1
|
Hung JH, Teng CF, Hung HC, Chen YL, Chen PJ, Ho CL, Chuang CH, Huang W. Genomic instabilities in hepatocellular carcinoma: biomarkers and application in immunotherapies. Ann Hepatol 2024; 29:101546. [PMID: 39147130 DOI: 10.1016/j.aohep.2024.101546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/16/2024] [Accepted: 06/18/2024] [Indexed: 08/17/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest cancers. For patients with advanced HCC, liver function decompensation often occurs, which leads to poor tolerance to chemotherapies and other aggressive treatments. Therefore, it remains critical to develop effective therapeutic strategies for HCC. Etiological factors for HCC are complex and multifaceted, including hepatitis virus infection, alcohol, drug abuse, chronic metabolic abnormalities, and others. Thus, HCC has been categorized as a "genomically unstable" cancer due to the typical manifestation of chromosome breakage and aneuploidy, and oxidative DNA damage. In recent years, immunotherapy has provided a new option for cancer treatments, and the degree of genomic instability positively correlates with immunotherapy efficacies. This article reviews the endogenous and exogenous causes that affect the genomic stability of liver cells; it also updates the current biomarkers and their detection methods for genomic instabilities and relevant applications in cancer immunotherapies. Including genomic instability biomarkers in consideration of cancer treatment options shall increase the patients' well-being.
Collapse
Affiliation(s)
- Jui-Hsiang Hung
- Department of Biotechnology, Chia Nan University of Pharmacy & Science, Tainan, Taiwan
| | - Chiao-Feng Teng
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Organ Transplantation Center, China Medical University Hospital, Taichung, Taiwan; Program for Cancer Biology and Drug Development, China Medical University, Taichung, Taiwan; Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
| | - Hsu-Chin Hung
- Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Lin Chen
- Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Pin-Jun Chen
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Liang Ho
- Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan; Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Hsiang Chuang
- Department of Life Science, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Wenya Huang
- Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan; Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Center of Infectious Diseases and Signal Transduction, National Cheng Kung University, Tainan, Taiwan..
| |
Collapse
|
2
|
Hwangbo S, Kim G, Choi Y, Park YK, Bae S, Ryu JY, Hur W. Analysis of host factor networks during hepatitis B virus infection in primary human hepatocytes. Virol J 2024; 21:170. [PMID: 39090742 PMCID: PMC11295519 DOI: 10.1186/s12985-024-02446-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Chronic hepatitis B virus (HBV) infection affects around 250 million people worldwide, causing approximately 887,000 deaths annually, primarily owing to cirrhosis and hepatocellular carcinoma (HCC). The current approved treatments for chronic HBV infection, such as interferon and nucleos(t)ide analogs, have certain limitations as they cannot completely eradicate covalently closed circular DNA (cccDNA). Considering that HBV replication relies on host transcription factors, focusing on host factors in the HBV genome may provide insights into new therapeutic targets against HBV. Therefore, understanding the mechanisms underlying viral persistence and hepatocyte pathogenesis, along with the associated host factors, is crucial. In this study, we investigated novel therapeutic targets for HBV infection by identifying gene and pathway networks involved in HBV replication in primary human hepatocytes (PHHs). Importantly, our study utilized cultured primary hepatocytes, allowing transcriptomic profiling in a biologically relevant context and enabling the investigation of early HBV-mediated effects. METHODS PHHs were infected with HBV virion particles derived from HepAD38 cells at 80 HBV genome equivalents per cell (Geq/cell). For transcriptomic sequencing, PHHs were harvested 1, 2-, 3-, 5-, and 7 days post-infection (dpi). After preparing the libraries, clustering and sequencing were conducted to generate RNA-sequencing data. This data was processed using Bioinformatics tools and software to analyze DEGs and obtain statistically significant results. Furthermore, qRT-PCR was performed to validate the RNA-sequencing results, ensuring consistent findings. RESULTS We observed significant alterations in the expression patterns of 149 genes from days 1 to 7 following HBV infection (R2 > 0.7, q < 0.05). Functional analysis of these genes identified RNA-binding proteins involved in mRNA metabolism and the regulation of alternative splicing during HBV infection. Results from qRT-PCR experiments and the analysis of two validation datasets suggest that RBM14 and RPL28 may serve as potential biomarkers for HBV-associated HCC. CONCLUSIONS Transcriptome analysis of gene expression changes during HBV infection in PHHs provided valuable insights into chronic HBV infection. Additionally, understanding the functional involvement of host factor networks in the molecular mechanisms of HBV replication and transcription may facilitate the development of novel strategies for HBV treatment.
