1
|
Liu T, Wang S, Zhang Y, Li Y, Liu Y, Huang S. TIWMFLP: Two-Tier Interactive Weighted Matrix Factorization and Label Propagation Based on Similarity Matrix Fusion for Drug-Disease Association Prediction. J Chem Inf Model 2024. [PMID: 39486090 DOI: 10.1021/acs.jcim.4c01589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
Accurately identifying new therapeutic uses for drugs is crucial for advancing pharmaceutical research and development. Matrix factorization is often used in association prediction due to its simplicity and high interpretability. However, existing matrix factorization models do not enable real-time interaction between molecular feature matrices and similarity matrices, nor do they consider the geometric structure of the matrices. Additionally, efficiently integrating multisource data remains a significant challenge. To address these issues, we propose a two-tier interactive weighted matrix factorization and label propagation model based on similarity matrix fusion (TIWMFLP) to assist in personalized treatment. First, we calculate the Gaussian and Laplace kernel similarities for drugs and diseases using known drug-disease associations. We then introduce a new multisource similarity fusion method, called similarity matrix fusion (SMF), to integrate these drug/disease similarities. SMF not only considers the different contributions represented by each neighbor but also incorporates drug-disease association information to enhance the contextual topological relationships and potential features of each drug/disease node in the network. Second, we innovatively developed a two-tier interactive weighted matrix factorization (TIWMF) method to process three biological networks. This method realizes for the first time the real-time interaction between the drug/disease feature matrix and its similarity matrix, allowing for a better capture of the complex relationships between drugs and diseases. Additionally, the weighted matrix of the drug/disease similarity matrix is introduced to preserve the underlying structure of the similarity matrix. Finally, the label propagation algorithm makes predictions based on the three updated biological networks. Experimental outcomes reveal that TIWMFLP consistently surpasses state-of-the-art models on four drug-disease data sets, two small molecule-miRNA data sets, and one miRNA-disease data set.
Collapse
Affiliation(s)
- Tiyao Liu
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum, Qingdao 266580, China
| | - Shudong Wang
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum, Qingdao 266580, China
| | - Yuanyuan Zhang
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao 266525, China
| | - Yunyin Li
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum, Qingdao 266580, China
| | - Yingye Liu
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum, Qingdao 266580, China
| | - Shiyuan Huang
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum, Qingdao 266580, China
| |
Collapse
|
2
|
Shi K, Huang K, Li L, Liu Q, Zhang Y, Zheng H. Predicting microbe-disease association based on graph autoencoder and inductive matrix completion with multi-similarities fusion. Front Microbiol 2024; 15:1438942. [PMID: 39355422 PMCID: PMC11443509 DOI: 10.3389/fmicb.2024.1438942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/02/2024] [Indexed: 10/03/2024] Open
Abstract
Background Clinical studies have demonstrated that microbes play a crucial role in human health and disease. The identification of microbe-disease interactions can provide insights into the pathogenesis and promote the diagnosis, treatment, and prevention of disease. Although a large number of computational methods are designed to screen novel microbe-disease associations, the accurate and efficient methods are still lacking due to data inconsistence, underutilization of prior information, and model performance. Methods In this study, we proposed an improved deep learning-based framework, named GIMMDA, to identify latent microbe-disease associations, which is based on graph autoencoder and inductive matrix completion. By co-training the information from microbe and disease space, the new representations of microbes and diseases are used to reconstruct microbe-disease association in the end-to-end framework. In particular, a similarity fusion strategy is conducted to improve prediction performance. Results The experimental results show that the performance of GIMMDA is competitive with that of existing state-of-the-art methods on 3 datasets (i.e., HMDAD, Disbiome, and multiMDA). In particular, it performs best with the area under the receiver operating characteristic curve (AUC) of 0.9735, 0.9156, 0.9396 on abovementioned 3 datasets, respectively. And the result also confirms that different similarity fusions can improve the prediction performance. Furthermore, case studies on two diseases, i.e., asthma and obesity, validate the effectiveness and reliability of our proposed model. Conclusion The proposed GIMMDA model show a strong capability in predicting microbe-disease associations. We expect that GPUDMDA will help identify potential microbe-related diseases in the future.
Collapse
Affiliation(s)
- Kai Shi
- College of Computer Science and Engineering, Guilin University of Technology, Guilin, China
- Guangxi Key Laboratory of Embedded Technology and Intelligent Systems, Guilin University of Technology, Guilin, China
| | - Kai Huang
- College of Computer Science and Engineering, Guilin University of Technology, Guilin, China
| | - Lin Li
- College of Computer Science and Engineering, Guilin University of Technology, Guilin, China
| | - Qiaohui Liu
- College of Computer Science and Engineering, Guilin University of Technology, Guilin, China
| | - Yi Zhang
- College of Computer Science and Engineering, Guilin University of Technology, Guilin, China
| | - Huilin Zheng
- College of Computer Science and Engineering, Guilin University of Technology, Guilin, China
| |
Collapse
|
3
|
Lu S, Liang Y, Li L, Miao R, Liao S, Zou Y, Yang C, Ouyang D. Predicting potential microbe-disease associations based on auto-encoder and graph convolution network. BMC Bioinformatics 2023; 24:476. [PMID: 38097930 PMCID: PMC10722760 DOI: 10.1186/s12859-023-05611-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023] Open
Abstract
The increasing body of research has consistently demonstrated the intricate correlation between the human microbiome and human well-being. Microbes can impact the efficacy and toxicity of drugs through various pathways, as well as influence the occurrence and metastasis of tumors. In clinical practice, it is crucial to elucidate the association between microbes and diseases. Although traditional biological experiments accurately identify this association, they are time-consuming, expensive, and susceptible to experimental conditions. Consequently, conducting extensive biological experiments to screen potential microbe-disease associations becomes challenging. The computational methods can solve the above problems well, but the previous computational methods still have the problems of low utilization of node features and the prediction accuracy needs to be improved. To address this issue, we propose the DAEGCNDF model predicting potential associations between microbes and diseases. Our model calculates four similar features for each microbe and disease. These features are fused to obtain a comprehensive feature matrix representing microbes and diseases. Our model first uses the graph convolutional network module to extract low-rank features with graph information of microbes and diseases, and then uses a deep sparse Auto-Encoder to extract high-rank features of microbe-disease pairs, after which the low-rank and high-rank features are spliced to improve the utilization of node features. Finally, Deep Forest was used for microbe-disease potential relationship prediction. The experimental results show that combining low-rank and high-rank features helps to improve the model performance and Deep Forest has better classification performance than the baseline model.
