen
- Department
of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Lorrie Maccario
- Department
of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Lucia Hernandez Leal
- Wetsus,
European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Peter v. d. Maas
- Van
Hall Larenstein, University of Applied Sciences, Agora 1, 8901 BV Leeuwarden, The Netherlands
| | - Dick Heederik
- Institute
for Risk Assessment Sciences, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands
| | - Dik Mevius
- Department
of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
- Department
of Bacteriology and Epidemiology, Wageningen
Bioveterinary Research, Houtribweg 39, 8221 RA Lelystad, The Netherlands
| | - Søren J. Sørensen
- Department
of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Heike Schmitt
- Wetsus,
European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
- Institute
for Risk Assessment Sciences, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands
- Centre
for Infectious Disease Control, National
Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| |
Collapse
|
21
|
Aparicio T, Silbert J, Cepeda S, de Lorenzo V. Propagation of Recombinant Genes through Complex Microbiomes with Synthetic Mini-RP4 Plasmid Vectors. BIODESIGN RESEARCH 2022; 2022:9850305. [PMID: 37850127 PMCID: PMC10521647 DOI: 10.34133/2022/9850305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/23/2022] [Indexed: 10/19/2023] Open
Abstract
The promiscuous conjugation machinery of the Gram-negative plasmid RP4 has been reassembled in a minimized, highly transmissible vector for propagating genetically encoded traits through diverse types of naturally occurring microbial communities. To this end, the whole of the RP4-encoded transfer determinants (tra, mob genes, and origin of transfer oriT) was excised from their natural context, minimized, and recreated in the form of a streamlined DNA segment borne by an autoselective replicon. The resulting constructs (the pMATING series) could be self-transferred through a variety of prokaryotic and eukaryotic recipients employing such a rationally designed conjugal delivery device. Insertion of GFP reporter into pMATING exposed the value of this genetic tool for delivering heterologous genes to both specific mating partners and complex consortia (e.g., plant/soil rhizosphere). The results accredited the effective and functional transfer of the recombinant plasmids to a diversity of hosts. Yet the inspection of factors that limit interspecies DNA transfer in such scenarios uncovered type VI secretion systems as one of the factual barriers that check otherwise high conjugal frequencies of tested RP4 derivatives. We argue that the hereby presented programming of hyperpromiscuous gene transfer can become a phenomenal asset for the propagation of beneficial traits through various scales of the environmental microbiome.
Collapse
Affiliation(s)
- Tomás Aparicio
- Systems and Synthetic Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco Madrid 28049Spain
| | - Jillian Silbert
- Systems and Synthetic Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco Madrid 28049Spain
| | - Sherezade Cepeda
- Systems and Synthetic Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco Madrid 28049Spain
| | - Víctor de Lorenzo
- Systems and Synthetic Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco Madrid 28049Spain
| |
Collapse
|
22
|
Wu S, Ren P, Wu Y, Liu J, Huang Q, Cai P. Effects of hematite on the dissemination of antibiotic resistance in pathogens and underlying mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128537. [PMID: 35278942 DOI: 10.1016/j.jhazmat.2022.128537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
The dissemination of antibiotic resistance genes (ARGs) in pathogens is becoming a pervasive global health threat, to which the importance of the environment attracts more and more attention. However, how natural minerals affect ARGs transfer in pathogens is still unclear. In this study, the concentration and size effects of hematite on the ARGs conjugative transfer to a common zoonotic pathogen Escherichia coli O157:H7 and underlying mechanisms were explored. Results revealed that bulk hematite reduced the conjugation of resistant plasmids by inhibiting cell growth at any concentration (1-100 mg/L), different from nano-hematite. Low concentrations of nano-hematite (≤ 25 mg/L) induced significant increases in conjugative transfer frequency of 1.83-4.49 folds, while its high concentrations (50 and 100 mg/L) showed no impact, compared with the control group. This low-concentration effect was likely attributed to the increased intracellular ROS level, the reduced intercellular repulsion by increasing the extracellular polymeric substances production and cell surface hydrophobicity, the formation of transfer channels and the increased membrane permeability evidenced by significant changes in gene expression level, and the increased proton motive force by increasing the transmembrane potential of recipients. These findings shed light on potential health risks caused by nano minerals-mediated ARGs dissemination in pathogens in the environment.
Collapse
Affiliation(s)
- Shan Wu
- State Key Laboratory of Agricultural Microbiology, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Pengfei Ren
- State Key Laboratory of Agricultural Microbiology, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yichao Wu
- State Key Laboratory of Agricultural Microbiology, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jun Liu
- State Key Laboratory of Agricultural Microbiology, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Peng Cai
- State Key Laboratory of Agricultural Microbiology, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
23
|
Dead but Not Forgotten: How Extracellular DNA, Moisture, and Space Modulate the Horizontal Transfer of Extracellular Antibiotic Resistance Genes in Soil. Appl Environ Microbiol 2022; 88:e0228021. [PMID: 35323025 DOI: 10.1128/aem.02280-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Antibiotic-resistant bacteria and the spread of antibiotic resistance genes (ARGs) pose a serious risk to human and veterinary health. While many studies focus on the movement of live antibiotic-resistant bacteria to the environment, it is unclear whether extracellular ARGs (eARGs) from dead cells can transfer to live bacteria to facilitate the evolution of antibiotic resistance in nature. Here, we use eARGs from dead, antibiotic-resistant Pseudomonas stutzeri cells to track the movement of eARGs to live P. stutzeri cells via natural transformation, a mechanism of horizontal gene transfer involving the genomic integration of eARGs. In sterile, antibiotic-free agricultural soil, we manipulated the eARG concentration, soil moisture, and proximity to eARGs. We found that transformation occurred in soils inoculated with just 0.25 μg of eDNA g-1 soil, indicating that even low concentrations of soil eDNA can facilitate transformation (previous estimates suggested ∼2 to 40 μg eDNA g-1 soil). When eDNA was increased to 5 μg g-1 soil, there was a 5-fold increase in the number of antibiotic-resistant P. stutzeri cells. We found that eARGs were transformed under soil moistures typical of terrestrial systems (5 to 30% gravimetric water content) but inhibited at very high soil moistures (>30%). Overall, this work demonstrates that dead bacteria and their eARGs are an overlooked path to antibiotic resistance. More generally, the spread of eARGs in antibiotic-free soil suggests that transformation allows genetic variants to establish in the absence of antibiotic selection and that the soil environment plays a critical role in regulating transformation. IMPORTANCE Bacterial death can release eARGs into the environment. Agricultural soils can contain upwards of 109 ARGs g-1 soil, which may facilitate the movement of eARGs from dead to live bacteria through a mechanism of horizontal gene transfer called natural transformation. Here, we track the spread of eARGs from dead, antibiotic-resistant Pseudomonas stutzeri cells to live antibiotic-susceptible P. stutzeri cells in sterile agricultural soil. Transformation increased with the abundance of eARGs and occurred in soils ranging from 5 to 40% gravimetric soil moisture but was lowest in wet soils (>30%). Transformants appeared in soil after 24 h and persisted for up to 15 days even when eDNA concentrations were only a fraction of those found in field soils. Overall, our results show that natural transformation allows eARGs to spread and persist in antibiotic-free soils and that the biological activity of eDNA after bacterial death makes environmental eARGs a public health concern.