Collapse
Affiliation(s)
- Suhyun Hwangbo
- Department of Genomic Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Gahee Kim
- Division of Chronic Viral Diseases, Center for Emerging Virus Research, Korea National Institute of Health, 187 Osongsaengmyeong 2-ro, Cheongju, 363951, Korea
- Department of Pharmacy, Chungbuk National University, Cheongju, 28644, Korea
| | - Yongwook Choi
- Division of Chronic Viral Diseases, Center for Emerging Virus Research, Korea National Institute of Health, 187 Osongsaengmyeong 2-ro, Cheongju, 363951, Korea
| | - Yong Kwang Park
- Division of Chronic Viral Diseases, Center for Emerging Virus Research, Korea National Institute of Health, 187 Osongsaengmyeong 2-ro, Cheongju, 363951, Korea
| | - Songmee Bae
- Division of Chronic Viral Diseases, Center for Emerging Virus Research, Korea National Institute of Health, 187 Osongsaengmyeong 2-ro, Cheongju, 363951, Korea
| | - Jae Yong Ryu
- Department of Biotechnology, Duksung Women's University, Seoul, 01369, Korea
| | - Wonhee Hur
- Division of Chronic Viral Diseases, Center for Emerging Virus Research, Korea National Institute of Health, 187 Osongsaengmyeong 2-ro, Cheongju, 363951, Korea.
| |
Collapse
|
3
|
Chung CY, Sun CP, Tao MH, Wu HL, Wang SH, Yeh SH, Zheng QB, Yuan Q, Xia NS, Ogawa K, Nakashima K, Suzuki T, Chen PJ. Major HBV splice variant encoding a novel protein important for infection. J Hepatol 2024; 80:858-867. [PMID: 38336347 DOI: 10.1016/j.jhep.2024.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND & AIMS HBV expresses more than 10 spliced RNAs from the viral pregenomic RNA, but their functions remain elusive and controversial. To address the function of HBV spliced RNAs, we generated splicing-deficient HBV mutants and conducted experiments to assess the impact of these mutants on HBV infection. METHODS HepG2-NTCP cells, human hepatocyte chimeric FRG mice (hu-FRG mice), and serum from patients with chronic hepatitis B were used for experiments on HBV infection. Additionally, SHifter assays and cryo-electron microscopy were performed. RESULTS We found the infectivity of splicing-deficient HBV was decreased 100-1,000-fold compared with that of wild-type HBV in hu-FRG mice. Another mutant, A487C, which loses the most abundant spliced RNA (SP1), also exhibits severely impaired infectivity. SP1 hypothetically encodes a novel protein HBcSP1 (HBc-Cys) that lacks the C-terminal cysteine from full-length HBc. In the SHifter assay, HBcSP1 was detected in wild-type viral particles at a ratio of about 20-100% vs. conventional HBc, as well as in the serum of patients with chronic hepatitis B, but not in A487C particles. When infection was conducted with a shorter incubation time of 4-8 h at lower PEG concentrations in HepG2-NTCP cells, the entry of the A487C mutant was significantly slower. SP1 cDNA complementation of the A487C mutant succeeded in rescuing its infectivity in hu-FRG mice and HepG2-NTCP cells. Moreover, cryo-electron microscopy revealed a disulfide bond between HBc cysteine 183 and 48 in the HBc intradimer of the A487C capsid, leading to a locked conformation that disfavored viral entry in contrast to the wild-type capsid. CONCLUSIONS Prior studies unveiled the potential integration of the HBc-Cys protein into the HBV capsid. We confirmed the proposal and validated its identity and function during infection. IMPACT AND IMPLICATIONS HBV SP1 RNA encodes a novel HBc protein (HBcSP1) that lacks the C-terminal cysteine from conventional HBc (HBc-Cys). HBcSP1 was detected in cell culture-derived HBV and confirmed in patients with chronic infection by both immunological and chemical modification assays at 10-50% of capsid. The splicing-deficient mutant HBV (A487C) impaired infectivity in human hepatocyte chimeric mice and viral entry in the HepG2-NTCP cell line. Furthermore, these deficiencies of the splicing-deficient mutant could be rescued by complementation with the SP1-encoded protein HBcSP1. We confirmed and validated the identity and function of HBcSP1 during infection, building on the current model of HBV particles.