Collapse
Affiliation(s)
- Shanghui Lu
- Faculty of Innovation Enginee, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macao, Macao Special Administrative Region of China, China
- School of Mathematics and Physics, Hechi University, No. 42, Longjiang, Hechi, 546300, Guangxi, China
| | - Yong Liang
- Faculty of Innovation Enginee, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macao, Macao Special Administrative Region of China, China.
- Peng Cheng Laboratory, Shenzhen, 518055, Guangdong, China.
| | - Le Li
- Faculty of Innovation Enginee, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macao, Macao Special Administrative Region of China, China
| | - Rui Miao
- Basic Teaching Department, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, Guangdong, China
| | - Shuilin Liao
- Faculty of Innovation Enginee, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macao, Macao Special Administrative Region of China, China
| | - Yongfu Zou
- School of Mathematics and Physics, Hechi University, No. 42, Longjiang, Hechi, 546300, Guangxi, China
| | - Chengjun Yang
- School of Artificial Intelligence and Manufacturing, Hechi University, No. 42, Longjiang, Hechi, 546300, Guangxi, China
| | - Dong Ouyang
- School of Biomedical Engineering, Guangdong Medical University, No. 1, Xincheng, Zhanjiang, 523808, Guangdong, China
| |
Collapse
|
4
|
Karkera N, Acharya S, Palaniappan SK. Leveraging pre-trained language models for mining microbiome-disease relationships. BMC Bioinformatics 2023; 24:290. [PMID: 37468830 PMCID: PMC10357883 DOI: 10.1186/s12859-023-05411-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/13/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND The growing recognition of the microbiome's impact on human health and well-being has prompted extensive research into discovering the links between microbiome dysbiosis and disease (healthy) states. However, this valuable information is scattered in unstructured form within biomedical literature. The structured extraction and qualification of microbe-disease interactions are important. In parallel, recent advancements in deep-learning-based natural language processing algorithms have revolutionized language-related tasks such as ours. This study aims to leverage state-of-the-art deep-learning language models to extract microbe-disease relationships from biomedical literature. RESULTS In this study, we first evaluate multiple pre-trained large language models within a zero-shot or few-shot learning context. In this setting, the models performed poorly out of the box, emphasizing the need for domain-specific fine-tuning of these language models. Subsequently, we fine-tune multiple language models (specifically, GPT-3, BioGPT, BioMedLM, BERT, BioMegatron, PubMedBERT, BioClinicalBERT, and BioLinkBERT) using labeled training data and evaluate their performance. Our experimental results demonstrate the state-of-the-art performance of these fine-tuned models ( specifically GPT-3, BioMedLM, and BioLinkBERT), achieving an average F1 score, precision, and recall of over [Formula: see text] compared to the previous best of 0.74. CONCLUSION Overall, this study establishes that pre-trained language models excel as transfer learners when fine-tuned with domain and problem-specific data, enabling them to achieve state-of-the-art results even with limited training data for extracting microbiome-disease interactions from scientific publications.
Collapse
Affiliation(s)
| | - Sathwik Acharya
- The Systems Biology Institute, Tokyo, Japan
- PES University, Bengaluru, India
| | - Sucheendra K Palaniappan
- The Systems Biology Institute, Tokyo, Japan.
- Iom Bioworks Pvt Ltd., Bengaluru, India.
- SBX Corporation, Tokyo, Japan.
| |
Collapse
|
5
|
Shokri Garjan H, Omidi Y, Poursheikhali Asghari M, Ferdousi R. In-silico computational approaches to study microbiota impacts on diseases and pharmacotherapy. Gut Pathog 2023; 15:10. [PMID: 36882861 PMCID: PMC9990230 DOI: 10.1186/s13099-023-00535-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/21/2023] [Indexed: 03/09/2023] Open
Abstract
Microorganisms have been linked to a variety of critical human disease, thanks to advances in sequencing technology and microbiology. The growing recognition of human microbe-disease relationships provides crucial insights into the underlying disease process from the perspective of pathogens, which is extremely useful for pathogenesis research, early diagnosis, and precision medicine and therapy. Microbe-based analysis in terms of diseases and related drug discovery can predict new connections/mechanisms and provide new concepts. These phenomena have been studied via various in-silico computational approaches. This review aims to elaborate on the computational works conducted on the microbe-disease and microbe-drug topics, discuss the computational model approaches used for predicting associations and provide comprehensive information on the related databases. Finally, we discussed potential prospects and obstacles in this field of study, while also outlining some recommendations for further enhancing predictive capabilities.