Collapse
|
24
|
Jiang B, Shen Y, Lu X, Du Y, Jin N, Li G, Zhang D, Xing Y. Toxicity assessment and microbial response to soil antibiotic exposure: differences between individual and mixed antibiotics. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:460-473. [PMID: 35166274 DOI: 10.1039/d1em00405k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Increasing amounts of antibiotics are introduced into soils, raising great concerns on their ecotoxicological impacts on the soil environment. This work investigated the individual and joint toxicity of three antibiotics, tetracycline (TC), sulfonamide (SD) and erythromycin (EM) via a whole-cell bioreporter assay. TC, SD and EM in aqueous solution demonstrated cytotoxicity, whilst soil exposure showed genotoxicity, indicating that soil particles possibly affected the bioavailability of antibiotics. Toxicity of soils exposed to TC, SD and EM changed over time, demonstrating cytotoxic effects within 14-d exposure and genotoxic effects after 30 days. Joint toxicity of TC, SD and EM in soils instead showed cytotoxicity, suggesting a synergetic effect. High-throughput sequencing suggested that the soil microbial response to individual antibiotics and their mixtures showed a different pattern. Soil microbial community composition was more sensitive to TC, in which the abundance of Pseudomonas, Pirellula, Subdivision3_genera_incertae_sedis and Gemmata varied significantly. Microbial community functions were significantly shifted by EM amendments, including signal transduction mechanisms, cytoskeleton, cell wall/membrane/envelope biogenesis, transcription, chromatin structure and dynamics, and carbohydrate transport and metabolism. This work contributes to a better understanding of the ecological effects and potential risks of individual and joint antibiotics on the soil environment.
Collapse
Affiliation(s)
- Bo Jiang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, PR China.
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, PR China
- National Environmental and Energy Science and Technology International Cooperation Base, University of Science & Technology Beijing, Beijing, 100083, PR China
- State Key Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, 100084, PR China
| | - Yaoxin Shen
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, PR China.
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, PR China
- National Environmental and Energy Science and Technology International Cooperation Base, University of Science & Technology Beijing, Beijing, 100083, PR China
| | - Xin Lu
- Petrochina North China Gas Marketing Company, Beijing, 100029, PR China
| | - Yufan Du
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, PR China.
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, PR China
- National Environmental and Energy Science and Technology International Cooperation Base, University of Science & Technology Beijing, Beijing, 100083, PR China
| | - Naifu Jin
- School of Environment, Tsinghua University, Beijing, 100084, PR China
- State Key Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, 100084, PR China
| | - Guanghe Li
- School of Environment, Tsinghua University, Beijing, 100084, PR China
- State Key Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, 100084, PR China
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing, 100084, PR China
- State Key Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, 100084, PR China
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, PR China.
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, PR China
- National Environmental and Energy Science and Technology International Cooperation Base, University of Science & Technology Beijing, Beijing, 100083, PR China
| |
Collapse
|
25
|
Zhou GW, Zheng F, Fan XT, Li MJ, Sun QY, Zhu YG, Yang XR. Host age increased conjugal plasmid transfer in gut microbiota of the soil invertebrate Caenorhabditis elegans. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127525. [PMID: 34879519 DOI: 10.1016/j.jhazmat.2021.127525] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/03/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Plasmid conjugation contributes greatly to the spread of antibiotic resistance genes (ARGs) in soils. However, the spread potential in the gut of soil fauna remains poorly studied, and little was known about the impact of host age on ARGs dissemination in the gut microbiota of soil animals. Here, the typical nematode-Caenorhabditis elegans was employed as the model soil animal, aiming to investigate transfer of broad-host-range IncP-1ɛ from Escherichia coli MG1655 to gut microbiota within 6 days under varied temperature gradients (15, 20 and 25 °C) using qPCR combined with plate screening. Results showed that conjugation rates increased with incubation time and rising temperature in the gut of C. elegans, sharing a similar trend with abundances of plasmid conjugation relevant genes such as trbBp (mating pair formation) and trfAp (plasmid replication). Incubation time and temperature significantly shaped the gut microbial community of C. elegans. Core microbiota in the gut of C. elegans, including Enterobacteriaceae, Lactobacillaceae and Leuconostocaceae, constituted a large part of transconjugal pool for plasmid IncP-1ɛ. Our results highlight an important sink of gut microbiota for ARGs dissemination and upregulation of ARGs transfer in the gut microbiota with host age, further potentially stimulating evolution of ARGs in terrestrial environments.