Collapse
Affiliation(s)
- Chen-Yen Chung
- National Taiwan University College of Medicine, Taipei, Taiwan
| | - Cheng-Pu Sun
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Mi-Hua Tao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hui-Lin Wu
- Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Sheng-Han Wang
- Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Shiou-Hwei Yeh
- National Taiwan University College of Medicine, Taipei, Taiwan; Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Qing-Bing Zheng
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen, P.R. China
| | - Quan Yuan
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen, P.R. China
| | - Ning-Shao Xia
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen, P.R. China
| | - Kenji Ogawa
- RIKEN Center for Sustainable Resource Science (CSRS), RIKEN, Wako, Saitama, Japan
| | | | | | - Pei-Jer Chen
- National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
4
|
McCoullough LC, Sadauskas T, Sozzi V, Mak KY, Mason H, Littlejohn M, Revill PA. The in vitro replication phenotype of hepatitis B virus (HBV) splice variants Sp3 and Sp9 and their impact on wild-type HBV replication. J Virol 2024; 98:e0153823. [PMID: 38501924 PMCID: PMC11019940 DOI: 10.1128/jvi.01538-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/22/2024] [Indexed: 03/20/2024] Open
Abstract
Prior to nuclear export, the hepatitis B virus (HBV) pregenomic RNA may be spliced by the host cell spliceosome to form shorter RNA sequences known as splice variants. Due to deletions in the open reading frames, splice variants may encode novel fusion proteins. Although not essential for HBV replication, the role of splice variants and their novel fusion proteins largely remains unknown. Some splice variants and their encoded novel fusion proteins have been shown to impair or promote wild-type HBV replication in vitro, and although splice variants Sp3 and Sp9 are two of the most common splice variants identified to date, their in vitro replication phenotype and their impact on wild-type HBV replication are unclear. Here, we utilize greater than genome-length Sp3 and Sp9 constructs to investigate their replication phenotype in vitro, and their impact on wild-type HBV replication. We show that Sp3 and Sp9 were incapable of autonomous replication, which was rescued by providing the polymerase and core proteins in trans. Furthermore, we showed that Sp3 had no impact on wild-type HBV replication, whereas Sp9 strongly reduced wild-type HBV replication in co-transfection experiments. Knocking out Sp9 novel precore-surface and core-surface fusion protein partially restored replication, suggesting that these proteins contributed to suppression of wild-type HBV replication, providing further insights into factors regulating HBV replication in vitro. IMPORTANCE The role of hepatitis B virus (HBV) splice variants in HBV replication and pathogenesis currently remains largely unknown. However, HBV splice variants have been associated with the development of hepatocellular carcinoma, suggesting a role in HBV pathogenesis. Several in vitro co-transfection studies have shown that different splice variants have varying impacts on wild-type HBV replication, perhaps contributing to viral persistence. Furthermore, all splice variants are predicted to produce novel fusion proteins. Sp1 hepatitis B splice protein contributes to liver disease progression and apoptosis; however, the function of other HBV splice variant novel fusion proteins remains largely unknown. We show that Sp9 markedly impairs HBV replication in a cell culture co-transfection model, mediated by expression of Sp9 novel fusion proteins. In contrast, Sp3 had no effect on wild-type HBV replication. Together, these studies provide further insights into viral factors contributing to regulation of HBV replication.
Collapse
Affiliation(s)
- Laura C. McCoullough
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Tomas Sadauskas
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Vitina Sozzi
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Kai Yan Mak
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Hugh Mason
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Margaret Littlejohn
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Peter A. Revill
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
5
|
Gómez-Moreno A, Ploss A. Mechanisms of Hepatitis B Virus cccDNA and Minichromosome Formation and HBV Gene Transcription. Viruses 2024; 16:609. [PMID: 38675950 PMCID: PMC11054251 DOI: 10.3390/v16040609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Hepatitis B virus (HBV) is the etiologic agent of chronic hepatitis B, which puts at least 300 million patients at risk of developing fibrosis, cirrhosis, and hepatocellular carcinoma. HBV is a partially double-stranded DNA virus of the Hepadnaviridae family. While HBV was discovered more than 50 years ago, many aspects of its replicative cycle remain incompletely understood. Central to HBV persistence is the formation of covalently closed circular DNA (cccDNA) from the incoming relaxed circular DNA (rcDNA) genome. cccDNA persists as a chromatinized minichromosome and is the major template for HBV gene transcription. Here, we review how cccDNA and the viral minichromosome are formed and how viral gene transcription is regulated and highlight open questions in this area of research.
