1
|
Zhou Q, Jiang L, Zhu J, Lu Y, He Q. The metabolic regulation mechanism of gallic acid on biogenic amines and nitrosamines in reduced-nitrite Chinese fermented sausages: A perspective of metabolomics and metagenomics. Food Chem 2024; 456:139900. [PMID: 38878551 DOI: 10.1016/j.foodchem.2024.139900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/18/2024] [Accepted: 05/28/2024] [Indexed: 07/24/2024]
Abstract
Reducing nitrites tends to increase the accumulation of hazardous biogenic amines (BAs) in Chinese fermented sausages (CFSs). Gallic acid (GA) has emerged as a potential alternative to reduce nitrite usage and control BAs. This study explored how GA inhibits BAs and nitrosamines accumulation in reduced-nitrite CFSs. Results demonstrated that combining 0.05% (w/w) GA with reduced nitrite effectively curbed BAs and N-nitrosodimethylamine, decreasing total BA from 271.48 to 125.46 mg/kg. Fifty-one metabolites associated with the metabolism of BAs and N-nitrosodimethylamine were identified. GA boosted Lactococcus while reducing spoilage bacteria and Macrococcus. This dual regulation suppressed BAs and dimethylamine accumulation by regulating amino acids and trimethylamine pathways. Consequently, GA achieved an 89.86% reduction in N-nitrosodimethylamine by decreasing the key precursors like putrescine, dimethylamine, and nitrite. These findings offer new insights into utilizing GA and similar plant polyphenols to manage BAs and nitrosamines in meat products with reduced nitrite usage.
Collapse
Affiliation(s)
- Qin Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; School of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, PR China
| | - Li Jiang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Jinpeng Zhu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Yunhao Lu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Qiang He
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
2
|
Indio V, Oliveri C, Lucchi A, Savini F, Gonzales-Barron U, Skandamis P, Achemchem F, Manfreda G, Serraino A, De Cesare A. Shotgun metagenomic investigation of foodborne pathogens and antimicrobial resistance genes in artisanal fermented meat products from the Mediterranean area. Ital J Food Saf 2024; 13:12210. [PMID: 38887591 PMCID: PMC11181117 DOI: 10.4081/ijfs.2024.12210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 06/20/2024] Open
Abstract
In this pilot study, we compared the metagenomic profiles of different types of artisanal fermented meat products collected in Italy, Greece, Portugal, and Morocco to investigate their taxonomic profile, also in relation to the presence of foodborne pathogens and antimicrobial resistance genes. In addition, technical replicates of the same biological sample were tested to estimate the reproducibility of shotgun metagenomics. The taxonomic analysis showed a high level of variability between different fermented meat products at both the phylum and genus levels. Staphylococcus aureus was identified with the highest abundance in Italian fermented meat; Escherichia coli in fermented meat from Morocco; Salmonella enterica in fermented meat from Greece; Klebsiella pneumoniae and Yersinia enterocolitica in fermented meat from Portugal. The fungi Aspergillus, Neosartoria, Emericella, Penicillum and Debaryomyces showed a negative correlation with Lactococcus, Enterococcus, Streptococcus, Leuconostoc and Lactobacillus. The resistome analysis indicated that genes conferring resistance to aminoglycoside, macrolide, and tetracycline were widely spread in all samples. Our results showed that the reproducibility between technical replicates tested by shotgun metagenomic was very high under the same conditions of analysis (either DNA extraction, library preparation, sequencing analysis, and bioinformatic analysis), considering both the degree of overlapping and the pairwise correlation.