Collapse
Affiliation(s)
- Guo-Wei Zhou
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Fei Zheng
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; School of Life Sciences, Hebei University, Baoding 071002, China
| | - Xiao-Ting Fan
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming-Jun Li
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Qing-Ye Sun
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Ru Yang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
26
|
Rizvi SG, Ahammad SZ. COVID-19 and antimicrobial resistance: A cross-study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150873. [PMID: 34634340 PMCID: PMC8500695 DOI: 10.1016/j.scitotenv.2021.150873] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 05/03/2023]
Abstract
Antimicrobial resistance (AMR) is emerging as a severe concern due to the escalating instances of resistant human pathogens encountered by health workers. Consequently, there is a shortage of antibiotics to treat Multidrug Resistance (MDR) and Extensively Drug Resistance (XDR) patients. The primary cause of AMR is the vast array of anthropogenic disturbances in natural microfauna brought about by the extensive use of antibiotics. Coronavirus Disease of 2019 (COVID-19) has crashed antibiotic stewardship and single-handedly increased the global usage of antibiotics, Personal Protective Equipment (PPE), and biocide, causing a ripple effect in the existing global AMR problem. This surge in antibiotic usage has escalated the residual antibiotics reaching Wastewater Treatment Plants (WWTPs) from pharmaceutical companies, health care centers, and domestic settings. Ultimately the natural water bodies receiving their effluents will have higher concentrations of emerging contaminants as the WWTPs cannot remove the Pharmaceuticals and Personal Care Products (PPCPs) completely. Furthermore, increased biocides usage will increase AMR by co-resistance, and increasing plastics will turn into microplastics and get converted to plastisphere, which will further enhance its propagation. Therefore, it is crucial to curb antibiotic usage, implement antibiotic stewardship dynamically; and, ameliorate the present condition of WWTPs to remove residual PPCPs efficiently. The need of the hour is to address the grave threat of AMR, which is loitering silently; if not the mankind will endure more affliction hereafter.
Collapse
Affiliation(s)
| | - Shaikh Ziauddin Ahammad
- Block I, Room # 135, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
27
|
Zhao G, Wu Y, Wang X, Chen M, Li L. The impact of pollutant as selection pressure on conjugative transfer of dioxin-catabolic plasmids harbored by Rhodococcus sp. strain p52. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:1470-1481. [PMID: 34355316 DOI: 10.1007/s11356-021-15682-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Plasmid-mediated bioaugmentation has potential application in the cleanup of recalcitrant environmental pollutants. In this study, we examined the influence of various contaminants (in different categories or different amounts) as a selection pressure on the spread of catabolic plasmids within an activated sludge bacteria community bioaugmented with Rhodococcus sp. strain p52 harboring pDF01 and pDF02. The distinguishable genera of transconjugants were isolated under the stresses of phenanthrene, dibenzothiophene, and dibenzo-p-dioxin. The three contaminants exerted different degrees of influence on the activated sludge bacteria bearing the catabolic plasmids. The relatively high ratios of transconjugant-bearing catabolic plasmids were detected in the reactor fed with dibenzo-p-dioxin. As dibenzo-p-dioxin from 10 to 80 mg/L was fed into the reactors, the ratios of transconjugant-bearing catabolic plasmids increased. Additionally, levels of ROS and extracellular LDH of activated sludge bacteria in the contaminants-fed reactors increased, comparing with that in the control reactor, indicating that the contaminants exerted toxicity which promoted the cell membrane permeability of the activated sludge bacteria. Our study provides a characterization of the recalcitrant contaminants as a selection pressure that can modulate catabolic plasmid transfer during genetic bioaugmentation for the removal of contaminants.
Collapse
Affiliation(s)
- Gang Zhao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 72 Binhai Road, Jimo, 266237, China
| | - Yanan Wu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 72 Binhai Road, Jimo, 266237, China
| | - Xu Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 72 Binhai Road, Jimo, 266237, China
| | - Meng Chen
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 72 Binhai Road, Jimo, 266237, China
| | - Li Li
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 72 Binhai Road, Jimo, 266237, China.
| |
Collapse
|
28
|
Ma X, Zhang X, Xia J, Sun H, Zhang X, Ye L. Phenolic compounds promote the horizontal transfer of antibiotic resistance genes in activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149549. [PMID: 34392203 DOI: 10.1016/j.scitotenv.2021.149549] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Phenolic compounds are common organic pollutants in wastewater. During the wastewater treatment process, these compounds may influence the microbial community structure and functions. However, the impact of the phenolic compounds in the wastewater treatment plants on the horizontal transfer of antibiotic resistance genes (ARGs) has not been well assessed. In this study, we investigated the horizontal transfer of ARGs under the stress of phenolic compounds. The results showed that in pure culture bacteria system, p-nitrophenol (PNP), p-aminophenol (PAP) and phenol (PhOH) (10-100 mg/L) can significantly increase the horizontal transfer frequency of ARGs by 2.2-4.6, 3.6-9.4 and 1.9-9.0 fold, respectively. And, the RP4 plasmid transfer from Escherichia coli HB101 (E. coli HB101) to the bacteria in activated sludge increased obviously under the stress of phenolic compounds. Further investigation revealed that the PNP and PhOH at the concentration of 10-100 mg/L increased the production of reactive oxygen species and the permeability of cell membrane in the donor and recipient, which could be the causes of horizontal transfer of RP4 plasmid. In addition, it was also found that PNP, PAP and PhOH stress inhibit the expression of the global regulatory genes korB and trbA in the RP4 plasmid, and increase the expression level of the traF gene, thereby promoting the conjugative transfer of the RP4 plasmid. Taken together, these results improved our understanding of the horizontal transfer of ARGs under the stress of phenolic compounds and provided basic information for management of the systems that treat wastewater containing phenolic compounds.
Collapse
Affiliation(s)
- Xueyan Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Xiuwen Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Juntao Xia
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Haohao Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Xuxiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Lin Ye
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China.
| |
Collapse
|
29
|
Connolly JA, Harcombe WR, Smanski MJ, Kinkel LL, Takano E, Breitling R. Harnessing intercellular signals to engineer the soil microbiome. Nat Prod Rep 2021; 39:311-324. [PMID: 34850800 DOI: 10.1039/d1np00034a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: Focus on 2015 to 2020Plant and soil microbiomes consist of diverse communities of organisms from across kingdoms and can profoundly affect plant growth and health. Natural product-based intercellular signals govern important interactions between microbiome members that ultimately regulate their beneficial or harmful impacts on the plant. Exploiting these evolved signalling circuits to engineer microbiomes towards beneficial interactions with crops is an attractive goal. There are few reports thus far of engineering the intercellular signalling of microbiomes, but this article argues that it represents a tremendous opportunity for advancing the field of microbiome engineering. This could be achieved through the selection of synergistic consortia in combination with genetic engineering of signal pathways to realise an optimised microbiome.