Collapse
Affiliation(s)
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
6
|
Lu X, Li W, Deng R, Zhou B, Yu R, Hou J, Shen S, Sun J, Liu S. Serum hepatitis B virus spliced RNA proportion increases with liver disease progression in patients with chronic hepatitis B. J Med Virol 2024; 96:e29400. [PMID: 38293843 DOI: 10.1002/jmv.29400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/08/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024]
Abstract
Serum hepatitis B virus (HBV) spliced RNAs (spRNAs) are ubiquitous in HBV-infected patients; however, their clinical significance remains unknown. Therefore, we aimed to explore the relationship between HBV spRNAs and liver disease progression in chronic hepatitis B (CHB) patients; in vitro cell line assessment was also performed. The serum HBV wild-type RNA (wtRNA) and spRNA levels were individually quantified in a cohort of 279 treatment-naïve, hepatitis B e antigen positive CHB patients with or without cirrhosis. The spRNA proportion was determined as (spRNA × 100%)/(spRNAs + wtRNA). 20 patients' serum samples underwent spRNA species profiling using next-generation sequencing. Serum spRNA species 1, 2, 3, 4, and 5 were the most common variants. The spRNA proportion varied from 0.00% to 19.02%, with higher levels in HBV genotype C patients than in those with genotype B (1.76% vs. 0.84%, p < 0.001). The spRNA proportion was positively associated with the alanine aminotransferase levels (r = 0.144, p = 0.053) and significantly higher in cirrhotic than in non-cirrhotic patients (1.69% vs. 1.04%, p = 0.001). Multivariate analysis revealed a 2.566-fold higher risk of cirrhosis in patients with elevated spRNA proportion (p = 0.024). In vitro experiments confirmed that spRNAs contributed to hepatic stellate cell activation, which is critical in liver fibrosis development. Therefore, increased HBV spRNA expression poses a risk for liver disease progression. Quantifying serum HBV spRNAs can aid in monitoring liver disease progression. Furthermore, the therapeutic targeting of spRNAs may improve the prognosis of patients with CHB.
Collapse
Affiliation(s)
- Xingyu Lu
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Institute of Hepatology; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wanying Li
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Institute of Hepatology; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rui Deng
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Institute of Hepatology; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bin Zhou
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Institute of Hepatology; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rui Yu
- Department of Digestive Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinlin Hou
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Institute of Hepatology; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Sheng Shen
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Institute of Hepatology; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Sun
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Institute of Hepatology; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shi Liu
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Institute of Hepatology; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Li X, Nakashima K, Ito M, Matsuda M, Chida T, Sekihara K, Takahashi H, Kato T, Sawasaki T, Suzuki T. SRPKIN-1 as an inhibitor against hepatitis B virus blocking the viral particle formation and the early step of the viral infection. Antiviral Res 2023; 220:105756. [PMID: 37992764 DOI: 10.1016/j.antiviral.2023.105756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
New antiviral agents are needed for the treatment of hepatitis B virus (HBV) infection because currently available drugs do not completely eradicate chronic HBV in patients. Phosphorylation dynamics of the HBV core protein (HBc) regulate several processes in the HBV life cycle, including nucleocapsid formation, cell trafficking, and virus uncoating after entry. In this study, the SRPK inhibitors SPHINX31, SRPIN340, and SRPKIN-1 showed concentration-dependent anti-HBV activity. Detailed analysis of the effects of SRPKIN-1, which exhibited the strongest inhibitory activity, on the HBV replication process showed that it inhibits the formation of infectious particles by inhibiting pregenomic RNA packaging into capsids and nucleocapsid envelopment. Mass spectrometry analysis combined with cell-free translation system experiments revealed that hyperphosphorylation of the C-terminal domain of HBc is inhibited by SRPKIN-1. Further, SRPKIN-1 exhibited concentration-dependent inhibition of HBV infection not only in HepG2-hNTCP-C4 cells but also in fresh human hepatocytes (PXB cells) and in the single-round infection system. Treatment with SRPKIN-1 at the time of infection reduced the nuclease sensitivity of HBV DNA in the nuclear fraction. These results suggest that SRPKIN-1 has the potential to not only inhibit the HBV particle formation process but also impair the early stages of viral infection.
Collapse
Affiliation(s)
- Xiaofang Li
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Kenji Nakashima
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Masahiko Ito
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Mami Matsuda
- Department of Virology II, National Institute of Infectious Diseases, Musashi-murayama, Japan
| | - Takeshi Chida
- Department of Internal Medicine II, Hamamatsu University School of Medicine, Shizuoka, Japan; Department of Regional Medical Care Support, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Kazumasa Sekihara
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Hirotaka Takahashi
- Division of Cell-Free Science, Proteo-Science Center, Ehime University, Matsuyama, Ehime, Japan
| | - Takanobu Kato
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tatsuya Sawasaki
- Division of Cell-Free Science, Proteo-Science Center, Ehime University, Matsuyama, Ehime, Japan
| | - Tetsuro Suzuki
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Shizuoka, Japan.