Collapse
Affiliation(s)
- Hassan Shokri Garjan
- Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, Nova Southeastern University, College of Pharmacy, Fort Lauderdale, FL, USA
| | | | - Reza Ferdousi
- Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Shi K, Li L, Wang Z, Chen H, Chen Z, Fang S. Identifying microbe-disease association based on graph convolutional attention network: Case study of liver cirrhosis and epilepsy. Front Neurosci 2023; 16:1124315. [PMID: 36741060 PMCID: PMC9892757 DOI: 10.3389/fnins.2022.1124315] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 12/31/2022] [Indexed: 01/20/2023] Open
Abstract
The interactions between the microbiota and the human host can affect the physiological functions of organs (such as the brain, liver, gut, etc.). Accumulating investigations indicate that the imbalance of microbial community is closely related to the occurrence and development of diseases. Thus, the identification of potential links between microbes and diseases can provide insight into the pathogenesis of diseases. In this study, we propose a deep learning framework (MDAGCAN) based on graph convolutional attention network to identify potential microbe-disease associations. In MDAGCAN, we first construct a heterogeneous network consisting of the known microbe-disease associations and multi-similarity fusion networks of microbes and diseases. Then, the node embeddings considering the neighbor information of the heterogeneous network are learned by applying graph convolutional layers and graph attention layers. Finally, a bilinear decoder using node embedding representations reconstructs the unknown microbe-disease association. Experiments show that our method achieves reliable performance with average AUCs of 0.9778 and 0.9454 ± 0.0038 in the frameworks of Leave-one-out cross validation (LOOCV) and 5-fold cross validation (5-fold CV), respectively. Furthermore, we apply MDAGCAN to predict latent microbes for two high-risk human diseases, i.e., liver cirrhosis and epilepsy, and results illustrate that 16 and 17 out of the top 20 predicted microbes are verified by published literatures, respectively. In conclusion, our method displays effective and reliable prediction performance and can be expected to predict unknown microbe-disease associations facilitating disease diagnosis and prevention.
Collapse
Affiliation(s)
- Kai Shi
- College of Information Science and Engineering, Guilin University of Technology, Guilin, China
- Guangxi Key Laboratory of Embedded Technology and Intelligent System, Guilin University of Technology, Guilin, China
| | - Lin Li
- College of Information Science and Engineering, Guilin University of Technology, Guilin, China
| | - Zhengfeng Wang
- College of Information Science and Engineering, Guilin University of Technology, Guilin, China
| | - Huazhou Chen
- College of Science, Guilin University of Technology, Guilin, China
| | - Zilin Chen
- Department of Developmental and Behavioural Pediatric Department & Department of Child Primary Care, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuanfeng Fang
- Department of Children Health Care, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
Guan J, Zhang ZG, Liu Y, Wang M. A novel bi-directional heterogeneous network selection method for disease and microbial association prediction. BMC Bioinformatics 2022; 23:483. [PMID: 36376802 PMCID: PMC9664813 DOI: 10.1186/s12859-022-04961-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Microorganisms in the human body have a great impact on human health. Therefore, mastering the potential relationship between microorganisms and diseases is helpful to understand the pathogenesis of diseases and is of great significance to the prevention, diagnosis, and treatment of diseases. In order to predict the potential microbial disease relationship, we propose a new computational model. Firstly, a bi-directional heterogeneous microbial disease network is constructed by integrating multiple similarities, including Gaussian kernel similarity, microbial function similarity, disease semantic similarity, and disease symptom similarity. Secondly, the neighbor information of the network is learned by random walk; Finally, the selection model is used for information aggregation, and the microbial disease node pair is analyzed. Our method is superior to the existing methods in leave-one-out cross-validation and five-fold cross-validation. Moreover, in case studies of different diseases, our method was proven to be effective.
Collapse
|
8
|
Wang Y, Lei X, Lu C, Pan Y. Predicting Microbe-Disease Association Based on Multiple Similarities and LINE Algorithm. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:2399-2408. [PMID: 34014827 DOI: 10.1109/tcbb.2021.3082183] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Numerous microbes have been found to have vital impacts on human health through affecting biological processes. Therefore, exploring potential associations between microbes and diseases will promote the understanding and diagnosis of diseases. In this study, we present a novel computational model, named MSLINE, to infer potential microbe-disease associations by integrating Multiple Similarities and Large-scale Information Network Embedding (LINE) based on known associations. Specifically, on the basis of known microbe-disease associations from the Human Microbe-Disease Association Database, we first increase the known associations by collecting proven associations from existing literatures. We then construct a microbe-disease heterogeneous network (MDHN) by integrating known associations and multiple similarities (including Gaussian interaction profile kernel similarity, microbe function similarity, disease semantic similarity and disease-symptom similarity). After that, we implement random walk and LINE algorithm on MDHN to learn its structure information. Finally, we score the microbe-disease associations according to the structure information for every nodes. In the Leave-one-out cross validation and 5-fold cross validation, MSLINE performs better compared to other existing methods. Moreover, case studies of different diseases proved that MSLINE could predict the potential microbe-disease associations efficiently.
Collapse
|
9
|
Wang L, Tan Y, Yang X, Kuang L, Ping P. Review on predicting pairwise relationships between human microbes, drugs and diseases: from biological data to computational models. Brief Bioinform 2022; 23:6553604. [PMID: 35325024 DOI: 10.1093/bib/bbac080] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/11/2022] Open
Abstract
In recent years, with the rapid development of techniques in bioinformatics and life science, a considerable quantity of biomedical data has been accumulated, based on which researchers have developed various computational approaches to discover potential associations between human microbes, drugs and diseases. This paper provides a comprehensive overview of recent advances in prediction of potential correlations between microbes, drugs and diseases from biological data to computational models. Firstly, we introduced the widely used datasets relevant to the identification of potential relationships between microbes, drugs and diseases in detail. And then, we divided a series of a lot of representative computing models into five major categories including network, matrix factorization, matrix completion, regularization and artificial neural network for in-depth discussion and comparison. Finally, we analysed possible challenges and opportunities in this research area, and at the same time we outlined some suggestions for further improvement of predictive performances as well.