Collapse
Affiliation(s)
- Jack A Connolly
- Manchester Institute of Biotechnology, Manchester Synthetic Biology Research Centre SYNBIOCHEM, Faculty of Science and Engineering, School of Natural Sciences, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, UK.
| | - William R Harcombe
- BioTechnology Institute, University of Minnesota, Twin-Cities, Saint Paul, MN55108, USA.,Department of Evolution, and Behaviour, University of Minnesota, Twin-Cities Saint Paul, MN55108, USA
| | - Michael J Smanski
- BioTechnology Institute, University of Minnesota, Twin-Cities, Saint Paul, MN55108, USA.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Twin-Cities, Saint Paul, MN55108, USA
| | - Linda L Kinkel
- BioTechnology Institute, University of Minnesota, Twin-Cities, Saint Paul, MN55108, USA.,Department of Plant Pathology, University of Minnesota, Twin-Cities, Saint Paul, MN 55108, USA
| | - Eriko Takano
- Manchester Institute of Biotechnology, Manchester Synthetic Biology Research Centre SYNBIOCHEM, Faculty of Science and Engineering, School of Natural Sciences, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, UK.
| | - Rainer Breitling
- Manchester Institute of Biotechnology, Manchester Synthetic Biology Research Centre SYNBIOCHEM, Faculty of Science and Engineering, School of Natural Sciences, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, UK.
| |
Collapse
|
30
|
Bhatt P, Bhandari G, Bhatt K, Maithani D, Mishra S, Gangola S, Bhatt R, Huang Y, Chen S. Plasmid-mediated catabolism for the removal of xenobiotics from the environment. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126618. [PMID: 34329102 DOI: 10.1016/j.jhazmat.2021.126618] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/27/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
The large-scale application of xenobiotics adversely affects the environment. The genes that are present in the chromosome of the bacteria are considered nonmobile, whereas the genes present on the plasmids are considered mobile genetic elements. Plasmids are considered indispensable for xenobiotic degradation into the contaminated environment. In the contaminated sites, bacteria with plasmids can transfer the mobile genetic element into another strain. This mechanism helps in spreading the catabolic genes into the bacterial population at the contaminated sites. The indigenous microbial strains with such degradative plasmids are important for the bioremediation of xenobiotics. Environmental factors play a critical role in the conjugation efficiency, which is involved in the bioremediation of the xenobiotics at the contaminated sites. However, there is still a need for more research to fill in the gaps regarding plasmids and their impact on bioremediation. This review explores the role of bacterial plasmids in the bioremediation of xenobiotics from contaminated environments.
Collapse
Affiliation(s)
- Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Geeta Bhandari
- Department of Biochemistry and Biotechnology, Sardar Bhagwan Singh University, Dehradun 248161, Uttarakhand, India
| | - Kalpana Bhatt
- Department of Botany and Microbiology, Gurukul Kangri University, Haridwar 249404, Uttarakhand, India
| | - Damini Maithani
- Department of Microbiology, G.B Pant University of Agriculture and Technology Pantnagar, U.S Nagar, Uttarakhand, India
| | - Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Saurabh Gangola
- School of Agriculture, Graphic Era Hill University, Bhimtal Campus, 263136, Uttarakhand, India
| | - Rakesh Bhatt
- Department of Civil Engineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
31
|
Sheppard RJ, Barraclough TG, Jansen VAA. The Evolution of Plasmid Transfer Rate in Bacteria and Its Effect on Plasmid Persistence. Am Nat 2021; 198:473-488. [PMID: 34559608 DOI: 10.1086/716063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractPlasmids are extrachromosomal segments of DNA that can transfer genes between bacterial cells. Many plasmid genes benefit bacteria but cause harm to human health by granting antibiotic resistance to pathogens. Transfer rate is a key parameter for predicting plasmid dynamics, but observed rates are highly variable, and the effects of selective forces on their evolution are unclear. We apply evolutionary analysis to plasmid conjugation models to investigate selective pressures affecting plasmid transfer rate, emphasizing host versus plasmid control, the costs of plasmid transfer, and the role of recipient cells. Our analyses show that plasmid-determined transfer rates can be predicted with three parameters (host growth rate, plasmid loss rate, and the cost of plasmid transfer on growth) under some conditions. We also show that low-frequency genetic variation in transfer rate can accumulate, facilitating rapid adaptation to changing conditions. Furthermore, reduced transfer rates due to host control have limited effects on plasmid prevalence until low enough to prevent plasmid persistence. These results provide a framework to predict plasmid transfer rate evolution in different environments and demonstrate the limited impact of host mechanisms to control the costs incurred when plasmids are present.
Collapse
|
32
|
Liao H, Li X, Yang Q, Bai Y, Cui P, Wen C, Liu C, Chen Z, Tang J, Che J, Yu Z, Geisen S, Zhou S, Friman VP, Zhu YG. Herbicide Selection Promotes Antibiotic Resistance in Soil Microbiomes. Mol Biol Evol 2021; 38:2337-2350. [PMID: 33592098 PMCID: PMC8136491 DOI: 10.1093/molbev/msab029] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Herbicides are one of the most widely used chemicals in agriculture. While they are known to be harmful to nontarget organisms, the effects of herbicides on the composition and functioning of soil microbial communities remain unclear. Here we show that application of three widely used herbicides—glyphosate, glufosinate, and dicamba—increase the prevalence of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in soil microbiomes without clear changes in the abundance, diversity and composition of bacterial communities. Mechanistically, these results could be explained by a positive selection for more tolerant genotypes that acquired several mutations in previously well-characterized herbicide and ARGs. Moreover, herbicide exposure increased cell membrane permeability and conjugation frequency of multidrug resistance plasmids, promoting ARG movement between bacteria. A similar pattern was found in agricultural soils across 11 provinces in China, where herbicide application, and the levels of glyphosate residues in soils, were associated with increased ARG and MGE abundances relative to herbicide-free control sites. Together, our results show that herbicide application can enrich ARGs and MGEs by changing the genetic composition of soil microbiomes, potentially contributing to the global antimicrobial resistance problem in agricultural environments.