Collapse
Affiliation(s)
- Valentina Indio
- Department of Veterinary Medical Science, University of Bologna, Ozzano dell’Emilia, Italy
| | - Chiara Oliveri
- Department of Physics and Astronomy “Augusto Righi”, University of Bologna, Italy
| | - Alex Lucchi
- Department of Agricultural and Food Sciences, University of Bologna, Italy
| | - Federica Savini
- Department of Veterinary Medical Science, University of Bologna, Ozzano dell’Emilia, Italy
| | | | - Panagiotis Skandamis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Greece
| | - Fouad Achemchem
- LASIME Laboratory, Agadir Superior School of Technology, Ibn Zohr University, Agadir, Morocco
| | - Gerardo Manfreda
- Department of Agricultural and Food Sciences, University of Bologna, Italy
| | - Andrea Serraino
- Department of Veterinary Medical Science, University of Bologna, Ozzano dell’Emilia, Italy
| | - Alessandra De Cesare
- Department of Veterinary Medical Science, University of Bologna, Ozzano dell’Emilia, Italy
| |
Collapse
|
3
|
Aladhadh M, Nasser Binjawhar D, Abd El-Kader Ebrahim HNED, Radhi KS, Almatrafi M, Fayad E, Al-Saman MA, Elsanhoty RM. Investigation of Biogenic Amine Levels and Microbiological Activity as Quality Markers in Some Dairy and Fish Products in Food Markets in the Kingdom of Saudi Arabia. ACS OMEGA 2024; 9:19193-19202. [PMID: 38708229 PMCID: PMC11064202 DOI: 10.1021/acsomega.3c10347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/10/2024] [Accepted: 03/27/2024] [Indexed: 05/07/2024]
Abstract
This study aimed to verify the presence of biogenic amines (BAs) and evaluate the microbiological activity of some food samples collected from retail stores in the Kingdom of Saudi Arabia. A total of thirty-five dairy and fish products were collected and analyzed for BAs, including putrescine (PUT), cadaverine (CAD), spermidine (SPE), histamine (HIS), spermine (SPR), and tyramine (TYR), as well as for total colony count (TCC), lactic acid bacteria (LAB), Enterobacteriaceae, yeast and mold (Y and M), coliforms, and aerobic sporulation count (ASF). The thin layer chromatography (TLC) method was used in the analytical methodology to identify the BAs. The results showed the presence of BAs in all dairy products, but their concentration did not exceed the maximum permissible limit, which in contrast was established by the Food and Drug Administration (FDA) at 10 mg/100 g. The amounts of BAs in fish products varied significantly. All fish product samples contained levels of BAs below the permissible limit. Results of an independent study also indicated potential toxicity at levels of BAs (>10 mg/100 g) in Egyptian herring. Enterobacteriaceae and the coli group were present in higher concentrations in the Egyptian herring samples, whereas other samples (particularly frozen shrimp) showed increased TCC levels with a higher concentration of histamine-producing bacteria. From a consumer safety perspective, this study also indicated that food samples generally contained acceptable levels of BAs. In conclusion, there is a need to improve and standardize food quality and hygiene practices during production and storage to ensure human safety and prevent HIS formation.
Collapse
Affiliation(s)
- Mohammed Aladhadh
- Department
of Food Science and Human Nutrition, College of Agriculture and Food, Qassim University, Buraydah 51452, Saudi
Arabia
| | - Dalal Nasser Binjawhar
- Department
of Chemistry, College of Sciences, Princess
Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | | | - Khadija S. Radhi
- Department
of Science and Nutrition, Colleague of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Manal Almatrafi
- Department
of Science and Nutrition, Colleague of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Eman Fayad
- Department
of Biotechnology, Colleague of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mahmoud A. Al-Saman
- Department
of Industrial Biotechnology, Genetic Engineering and Biotechnology
Research Institute, University of Sadat
City (USC), Sadat
City 32897, Egypt
| | - Rafaat M. Elsanhoty
- Department
of Industrial Biotechnology, Genetic Engineering and Biotechnology
Research Institute, University of Sadat
City (USC), Sadat
City 32897, Egypt
| |
Collapse
|
4
|
Nguyen PT, Nguyen-Thi TU, Nguyen HT, Pham MN, Nguyen TT. Halophilic lactic acid bacteria - Play a vital role in the fermented food industry. Folia Microbiol (Praha) 2024; 69:305-321. [PMID: 38372951 DOI: 10.1007/s12223-024-01149-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/06/2024] [Indexed: 02/20/2024]
Abstract
Halophilic lactic acid bacteria have been widely found in various high-salt fermented foods. The distribution of these species in salt-fermented foods contributes significantly to the development of the product's flavor. Besides, these bacteria also have the ability to biosynthesize bioactive components which potentially apply to different areas. In this review, insights into the metabolic properties, salt stress responses, and potential applications of these bacteria have been have been elucidated. The purpose of this review highlights the important role of halophilic lactic acid bacteria in improving the quality and safety of salt-fermented products and explores the potential application of these bacteria.
