1
|
Kanjanapokin C, Thiravetyan P, Chonjoho N, Dolphen R, Treesubsuntorn C. Light-emitting plants development by inoculating of Vibrio campbellii RMT1 on the rhizospheric zone of Aglaonema cochinchinense. Photochem Photobiol Sci 2024; 23:973-985. [PMID: 38622375 DOI: 10.1007/s43630-024-00568-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024]
Abstract
The concept of utilizing light-emitting plants (LEPs) as an alternative to traditional electricity-based lighting has garnered interest. However, challenges persist due to the need for genetic modification or chemical infusion in current LEPs. To address this, researchers have investigated the interaction between plants and luminous bacteria, specifically Vibrio campbellii, which can efficiently be translocated into Aglaonema cochinchinense tissues through the roots to produce LEPs. This study concentrated on examining light intensity and enhancing luminescence by growing plants and spraying them with various media substances. The results indicated that V. campbellii successfully translocated into the plant tissue via the root system and accumulated a high number of bacteria in the stems, approximately 8.46 × 104 CFU/g, resulting in a light-emitting intensity increase of 12.13-fold at 48 h, and then decreased after 30 h. Interestingly, luminescence stimulation by spraying the growth medium managed to induce the highest light emission, reaching 14.84-fold at 48 h, though it had some negative effects on the plant. Conversely, spraying plants with CaCl2 on the leaves prolonged light emission for a longer duration (42 h after spraying) and had a positive effect on plant health, it maintained ion homeostasis and reduced-MDA content. This study highlights the potential of using V. campbellii and CaCl2 spraying for the future development of practical light-emitting plants.
Collapse
Affiliation(s)
- Chutipa Kanjanapokin
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Paitip Thiravetyan
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Nattida Chonjoho
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Rujira Dolphen
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Chairat Treesubsuntorn
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand.
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand.
- Research & Innovation for Sustainability Center (RISC), Magnolia Quality Development Corporation Limited (MQDC), Bangkok, 10330, Thailand.
| |
Collapse
|
2
|
Kim W, Park Y, Kim M, Cha Y, Jung J, Jeon CO, Park W. Sustainable control of Microcystis aeruginosa, a harmful cyanobacterium, using Selaginella tamariscina extracts. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116375. [PMID: 38677071 DOI: 10.1016/j.ecoenv.2024.116375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/02/2024] [Accepted: 04/20/2024] [Indexed: 04/29/2024]
Abstract
Eco-friendly reagents derived from plants represent a promising strategy to mitigate the occurrence of toxic cyanobacterial blooms. The use of an amentoflavone-containing Selaginella tamariscina extract (STE) markedly decreased the number of Microcystis aeruginosa cells, thus demonstrating significant anti-cyanobacterial activity. In particular, the Microcystis-killing fraction obtained from pulverized S. tamariscina using hot-water-based extraction at temperatures of 40 °C induced cell disruption in both axenic and xenic M. aeruginosa. Liquid chromatographic analysis was also conducted to measure the concentration of amentoflavone in the STE, thus supporting the potential M. aeruginosa-specific killing effects of STE. Bacterial community analysis revealed that STE treatment led to a reduction in the relative abundance of Microcystis species while also increasing the 16S rRNA gene copy number in both xenic M. aeruginosa NIBR18 and cyanobacterial bloom samples isolated from a freshwater environment. Subsequent testing on bacteria, cyanobacteria, and algae isolated from freshwater revealed that STE was not toxic for other taxa. Furthermore, ecotoxicology assessment involving Aliivibrio fischeri, Daphnia magna, and Danio rerio found that high STE doses immobilized D. magna but did not impact the other organisms, while there was no change in the water quality. Overall, due to its effective Microcystis-killing capability and low ecotoxicity, aqueous STE represents a promising practical alternative for the management of Microcystis blooms.
Collapse
Affiliation(s)
- Wonjae Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, South Korea
| | - Yerim Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, South Korea
| | - Minkyung Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, South Korea
| | - Yeji Cha
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, South Korea
| | - Jaejoon Jung
- Department of Life Science, Chung-Ang University, Seoul 02841, South Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul 02841, South Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, South Korea.
| |
Collapse
|
3
|
Mat A, Vu HH, Wolf E, Tessmar-Raible K. All Light, Everywhere? Photoreceptors at Nonconventional Sites. Physiology (Bethesda) 2024; 39:0. [PMID: 37905983 PMCID: PMC11283901 DOI: 10.1152/physiol.00017.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/29/2023] [Accepted: 10/29/2023] [Indexed: 11/02/2023] Open
Abstract
One of the biggest environmental alterations we have made to our species is the change in the exposure to light. During the day, we typically sit behind glass windows illuminated by artificial light that is >400 times dimmer and has a very different spectrum than natural daylight. On the opposite end are the nights that are now lit up by several orders of magnitude. This review aims to provide food for thought as to why this matters for humans and other animals. Evidence from behavioral neuroscience, physiology, chronobiology, and molecular biology is increasingly converging on the conclusions that the biological nonvisual functions of light and photosensory molecules are highly complex. The initial work of von Frisch on extraocular photoreceptors in fish, the identification of rhodopsins as the molecular light receptors in animal eyes and eye-like structures and cryptochromes as light sensors in nonmammalian chronobiology, still allowed for the impression that light reception would be a relatively restricted, localized sense in most animals. However, light-sensitive processes and/or sensory proteins have now been localized to many different cell types and tissues. It might be necessary to consider nonlight-responding cells as the exception, rather than the rule.