Collapse
Affiliation(s)
- Hanpeng Liao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xi Li
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiue Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yudan Bai
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peng Cui
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chang Wen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chen Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhi Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiahuan Tang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiangang Che
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhen Yu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China
| | - Stefan Geisen
- Laboratory of Nematology, Wageningen University, Wageningen 6700AA, Netherlands
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ville-Petri Friman
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, United Kingdom
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
33
|
Xu H, Chen Z, Huang R, Cui Y, Li Q, Zhao Y, Wang X, Mao D, Luo Y, Ren H. Antibiotic Resistance Gene-Carrying Plasmid Spreads into the Plant Endophytic Bacteria using Soil Bacteria as Carriers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:10462-10470. [PMID: 34114802 DOI: 10.1021/acs.est.1c01615] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Applications of animal manure and treated wastewater could enrich antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in the plant microbiome. However, the mechanistic studies of the transmission of ARB and ARGs from the environment to plant endophytic bacteria were few. Herein, a genetically engineered fluorescent Escherichia coli harboring a conjugative RP4 plasmid that carries three ARGs was used to trace its spread into Arabidopsis thaliana interior in a tetracycline-amended hydroponic system in the absence or presence of a simulated soil bacterial community. Confocal microscope observation demonstrated that E. coli was internalized into plant tissues and the carried RP4 plasmid was transferred into plant endophytic bacteria. More importantly, we observed that soil bacteria inhibited the internalization of E. coli but substantially promoted RP4 plasmid spread into the plant microbiome. The altered RP4-carrying bacterial community composition in the plant microbiome and the increased core-shared RP4-carrying bacteria number between plant interior and exterior in the presence of soil bacteria collectively confirmed that soil bacteria, especially Proteobacteria, might capture RP4 from E. coli and then translocate into plant microbiome, resulting in the increased RP4 plasmid spread in the plant endophytes. Overall, our findings provided important insights into the dissemination of ARB and ARGs from the environment to the plant microbiome.
Collapse
Affiliation(s)
- Han Xu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Zeyou Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Ruiyang Huang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Yuxiao Cui
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
- Municipal Experimental Teaching Demonstration Center for Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Qiang Li
- College of Agriculture and Forestry Science, Linyi University, Linyi 276000, Shandong, China
| | - Yanhui Zhao
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Xiaolong Wang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Daqing Mao
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yi Luo
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| |
Collapse
|
34
|
Zhang X, Zhu R, Li W, Ma J, Lin H. Genomic insights into the antibiotic resistance pattern of the tetracycline-degrading bacterium, Arthrobacter nicotianae OTC-16. Sci Rep 2021; 11:15638. [PMID: 34341372 PMCID: PMC8329189 DOI: 10.1038/s41598-021-94840-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/14/2021] [Indexed: 11/09/2022] Open
Abstract
Although many bacteria have the potential to remove antibiotic residues from environmental niches, the benefits of using antibiotic-degrading bacteria to manage antibiotic pollution should be assessed against the risk of the potential expansion of antimicrobial resistance. This study investigated the antibiotic resistance pattern of the bacterium Arthrobacter nicotianae OTC-16, which shows substantial biodegradation of oxytetracycline (OTC)/tetracycline. The results showed that this strain could be resistant to at least seven categories of 15 antibiotics, based on antimicrobial susceptibility testing. The genome of A. nicotianae OTC-16 contains one chromosome (3,643,989 bp) and two plasmids (plasmid1, 123,894 bp and plasmid2, 29,841 bp). Of the 3,561 genes isolated, eight were related to antibiotic resistance. During OTC degradation by the strain OTC-16, the expression of ant2ia, sul1, tet33, and cml_e8 in the plasmid, and one gene (tetV) in the chromosome were tracked using real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Only the plasmid-derived resistance genes were up-regulated in the presence of OTC. The presence of OTC increased the tolerance of strain OTC-16 to streptomycin sulphate. The findings of this study can help deepen our understanding of the behavioural characteristics of resistance genes and adaptive evolution of drug-resistant bacteria.
Collapse
Affiliation(s)
- Xin Zhang
- College of Forest and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China.
| | - Rongrong Zhu
- College of Forest and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China
- The Institute of Environment, Resources, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Weilin Li
- College of Forest and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China
- The Institute of Environment, Resources, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Junwei Ma
- The Institute of Environment, Resources, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Hui Lin
- The Institute of Environment, Resources, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
35
|
Pallares-Vega R, Macedo G, Brouwer MSM, Hernandez Leal L, van der Maas P, van Loosdrecht MCM, Weissbrodt DG, Heederik D, Mevius D, Schmitt H. Temperature and Nutrient Limitations Decrease Transfer of Conjugative IncP-1 Plasmid pKJK5 to Wild Escherichia coli Strains. Front Microbiol 2021; 12:656250. [PMID: 34349732 PMCID: PMC8326584 DOI: 10.3389/fmicb.2021.656250] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/23/2021] [Indexed: 11/13/2022] Open
Abstract
Plasmid-mediated dissemination of antibiotic resistance among fecal Enterobacteriaceae in natural ecosystems may contribute to the persistence of antibiotic resistance genes in anthropogenically impacted environments. Plasmid transfer frequencies measured under laboratory conditions might lead to overestimation of plasmid transfer potential in natural ecosystems. This study assessed differences in the conjugative transfer of an IncP-1 (pKJK5) plasmid to three natural Escherichia coli strains carrying extended-spectrum beta-lactamases, by filter mating. Matings were performed under optimal laboratory conditions (rich LB medium and 37°C) and environmentally relevant temperatures (25, 15 and 9°C) or nutrient regimes mimicking environmental conditions and limitations (synthetic wastewater and soil extract). Under optimal nutrient conditions and temperature, two recipients yielded high transfer frequencies (5 × 10-1) while the conjugation frequency of the third strain was 1000-fold lower. Decreasing mating temperatures to psychrophilic ranges led to lower transfer frequencies, albeit all three strains conjugated under all the tested temperatures. Low nutritive media caused significant decreases in transconjugants (-3 logs for synthetic wastewater; -6 logs for soil extract), where only one of the strains was able to produce detectable transconjugants. Collectively, this study highlights that despite less-than-optimal conditions, fecal organisms may transfer plasmids in the environment, but the transfer of pKJK5 between microorganisms is limited mainly by low nutrient conditions.