Collapse
Affiliation(s)
- Phu-Tho Nguyen
- An Giang University, An Giang, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, Vietnam
| | | | - Huu-Thanh Nguyen
- An Giang University, An Giang, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, Vietnam
| | - Minh-Nhut Pham
- Hutech Institute of Applied Science, HUTECH University, Ho Chi Minh City, Vietnam
| | - Thi-Tho Nguyen
- Hutech Institute of Applied Science, HUTECH University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
5
|
Wang H, Sui Y, Liu J, Liu H, Qin L, Kong B, Chen Q. Screening and evaluating microorganisms with broad-spectrum biogenic amine-degrading ability from naturally fermented dry sausage collected from Northeast China. Meat Sci 2024; 210:109438. [PMID: 38290305 DOI: 10.1016/j.meatsci.2024.109438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 12/01/2023] [Accepted: 01/22/2024] [Indexed: 02/01/2024]
Abstract
This study aimed to screen autochthonous strains with broad-spectrum biogenic amine (BA) degradation ability from traditional dry sausages and to evaluate their BA-degrading ability in dry sausages. A total of 120 strains were isolated from dry sausages collected from various regions in Northeast China, and 35 of 120 isolates were identified as non-BA producing strains by the in vitro agar method. The random amplified polymorphic DNA polymerase chain reaction technique genotyped these 35 isolates into 18 biotypes. Moreover, high performance liquid chromatography (HPLC) quantification showed that six strains (Latilactobacillus sakei MDJ6; Lactiplantibacillus plantarum SH7; Weissella hellenica DQ9; Staphylococcus saprophyticus JX18 and SYS8; and Macrococcus caseolyticus SYS11) of the 18 biotypes exhibited broad-spectrum BA-degrading ability, all of which had various levels of amine oxidase activity with monoamine oxidase and diamine oxidase activities ranged of 6.60-619.04 and 26.32-352.81 U/mg protein, respectively. These six strains were subsequently inoculated into dry sausages and the results showed that they exhibited varying degrees of BA-degrading ability, of which strain Lat. sakei MDJ6 allowed to have less BA production on dry sausage with a final concentration of 61.33 mg/kg.
Collapse
Affiliation(s)
- Huiping Wang
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yumeng Sui
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jiaqi Liu
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Haotian Liu
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Ligang Qin
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Qian Chen
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
6
|
Del Rio B, Fernandez M, Redruello B, Ladero V, Alvarez MA. New insights into the toxicological effects of dietary biogenic amines. Food Chem 2024; 435:137558. [PMID: 37783126 DOI: 10.1016/j.foodchem.2023.137558] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/07/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023]
Abstract
Biogenic amines (BA) are molecules with biological functions, which can accumulate at toxic concentrations in foods. Several microorganisms have been identified as responsible for their accumulation at elevated concentrations. Histamine, tyramine and putrescine are the BA most commonly found at highest concentrations. The ingestion of food containing high BA concentrations leads to intoxication with symptoms depending on the BA and the amount consumed. Moreover, there is evidence of synergy between different BA, something of toxicological importance given that some foods accumulate different BA. This work reviews the BA toxic effects and examines recent discoveries regarding their synergy, cytotoxicity and genotoxicity. These advances in the toxicological consequences of ingesting BA contaminated foods support the need to regulate their presence in foods to preserve the consumer's health. However, more research efforts -focused on the establishment of risk assessments- are needed to reach a consensus in their limits in different food matrices.