Collapse
Affiliation(s)
- Audrey Mat
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- VIPS2, Vienna BioCenter, Vienna, Austria
| | - Hong Ha Vu
- Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
| | - Eva Wolf
- Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
- Institute of Molecular Biology, Mainz, Germany
| | - Kristin Tessmar-Raible
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Carl-von-Ossietzky University, Oldenburg, Germany
| |
Collapse
|
4
|
Vadakkan K, Ngangbam AK, Sathishkumar K, Rumjit NP, Cheruvathur MK. A review of chemical signaling pathways in the quorum sensing circuit of Pseudomonas aeruginosa. Int J Biol Macromol 2024; 254:127861. [PMID: 37939761 DOI: 10.1016/j.ijbiomac.2023.127861] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
Pseudomonas aeruginosa, an increasingly common competitive and biofilm organism in healthcare infection with sophisticated, interlinked and hierarchic quorum systems (Las, Rhl, PQS, and IQS), creates the greatest threats to the medical industry and has rendered prevailing chemotherapy medications ineffective. The rise of multidrug resistance has evolved into a concerning and potentially fatal occurrence for human life. P. aeruginosa biofilm development is assisted by exopolysaccharides, extracellular DNA, proteins, macromolecules, cellular signaling and interaction. Quorum sensing is a communication process between cells that involves autonomous inducers and regulators. Quorum-induced infectious agent biofilms and the synthesis of virulence factors have increased disease transmission, medication resistance, infection episodes, hospitalizations and mortality. Hence, quorum sensing may be a potential therapeutical target for bacterial illness, and developing quorum inhibitors as an anti-virulent tool could be a promising treatment strategy for existing antibiotics. Quorum quenching is a prevalent technique for treating infections caused by microbes because it diminishes microbial pathogenesis and increases microbe biofilm sensitivity to antibiotics, making it a potential candidate for drug development. This paper examines P. aeruginosa quorum sensing, the hierarchy of quorum sensing mechanism, quorum sensing inhibition and quorum sensing inhibitory agents as a drug development strategy to supplement traditional antibiotic strategies.
Collapse
Affiliation(s)
- Kayeen Vadakkan
- Department of Biology, St. Mary's College, Thrissur, Kerala 680020, India; Manipur International University, Imphal, Manipur 795140, India.
| | | | - Kuppusamy Sathishkumar
- Rhizosphere Biology Laboratory, Department of Microbiology, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620024, India; Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602 105, Tamil Nadu, India
| | | | | |
Collapse
|
5
|
Bao XC, Tang HZ, Li XG, Li AQ, Qi XQ, Li DH, Liu SS, Wu LF, Zhang WJ. Bioluminescence Contributes to the Adaptation of Deep-Sea Bacterium Photobacterium phosphoreum ANT-2200 to High Hydrostatic Pressure. Microorganisms 2023; 11:1362. [PMID: 37374864 DOI: 10.3390/microorganisms11061362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 06/29/2023] Open
Abstract
Bioluminescence is a common phenomenon in nature, especially in the deep ocean. The physiological role of bacterial bioluminescence involves protection against oxidative and UV stresses. Yet, it remains unclear if bioluminescence contributes to deep-sea bacterial adaptation to high hydrostatic pressure (HHP). In this study, we constructed a non-luminescent mutant of ΔluxA and its complementary strain c-ΔluxA of Photobacterium phosphoreum ANT-2200, a deep-sea piezophilic bioluminescent bacterium. The wild-type strain, mutant and complementary strain were compared from aspects of pressure tolerance, intracellular reactive oxygen species (ROS) level and expression of ROS-scavenging enzymes. The results showed that, despite similar growth profiles, HHP induced the accumulation of intracellular ROS and up-regulated the expression of ROS-scavenging enzymes such as dyp, katE and katG, specifically in the non-luminescent mutant. Collectively, our results suggested that bioluminescence functions as the primary antioxidant system in strain ANT-2200, in addition to the well-known ROS-scavenging enzymes. Bioluminescence contributes to bacterial adaptation to the deep-sea environment by coping with oxidative stress generated from HHP. These results further expanded our understanding of the physiological significance of bioluminescence as well as a novel strategy for microbial adaptation to a deep-sea environment.
Collapse
Affiliation(s)
- Xu-Chong Bao
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- University of Chinese Academy of Sciences, Beijing 101408, China
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Hong-Zhi Tang
- University of Chinese Academy of Sciences, Beijing 101408, China
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Xue-Gong Li
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
- Hainan Deep-Sea Technology Laboratory, IDSSE-BGI, Institution of Deep-Sea Life Sciences, Sanya 572000, China
| | - An-Qi Li
- University of Chinese Academy of Sciences, Beijing 101408, China
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Xiao-Qing Qi
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
- Hainan Deep-Sea Technology Laboratory, IDSSE-BGI, Institution of Deep-Sea Life Sciences, Sanya 572000, China
| | - Deng-Hui Li
- Hainan Deep-Sea Technology Laboratory, IDSSE-BGI, Institution of Deep-Sea Life Sciences, Sanya 572000, China
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | - Shan-Shan Liu
- Hainan Deep-Sea Technology Laboratory, IDSSE-BGI, Institution of Deep-Sea Life Sciences, Sanya 572000, China
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | - Long-Fei Wu
- LCB, IMM, CNRS, Aix-Marseille University, 13402 Marseille, France
| | - Wei-Jia Zhang
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
- Hainan Deep-Sea Technology Laboratory, IDSSE-BGI, Institution of Deep-Sea Life Sciences, Sanya 572000, China
| |
Collapse
|
6
|
Fomin V, Bazhenov S, Kononchuk O, Matveeva V, Zarubina A, Spiridonov S, Manukhov I. Photorhabdus lux-operon heat shock-like regulation. Heliyon 2023; 9:e14527. [PMID: 36950606 PMCID: PMC10025913 DOI: 10.1016/j.heliyon.2023.e14527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/20/2023] [Accepted: 03/09/2023] [Indexed: 03/13/2023] Open
Abstract
For decades, transcription of Photorhabdus luminescens lux-operon was considered being constitutive. Therefore, this lux-operon has been used for measurements in non-specific bacterial luminescent biosensors. Here, the expression of Photorhabdus lux-operon under high temperature was studied. The expression was researched in the natural strain Photorhabdus temperata and in the heterologous system of Escherichia coli. P. temperata FV2201 bacterium was isolated from soil in the Moscow region (growth optimum 28 °C). We showed that its luminescence significantly increases when the temperature rises to 34 °C. The increase in luminescence is associated with an increase in the transcription of luxCDABE genes, which was confirmed by RT-PCR. The promoter of the lux-operon of the related bacterium P. luminescens ZM1 from the forests of Moldova, being cloned in the heterologous system of E. coli, is activated when the temperature rises from room temperature to 42 °C. When heat shock is caused by ethanol addition, transcription of lux-operon increases only in the natural strain of P. temperata, but not in the heterologous system of E. coli cells. In addition, the activation of the lux-operon of P. luminescens persists in E. coli strains deficient in both the rpoH and rpoE genes. These results indicate the presence of sigma 32 and sigma 24 independent heat-shock-like mechanism of regulation of the lux-operon of P. luminescens in the heterologous E. coli system.