Collapse
Affiliation(s)
- Rebeca Pallares-Vega
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, Netherlands
- Department Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Gonçalo Macedo
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, Netherlands
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Michael S. M. Brouwer
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - Lucia Hernandez Leal
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, Netherlands
| | - Peter van der Maas
- Van Hall Larenstein, University of Applied Sciences, Leeuwarden, Netherlands
| | | | - David G. Weissbrodt
- Department Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Dick Heederik
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Dik Mevius
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - Heike Schmitt
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, Netherlands
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
36
|
Mitchell S, Bull M, Muscatello G, Chapman B, Coleman NV. The equine hindgut as a reservoir of mobile genetic elements and antimicrobial resistance genes. Crit Rev Microbiol 2021; 47:543-561. [PMID: 33899656 DOI: 10.1080/1040841x.2021.1907301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Antibiotic resistance in bacterial pathogens is a growing problem for both human and veterinary medicine. Mobile genetic elements (MGEs) such as plasmids, transposons, and integrons enable the spread of antibiotic resistance genes (ARGs) among bacteria, and the overuse of antibiotics drives this process by providing the selection pressure for resistance genes to establish and persist in bacterial populations. Because bacteria, MGEs, and resistance genes can readily spread between different ecological compartments (e.g. soil, plants, animals, humans, wastewater), a "One Health" approach is needed to combat this problem. The equine hindgut is an understudied but potentially significant reservoir of ARGs and MGEs, since horses have close contact with humans, their manure is used in agriculture, they have a dense microbiome of both bacteria and fungi, and many antimicrobials used for equine treatment are also used in human medicine. Here, we collate information to date about resistance genes, plasmids, and class 1 integrons from equine-derived bacteria, we discuss why the equine hindgut deserves increased attention as a potential reservoir of ARGs, and we suggest ways to minimize the selection for ARGs in horses, in order to prevent their spread to the wider community.
Collapse
Affiliation(s)
- Scott Mitchell
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | | | - Gary Muscatello
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | | | - Nicholas V Coleman
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| |
Collapse
|
37
|
Zheng H, Wang R, Zhang Q, Zhao J, Li F, Luo X, Xing B. Pyroligneous acid mitigated dissemination of antibiotic resistance genes in soil. ENVIRONMENT INTERNATIONAL 2020; 145:106158. [PMID: 33038622 DOI: 10.1016/j.envint.2020.106158] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
Strategies to mitigate the spread of antibiotic resistance genes (ARGs) in soils are urgently needed. Therefore, a pristine pyroligneous acid (PA) from pyrolyzing blended woody waste at 450 °C and its three fractions distilled at 98, 130, and 220 °C (F1, F2, and F3) were used to evaluate their feasibility of reducing ARGs in soil. Application of PA, F2, and F3 effectively decreased the relative ARG abundance by 22.4-75.4% and 39.7-66.7% in the rhizosphere and bulk soil relative to control, respectively, and the removal efficiency followed an order of F3 > PA > F2. Contrarily, F1 increased the abundance of ARGs. The decreased abundance of two mobile genetic elements and impaired conjugative transfer of RP4 plasmid in the presence of PA, F2 and F3 demonstrated that the weakened horizontal gene transfer (HGT) contributed to the reduced ARG level. Variation partitioning analysis and structural equation models confirmed that ARG reduction was primarily driven by the weakened HGT, followed by the decreased co-selection of heavy metals and shifted bacterial community (e.g., reduced potential host bacteria of ARGs). Our findings provide practical and technical support for developing PA-based technology in remediating ARG-contaminated soil to ensure food safety and protect human health.
Collapse
Affiliation(s)
- Hao Zheng
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100 China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Ruirui Wang
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100 China
| | - Qian Zhang
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100 China
| | - Jian Zhao
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100 China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Fengmin Li
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100 China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Xianxiang Luo
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100 China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
38
|
Li HZ, Zhang D, Yang K, An XL, Pu Q, Lin SM, Su JQ, Cui L. Phenotypic Tracking of Antibiotic Resistance Spread via Transformation from Environment to Clinic by Reverse D 2O Single-Cell Raman Probing. Anal Chem 2020; 92:15472-15479. [PMID: 33169970 DOI: 10.1021/acs.analchem.0c03218] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The rapid spread of antibiotic resistance threatens our fight against bacterial infections. Environments are an abundant reservoir of potentially transferable resistance to pathogens. However, the trajectory of antibiotic resistance genes (ARGs) spreading from environment to clinic and the associated risk remain poorly understood. Here, single-cell Raman spectroscopy combined with reverse D2O labeling (Raman-rD2O) was developed as a sensitive and rapid phenotypic tool to track the spread of plasmid-borne ARGs from soil to clinical bacteria via transformation. Based on the activity of bacteria in assimilating H to substitute prelabeled D under antibiotic treatment, Raman-rD2O sensitively discerned a small minority of phenotypically resistant transformants from a large pool of recipient cells. Its single-cell level detection greatly facilitated the direct calculation of spread efficiency. Raman-rD2O was further employed to study the transfer of complex soil resistant plasmids to pathogenic bacteria. Soil plasmid ARG-dependent transformability against five clinically relevant antibiotics was revealed and used to assess the spreading risk of different soil ARGs, i.e., ampicillin > cefradine and ciprofloxacin > meropenem and vancomycin. The developed single-cell phenotypic method can track the fate and risk of environmental ARGs to pathogenic bacteria and may guide developing new strategies to prevent the spread of high-risk ARGs.
Collapse
Affiliation(s)
- Hong-Zhe Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - DanDan Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Kai Yang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xin-Li An
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qiang Pu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Shao-Min Lin
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.,College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jian-Qiang Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Li Cui
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
39
|
Song J, Klümper U, Riber L, Dechesne A, Smets BF, Sørensen SJ, Brandt KK. A converging subset of soil bacterial taxa is permissive to the IncP-1 plasmid pKJK5 across a range of soil copper contamination. FEMS Microbiol Ecol 2020; 96:5917080. [PMID: 33002118 DOI: 10.1093/femsec/fiaa200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 09/28/2020] [Indexed: 12/29/2022] Open
Abstract
Stressors like metals or antibiotics can affect bacterial community permissiveness for plasmid uptake, but there is little knowledge about long-term effects of such stressors on the evolution of community permissiveness. We assessed the effect of more than 90 years of soil Cu contamination on bacterial community permissiveness (i.e. uptake ability) toward a gfp-tagged IncP-1 plasmid (pKJK5) introduced via an Escherichia coli donor. Plasmid transfer events from the donor to the recipient soil bacterial community were quantified and transconjugants were subsequently isolated by fluorescence activated cell sorting and identified by 16S rRNA gene amplicon sequencing. Transfer frequency of plasmid pKJK5 was reduced in bacterial communities extracted from highly Cu contaminated (4526 mg kg-1) soil compared to corresponding communities extracted from moderately (458 mg kg-1) Cu contaminated soil and a low Cu reference soil (15 mg kg-1). The taxonomic composition of the transconjugal pools showed remarkable similarities irrespective of the degree of soil Cu contamination and despite contrasting compositions of the extracted recipient communities and the original soil communities. Permissiveness assessed at the level of individual operational taxonomic units (OTUs; 16S rRNA gene 97% sequence similarity threshold) was only slightly affected by soil Cu level and high replicate variability of OTU-level permissiveness indicated a role of stochastic events in IncP-1 plasmid transfer or strain-to-strain permissiveness variability.