Collapse
Affiliation(s)
- Lei Wang
- College of Computer Engineering & Applied Mathematics, Changsha University, Changsha, 410022, Hunan, China.,Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Yaqin Tan
- College of Computer Engineering & Applied Mathematics, Changsha University, Changsha, 410022, Hunan, China.,Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Xiaoyu Yang
- College of Computer Engineering & Applied Mathematics, Changsha University, Changsha, 410022, Hunan, China.,Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Linai Kuang
- Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Pengyao Ping
- College of Computer Engineering & Applied Mathematics, Changsha University, Changsha, 410022, Hunan, China
| |
Collapse
|
10
|
Xu D, Xu H, Zhang Y, Gao R. Novel Collaborative Weighted Non-negative Matrix Factorization Improves Prediction of Disease-Associated Human Microbes. Front Microbiol 2022; 13:834982. [PMID: 35369503 PMCID: PMC8965656 DOI: 10.3389/fmicb.2022.834982] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/19/2022] [Indexed: 12/14/2022] Open
Abstract
Extensive clinical and biomedical studies have shown that microbiome plays a prominent role in human health. Identifying potential microbe–disease associations (MDAs) can help reveal the pathological mechanism of human diseases and be useful for the prevention, diagnosis, and treatment of human diseases. Therefore, it is necessary to develop effective computational models and reduce the cost and time of biological experiments. Here, we developed a novel machine learning-based joint framework called CWNMF-GLapRLS for human MDA prediction using the proposed collaborative weighted non-negative matrix factorization (CWNMF) technique and graph Laplacian regularized least squares. Especially, to fuse more similarity information, we calculated the functional similarity of microbes. To deal with missing values and effectively overcome the data sparsity problem, we proposed a collaborative weighted NMF technique to reconstruct the original association matrix. In addition, we developed a graph Laplacian regularized least-squares method for prediction. The experimental results of fivefold and leave-one-out cross-validation demonstrated that our method achieved the best performance by comparing it with 5 state-of-the-art methods on the benchmark dataset. Case studies further showed that the proposed method is an effective tool to predict potential MDAs and can provide more help for biomedical researchers.
Collapse
Affiliation(s)
- Da Xu
- School of Mathematics and Statistics, Shandong University, Weihai, China
| | - Hanxiao Xu
- School of Mathematics and Statistics, Shandong University, Weihai, China
| | - Yusen Zhang
- School of Mathematics and Statistics, Shandong University, Weihai, China
- *Correspondence: Yusen Zhang,
| | - Rui Gao
- School of Control Science and Engineering, Shandong University, Jinan, China
- Rui Gao,
| |
Collapse
|
11
|
Grenni P. Antimicrobial Resistance in Rivers: A Review of the Genes Detected and New Challenges. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:687-714. [PMID: 35191071 DOI: 10.1002/etc.5289] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 11/11/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
River ecosystems are very important parts of the water cycle and an excellent habitat, food, and drinking water source for many organisms, including humans. Antibiotics are emerging contaminants which can enter rivers from various sources. Several antibiotics and their related antibiotic resistance genes (ARGs) have been detected in these ecosystems by various research programs and could constitute a substantial problem. The presence of antibiotics and other resistance cofactors can boost the development of ARGs in the chromosomes or mobile genetic elements of natural bacteria in rivers. The ARGs in environmental bacteria can also be transferred to clinically important pathogens. However, antibiotics and their resistance genes are both not currently monitored by national or international authorities responsible for controlling the quality of water bodies. For example, they are not included in the contaminant list in the European Water Framework Directive or in the US list of Water-Quality Benchmarks for Contaminants. Although ARGs are naturally present in the environment, very few studies have focused on non-impacted rivers to assess the background ARG levels in rivers, which could provide some useful indications for future environmental regulation and legislation. The present study reviews the antibiotics and associated ARGs most commonly measured and detected in rivers, including the primary analysis tools used for their assessment. In addition, other factors that could enhance antibiotic resistance, such as the effects of chemical mixtures, the effects of climate change, and the potential effects of the coronavirus disease 2019 pandemic, are discussed. Environ Toxicol Chem 2022;41:687-714. © 2022 SETAC.
Collapse
Affiliation(s)
- Paola Grenni
- Water Research Institute, National Research Council of Italy, via Salaria km 29.300, Monterotondo, Rome, 00015, Italy
| |
Collapse
|
12
|
Yang X, Kuang L, Chen Z, Wang L. Multi-Similarities Bilinear Matrix Factorization-Based Method for Predicting Human Microbe-Disease Associations. Front Genet 2021; 12:754425. [PMID: 34721543 PMCID: PMC8551558 DOI: 10.3389/fgene.2021.754425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
Accumulating studies have shown that microbes are closely related to human diseases. In this paper, a novel method called MSBMFHMDA was designed to predict potential microbe-disease associations by adopting multi-similarities bilinear matrix factorization. In MSBMFHMDA, a microbe multiple similarities matrix was constructed first based on the Gaussian interaction profile kernel similarity and cosine similarity for microbes. Then, we use the Gaussian interaction profile kernel similarity, cosine similarity, and symptom similarity for diseases to compose the disease multiple similarities matrix. Finally, we integrate these two similarity matrices and the microbe-disease association matrix into our model to predict potential associations. The results indicate that our method can achieve reliable AUCs of 0.9186 and 0.9043 ± 0.0048 in the framework of leave-one-out cross validation (LOOCV) and fivefold cross validation, respectively. What is more, experimental results indicated that there are 10, 10, and 8 out of the top 10 related microbes for asthma, inflammatory bowel disease, and type 2 diabetes mellitus, respectively, which were confirmed by experiments and literatures. Therefore, our model has favorable performance in predicting potential microbe-disease associations.