| |
Collapse
|
8
|
Komorizono R, Fujino K, Kessler S, Runge S, Kanda T, Horie M, Makino A, Rubbenstroth D, Tomonaga K. Reverse genetics of parrot bornavirus 4 reveals a unique splicing of the glycoprotein gene that affects viral propagation. J Virol 2023; 97:e0050923. [PMID: 37578232 PMCID: PMC10506466 DOI: 10.1128/jvi.00509-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/27/2023] [Indexed: 08/15/2023] Open
Abstract
Viruses can utilize host splicing machinery to enable the expression of multiple genes from a limited-sized genome. Orthobornaviruses use alternative splicing to regulate the expression level of viral proteins and achieve efficient viral replication in the nucleus. Although more than 20 orthobornaviruses have been identified belonging to eight different viral species, virus-specific splicing has not been demonstrated. Here, we demonstrate that the glycoprotein (G) transcript of parrot bornavirus 4 (PaBV-4; species Orthobornavirus alphapsittaciforme), a highly virulent virus in psittacines, undergoes mRNA splicing and expresses a soluble isoform termed sGP. Interestingly, the splicing donor for sGP is not conserved in other orthobornaviruses, including those belonging to the same orthobornavirus species, suggesting that this splicing has evolved as a PaBV-4-specific event. We have also shown that exogenous expression of sGP does not affect PaBV-4 replication or de novo virion infectivity. In this study, to investigate the role of sGP in viral replication, we established a reverse genetics system for PaBV-4 by using avian cell lines and generated a recombinant virus lacking the spliced mRNA for sGP. Using the recombinant viruses, we show that the replication of the sGP-deficient virus is significantly slower than that of the wild-type virus and that the exogenous expression of sGP cannot restore its propagation efficiency. These results suggest that autologous or controlled expression of sGP by splicing may be important for PaBV-4 propagation. The reverse genetics system for avian bornaviruses developed here will be a powerful tool for understanding the replication strategies and pathogenesis of avian orthobornaviruses. IMPORTANCE Parrot bornavirus 4 (PaBV-4) is the dominant cause of proventricular dilatation disease, a severe gastrointestinal and central nervous system disease among avian bornaviruses. In this study, we discovered that PaBV-4 expresses a soluble isoform of glycoprotein (G), called sGP, through alternative splicing of the G mRNA, which is unique to this virus. To understand the role of sGP in viral replication, we generated recombinant PaBV-4 lacking the newly identified splicing donor site for sGP using a reverse genetics system and found that its propagation was significantly slower than that of the wild-type virus, suggesting that sGP plays an essential role in PaBV-4 infection. Our results provide important insights not only into the replication strategy but also into the pathogenesis of PaBV-4, which is the most prevalent bornavirus in captive psittacines worldwide.
Collapse
Affiliation(s)
- Ryo Komorizono
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Life and Medical Sciences (LiMe), Kyoto University, Kyoto, Japan
| | - Kan Fujino
- Laboratory of Microbiology, School of Veterinary Medicine, Azabu University, Kanagawa, Japan
- Institute of Virology, Medical Centre - University of Freiburg, Freiburg, Germany
| | - Susanne Kessler
- Institute of Virology, Medical Centre - University of Freiburg, Freiburg, Germany
| | - Solveig Runge
- Institute of Virology, Medical Centre - University of Freiburg, Freiburg, Germany
| | - Takehiro Kanda
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Life and Medical Sciences (LiMe), Kyoto University, Kyoto, Japan
- Department of Molecular Virology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masayuki Horie
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Life and Medical Sciences (LiMe), Kyoto University, Kyoto, Japan
- Hakubi Center for Advanced Research, Kyoto University, Kyoto, Japan
| | - Akiko Makino
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Life and Medical Sciences (LiMe), Kyoto University, Kyoto, Japan
- Laboratory of RNA Viruses, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Dennis Rubbenstroth
- Institute of Virology, Medical Centre - University of Freiburg, Freiburg, Germany
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald - Insel, Riems, Germany
| | - Keizo Tomonaga
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Life and Medical Sciences (LiMe), Kyoto University, Kyoto, Japan
- Department of Molecular Virology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Laboratory of RNA Viruses, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
9
|
Ng E, Dobrica MO, Harris JM, Wu Y, Tsukuda S, Wing PAC, Piazza P, Balfe P, Matthews PC, Ansari MA, McKeating JA. An enrichment protocol and analysis pipeline for long read sequencing of the hepatitis B virus transcriptome. J Gen Virol 2023; 104:001856. [PMID: 37196057 PMCID: PMC10845048 DOI: 10.1099/jgv.0.001856] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/21/2023] [Indexed: 05/19/2023] Open
Abstract
Hepatitis B virus (HBV) is one of the smallest human DNA viruses and its 3.2 Kb genome encodes multiple overlapping open reading frames, making its viral transcriptome challenging to dissect. Previous studies have combined quantitative PCR and Next Generation Sequencing to identify viral transcripts and splice junctions, however the fragmentation and selective amplification used in short read sequencing precludes the resolution of full length RNAs. Our study coupled an oligonucleotide enrichment protocol with state-of-the-art long read sequencing (PacBio) to identify the repertoire of HBV RNAs. This methodology provides sequencing libraries where up to 25 % of reads are of viral origin and enable the identification of canonical (unspliced), non-canonical (spliced) and chimeric viral-human transcripts. Sequencing RNA isolated from de novo HBV infected cells or those transfected with 1.3 × overlength HBV genomes allowed us to assess the viral transcriptome and to annotate 5' truncations and polyadenylation profiles. The two HBV model systems showed an excellent agreement in the pattern of major viral RNAs, however differences were noted in the abundance of spliced transcripts. Viral-host chimeric transcripts were identified and more commonly found in the transfected cells. Enrichment capture and PacBio sequencing allows the assignment of canonical and non-canonical HBV RNAs using an open-source analysis pipeline that enables the accurate mapping of the HBV transcriptome.