Collapse
Affiliation(s)
- V.V. Fomin
- Laboratory of Molecular Genetics, Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny, Moscow Region, 141700, Russian Federation
- Laboratory of Microbiology, BIOTECH University, Volokolamskoe Highway 11, Moscow 125080, Russian Federation
| | - S.V. Bazhenov
- Laboratory of Molecular Genetics, Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny, Moscow Region, 141700, Russian Federation
| | - O.V. Kononchuk
- Laboratory of Molecular Genetics, Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny, Moscow Region, 141700, Russian Federation
- Laboratory of Microbiology, BIOTECH University, Volokolamskoe Highway 11, Moscow 125080, Russian Federation
| | - V.O. Matveeva
- Laboratory of Molecular Genetics, Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny, Moscow Region, 141700, Russian Federation
| | - A.P. Zarubina
- Biological Faculty, Lomonosov Moscow State University, Vorob’evy Gory, Moscow, 119992, Russian Federation
| | - S.E. Spiridonov
- Centre of Parasitology, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskii Prospect, 33, Moscow, 119071, Russian Federation
| | - I.V. Manukhov
- Laboratory of Molecular Genetics, Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny, Moscow Region, 141700, Russian Federation
- Corresponding author.
| |
Collapse
|
7
|
Zhang X, Chen F, Yang L, Qin F, Zhuang J. Quantifying bacterial concentration in water and sand media during flow-through experiments using a non-invasive, real-time, and efficient method. Front Microbiol 2022; 13:1016489. [PMID: 36620047 PMCID: PMC9816126 DOI: 10.3389/fmicb.2022.1016489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Monitoring the dynamics of bacteria in porous media is of great significance to understand the bacterial transport and the interplay between bacteria and environmental factors. In this study, we reported a non-invasive, real-time, and efficient method to quantify bioluminescent bacterial concentration in water and sand media during flow-through experiments. First, 27 column experiments were conducted, and the bacterial transport was monitored using a real-time bioluminescent imaging system. Next, we quantified the bacterial concentration in water and sand media using two methods-viable count and bioluminescent count. The principle of the bioluminescent count in sand media was, for a given bioluminescence image, the total number of bacteria was proportionally allocated to each segment according to its bioluminescence intensity. We then compared the bacterial concentration for the two methods and found a good linear correlation between the bioluminescent count and viable count. Finally, the effects of porous media surface coating, pore water velocity, and ionic strength on the bioluminescent count in sand media were investigated, and the results showed that the bioluminescence counting accuracy was most affected by surface coating, followed by ionic strength, and was hardly affected by pore water velocity. Overall, the study proved that the bioluminescent count was a reliable method to quantify bacterial concentration in water (106 to 2 × 108 cell mL-1) or sand media (5 × 106-5 × 108 cell cm-3). This approach also offers a new way of thinking for in situ bacterial enumeration in two-dimensional devices such as 2D flow cells, microfluidic devices, and rhizoboxes.
Collapse
Affiliation(s)
- Xiaoming Zhang
- College of Desert Control Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Fengxian Chen
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China
| | - Liqiong Yang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China
| | - Fucang Qin
- College of Forestry, Inner Mongolia Agricultural University, Hohhot, China,*Correspondence: Fucang Qin ✉
| | - Jie Zhuang
- Department of Biosystems Engineering and Soil Science, Center for Environmental Biotechnology, The University of Tennessee, Knoxville, TN, United States,Jie Zhuang ✉
| |
Collapse
|
8
|
Pira H, Risdian C, Müsken M, Schupp PJ, Wink J. Photobacterium arenosum WH24, Isolated from the Gill of Pacific Oyster Crassostrea gigas from the North Sea of Germany: Co-cultivation and Prediction of Virulence. Curr Microbiol 2022; 79:219. [PMID: 35704100 PMCID: PMC9200695 DOI: 10.1007/s00284-022-02909-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 05/20/2022] [Indexed: 11/28/2022]
Abstract
Cream colored bacteria from marine agar, strain WH24, WH77, and WH80 were isolated from the gill of the Crassostrea gigas a Pacific oyster with a filter-feeding habit that compels accompanying bacteria to demonstrate a high metabolic capacity, has proven able to colonize locations with changing circumstances. Based on the 16S rRNA gene sequence, all strains had high similarity to Photobacterium arenosum CAU 1568T (99.72%). This study involved phenotypic traits, phylogenetic analysis, antimicrobial activity evaluation, genome mining, Co-cultivation experiments, and chemical studies of crude extracts using HPLC and LC-HRESIMS. Photobacterium arenosum WH24 and Zooshikella harenae WH53Twere co-cultivated for 3 days in a rotary shaker at 160 rpm at 30 °C, and LC-MS monitored the chemical profiles of the co-cultures on the third day. The UV chromatograms of the extracts of the co-cultivation experiments show that Zooshikella harenae WH53T could be inhibited by strain WH24. The high virulence of Photobacterium arenosum WH24 was confirmed by genome analysis. Gene groups with high virulence potential were detected: tssA (ImpA), tssB (ImpB/vipA), tssC (ImpC/vipB), tssE, tssF (ImpG/vasA), tssG (ImpH/vasB), tssM (IcmF/vasK), tssJ (vasD), tssK (ImpJ/vasE), tssL (ImpK/vasF), clpV (tssH), vasH, hcp, lapP, plpD, and tpsB family.