Collapse
Affiliation(s)
- Beatriz Del Rio
- Department of Dairy Product Technology and Biotechnology, Dairy Research Institute, IPLA, CSIC, Villaviciosa, Spain; Health Research Institute in the Principality of Asturias (ISPA), Oviedo, Spain
| | - María Fernandez
- Department of Dairy Product Technology and Biotechnology, Dairy Research Institute, IPLA, CSIC, Villaviciosa, Spain; Health Research Institute in the Principality of Asturias (ISPA), Oviedo, Spain
| | - Begoña Redruello
- Department of Dairy Product Technology and Biotechnology, Dairy Research Institute, IPLA, CSIC, Villaviciosa, Spain; Health Research Institute in the Principality of Asturias (ISPA), Oviedo, Spain
| | - Victor Ladero
- Department of Dairy Product Technology and Biotechnology, Dairy Research Institute, IPLA, CSIC, Villaviciosa, Spain; Health Research Institute in the Principality of Asturias (ISPA), Oviedo, Spain.
| | - Miguel A Alvarez
- Department of Dairy Product Technology and Biotechnology, Dairy Research Institute, IPLA, CSIC, Villaviciosa, Spain; Health Research Institute in the Principality of Asturias (ISPA), Oviedo, Spain
| |
Collapse
|
7
|
Mao J, Wang X, Chen H, Zhao Z, Liu D, Zhang Y, Nie X. The Contribution of Microorganisms to the Quality and Flavor Formation of Chinese Traditional Fermented Meat and Fish Products. Foods 2024; 13:608. [PMID: 38397585 PMCID: PMC10888149 DOI: 10.3390/foods13040608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Guizhou sour meat and sour fish, Chaoshan fish sauce, Sichuan sausage and bacon, Cantonese sausage, Jinhua ham, and Xinjiang air-dried beef are eight representatives of Chinese traditional fermented meat and fish products (FMFPs), which are favored by Chinese consumers due to their high nutritional value and quality. The quality of the spontaneously fermented Chinese traditional FMFP is closely correlated with microorganisms. Moreover, the dominant microorganisms are significantly different due to regional differences. The effects of microorganisms on the texture, color, flavor, nutrition, functional properties, and safety of Chinese traditional FMFPs have not been not fully described. Additionally, metabolic pathways for flavor formation of Chinese traditional FMFPs have not well been summarized. This article describes the seven characteristic Chinese traditional FMFPs and correlated dominant microorganisms in different regions of China. The effects of microorganisms on the texture, color, and flavor of Chinese traditional FMFPs are discussed. Furthermore, the metabolic pathways of microbial regulation of flavor formation in Chinese traditional FMFPs are proposed. This work provides a theoretical basis for improvement of Chinese traditional FMFPs by inoculating functional microorganisms isolated from Chinese traditional fermented foods.