Collapse
Affiliation(s)
- Esther Ng
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mihaela-Olivia Dobrica
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Present address: Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - James M. Harris
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Yanxia Wu
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Senko Tsukuda
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Peter A. C. Wing
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| | - Paolo Piazza
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Peter Balfe
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Philippa C. Matthews
- The Francis Crick Institute, London, UK
- Division of Infection and Immunity, University College London, London, UK
| | - M. Azim Ansari
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jane A. McKeating
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| |
Collapse
|
10
|
More DNA and RNA of HBV SP1 splice variants are detected in genotypes B and C at low viral replication. Sci Rep 2021; 11:23838. [PMID: 34903774 PMCID: PMC8668879 DOI: 10.1038/s41598-021-03304-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/29/2021] [Indexed: 12/13/2022] Open
Abstract
HBV produces unspliced and spliced RNAs during replication. Encapsidated spliced RNA is converted into DNA generating defective virions that are detected in plasma and associated with HCC development. Herein we describe a quantitative real-time PCR detection of splice variant SP1 DNA/RNA in HBV plasma. Three PCR primers/probe sets were designed detecting the SP1 variants, unspliced core, or X gene. Plasmids carrying the three regions were constructed for the nine HBV genotypes to evaluate the three sets, which were also tested on DNA/RNA extracted from 193 HBV plasma with unknown HCC status. The assay had an LOD of 80 copies/ml and was equally efficient for detecting all nine genotypes and three targets. In testing 84 specimens for both SP1 DNA (77.4%) and RNA (82.1%), higher viral loads resulted in increased SP1 levels. Most samples yielded < 1% of SP1 DNA, while the average SP1 RNA was 3.29%. At viral load of ≤ 5 log copies/ml, the detectable SP1 DNA varied by genotype, with 70% for B, 33.3% for C, 10.5% for E, 4% for D and 0% for A, suggesting higher levels of splicing in B and C during low replication. At > 5 log, all samples regardless of genotype had detectable SP1 DNA.
Collapse
|
11
|
Kremsdorf D, Lekbaby B, Bablon P, Sotty J, Augustin J, Schnuriger A, Pol J, Soussan P. Alternative splicing of viral transcripts: the dark side of HBV. Gut 2021; 70:2373-2382. [PMID: 34535538 DOI: 10.1136/gutjnl-2021-324554] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 09/06/2021] [Indexed: 02/06/2023]
Abstract
Regulation of alternative splicing is one of the most efficient mechanisms to enlarge the proteomic diversity in eukaryotic organisms. Many viruses hijack the splicing machinery following infection to accomplish their replication cycle. Regarding the HBV, numerous reports have described alternative splicing events of the long viral transcript (pregenomic RNA), which also acts as a template for viral genome replication. Alternative splicing of HBV pregenomic RNAs allows the synthesis of at least 20 spliced variants. In addition, almost all these spliced forms give rise to defective particles, detected in the blood of infected patients. HBV-spliced RNAs have long been unconsidered, probably due to their uneasy detection in comparison to unspliced forms as well as for their dispensable role during viral replication. However, recent data highlighted the relevance of these HBV-spliced variants through (1) the trans-regulation of the alternative splicing of viral transcripts along the course of liver disease; (2) the ability to generate defective particle formation, putative biomarker of the liver disease progression; (3) modulation of viral replication; and (4) their intrinsic propensity to encode for novel viral proteins involved in liver pathogenesis and immune response. Altogether, tricky regulation of HBV alternative splicing may contribute to modulate multiple viral and cellular processes all along the course of HBV-related liver disease.