Collapse
Affiliation(s)
- Xiaoyu Yang
- Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan, China.,College of Computer Engineering and Applied Mathematics, Changsha University, Changsha, China
| | - Linai Kuang
- Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan, China
| | - Zhiping Chen
- College of Computer Engineering and Applied Mathematics, Changsha University, Changsha, China
| | - Lei Wang
- Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan, China.,College of Computer Engineering and Applied Mathematics, Changsha University, Changsha, China
| |
Collapse
|
13
|
Wu C, Xiao X, Yang C, Chen J, Yi J, Qiu Y. Mining microbe-disease interactions from literature via a transfer learning model. BMC Bioinformatics 2021; 22:432. [PMID: 34507528 PMCID: PMC8430297 DOI: 10.1186/s12859-021-04346-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/28/2021] [Indexed: 12/22/2022] Open
Abstract
Background Interactions of microbes and diseases are of great importance for biomedical research. However, large-scale of microbe–disease interactions are hidden in the biomedical literature. The structured databases for microbe–disease interactions are in limited amounts. In this paper, we aim to construct a large-scale database for microbe–disease interactions automatically. We attained this goal via applying text mining methods based on a deep learning model with a moderate curation cost. We also built a user-friendly web interface that allows researchers to navigate and query required information. Results Firstly, we manually constructed a golden-standard corpus and a sliver-standard corpus (SSC) for microbe–disease interactions for curation. Moreover, we proposed a text mining framework for microbe–disease interaction extraction based on a pretrained model BERE. We applied named entity recognition tools to detect microbe and disease mentions from the free biomedical texts. After that, we fine-tuned the pretrained model BERE to recognize relations between targeted entities, which was originally built for drug–target interactions or drug–drug interactions. The introduction of SSC for model fine-tuning greatly improved detection performance for microbe–disease interactions, with an average reduction in error of approximately 10%. The MDIDB website offers data browsing, custom searching for specific diseases or microbes, and batch downloading. Conclusions Evaluation results demonstrate that our method outperform the baseline model (rule-based PKDE4J) with an average \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$F_1$$\end{document}F1-score of 73.81%. For further validation, we randomly sampled nearly 1000 predicted interactions by our model, and manually checked the correctness of each interaction, which gives a 73% accuracy. The MDIDB webiste is freely avaliable throuth http://dbmdi.com/index/
Collapse
Affiliation(s)
- Chengkun Wu
- State Key Laboratory of High-Performance Computing, National University of Defense Technology, Changsha, 410073, China. .,College of Computer, National University of Defense Technology, Changsha, 410073, China.
| | - Xinyi Xiao
- College of Computer, National University of Defense Technology, Changsha, 410073, China
| | - Canqun Yang
- College of Computer, National University of Defense Technology, Changsha, 410073, China
| | - JinXiang Chen
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jiacai Yi
- College of Computer, National University of Defense Technology, Changsha, 410073, China
| | - Yanlong Qiu
- College of Computer, National University of Defense Technology, Changsha, 410073, China
| |
Collapse
|
14
|
Chen Y, Sun H, Sun M, Shi C, Sun H, Shi X, Ji B, Cui J. Finding Colon Cancer- and Colorectal Cancer-Related Microbes Based on Microbe-Disease Association Prediction. Front Microbiol 2021; 12:650056. [PMID: 33796094 PMCID: PMC8007907 DOI: 10.3389/fmicb.2021.650056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/09/2021] [Indexed: 12/02/2022] Open
Abstract
Microbes are closely associated with the formation and development of diseases. The identification of the potential associations between microbes and diseases can boost the understanding of various complex diseases. Wet experiments applied to microbe-disease association (MDA) identification are costly and time-consuming. In this manuscript, we developed a novel computational model, NLLMDA, to find unobserved MDAs, especially for colon cancer and colorectal carcinoma. NLLMDA integrated negative MDA selection, linear neighborhood similarity, label propagation, information integration, and known biological data. The Gaussian association profile (GAP) similarity of microbes and GAPs similarity and symptom similarity of diseases were firstly computed. Secondly, linear neighborhood method was then applied to the above computed similarity matrices to obtain more stable performance. Thirdly, negative MDA samples were selected, and the label propagation algorithm was used to score for microbe-disease pairs. The final association probabilities can be computed based on the information integration method. NLLMDA was compared with the other five classical MDA methods and obtained the highest area under the curve (AUC) value of 0.9031 and 0.9335 on cross-validations of diseases and microbe-disease pairs. The results suggest that NLLMDA was an effective prediction method. More importantly, we found that Acidobacteriaceae may have a close link with colon cancer and Tannerella may densely associate with colorectal carcinoma.