Collapse
Affiliation(s)
- Jingjing Mao
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xinyi Wang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- College of Food Science and Technology, Sichuan Tourism University, Chengdu 610100, China
| | - Hongfan Chen
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- College of Food Science and Technology, Sichuan Tourism University, Chengdu 610100, China
| | - Zhiping Zhao
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Dayu Liu
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yin Zhang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xin Nie
- College of Food Science and Technology, Sichuan Tourism University, Chengdu 610100, China
| |
Collapse
|
8
|
Zhao M, Chu J, Feng S, Guo C, Xue B, He K, Li L. Immunological mechanisms of inflammatory diseases caused by gut microbiota dysbiosis: A review. Biomed Pharmacother 2023; 164:114985. [PMID: 37311282 DOI: 10.1016/j.biopha.2023.114985] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/15/2023] Open
Abstract
The gut microbiota is indispensable for maintaining host health by enhancing the host's digestive capacity, safeguarding the intestinal epithelial barrier, and preventing pathogen invasion. Additionally, the gut microbiota exhibits a bidirectional interaction with the host immune system and promotes the immune system of the host to mature. Dysbiosis of the gut microbiota, primarily caused by factors such as host genetic susceptibility, age, BMI, diet, and drug abuse, is a significant contributor to inflammatory diseases. However, the mechanisms underlying inflammatory diseases resulting from gut microbiota dysbiosis lack systematic categorization. In this study, we summarize the normal physiological functions of symbiotic microbiota in a healthy state and demonstrate that when dysbiosis occurs due to various external factors, the normal physiological functions of the gut microbiota are lost, leading to pathological damage to the intestinal lining, metabolic disorders, and intestinal barrier damage. This, in turn, triggers immune system disorders and eventually causes inflammatory diseases in various systems. These discoveries provide fresh perspectives on how to diagnose and treat inflammatory diseases. However, the unrecognized variables that might affect the link between inflammatory illnesses and gut microbiota, need further studies and extensive basic and clinical research will still be required to investigate this relationship in the future.
Collapse
Affiliation(s)
- Min'an Zhao
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China; School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Jiayi Chu
- School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Shiyao Feng
- School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Chuanhao Guo
- The Second School of Clinical Medicine of Jilin University, Changchun, Jilin 130041, China
| | - Baigong Xue
- College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China.
| | - Kan He
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China.
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
9
|
Zhou Q, Mo M, Tang B, He Q. A comparative study of tea polyphenols and its palmitic acid-modified derivatives: their effects on the microbial ecosystem and biogenic amines in Chinese sausage. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1772-1781. [PMID: 37187992 PMCID: PMC10169961 DOI: 10.1007/s13197-023-05717-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/16/2023] [Accepted: 03/04/2023] [Indexed: 03/28/2023]
Abstract
Control of biogenic amines (BAs) is important to guarantee the safety of sausage-like fermented meat products. This study investigated the influences of tea polyphenols (TP) and its lipophilic palmitic acid-modified derivatives, palmitoyl-TP (pTP) and palmitoyl-epigallocatechin gallate (pEGCG), on BAs and microbial ecosystem in Chinese sausages. TP, epigallocatechin gallate (EGCG), pTP, and pEGCG all reduced the formation of BAs and N-nitrosodimethylamine at 0.05% (g/g); yet, compared with TP and EGCG, the modified derivatives exhibited stronger action on BAs decreasing (P < 0.05), and pEGCG showed the highest effect (a reduction of total BAs from 376.22 to 168.98 mg/kg compared to control). The improved inhibitory effect of pTP and pEGCG should be attributed to their stronger dual-directional regulation of the bacterial and fungal communities during the natural fermentation of sausage. The modified pTP and pEGCG highly suppressed the growth of Staphylococcus, Candida, and Kurtzmaniella, all of which were positively correlated with BAs formation (all P < 0.05). However, pTP and pEGCG worked more effectively than the unmodified ones to promote Lactobacillus, Lactococcus, and Debaryomyces (all P < 0.05). The results above are significant for the application of palmitoyl-TP and similar TP derivatives in meat products in consideration of food safety. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-023-05717-z.