Collapse
Affiliation(s)
- Hani Pira
- Microbial Strain Collection (MISG), Helmholtz Centre for Infection Research (HZI), 38124, Brunswick, Germany
| | - Chandra Risdian
- Microbial Strain Collection (MISG), Helmholtz Centre for Infection Research (HZI), 38124, Brunswick, Germany
- Research Unit for Clean Technology, National Research and Innovation Agency (BRIN), Bandung, 40135, Indonesia
| | - Mathias Müsken
- Central Facility for Microscopy, Helmholtz Centre for Infection Research (HZI), 38124, Brunswick, Germany
| | - Peter J Schupp
- Institute for Chemistry and Biology of the Marine Environment, University Oldenburg, Oldenburg, Germany
| | - Joachim Wink
- Microbial Strain Collection (MISG), Helmholtz Centre for Infection Research (HZI), 38124, Brunswick, Germany.
| |
Collapse
|
9
|
Yang J, Hu S, Liao A, Weng Y, Liang S, Lin Y. Preparation of freeze-dried bioluminescent bacteria and their application in the detection of acute toxicity of bisphenol A and heavy metals. Food Sci Nutr 2022; 10:1841-1853. [PMID: 35702313 PMCID: PMC9179163 DOI: 10.1002/fsn3.2800] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 12/22/2022] Open
Abstract
Current chemical analysis approaches for contaminants have failed to reveal their biotoxicity. Moreover, conventional bioassays are time consuming and exhibit poor repeatability. In this study, we performed the acute toxicity detection of various contaminants (chromium (Cr), cadmium (Cd), lead (Pb), arsenic (As), mercury (Hg), tin (Sn), nickel (Ni), and bisphenol A (BPA)) with four bioluminescent bacteria (Vibrio qinghaiensis Q67, V. fischeri, Photobacterium phosphoreum T3, and P. phosphoreum 502) using a rapid, flexible, and low-cost bioassay. We found that the temperature affected the bacterial luminescence, and freeze-dried cells exhibited sensitive toxic responses to contaminants. Indeed, the optimized protectants containing 12% (w/v) trehalose, 4% sucrose, and 2% sorbitol displayed better luminescence and toxic sensitivity. Furthermore, freeze-dried powders of these strains were prepared and subjected to acute toxicity detection. The results showed that all contaminants exhibited acute toxicity toward Q67, but the other strains did not show obvious response to nickel and tin. The relative half-maximal effective concentration (EC50) values of BPA, Cr, Cd, Pb, As, Hg, Ni, and Sn to Q67 were 0.674, 1.313, 11.137, 5.921, 4.674, 0.911, 5.941, and 54.077 mg/L, respectively. In addition, the EC50 values of contaminants toward different strains were suggested to be statistically significant. Freeze-dried Q67 exhibited toxic responses to more contaminants than the other bioluminescent strains; therefore, Q67 was selected to be more suitable than the other strains for single and mixture toxicity detection tests. Compared with other strains, Q67 was more appropriate for the rapid screening of the mixture toxicity of contaminants in samples as a nonspecific screening sensor before the use of standard analysis approaches.
Collapse
Affiliation(s)
- Jun Yang
- School of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme EngineeringSouth China University of TechnologyGuangzhouChina
| | - Shulin Hu
- School of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme EngineeringSouth China University of TechnologyGuangzhouChina
| | - Anqi Liao
- School of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme EngineeringSouth China University of TechnologyGuangzhouChina
| | - Yetian Weng
- School of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina
| | - Shuli Liang
- School of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme EngineeringSouth China University of TechnologyGuangzhouChina
| | - Ying Lin
- School of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme EngineeringSouth China University of TechnologyGuangzhouChina
| |
Collapse
|
10
|
Cario A, Larzillière M, Nguyen O, Alain K, Marre S. High-Pressure Microfluidics for Ultra-Fast Microbial Phenotyping. Front Microbiol 2022; 13:866681. [PMID: 35677901 PMCID: PMC9168469 DOI: 10.3389/fmicb.2022.866681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/27/2022] [Indexed: 01/09/2023] Open
Abstract
Here, we present a novel methodology based on high-pressure microfluidics to rapidly perform temperature-based phenotyping of microbial strains from deep-sea environments. The main advantage concerns the multiple on-chip temperature conditions that can be achieved in a single experiment at pressures representative of the deep-sea, overcoming the conventional limitations of large-scale batch metal reactors to conduct fast screening investigations. We monitored the growth of the model strain Thermococcus barophilus over 40 temperature and pressure conditions, without any decompression, in only 1 week, whereas it takes weeks or months with conventional approaches. The results are later compared with data from the literature. An additional example is also shown for a hydrogenotrophic methanogen strain (Methanothermococcus thermolithotrophicus), demonstrating the robustness of the methodology. These microfluidic tools can be used in laboratories to accelerate characterizations of new isolated species, changing the widely accepted paradigm that high-pressure microbiology experiments are time-consuming.
Collapse
Affiliation(s)
- Anaïs Cario
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, Pessac, France
- *Correspondence: Anaïs Cario,
| | - Marina Larzillière
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, Pessac, France
- CNRS, Univ. Brest, Ifremer, IRP 1211 MicrobSea, Unité de Biologie et Ecologie des Ecosystèmes Marins Profonds BEEP, IUEM, Plouzané, France
| | - Olivier Nguyen
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, Pessac, France
| | - Karine Alain
- CNRS, Univ. Brest, Ifremer, IRP 1211 MicrobSea, Unité de Biologie et Ecologie des Ecosystèmes Marins Profonds BEEP, IUEM, Plouzané, France
| | - Samuel Marre
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, Pessac, France
- Samuel Marre,
| |
Collapse
|
11
|
Similarities and Differences in Quorum Sensing-Controlled Bioluminescence between Photobacterium phosphoreum T3 and Vibrio qinghaiensis sp.-Q67. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12042066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Quorum sensing is a density-dependent mechanism using chemical signal molecules termed autoinducers to regulate diverse biological processes in bacteria, including bioluminescence. However, the correlation between growth and light emission of two typical luminescent bacteria, Photobacterium phosphoreum T3 and Vibrio qinghaiensis sp.-Q67, is still unclear. This study investigates the variations of bioluminescence and the light-emission-involved gene expression of the above two strains, respectively, showing that bioluminescence is population density-dependent. Furthermore, the effect of crude extracts (175, 350, 700 and 1750 mg/L) from the bacterial culture that contains the potential autoinducers on the bioluminescence is explored. At the exponential and the early stationary growth phase, T3 did not exhibit an obvious light intensity and cell density change after adding crude extracts at 175 and 350 mg/L, while the light intensity decreased at 700 and 1750 mg/L, showing a luminescence inhibition. For Q67, the light intensity increased dramatically with crude extract concentration. These results suggest that the bioluminescence process of both T3 and Q67 is controlled by quorum sensing. Furthermore, the different response modes of these two strains to autoinducers imply that the two strains could be applied to different compounds for toxicity assesses.