Collapse
Affiliation(s)
- Jianxiao Song
- School of Ecology and Environment, Northwestern Polytechnical University, 1 Dongxiang Road, Chang'an District, Xi'an Shaanxi,710129, P.R. China.,Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.,Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, Building 1, 2100 Copenhagen, Denmark
| | - Uli Klümper
- Institute for Hydrobiology, Technische Universität Dresden, Dresden 01217, Germany.,Environment and Sustainability Institute, Medical School, University of Exeter, Penryn Campus, Cornwall, TR10 9FE, UK
| | - Leise Riber
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.,Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, Building 1, 2100 Copenhagen, Denmark
| | - Arnaud Dechesne
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej Building 115, 2800 Kgs. Lyngby, Denmark
| | - Barth F Smets
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej Building 115, 2800 Kgs. Lyngby, Denmark
| | - Søren J Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, Building 1, 2100 Copenhagen, Denmark
| | - Kristian K Brandt
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| |
Collapse
|
40
|
Pu Q, Zhao LX, Li YT, Su JQ. Manure fertilization increase antibiotic resistance in soils from typical greenhouse vegetable production bases, China. JOURNAL OF HAZARDOUS MATERIALS 2020; 391:122267. [PMID: 32062545 DOI: 10.1016/j.jhazmat.2020.122267] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 05/21/2023]
Abstract
A large quantity of manure is applied in greenhouse vegetable production (GVP) soils, while manure fertilization often leads to the proliferation of antibiotic resistance genes (ARGs) in soils. However, comprehensive study on the effects of different types of manure on ARGs in GVP soils remains unknown, and the baseline level of ARGs in GVP soil is poorly quantified. This study conducted a comprehensive survey of ARGs in GVP soils using high-throughput quantitative PCR. We found elevated ARG diversity and absolute abundance in fertilized soil, whereas no significant difference in soil ARGs amended with different types of manure. Redundancy analysis indicated that the change of bacterial community compositions and environmental factors contributed partially to the shift in ARG profiles. Bipartite network analysis indicated that one ARG was detected in non-manured soils, while 50 ARGs and 4 mobile gene elements were exclusively detected in fertilized soils, suggesting introduction of ARGs from manure into soils largely explained the increased ARG diversity in fertilized soil. By comparison of ARG absolute abundance between manured and non-manured soil, we estimated the typical level of ARG absolute abundance in non-manured soil, which provided the first rough baseline level of ARGs to assess ARG contamination in GVP soils.
Collapse
Affiliation(s)
- Qiang Pu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Li-Xia Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yong-Tao Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China.
| |
Collapse
|
41
|
Wang Q, Liu L, Hou Z, Wang L, Ma D, Yang G, Guo S, Luo J, Qi L, Luo Y. Heavy metal copper accelerates the conjugative transfer of antibiotic resistance genes in freshwater microcosms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:137055. [PMID: 32065888 DOI: 10.1016/j.scitotenv.2020.137055] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/08/2020] [Accepted: 01/31/2020] [Indexed: 05/19/2023]
Abstract
Recent studies have consistently demonstrated increasing abundances of antibiotic resistance genes (ARGs) in the absence of antibiotic use. There is a large amount of quantitative data that has correlated the elevated ARGs levels with the concentrations of heavy metals in environments with anthropogenic impact. However, the mechanisms by which heavy metals facilitate the proliferation and horizontal gene transfer of ARGs among environmental bacteria were still unknown. This study validated effects of four typical heavy metals (Cu, Cd, Pb, Zn) on the plasmid RP4 mediated conjugative transfer of ARGs in freshwater microcosms. The results suggested that the typical heavy metals including Cu, Pb and Zn would promote conjugative transfer of the plasmid RP4, and Cu (5.0 μg/L) had the greatest ability to increase conjugative transfer by 16-fold higher than the control groups. In conjugative transfer microcosms, the species of each cultivable transconjugant were isolated, and their minimum inhibitory concentrations (MICs) were assessed via antibiotic susceptibility testing. The mechanism of the increased conjugative transfer of Cu was that Cu induced cell damage and the reduced conjugative transfer of Cd was that Cd increased the content of extracellular polymers substances (EPS). This study confirms that heavy metal Cu facilitates the conjugative transfer of environmental-mediated plasmid RP4 by cell damage effect, therefore accelerating the transmission and proliferation of ARGs.
Collapse
Affiliation(s)
- Qing Wang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China; Hebei Key Laboratory of Air Pollution Cause and Impact (Preparatory), College of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, China
| | - Lei Liu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Zelin Hou
- Hebei Key Laboratory of Air Pollution Cause and Impact (Preparatory), College of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, China
| | - Litao Wang
- Hebei Key Laboratory of Air Pollution Cause and Impact (Preparatory), College of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, China
| | - Dan Ma
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Guang Yang
- Hebei Key Laboratory of Air Pollution Cause and Impact (Preparatory), College of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, China
| | - Shaoyue Guo
- Hebei Key Laboratory of Air Pollution Cause and Impact (Preparatory), College of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, China
| | - Jinghui Luo
- Hebei Key Laboratory of Air Pollution Cause and Impact (Preparatory), College of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, China
| | - Liying Qi
- Hebei Key Laboratory of Air Pollution Cause and Impact (Preparatory), College of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, China
| | - Yi Luo
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China.
| |
Collapse
|
42
|
Chen QL, Hu HW, Zhu D, Ding J, Yan ZZ, He JZ, Zhu YG. Host identity determines plant associated resistomes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113709. [PMID: 31838394 DOI: 10.1016/j.envpol.2019.113709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/12/2019] [Accepted: 11/30/2019] [Indexed: 05/20/2023]
Abstract
Plant microbiome, as the second genome of plant, and the interface between human and environmental microbiome, represents a potential pathway of human exposure to environmental pathogens and resistomes. However, the impact of host identity on the profile of resistomes in plant phyllosphere is unclear and this knowledge is vital for establishing a framework to evaluate the dissemination of antibiotic resistance via the plant microbiome. Here, we explored the phyllosphere microbiome and resistomes in 12 selected plant species. By using High-throughput quantitative PCR, we identified a total of 172 unique resistance genes in plant phyllosphere microbiome, which was significantly divergent from the profile of resistomes in associated soils (Adonis, P < 0.01). Host identity had a significant effect on the plant resistome, which was mainly attributed to the dissimilarity of phyllosphere bacterial phylogeny across different plants. We identified a core set of plant resistomes shared in more than 80% of samples, which accounted for more than 64% of total resistance genes. These plant core resistomes conferred resistance to antibiotics that are commonly administered to humans and animals. Our findings extend our knowledge regarding the resistomes in plant phyllosphere microbiome and highlight the role of host identity in shaping the plant associated antibiotic resistance genes.