Collapse
Affiliation(s)
- Qin Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065 China
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing, 408100 China
| | - Min Mo
- Chongqing Customs Technology Center, Chongqing, 400020 China
| | - Bobin Tang
- Chongqing Customs Technology Center, Chongqing, 400020 China
| | - Qiang He
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065 China
| |
Collapse
|
10
|
Han AL, Jeong SJ, Ryu MS, Yang HJ, Jeong DY, Seo YB. Evaluation of Body Changes and the Anti-Obesity Effect after Consumption of Korean Fermented Food, Cheonggukjang: Randomized, Double-Blind Clinical Trial. Foods 2023; 12:foods12112190. [PMID: 37297435 DOI: 10.3390/foods12112190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/13/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Cheonggukjang is a traditional Korean fermented soybean food with potential health benefits. For this reason, Cheonggukjang is consumed in the form of pills in addition to being used as a food ingredient. There are few clinical studies that have evaluated changes in various health indicators through blood and stool tests before and after consumption of Cheonggukjang. In this study, symptoms and hematological changes were analyzed before and after the intake of traditional Cheonggukjang pills containing high-dose (n = 19) or low-dose (n = 20) beneficial bacteria and commercial Cheonggukjang pills (n = 20). Anti-obesity effects and body composition changes were determined before and after Cheonggukjang consumption. Lastly, the changes in microorganisms and short-chain fatty acids in the stool were compared. No changes in obesity and inflammation-related indicators were observed before and after Cheonggukjang consumption. The Firmicutes/Bacteroidetes ratio, associated with obesity, decreased in all three groups after Cheonggukjang consumption, but no statistical significance was indicated. Cheonggukjang contained various BAs, but they did not adversely affect symptoms and hematological changes in the participants. BAs generated during the manufacturing process of Cheonggukjang did not have any adverse effects in this randomized, double-blind clinical trial. Further research is needed in future concerning the anti-obesity effect or regarding changes in the microbiome and short-chain fatty acids in feces.
Collapse
Affiliation(s)
- A Lum Han
- Department of Family Medicine, Wonkwang University Hospital, Iksan 54538, Republic of Korea
| | - Su-Ji Jeong
- Microbial Institute for Fermentation Industry, Sunchang 56048, Republic of Korea
| | - Myeong-Seon Ryu
- Microbial Institute for Fermentation Industry, Sunchang 56048, Republic of Korea
| | - Hee-Jong Yang
- Microbial Institute for Fermentation Industry, Sunchang 56048, Republic of Korea
| | - Do-Youn Jeong
- Microbial Institute for Fermentation Industry, Sunchang 56048, Republic of Korea
| | - Yoo-Bin Seo
- Department of Family Medicine, Wonkwang University Sanbon Hospital, Sanbon 15865, Republic of Korea
| |
Collapse
|
11
|
Regulation of the nitrite, biogenic amine and flavor quality of Cantonese pickle by selected lactic acid bacteria. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
12
|
Wu J, Mao H, Dai Z. Role of Microorganisms in the Development of Quality during the Fermentation of Salted White Herring ( Ilisha elongata). Foods 2023; 12:foods12020406. [PMID: 36673497 PMCID: PMC9857776 DOI: 10.3390/foods12020406] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Salted white herring (Ilisha elongata) is a popular fish product in the coastal region of China. The complex endogenous enzymes and microbial action determine the quality of a traditionally salted herring. In order to investigate the role of microorganisms in the quality formation of salted herring, three groups for different salting processes were established: traditional salted (TS), non-starter salted (NS), and starter culture salted (SS). The predominant microorganism in each processing group was Staphylococcus spp., as inferred by next-generation sequencing data. Different physicochemical parameters were obtained in each of the three processing groups (TCA-soluble peptide (trichloroacetic acid-soluble peptide), TVB-N (Total volatile basic nitrogen), and TBA values (thiobarbituric acid-reactive substance)). The TS group had the maximum level of total biogenic amines, while the SS group had the lowest. A strong positive correlation was found between Staphylococcus and 14 aromatic compounds, of which 5 were odor-active compounds that created fishy, grassy, fatty, and fruity flavors. Shewanella may produce trimethylamine, which is responsible for the salted herrings’ fishy, salty, and deteriorating flavor. The findings demonstrated that autochthonous strains of Staphylococcus saprophyticus M90−61 were useful in improving product quality because they adapted quickly to the high osmotic environment.