Collapse
Affiliation(s)
- Dina Kremsdorf
- Institut National de la Santé et de la Recherche Médicale U938, Centre de Recherche de Saint Antoine, Sorbonne Université-Faculté Saint Antoine, Paris, France
| | - Bouchra Lekbaby
- Institut National de la Santé et de la Recherche Médicale U938, Centre de Recherche de Saint Antoine, Sorbonne Université-Faculté Saint Antoine, Paris, France
| | - Pierre Bablon
- Institut National de la Santé et de la Recherche Médicale U938, Centre de Recherche de Saint Antoine, Sorbonne Université-Faculté Saint Antoine, Paris, France
| | - Jules Sotty
- Institut National de la Santé et de la Recherche Médicale U938, Centre de Recherche de Saint Antoine, Sorbonne Université-Faculté Saint Antoine, Paris, France
| | - Jérémy Augustin
- Institut National de la Santé et de la Recherche Médicale U938, Centre de Recherche de Saint Antoine, Sorbonne Université-Faculté Saint Antoine, Paris, France
| | - Aurélie Schnuriger
- Institut National de la Santé et de la Recherche Médicale U938, Centre de Recherche de Saint Antoine, Sorbonne Université-Faculté Saint Antoine, Paris, France.,Assistance Publique - Hôpitaux de Paris, Département de Virologie, GHU Paris-Est, Paris, France
| | - Jonathan Pol
- Institut National de la Santé et de la Recherche Médicale U1138, Centre de Recherche des Cordeliers, Université de Paris, Sorbonne Université, Paris, France.,Metabolomics ann Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Patrick Soussan
- Institut National de la Santé et de la Recherche Médicale U938, Centre de Recherche de Saint Antoine, Sorbonne Université-Faculté Saint Antoine, Paris, France .,Assistance Publique - Hôpitaux de Paris, Département de Virologie, GHU Paris-Est, Paris, France
| |
Collapse
|
12
|
Ghosh S, Chakraborty A, Banerjee S. Persistence of Hepatitis B Virus Infection: A Multi-Faceted Player for Hepatocarcinogenesis. Front Microbiol 2021; 12:678537. [PMID: 34526974 PMCID: PMC8435854 DOI: 10.3389/fmicb.2021.678537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/06/2021] [Indexed: 12/14/2022] Open
Abstract
Hepatitis B virus (HBV) infection has a multi-dimensional effect on the host, which not only alters the dynamics of immune response but also persists in the hepatocytes to predispose oncogenic factors. The virus exists in multiple forms of which the nuclear localized covalently closed circular DNA (cccDNA) is the most stable and the primary reason for viral persistence even after clearance of surface antigen and viral DNA. The second reason is the existence of pregenomic RNA (pgRNA) containing virion particles. On the other hand, the integration of the viral genome in the host chromosome also leads to persistent production of viral proteins along with the chromosomal instabilities. The interferon treatment or administration of nucleot(s)ide analogs leads to reduction in the viral DNA load, but the pgRNA and surface antigen clearance are a slow process and complete loss of serological HBsAg is rare. The prolonged exposure of immune cells to the viral antigens, particularly HBs antigen, in the blood circulation results in T-cell exhaustion, which disrupts immune clearance of the virus and virus-infected cells. In addition, it predisposes immune-tolerant microenvironment, which facilitates the tumor progression. Thus cccDNA, pgRNA, and HBsAg along with the viral DNA could be the therapeutic targets in the early disease stages that may improve the quality of life of chronic hepatitis B patients by impeding the progression of the disease toward hepatocellular carcinoma.
Collapse
Affiliation(s)
| | | | - Soma Banerjee
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| |
Collapse
|
13
|
Aberrant Splicing Events and Epigenetics in Viral Oncogenomics: Current Therapeutic Strategies. Cells 2021; 10:cells10020239. [PMID: 33530521 PMCID: PMC7910916 DOI: 10.3390/cells10020239] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 02/08/2023] Open
Abstract
Global cancer incidence and mortality are on the rise. Although cancer is fundamentally a non-communicable disease, a large number of cancers are known to have a viral aetiology. A high burden of infectious agents (Human immunodeficiency virus (HIV), human papillomavirus (HPV), hepatitis B virus (HBV)) in certain Sub-Saharan African countries drives the rates of certain cancers. About one-third of all cancers in Africa are attributed to infection. Seven viruses have been identified with carcinogenic characteristics, namely the HPV, HBV, Hepatitis C virus (HCV), Epstein–Barr virus (EBV), Human T cell leukaemia virus 1 (HTLV-1), Kaposi’s Sarcoma Herpesvirus (KSHV), and HIV-1. The cellular splicing machinery is compromised upon infection, and the virus generates splicing variants that promote cell proliferation, suppress signalling pathways, inhibition of tumour suppressors, alter gene expression through epigenetic modification, and mechanisms to evade an immune response, promoting carcinogenesis. A number of these splice variants are specific to virally-induced cancers. Elucidating mechanisms underlying how the virus utilises these splice variants to maintain its latent and lytic phase will provide insights into novel targets for drug discovery. This review will focus on the splicing genomics, epigenetic modifications induced by and current therapeutic strategies against HPV, HBV, HCV, EBV, HTLV-1, KSHV and HIV-1.