Collapse
|
12
|
Collins FWJ, Walsh CJ, Gomez-Sala B, Guijarro-García E, Stokes D, Jakobsdóttir KB, Kristjánsson K, Burns F, Cotter PD, Rea MC, Hill C, Ross RP. The microbiome of deep-sea fish reveals new microbial species and a sparsity of antibiotic resistance genes. Gut Microbes 2021; 13:1-13. [PMID: 33970781 PMCID: PMC8115496 DOI: 10.1080/19490976.2021.1921924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Adaptation to life in the deep-sea can be dramatic, with fish displaying behaviors and appearances unlike those seen in any other aquatic habitat. However, the extent of which adaptations may have developed at a microbial scale is not as clear. Shotgun metagenomic sequencing of the intestinal microbiome of 32 species of deep-sea fish from across the Atlantic Ocean revealed that many of the associated microbes differ extensively from those previously identified in reference databases. 111 individual metagenome-assembled genomes (MAGs) were constructed representing individual microbial species from the microbiomes of these fish, many of which are potentially novel bacterial taxa and provide a window into the microbial diversity in this underexplored environment. These MAGs also demonstrate how these microbes have adapted to deep-sea life by encoding a greater capacity for several cellular processes such as protein folding and DNA replication that can be inhibited by high pressure. Another intriguing feature was the almost complete lack of genes responsible for acquired resistance to known antibiotics in many of the samples. This highlights that deep-sea fish microbiomes may represent one of few animal-associated microbiomes with little influence from human activity. The ability of the microbes in these samples to bioluminesce is lower than expected given predictions that this trait has an important role in their life cycle at these depths. The study highlights the uniqueness, complexity and adaptation of microbial communities living in one of the largest and harshest environments on Earth.
Collapse
Affiliation(s)
- Fergus W. J. Collins
- Teagasc Food Research Centre, Fermoy, Ireland,APC Microbiome Ireland, University College Cork, Ireland,Department of Microbiology, University College Cork, Cork, Ireland
| | - Calum J. Walsh
- Teagasc Food Research Centre, Fermoy, Ireland,APC Microbiome Ireland, University College Cork, Ireland
| | | | | | | | | | | | | | - Paul D. Cotter
- Teagasc Food Research Centre, Fermoy, Ireland,APC Microbiome Ireland, University College Cork, Ireland
| | - Mary C. Rea
- Teagasc Food Research Centre, Fermoy, Ireland,APC Microbiome Ireland, University College Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Ireland,Department of Microbiology, University College Cork, Cork, Ireland
| | - R. Paul Ross
- Teagasc Food Research Centre, Fermoy, Ireland,APC Microbiome Ireland, University College Cork, Ireland,Department of Microbiology, University College Cork, Cork, Ireland,CONTACT R. Paul Ross
| |
Collapse
|
13
|
Acquisition of bioluminescent trait by non-luminous organisms from luminous organisms through various origins. Photochem Photobiol Sci 2021; 20:1547-1562. [PMID: 34714534 DOI: 10.1007/s43630-021-00124-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/20/2021] [Indexed: 12/20/2022]
Abstract
Bioluminescence is a natural light emitting phenomenon that occurs due to a chemical reaction between luciferin and luciferase. It is primarily an innate and inherited trait in most terrestrial luminous organisms. However, most luminous organisms produce light in the ocean by acquiring luminous symbionts, luciferin (substrate), and/or luciferase (enzyme) through various transmission pathways. For instance, coelenterazine, a well-known luciferin, is obtained by cnidarians, crustaceans, and deep-sea fish through multi-level dietary linkages from coelenterazine producers such as ctenophores, decapods, and copepods. In contrast, some non-luminous Vibrio bacteria became bioluminescent by obtaining lux genes from luminous Vibrio species by horizontal gene transfer. Various examples detailed in this review show how non-luminescent organisms became luminescent by acquiring symbionts, dietary luciferins and luciferases, and genes. This review highlights three modes (symbiosis, ingestion, and horizontal gene transfer) that allow organisms lacking genes for autonomous bioluminescent systems to obtain the ability to produce light. In addition to bioluminescence, this manuscript discusses the acquisition of other traits such as pigments, fluorescence, toxins, and others, to infer the potential processes of acquisition.
Collapse
|
14
|
Bioluminescence and Photoreception in Unicellular Organisms: Light-Signalling in a Bio-Communication Perspective. Int J Mol Sci 2021; 22:ijms222111311. [PMID: 34768741 PMCID: PMC8582858 DOI: 10.3390/ijms222111311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022] Open
Abstract
Bioluminescence, the emission of light catalysed by luciferases, has evolved in many taxa from bacteria to vertebrates and is predominant in the marine environment. It is now well established that in animals possessing a nervous system capable of integrating light stimuli, bioluminescence triggers various behavioural responses and plays a role in intra- or interspecific visual communication. The function of light emission in unicellular organisms is less clear and it is currently thought that it has evolved in an ecological framework, to be perceived by visual animals. For example, while it is thought that bioluminescence allows bacteria to be ingested by zooplankton or fish, providing them with favourable conditions for growth and dispersal, the luminous flashes emitted by dinoflagellates may have evolved as an anti-predation system against copepods. In this short review, we re-examine this paradigm in light of recent findings in microorganism photoreception, signal integration and complex behaviours. Numerous studies show that on the one hand, bacteria and protists, whether autotrophs or heterotrophs, possess a variety of photoreceptors capable of perceiving and integrating light stimuli of different wavelengths. Single-cell light-perception produces responses ranging from phototaxis to more complex behaviours. On the other hand, there is growing evidence that unicellular prokaryotes and eukaryotes can perform complex tasks ranging from habituation and decision-making to associative learning, despite lacking a nervous system. Here, we focus our analysis on two taxa, bacteria and dinoflagellates, whose bioluminescence is well studied. We propose the hypothesis that similar to visual animals, the interplay between light-emission and reception could play multiple roles in intra- and interspecific communication and participate in complex behaviour in the unicellular world.