Collapse
Affiliation(s)
- Jiajia Wu
- Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
- The Joint Key Laboratory of Aquatic Products Processing of Zhejiang Province, Hangzhou 310012, China
- Correspondence: ; Tel.: +86-180-5818-2612
| | - Haiping Mao
- Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Zhiyuan Dai
- Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
- The Joint Key Laboratory of Aquatic Products Processing of Zhejiang Province, Hangzhou 310012, China
| |
Collapse
|
13
|
Ikonić P, Jokanović M, Ćućević N, Peulić T, Šarić L, Tomičić Z, Škaljac S, Delić J, Lakićević B, Tomašević I. Effect of different ripening conditions on amino acids and biogenic amines evolution in Sjenički sudžuk. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.105009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
SHIRASAWA H, NISHIYAMA C, HIRANO R, KOYANAGI T, OKUDA S, TAKAGI H, KURIHARA S. Isolation of the high polyamine-producing bacterium Staphylococcus epidermidis FB146 from fermented foods and identification of polyamine-related genes. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2023; 42:24-33. [PMID: 36660601 PMCID: PMC9816048 DOI: 10.12938/bmfh.2022-011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/23/2022] [Indexed: 01/22/2023]
Abstract
It has been reported that the intake of polyamines contributes to the extension of healthy life span in animals. Fermented foods contain high concentrations of polyamines thought to be derived from fermentation bacteria. This suggests that bacteria that produce high levels of polyamines could be isolated from fermented foods and utilized as a source of polyamines for human nutrition. In this study, Staphylococcus epidermidis FB146 was isolated from miso, a Japanese fermented bean paste, and found to have a high concentration of putrescine in its culture supernatant (452 μM). We analyzed the presence of polyamines in the culture supernatants and cells of the type strains of 21 representative Staphylococcus species in addition to S. epidermidis FB146, and only S. epidermidis FB146 showed high putrescine productivity. Furthermore, whole-genome sequencing of S. epidermidis FB146 was performed, and the ornithine decarboxylase gene (odc), which is involved in putrescine synthesis, and the putrescine:ornithine antiporter gene (potE), which is thought to contribute to the release of putrescine into the culture supernatant, were present on plasmid DNA harbored by S. epidermidis FB146.
Collapse
Affiliation(s)
- Hideto SHIRASAWA
- Faculty of Biology-oriented Science and Technology, Kindai
University, 930 Nishimitani, Kinokawa, Wakayama 649-6493, Japan
| | - Chisato NISHIYAMA
- Faculty of Bioresources and Environmental Science, Ishikawa
Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Rika HIRANO
- Faculty of Biology-oriented Science and Technology, Kindai
University, 930 Nishimitani, Kinokawa, Wakayama 649-6493, Japan,Faculty of Bioresources and Environmental Science, Ishikawa
Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Takashi KOYANAGI
- Faculty of Bioresources and Environmental Science, Ishikawa
Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Shujiro OKUDA
- Medical AI Center, Niigata University School of Medicine,
2-5274 Gakkocho-dori, Chuo-ku, Niigata, Niigata 951-8514, Japan
| | - Hiroki TAKAGI
- Faculty of Bioresources and Environmental Science, Ishikawa
Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Shin KURIHARA
- Faculty of Biology-oriented Science and Technology, Kindai
University, 930 Nishimitani, Kinokawa, Wakayama 649-6493, Japan,*Corresponding author. Shin Kurihara (E-mail: )
| |
Collapse
|
15
|
Effect of stress factors on the production of biogenic amines by lactic acid bacteria isolated from fermented Mexican foods (cheese and beer). Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Owolabi IO, Kolawole O, Jantarabut P, Elliott CT, Petchkongkaew A. The importance and mitigation of mycotoxins and plant toxins in Southeast Asian fermented foods. NPJ Sci Food 2022; 6:39. [PMID: 36045143 PMCID: PMC9433409 DOI: 10.1038/s41538-022-00152-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/03/2022] [Indexed: 11/30/2022] Open
Abstract
Fermented foods (ffs) and beverages are widely consumed in Southeast Asia (SEA) for their nutritional balance, flavor, and food security. They serve as vehicles for beneficial microorganisms performing a significant role in human health. However, there are still major challenges concerning the safety of ffs and beverages due to the presence of natural toxins. In this review, the common toxins found in traditional ffs in SEA are discussed with special reference to mycotoxins and plant toxins. Also, mitigation measures for preventing risks associated with their consumption are outlined. Ochratoxin, citrinin, aflatoxins were reported to be major mycotoxins present in SEA ffs. In addition, soybean-based ff food products were more vulnerable to mycotoxin contaminations. Common plant toxins recorded in ffs include cyanogenic glycosides, oxalates, phytates and saponins. Combined management strategies such as pre-harvest, harvest and post-harvest control and decontamination, through the integration of different control methods such as the use of clean seeds, biological control methods, fermentation, appropriate packaging systems, and controlled processing conditions are needed for the safe consumption of indigenous ffs in SEA.