Collapse
|
14
|
Lim CS, Sozzi V, Littlejohn M, Yuen LK, Warner N, Betz-Stablein B, Luciani F, Revill PA, Brown CM. Quantitative analysis of the splice variants expressed by the major hepatitis B virus genotypes. Microb Genom 2021; 7:mgen000492. [PMID: 33439114 PMCID: PMC8115900 DOI: 10.1099/mgen.0.000492] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatitis B virus (HBV) is a major human pathogen that causes liver diseases. The main HBV RNAs are unspliced transcripts that encode the key viral proteins. Recent studies have shown that some of the HBV spliced transcript isoforms are predictive of liver cancer, yet the roles of these spliced transcripts remain elusive. Furthermore, there are nine major HBV genotypes common in different regions of the world, these genotypes may express different spliced transcript isoforms. To systematically study the HBV splice variants, we transfected human hepatoma cells, Huh7, with four HBV genotypes (A2, B2, C2 and D3), followed by deep RNA-sequencing. We found that 13-28 % of HBV RNAs were splice variants, which were reproducibly detected across independent biological replicates. These comprised 6 novel and 10 previously identified splice variants. In particular, a novel, singly spliced transcript was detected in genotypes A2 and D3 at high levels. The biological relevance of these splice variants was supported by their identification in HBV-positive liver biopsy and serum samples, and in HBV-infected primary human hepatocytes. Interestingly the levels of HBV splice variants varied across the genotypes, but the spliced pregenomic RNA SP1 and SP9 were the two most abundant splice variants. Counterintuitively, these singly spliced SP1 and SP9 variants had a suboptimal 5' splice site, supporting the idea that splicing of HBV RNAs is tightly controlled by the viral post-transcriptional regulatory RNA element.
Collapse
Affiliation(s)
- Chun Shen Lim
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Vitina Sozzi
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Margaret Littlejohn
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Lilly K.W. Yuen
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Nadia Warner
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Brigid Betz-Stablein
- Systems Medicine, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Present address: Dermatology Research Centre, Diamantina Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Fabio Luciani
- Systems Medicine, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Peter A. Revill
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Chris M. Brown
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
15
|
Taha TY, Anirudhan V, Limothai U, Loeb DD, Petukhov PA, McLachlan A. Modulation of hepatitis B virus pregenomic RNA stability and splicing by histone deacetylase 5 enhances viral biosynthesis. PLoS Pathog 2020; 16:e1008802. [PMID: 32822428 PMCID: PMC7467325 DOI: 10.1371/journal.ppat.1008802] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/02/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022] Open
Abstract
Hepatitis B virus (HBV) is a worldwide health problem without curative treatments. Investigation of the regulation of HBV biosynthesis by class I and II histone deacetylases (HDACs) demonstrated that catalytically active HDAC5 upregulates HBV biosynthesis. HDAC5 expression increased both the stability and splicing of the HBV 3.5 kb RNA without altering the translational efficiency of the viral pregenomic or spliced 2.2 kb RNAs. Together, these observations point to a broader role of HDAC5 in regulating RNA splicing and transcript stability while specifically identifying a potentially novel approach toward antiviral HBV therapeutic development. This study demonstrates that HDAC5 deacetylation of host cellular factor(s) results in increased HBV biosynthesis by enhancing viral transcript stability and splicing via direct or indirect binding of host factors to viral intron sequences. This represents the first demonstration of this type of post-transcriptional regulation in the liver and is similar to observations seen for cellular transcripts in neural and cardiac cell types. These observations suggest a more general phenomenon which could represent an additional post-transcriptional code governing the regulation of RNA:protein interactions and hence RNA metabolism. Therefore, covalent modifications of RNA binding proteins may modulate post-transcriptional gene expression in an analogous manner to the known histone code that controls gene transcription. Although this analysis primarily relates to the mechanism(s) by which HDAC5 governs HBV RNA metabolism, it does have significant therapeutic implications. The inhibition of HDAC5 in combination with current nucleos(t)ide analog drugs targeting the viral reverse transcriptase/DNA polymerase might aid in the treatment and possible resolution of chronic infections by targeting both host and viral factors.
Collapse
Affiliation(s)
- Taha Y. Taha
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Varada Anirudhan
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Umaporn Limothai
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Daniel D. Loeb
- McArdle Laboratory for Cancer Research, University of Wisconsin - Madison, Madison, Wisconsin, United States of America
| | - Pavel A. Petukhov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail: (PAP); (AM)
| | - Alan McLachlan
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail: (PAP); (AM)
| |
Collapse
|