Collapse
|
15
|
Sittmann J, Bae M, Mevers E, Li M, Quinn A, Sriram G, Clardy J, Liu Z. Bacterial diketopiperazines stimulate diatom growth and lipid accumulation. PLANT PHYSIOLOGY 2021; 186:1159-1170. [PMID: 33620482 PMCID: PMC8195512 DOI: 10.1093/plphys/kiab080] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/03/2021] [Indexed: 06/10/2023]
Abstract
Diatoms are photosynthetic microalgae that fix a significant fraction of the world's carbon. Because of their photosynthetic efficiency and high-lipid content, diatoms are priority candidates for biofuel production. Here, we report that sporulating Bacillus thuringiensis and other members of the Bacillus cereus group, when in co-culture with the marine diatom Phaeodactylum tricornutum, significantly increase diatom cell count. Bioassay-guided purification of the mother cell lysate of B. thuringiensis led to the identification of two diketopiperazines (DKPs) that stimulate both P. tricornutum growth and increase its lipid content. These findings may be exploited to enhance P. tricornutum growth and microalgae-based biofuel production. As increasing numbers of DKPs are isolated from marine microbes, the work gives potential clues to bacterial-produced growth factors for marine microalgae.
Collapse
Affiliation(s)
- John Sittmann
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Munhyung Bae
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Emily Mevers
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Muzi Li
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Andrew Quinn
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| | - Ganesh Sriram
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
16
|
Palamae S, Sompongchaiyakul P, Suttinun O. Effects of crude oil and aromatic compounds on growth and bioluminescence of Vibrio campbellii FS5. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:291. [PMID: 33891179 DOI: 10.1007/s10661-021-09081-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
Fifteen native luminescent bacteria were isolated from the Gulf of Thailand, and their sensitivity for the detection of toxicity of crude oil and its aromatic components was investigated. Of these isolates, Vibrio campbellii strain FS5 was one of the two most highly inhibited bacteria at all crude oil concentrations. This bacterium showed a decrease in luminescence intensity of between 10.7 and 80.2% after a 15-min exposure to 0.0001-10 mg/L of crude oil. The degree of bioluminescence inhibition increased with increasing concentrations of crude oil. The presence of crude oil at all concentrations had negative effects on the log bioluminescence per log number of viable cells after 15- to 105-min exposure. About 10 to 100 times, lower half maximal effective concentration (EC50) values were observed for polycyclic aromatic hydrocarbons (PAHs) than those for benzene, toluene, ethylbenzene, and xylene (BTEX). In the presence of each individual BTEX and PAH, the bioluminescence inhibition increased with increasing exposure time (1-32 h). This indigenous bacterium can be used as a simple and general indicator of oil contamination and its impact on coastal waters as well as for assessing potential toxicity during oil bioremediation.
Collapse
Affiliation(s)
- Suriya Palamae
- Environmental Assessment and Technology for Hazardous Waste Management Research Center, Faculty of Environmental Management, Prince of Songkla University, Songkhla, 90112, Thailand
| | - Penjai Sompongchaiyakul
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence On Hazardous Substance Management (HSM), Bangkok, 10330, Thailand
| | - Oramas Suttinun
- Environmental Assessment and Technology for Hazardous Waste Management Research Center, Faculty of Environmental Management, Prince of Songkla University, Songkhla, 90112, Thailand.
- Center of Excellence On Hazardous Substance Management (HSM), Bangkok, 10330, Thailand.
| |
Collapse
|
17
|
Lee N, Kim MD, Lim MC. Autoinducer-2 Could Affect Biofilm Formation by Food-Derived Bacillus cereus. Indian J Microbiol 2021; 61:66-73. [PMID: 33505094 DOI: 10.1007/s12088-020-00918-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/11/2020] [Indexed: 12/29/2022] Open
Abstract
Bacillus cereus is a foodborne pathogen and cause a frequent problem due to the biofilms forming in equipment of food production plants. Autoinducer-2 (AI-2) involved in interspecies communication, plays a role in the biofilm formation of B. cereus. In this study, biofilm formation by thirty-nine B. cereus strains isolated from foods produced in Korea was determined. To investigate the effect of AI-2 on biofilm formation by B. cereus SBC27, which had the highest biofilm-forming ability, biofilm densities formed after addition of the AI-2 from Staphylococcus aureus and Escherichia coli were analysed. As a result, it was found that the quorum sensing molecule AI-2 could induce biofilm formation by B. cereus within 24 h, but it may also inhibit biofilm formation when more AI-2 is added after 24 h. Thus, these results improve our understanding of biofilm formation by food-derived B. cereus and provide clues that could help to reduce the impact of biofilms, the biggest problem in food processing environments, which has an impact on public health as well as the economy.