Collapse
Affiliation(s)
- Yu Chen
- The Cancer Hospital of Jia Mu Si, Jiamusi, China
| | - Hongjian Sun
- Oncological Surgery, The Central Hospital of Jia Mu Si, Jiamusi, China
| | - Mengzhe Sun
- Oncological Surgery, The Central Hospital of Jia Mu Si, Jiamusi, China
| | - Changguo Shi
- Department of Thoracic Surgery, The Cancer Hospital of Jia Mu Si, Jiamusi, China
| | - Hongmei Sun
- Medical Oncology, The Cancer Hospital of Jia Mu Si, Jiamusi, China
| | - Xiaoli Shi
- Geneis Beijing Co., Ltd., Beijing, China
- Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, China
| | - Binbin Ji
- Geneis Beijing Co., Ltd., Beijing, China
- Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, China
| | - Jinpeng Cui
- Department of Laboratory Medicine, Yantaishan Hospital of Yantai City, Yantai, China
| |
Collapse
|
15
|
Xu D, Xu H, Zhang Y, Wang M, Chen W, Gao R. MDAKRLS: Predicting human microbe-disease association based on Kronecker regularized least squares and similarities. J Transl Med 2021; 19:66. [PMID: 33579301 PMCID: PMC7881563 DOI: 10.1186/s12967-021-02732-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/01/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Microbes are closely related to human health and diseases. Identification of disease-related microbes is of great significance for revealing the pathological mechanism of human diseases and understanding the interaction mechanisms between microbes and humans, which is also useful for the prevention, diagnosis and treatment of human diseases. Considering the known disease-related microbes are still insufficient, it is necessary to develop effective computational methods and reduce the time and cost of biological experiments. METHODS In this work, we developed a novel computational method called MDAKRLS to discover potential microbe-disease associations (MDAs) based on the Kronecker regularized least squares. Specifically, we introduced the Hamming interaction profile similarity to measure the similarities of microbes and diseases besides Gaussian interaction profile kernel similarity. In addition, we introduced the Kronecker product to construct two kinds of Kronecker similarities between microbe-disease pairs. Then, we designed the Kronecker regularized least squares with different Kronecker similarities to obtain prediction scores, respectively, and calculated the final prediction scores by integrating the contributions of different similarities. RESULTS The AUCs value of global leave-one-out cross-validation and 5-fold cross-validation achieved by MDAKRLS were 0.9327 and 0.9023 ± 0.0015, which were significantly higher than five state-of-the-art methods used for comparison. Comparison results demonstrate that MDAKRLS has faster computing speed under two kinds of frameworks. In addition, case studies of inflammatory bowel disease (IBD) and asthma further showed 19 (IBD), 19 (asthma) of the top 20 prediction disease-related microbes could be verified by previously published biological or medical literature. CONCLUSIONS All the evaluation results adequately demonstrated that MDAKRLS has an effective and reliable prediction performance. It may be a useful tool to seek disease-related new microbes and help biomedical researchers to carry out follow-up studies.
Collapse
Affiliation(s)
- Da Xu
- School of Mathematics and Statistics, Shandong University, Weihai, 264209, China
| | - Hanxiao Xu
- School of Mathematics and Statistics, Shandong University, Weihai, 264209, China
| | - Yusen Zhang
- School of Mathematics and Statistics, Shandong University, Weihai, 264209, China.
| | - Mingyi Wang
- Department of Central Lab, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China.
| | - Wei Chen
- School of Mathematics and Statistics, Shandong University, Weihai, 264209, China
| | - Rui Gao
- School of Control Science and Engineering, Shandong University, Jinan, 250061, China
| |
Collapse
|
16
|
Ma Y, Jiang H. NinimHMDA: Neural integration of neighborhood information on a multiplex heterogeneous network for multiple types of human Microbe-Disease association. Bioinformatics 2021; 36:5665-5671. [PMID: 33416850 DOI: 10.1093/bioinformatics/btaa1080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 11/05/2020] [Accepted: 12/21/2020] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Many computational methods have been recently proposed to identify differentially abundant microbes related to a single disease; however, few studies have focused on large-scale microbe-disease association prediction using existing experimentally verified associations. This area has critical meanings. For example, it can help to rank and select potential candidate microbes for different diseases at-scale for downstream lab validation experiments and it utilizes existing evidence instead of the microbiome abundance data which usually costs money and time to generate. RESULTS We construct a multiplex heterogeneous network (MHEN) using human microbe-disease association database, Disbiome, and other prior biological databases, and define the large-scale human microbe-disease association prediction as link prediction problems on MHEN. We develop an end-to-end graph convolutional neural network-based mining model NinimHMDA which can not only integrate different prior biological knowledge but also predict different types of microbe-disease associations (e.g. a microbe may be reduced or elevated under the impact of a disease) using one-time model training. To the best of our knowledge, this is the first method that targets on predicting different association types between microbes and diseases. Results from large-scale cross validation and case studies show that our model is highly competitive compared to other commonly used approaches. AVAILABILITY The codes are available at Github https://github.com/yuanjing-ma/NinimHMDA. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yuanjing Ma
- Department of Statistics, Northwestern University, Evanston, IL, 60208, USA
| | - Hongmei Jiang
- Department of Statistics, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
17
|
Abstract
Diagnostic processes typically rely on traditional and laborious methods, that are prone to human error, resulting in frequent misdiagnosis of diseases. Computational approaches are being increasingly used for more precise diagnosis of the clinical pathology, diagnosis of genetic and microbial diseases, and analysis of clinical chemistry data. These approaches are progressively used for improving the reliability of testing, resulting in reduced diagnostic errors. Artificial intelligence (AI)-based computational approaches mostly rely on training sets obtained from patient data stored in clinical databases. However, the use of AI is associated with several ethical issues, including patient privacy and data ownership. The capacity of AI-based mathematical models to interpret complex clinical data frequently leads to data bias and reporting of erroneous results based on patient data. In order to improve the reliability of computational approaches in clinical diagnostics, strategies to reduce data bias and analyzing real-life patient data need to be further refined.