Collapse
Affiliation(s)
- Qing-Lin Chen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China; Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Hang-Wei Hu
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Dong Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jing Ding
- School of Environmental and Material Engineering, Yantai University, 30 Qingquan Road, Yantai, 264005, China
| | - Zhen-Zhen Yan
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Ji-Zheng He
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
43
|
Khaledian E, Brayton KA, Broschat SL. A Systematic Approach to Bacterial Phylogeny Using Order Level Sampling and Identification of HGT Using Network Science. Microorganisms 2020; 8:microorganisms8020312. [PMID: 32102454 PMCID: PMC7074868 DOI: 10.3390/microorganisms8020312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/12/2020] [Accepted: 02/20/2020] [Indexed: 11/16/2022] Open
Abstract
Reconstructing and visualizing phylogenetic relationships among living organisms is a fundamental challenge because not all organisms share the same genes. As a result, the first phylogenetic visualizations employed a single gene, e.g., rRNA genes, sufficiently conserved to be present in all organisms but divergent enough to provide discrimination between groups. As more genome data became available, researchers began concatenating different combinations of genes or proteins to construct phylogenetic trees believed to be more robust because they incorporated more information. However, the genes or proteins chosen were based on ad hoc approaches. The large number of complete genome sequences available today allows the use of whole genomes to analyze relationships among organisms rather than using an ad hoc set of genes. We present a systematic approach for constructing a phylogenetic tree based on simultaneously clustering the complete proteomes of 360 bacterial species. From the homologous clusters, we identify 49 protein sequences shared by 99% of the organisms to build a tree. Of the 49 sequences, 47 have homologous sequences in both archaea and eukarya. The clusters are also used to create a network from which bacterial species with horizontally-transferred genes from other phyla are identified.
Collapse
Affiliation(s)
- Ehdieh Khaledian
- School of Electrical Engineering and Computer Science, Washington State University, P.O. Box 642752, Pullman, WA 99164, USA; (K.A.B.); (S.L.B.)
- Correspondence:
| | - Kelly A. Brayton
- School of Electrical Engineering and Computer Science, Washington State University, P.O. Box 642752, Pullman, WA 99164, USA; (K.A.B.); (S.L.B.)
- Department of Veterinary Microbiology and Pathology, Washington State University, P.O. Box 647040, Pullman, WA 99164, USA
- Paul G. Allen School for Global Animal Health, Washington State University, P.O. Box 647090, Pullman, WA 99164, USA
| | - Shira L. Broschat
- School of Electrical Engineering and Computer Science, Washington State University, P.O. Box 642752, Pullman, WA 99164, USA; (K.A.B.); (S.L.B.)
- Department of Veterinary Microbiology and Pathology, Washington State University, P.O. Box 647040, Pullman, WA 99164, USA
- Paul G. Allen School for Global Animal Health, Washington State University, P.O. Box 647090, Pullman, WA 99164, USA
| |
Collapse
|
44
|
Research and Technological Advances Regarding the Study of the Spread of Antimicrobial Resistance Genes and Antimicrobial-Resistant Bacteria Related to Animal Husbandry. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16244896. [PMID: 31817253 PMCID: PMC6950033 DOI: 10.3390/ijerph16244896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/30/2019] [Accepted: 12/01/2019] [Indexed: 01/08/2023]
Abstract
The extensive use of antimicrobials in animal farms poses serious safety hazards to both the environment and public health, and this trend is likely to continue. Antimicrobial resistance genes (ARGs) are a class of emerging pollutants that are difficult to remove once introduced. Understanding the environmental transfer of antimicrobial-resistant bacteria (ARB) and ARGs is pivotal for creating control measures. In this review, we summarize the research progress on the spread and detection of ARB and ARG pollution related to animal husbandry. Molecular methods such as high-throughput sequencing have greatly enriched the information about ARB communities. However, it remains challenging to delineate mechanisms regarding ARG induction, transmission, and tempo-spatial changes in the whole process, from animal husbandry to multiple ecosystems. As a result, future research should be more focused on the mechanisms of ARG induction, transmission, and control. We also expect that future research will rely more heavily on metagenomic -analysis, metatranscriptomic sequencing, and multi-omics technologies
Collapse
|
45
|
Boto L, Pineda M, Pineda R. Potential impacts of horizontal gene transfer on human health and physiology and how anthropogenic activity can affect it. FEBS J 2019; 286:3959-3967. [PMID: 31495055 DOI: 10.1111/febs.15054] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/01/2019] [Accepted: 09/03/2019] [Indexed: 12/19/2022]
Abstract
Horizontal gene transfer (HGT) is widespread among prokaryotes driving their evolution. In this paper, we review the potential impact in humans of the HGT between prokaryotes living in close association with humans in two scenarios: horizontal transfer in human microbiomes and transfer between microbes living in human managed environments. Although our vision is focused on the possible impact of these transfers in the propagation of antibiotic resistance genes or pathogenicity determinants, we also discuss possible human physiological adaptations via gene transfer between resident and occasional bacteria in the human microbiome.
Collapse
Affiliation(s)
- Luis Boto
- Departamento DE Biodiversidad y Biologia Evolutiva, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| | - Manuel Pineda
- Grupo Fisiologia Molecular y Biotecnologia de Plantas, Universidad dE Cordoba, Spain
| | - Rafael Pineda
- Instituto Maimonides de Investigacion Biomedica de Cordoba, Spain.,Departamento de Biologia Celular, Fisiologia e Inmunologia, Universidad de Cordoba, Spain
| |
Collapse
|