Collapse
Affiliation(s)
- Nari Lee
- Research Group of Consumer Safety, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365 Republic of Korea
| | - Myo-Deok Kim
- Research Group of Consumer Safety, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365 Republic of Korea
| | - Min-Cheol Lim
- Research Group of Consumer Safety, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365 Republic of Korea
| |
Collapse
|
18
|
Roumagnac M, Pradel N, Bartoli M, Garel M, Jones AA, Armougom F, Fenouil R, Tamburini C, Ollivier B, Summers ZM, Dolla A. Responses to the Hydrostatic Pressure of Surface and Subsurface Strains of Pseudothermotoga elfii Revealing the Piezophilic Nature of the Strain Originating From an Oil-Producing Well. Front Microbiol 2020; 11:588771. [PMID: 33343528 PMCID: PMC7746679 DOI: 10.3389/fmicb.2020.588771] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/16/2020] [Indexed: 11/13/2022] Open
Abstract
Microorganisms living in deep-oil reservoirs face extreme conditions of elevated temperature and hydrostatic pressure. Within these microbial communities, members of the order Thermotogales are predominant. Among them, the genus Pseudothermotoga is widespread in oilfield-produced waters. The growth and cell phenotypes under hydrostatic pressures ranging from 0.1 to 50 MPa of two strains from the same species originating from subsurface, Pseudothermotoga elfii DSM9442 isolated from a deep African oil-producing well, and surface, P. elfii subsp. lettingae isolated from a thermophilic sulfate-reducing bioreactor, environments are reported for the first time. The data support evidence for the piezophilic nature of P. elfii DSM9442, with an optimal hydrostatic pressure for growth of 20 MPa and an upper limit of 40 MPa, and the piezotolerance of P. elfii subsp. lettingae with growth occurring up to 20 MPa only. Under the experimental conditions, both strains produce mostly acetate and propionate as volatile fatty acids with slight variations with respect to the hydrostatic pressure for P. elfii DSM9442. The data show that the metabolism of P. elfii DSM9442 is optimized when grown at 20 MPa, in agreement with its piezophilic nature. Both Pseudothermotoga strains form chained cells when the hydrostatic pressure increases, especially P. elfii DSM9442 for which 44% of cells is chained when grown at 40 MPa. The viability of the chained cells increases with the increase in the hydrostatic pressure, indicating that chain formation is a protective mechanism for P. elfii DSM9442.
Collapse
Affiliation(s)
- Marie Roumagnac
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Nathalie Pradel
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Manon Bartoli
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Marc Garel
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Aaron A Jones
- ExxonMobil Research and Engineering Company, Annandale, NJ, United States
| | - Fabrice Armougom
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Romain Fenouil
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Christian Tamburini
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Bernard Ollivier
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Zarath M Summers
- ExxonMobil Research and Engineering Company, Annandale, NJ, United States
| | - Alain Dolla
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| |
Collapse
|
19
|
Wang D, Wang S, Bai L, Nasir MS, Li S, Yan W. Mathematical Modeling Approaches for Assessing the Joint Toxicity of Chemical Mixtures Based on Luminescent Bacteria: A Systematic Review. Front Microbiol 2020; 11:1651. [PMID: 32849340 PMCID: PMC7412757 DOI: 10.3389/fmicb.2020.01651] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/25/2020] [Indexed: 01/14/2023] Open
Abstract
Developments in industrial applications inevitably accelerate the discharge of enormous substances into the environment, whereas multi-component mixtures commonly cause joint toxicity which is distinct from the simple sum of independent effect. Thus, ecotoxicological assessment, by luminescent bioassays has recently brought increasing attention to overcome the environmental risks. Based on the above viewpoint, this review included a brief introduction to the occurrence and characteristics of toxic bioassay based on the luminescent bacteria. In order to assess the environmental risk of mixtures, a series of models for the prediction of the joint effect of multi-component mixtures have been summarized and discussed in-depth. Among them, Quantitative Structure-Activity Relationship (QSAR) method which was widely applied in silico has been described in detail. Furthermore, the reported potential mechanisms of joint toxicity on the luminescent bacteria were also overviewed, including the Trojan-horse type mechanism, funnel hypothesis, and fishing hypothesis. The future perspectives toward the development and application of toxicity assessment based on luminescent bacteria were proposed.
Collapse
Affiliation(s)
- Dan Wang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Shaanxi, China
| | - Shan Wang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Shaanxi, China
| | - Linming Bai
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Shaanxi, China
| | - Muhammad Salman Nasir
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Shaanxi, China.,Department of Structures and Environmental Engineering, University of Agriculture, Faisalabad, Pakistan
| | - Shanshan Li
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Shaanxi, China
| | - Wei Yan
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Shaanxi, China
| |
Collapse
|
20
|
Reyes S, Le N, Fuentes MD, Upegui J, Dikici E, Broyles D, Quinto E, Daunert S, Deo SK. An Intact Cell Bioluminescence-Based Assay for the Simple and Rapid Diagnosis of Urinary Tract Infection. Int J Mol Sci 2020; 21:E5015. [PMID: 32708609 PMCID: PMC7404122 DOI: 10.3390/ijms21145015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/03/2020] [Accepted: 07/13/2020] [Indexed: 11/16/2022] Open
Abstract
Urinary tract infection (UTI) is one of the most common infections, accounting for a substantial portion of outpatient hospital and clinic visits. Standard diagnosis of UTI by culture and sensitivity can take at least 48 h, and improper diagnosis can lead to an increase in antibiotic resistance following therapy. To address these shortcomings, rapid bioluminescence assays were developed and evaluated for the detection of UTI using intact, viable cells of Photobacterium mandapamensis USTCMS 1132 or previously lyophilized cells of Photobacterium leiognathi ATCC 33981™. Two platform technologies-tube bioluminescence extinction technology urine (TuBETUr) and cellphone-based UTI bioluminescence extinction technology (CUBET)-were developed and standardized using artificial urine to detect four commonly isolated UTI pathogens-namely, Escherichia coli, Proteus mirabilis, Staphylococcus aureus, and Candida albicans. Besides detection, these assays could also provide information regarding pathogen concentration/level, helping guide treatment decisions. These technologies were able to detect microbes associated with UTI at less than 105 CFU/mL, which is usually the lower cut-off limit for a positive UTI diagnosis. Among the 29 positive UTI samples yielding 105-106 CFU/mL pathogen concentrations, a total of 29 urine specimens were correctly detected by TuBETUr as UTI-positive based on an 1119 s detection window. Similarly, the rapid CUBET method was able to discriminate UTIs from normal samples with high confidence (p ≤ 0.0001), using single-pot conditions and cell phone-based monitoring. These technologies could potentially address the need for point-of-care UTI detection while reducing the possibility of antibiotic resistance associated with misdiagnosed cases of urinary tract infections, especially in low-resource environments.
Collapse
Affiliation(s)
- Sherwin Reyes
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (S.R.); (N.L.); (J.U.); (E.D.); (D.B.); (S.D.)