Collapse
Affiliation(s)
- Mohammed A Alaidarous
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Kingdom of Saudi Arabia. E-mail.
| |
Collapse
|
18
|
Peng L, Shen L, Liao L, Liu G, Zhou L. RNMFMDA: A Microbe-Disease Association Identification Method Based on Reliable Negative Sample Selection and Logistic Matrix Factorization With Neighborhood Regularization. Front Microbiol 2020; 11:592430. [PMID: 33193260 PMCID: PMC7652725 DOI: 10.3389/fmicb.2020.592430] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/17/2020] [Indexed: 12/22/2022] Open
Abstract
Microbes with abnormal levels have important impacts on the formation and development of various complex diseases. Identifying possible Microbe-Disease Associations (MDAs) helps to understand the mechanisms of complex diseases. However, experimental methods for MDA identification are costly and time-consuming. In this study, a new computational model, RNMFMDA, was developed to find possible MDAs. RNMFMDA contains two main processes. First, Reliable Negative MDA samples were selected based on Positive-Unlabeled (PU) learning and random walk with restart on the heterogeneous microbe-disease network. Second, Logistic Matrix Factorization with Neighborhood Regularization (LMFNR) was developed to compute the association probabilities for all microbe-disease pairs. To evaluate the performance of the proposed RNMFMDA method, we compared RNMFMDA with five state-of-the-art MDA prediction methods based on five-fold cross-validations on microbes, diseases, and MDAs. As a result, RNMFMDA obtained the best AUCs of 0.6332, 0.8669, and 0.9081, respectively for the three five-fold cross validations, significantly outperforming other models. The promising prediction performance may be attributed to the following three features: highly quality negative MDA sample selection, LMFNR-based MDA prediction model, and various biological information integration. In addition, a few predicted microbe-disease pairs with high association scores are worthy of further experimental validation.
Collapse
Affiliation(s)
- Lihong Peng
- School of Computer Science, Hunan University of Technology, Zhuzhou, China
| | - Ling Shen
- School of Computer Science, Hunan University of Technology, Zhuzhou, China
| | - Longjie Liao
- School of Computer Science, Hunan University of Technology, Zhuzhou, China
| | - Guangyi Liu
- School of Computer Science, Hunan University of Technology, Zhuzhou, China
| | - Liqian Zhou
- School of Computer Science, Hunan University of Technology, Zhuzhou, China
| |
Collapse
|
19
|
Zhao Y, Wang CC, Chen X. Microbes and complex diseases: from experimental results to computational models. Brief Bioinform 2020; 22:5882184. [PMID: 32766753 DOI: 10.1093/bib/bbaa158] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Studies have shown that the number of microbes in humans is almost 10 times that of cells. These microbes have been proven to play an important role in a variety of physiological processes, such as enhancing immunity, improving the digestion of gastrointestinal tract and strengthening metabolic function. In addition, in recent years, more and more research results have indicated that there are close relationships between the emergence of the human noncommunicable diseases and microbes, which provides a novel insight for us to further understand the pathogenesis of the diseases. An in-depth study about the relationships between diseases and microbes will not only contribute to exploring new strategies for the diagnosis and treatment of diseases but also significantly heighten the efficiency of new drugs development. However, applying the methods of biological experimentation to reveal the microbe-disease associations is costly and inefficient. In recent years, more and more researchers have constructed multiple computational models to predict microbes that are potentially associated with diseases. Here, we start with a brief introduction of microbes and databases as well as web servers related to them. Then, we mainly introduce four kinds of computational models, including score function-based models, network algorithm-based models, machine learning-based models and experimental analysis-based models. Finally, we summarize the advantages as well as disadvantages of them and set the direction for the future work of revealing microbe-disease associations based on computational models. We firmly believe that computational models are expected to be important tools in large-scale predictions of disease-related microbes.
Collapse
Affiliation(s)
- Yan Zhao
- School of Information and Control Engineering, China University of Mining
| | - Chun-Chun Wang
- School of Information and Control Engineering, China University of Mining
| | - Xing Chen
- School of Information and Control Engineering, China University of Mining
| |
Collapse
|
20
|
Wen Z, Yan C, Duan G, Li S, Wu FX, Wang J. A survey on predicting microbe-disease associations: biological data and computational methods. Brief Bioinform 2020; 22:5881365. [PMID: 34020541 DOI: 10.1093/bib/bbaa157] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023] Open
Abstract
Various microbes have proved to be closely related to the pathogenesis of human diseases. While many computational methods for predicting human microbe-disease associations (MDAs) have been developed, few systematic reviews on these methods have been reported. In this study, we provide a comprehensive overview of the existing methods. Firstly, we introduce the data used in existing MDA prediction methods. Secondly, we classify those methods into different categories by their nature and describe their algorithms and strategies in detail. Next, experimental evaluations are conducted on representative methods using different similarity data and calculation methods to compare their prediction performances. Based on the principles of computational methods and experimental results, we discuss the advantages and disadvantages of those methods and propose suggestions for the improvement of prediction performances. Considering the problems of the MDA prediction at present stage, we discuss future work from three perspectives including data, methods and formulations at the end.