- The Dr. John T. McDonald Foundation Bionanotechnology Institute of University of Miami, Miami, FL 33136, USA
- FEU-Nicanor Reyes Medical Foundation, Institute of Medicine, West Fairview, Quezon City 1118, Philippines;
- The Graduate School, University of Santo Tomas, España Manila 1015, Philippines;
| | - Nga Le
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (S.R.); (N.L.); (J.U.); (E.D.); (D.B.); (S.D.)
| | - Mary Denneth Fuentes
- FEU-Nicanor Reyes Medical Foundation, Institute of Medicine, West Fairview, Quezon City 1118, Philippines;
- The Graduate School, University of Santo Tomas, España Manila 1015, Philippines;
| | - Jonathan Upegui
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (S.R.); (N.L.); (J.U.); (E.D.); (D.B.); (S.D.)
| | - Emre Dikici
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (S.R.); (N.L.); (J.U.); (E.D.); (D.B.); (S.D.)
- The Dr. John T. McDonald Foundation Bionanotechnology Institute of University of Miami, Miami, FL 33136, USA
| | - David Broyles
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (S.R.); (N.L.); (J.U.); (E.D.); (D.B.); (S.D.)
- The Dr. John T. McDonald Foundation Bionanotechnology Institute of University of Miami, Miami, FL 33136, USA
| | - Edward Quinto
- The Graduate School, University of Santo Tomas, España Manila 1015, Philippines;
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (S.R.); (N.L.); (J.U.); (E.D.); (D.B.); (S.D.)
- The Dr. John T. McDonald Foundation Bionanotechnology Institute of University of Miami, Miami, FL 33136, USA
- Clinical and Translational Science Institute of University of Miami, Miami, FL 33136, USA
| | - Sapna K. Deo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (S.R.); (N.L.); (J.U.); (E.D.); (D.B.); (S.D.)
- The Dr. John T. McDonald Foundation Bionanotechnology Institute of University of Miami, Miami, FL 33136, USA
| |
Collapse
|
21
|
Comprehensive depiction of novel heavy metal tolerant and EPS producing bioluminescent Vibrio alginolyticus PBR1 and V. rotiferianus PBL1 confined from marine organisms. Microbiol Res 2020; 238:126526. [PMID: 32603934 DOI: 10.1016/j.micres.2020.126526] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/27/2020] [Accepted: 06/09/2020] [Indexed: 01/09/2023]
Abstract
The current study depicts the isolation of luminescent bacteria from fish and squid samples that were collected from Veraval fish harbour. From Indian mackerel, total 14 and from squid, total 23 bioluminescent bacteria were isolated using luminescence agar medium. Two bioluminescent bacteria with highest relative luminescence intensity PBR1 and PBL1 were selected. These two isolates were subjected to detailed biochemical characterization and were tested positive for 5 out of 13 biochemical tests. Furthermore, both PBR1 and PBL1 were able to ferment cellobiose, dextrose, fructose, galactose, maltose, mannose, sucrose and trehalose with acid production. Based on 16S rRNA partial gene sequence analysis, PBR1 was identified as Vibrio alginolyticus and PBL1 as V. rotiferianus. Antibiotic susceptibility test using paper-disc method showed that PBR1 and PBL1 were sensitive to chloramphenicol, ciprofloxacin, co-trimoxazole, gatifloxacin, levofloxacin, linezolid ad roxithromycin out of 18 antibiotics tested. Moreover, both strains were evaluated for their exopolysachharide (EPS) producing ability where PBR1 and PBL1 were able to yield 1.34 g% (w/v) and 2.45 g% (w/v) EPS respectively from 5 g% (v/v) sucrose concentration. Heavy metal toxicity assessment was carried out using agar well diffusion method with eight heavy metals and both the strains were sensitive to As(III), Cd(II), Ce(II), Cr(III), Cu(II), Hg(II) and while they showed resistance to Pb(II) and Sr(II). Based on these results, a study was conducted to demonstrate bio-removal of Pb and Sr by EPS of PBR1 and PBL1. Fourier transform infrared (FTIR) spectra revealed the functional groups of EPS involved in interaction with the heavy metals. Owing to the sensitivity for the remaining heavy metals, these bioluminescent bacteria can be used further for the development of luminescence-based biosensor.
Collapse
|
22
|
Roslan NN, Ngalimat MS, Leow ATC, Oslan SN, Baharum SN, Sabri S. Genomic and phenomic analysis of a marine bacterium, Photobacterium marinum J15. Microbiol Res 2020; 233:126410. [PMID: 31945517 DOI: 10.1016/j.micres.2020.126410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/29/2019] [Accepted: 01/09/2020] [Indexed: 11/18/2022]
Abstract
Photobacterium species are widely distributed in the marine environment. The overall metabolism of this genus remains largely unknown. In order to improve our knowledge on this bacterium, the relationship between the genome and phenome of the Photobacterium isolate was analyzed. The cream colored, Gram-negative, rod-shaped and motile bacterial strain, J15, was isolated from marine water of Tanjung Pelepas, Johor, Malaysia. The 5,684,538 bp genome of strain J15 comprised 3 contigs (2 chromosomes and 1 plasmid) with G + C content of 46.39 % and contained 4924 protein-coding genes including 180 tRNAs and 40 rRNAs. The phenotypic microarray (PM) as analyzed using BIOLOG showed the utilization of; i) 93 of the 190 carbon sources tested, where 61 compounds were used efficiently; ii) 41 of the 95 nitrogen sources tested, where 22 compounds were used efficiently; and iii) 3 of the 94 phosphorous and sulphur sources tested. Furthermore, high tolerance to osmotic stress, basic pH and toxic compounds as well as resistance to antibiotics of strain J15 were determined by BIOLOG PM. The ANI and kSNP analyses revealed that strain J15 to be the same species with Photobacterium marinum AK15 with ANI value of 96.93 % and bootstrapping value of 100 in kSNP. Based on the ANI and kSNP analyses, strain J15 was identified as P. marinum J15.
Collapse
Affiliation(s)
- Noordiyanah Nadhirah Roslan
- Enzyme and Microbial Technology Research Center, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Mohamad Syazwan Ngalimat
- Enzyme and Microbial Technology Research Center, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Adam Thean Chor Leow
- Enzyme and Microbial Technology Research Center, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Cell and Molecular Biology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Center, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Biochemistry, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Syarul Nataqain Baharum
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Suriana Sabri
- Enzyme and Microbial Technology Research Center, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|