Collapse
Affiliation(s)
- Zhongqi Wen
- Hunan Provincial Key Lab of Bioinformatics, School of Computer Science and Engineering at Central South University, Hunan, China
| | - Cheng Yan
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
| | - Guihua Duan
- School of Computer Science and Engineering, Central South University
| | - Suning Li
- Hunan Provincial Key Lab of Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
| | - Fang-Xiang Wu
- College of Engineering and the Department of Computer Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Jianxin Wang
- Hunan Provincial Key Lab of Bioinformatics, School of Computer Science and Engineering at Central South University, Hunan, China
| |
Collapse
|
21
|
Lei X, Wang Y. Predicting Microbe-Disease Association by Learning Graph Representations and Rule-Based Inference on the Heterogeneous Network. Front Microbiol 2020; 11:579. [PMID: 32351464 PMCID: PMC7174569 DOI: 10.3389/fmicb.2020.00579] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/17/2020] [Indexed: 12/18/2022] Open
Abstract
More and more clinical observations have implied that microbes have great effects on human diseases. Understanding the relations between microbes and diseases are of profound significance for disease prevention and therapy. In this paper, we propose a predictive model based on the known microbe-disease associations to discover potential microbe-disease associations through integrating Learning Graph Representations and a modified Scoring mechanism on the Heterogeneous network (called LGRSH). Firstly, the similarity networks for microbe and disease are obtained based on the similarity of Gaussian interaction profile kernel. Then, we construct a heterogeneous network including these two similarity networks and microbe-disease associations' network. After that, the embedding algorithm Node2vec is implemented to learn representations of nodes in the heterogeneous network. Finally, according to these low-dimensional vector representations, we calculate the relevance between each microbe and disease by utilizing a modified rule-based inference method. By comparison with three other methods including LRLSHMDA, KATZHMDA and BiRWHMDA, LGRSH performs better than others. Moreover, in case studies of asthma, Chronic Obstructive Pulmonary Disease and Inflammatory Bowel Disease, there are 8, 8, and 10 out of the top-10 discovered disease-related microbes were validated respectively, demonstrating that LGRSH performs well in predicting potential microbe-disease associations.
Collapse
Affiliation(s)
- Xiujuan Lei
- School of Computer Science, Shaanxi Normal University, Xi'an, China
| | - Yueyue Wang
- School of Computer Science, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
22
|
Srivastava D, Baksi KD, Kuntal BK, Mande SS. "EviMass": A Literature Evidence-Based Miner for Human Microbial Associations. Front Genet 2019; 10:849. [PMID: 31616466 PMCID: PMC6763948 DOI: 10.3389/fgene.2019.00849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/14/2019] [Indexed: 12/12/2022] Open
Abstract
The importance of understanding microbe–microbe as well as microbe–disease associations is one of the key thrust areas in human microbiome research. High-throughput metagenomic and transcriptomic projects have fueled discovery of a number of new microbial associations. Consequently, a plethora of information is being added routinely to biomedical literature, thereby contributing toward enhancing our knowledge on microbial associations. In this communication, we present a tool called “EviMass” (Evidence based mining of human Microbial Associations), which can assist biologists to validate their predicted hypotheses from new microbiome studies. Users can interactively query the processed back-end database for microbe–microbe and disease–microbe associations. The EviMass tool can also be used to upload microbial association networks generated from a human “disease–control” microbiome study and validate the associations from biomedical literature. Additionally, a list of differentially abundant microbes for the corresponding disease can be queried in the tool for reported evidences. The results are presented as graphical plots, tabulated summary, and other evidence statistics. EviMass is a comprehensive platform and is expected to enable microbiome researchers not only in mining microbial associations, but also enriching a new research hypothesis. The tool is available free for academic use at https://web.rniapps.net/evimass.
Collapse
Affiliation(s)
- Divyanshu Srivastava
- Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services Ltd., Pune, India
| | - Krishanu D Baksi
- Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services Ltd., Pune, India.,School of Information Technology, Indian Institute of Technology Delhi, Delhi, India
| | - Bhusan K Kuntal
- Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services Ltd., Pune, India.,Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sharmila S Mande
- Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services Ltd., Pune, India
| |
Collapse
|
23
|
Niu YW, Qu CQ, Wang GH, Yan GY. RWHMDA: Random Walk on Hypergraph for Microbe-Disease Association Prediction. Front Microbiol 2019; 10:1578. [PMID: 31354672 PMCID: PMC6635699 DOI: 10.3389/fmicb.2019.01578] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022] Open
Abstract
Based on advancements in deep sequencing technology and microbiology, increasing evidence indicates that microbes inhabiting humans modulate various host physiological phenomena, thus participating in various disease pathogeneses. Owing to increasing availability of biological data, further studies on the establishment of efficient computational models for predicting potential associations are required. In particular, computational approaches can also reduce the discovery cycle of novel microbe-disease associations and further facilitate disease treatment, drug design, and other scientific activities. This study aimed to develop a model based on the random walk on hypergraph for microbe-disease association prediction (RWHMDA). As a class of higher-order data representation, hypergraph could effectively recover information loss occurring in the normal graph methodology, thus exclusively illustrating multiple pair-wise associations. Integrating known microbe-disease associations in the Human Microbe-Disease Association Database (HMDAD) and the Gaussian interaction profile kernel similarity for microbes, random walk was then implemented for the constructed hypergraph. Consequently, RWHMDA performed optimally in predicting the underlying disease-associated microbes. More specifically, our model displayed AUC values of 0.8898 and 0.8524 in global and local leave-one-out cross-validation (LOOCV), respectively. Furthermore, three human diseases (asthma, Crohn's disease, and type 2 diabetes) were studied to further illustrate prediction performance. Moreover, 8, 10, and 8 of the 10 highest ranked microbes were confirmed through recent experimental or clinical studies. In conclusion, RWHMDA is expected to display promising potential to predict disease-microbe associations for follow-up experimental studies and facilitate the prevention, diagnosis, treatment, and prognosis of complex human diseases.
Collapse
Affiliation(s)
- Ya-Wei Niu
- School of Mathematics, Shandong University, Jinan, China
| | - Cun-Quan Qu
- School of Mathematics, Shandong University, Jinan, China.,Data Science Institute, Shandong University, Jinan, China
| | - Guang-Hui Wang
- School of Mathematics, Shandong University, Jinan, China.,Data Science Institute, Shandong University, Jinan, China
| | - Gui-Ying Yan
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|