Collapse
Affiliation(s)
- Iyiola O Owolabi
- School of Food Science and Technology, Faculty of Science and Technology, Thammasat University, 99 Mhu 18, Phahonyothin Road, Khong Luang, Pathum Thani, 12120, Thailand.,International Joint Research Center on Food Security (IJC-FOODSEC), 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani, 12120, Thailand
| | - Oluwatobi Kolawole
- Institute for Global Food Security, School of Biological Science, Queen's University Belfast, 19 Chlorine Gardens Belfast, BT9 5DL, Belfast, Northern Ireland
| | - Phantakan Jantarabut
- School of Food Science and Technology, Faculty of Science and Technology, Thammasat University, 99 Mhu 18, Phahonyothin Road, Khong Luang, Pathum Thani, 12120, Thailand.,International Joint Research Center on Food Security (IJC-FOODSEC), 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani, 12120, Thailand
| | - Christopher T Elliott
- International Joint Research Center on Food Security (IJC-FOODSEC), 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani, 12120, Thailand.,Institute for Global Food Security, School of Biological Science, Queen's University Belfast, 19 Chlorine Gardens Belfast, BT9 5DL, Belfast, Northern Ireland
| | - Awanwee Petchkongkaew
- School of Food Science and Technology, Faculty of Science and Technology, Thammasat University, 99 Mhu 18, Phahonyothin Road, Khong Luang, Pathum Thani, 12120, Thailand. .,International Joint Research Center on Food Security (IJC-FOODSEC), 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani, 12120, Thailand. .,Institute for Global Food Security, School of Biological Science, Queen's University Belfast, 19 Chlorine Gardens Belfast, BT9 5DL, Belfast, Northern Ireland.
| |
Collapse
|
17
|
Dynamics of Bacterial Composition and Association with Quality Formation and Biogenic Amines Accumulation during Fish Sauce Spontaneous Fermentation. Appl Environ Microbiol 2022; 88:e0069022. [PMID: 35695487 PMCID: PMC9275223 DOI: 10.1128/aem.00690-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
High-throughput sequencing and high-pressure liquid chromatography (HPLC) methods were used to investigate the influences of microbial dynamics on the quality and biogenic amine (BA) content during fish sauce fermentation. The homogeneity of total viable bacteria and lactic acid bacteria in fish sauce becomes higher as fermentation progresses. Tetragenococcus was the key genus of fish sauce fermentation. Carnobacterium (38.43%) and Lentibacillus (41.01%) were the dominant genera in the samples fermented for 3 months and 18 months, respectively. These three bacterial genera were significantly related to the physicochemical characteristics and characteristic flavors of the sauces. Tetragenococcus was significantly positively correlated with nitrogen oxides, the main characteristic flavor components in fish sauce. The BA content in fish sauce fermentation increased from 106.88 to 376.03 mg/kg, and the content of histamine reached 115.30 mg/kg at the end of fermentation, indicating that fish sauce has health risks. About 66.67% of Lentibacillus isolates were able to produce a large amount of BA, suggesting that Lentibacillus was the key genus for BA accumulation in fish sauce fermentation. Research on reducing the content of BA in fish sauce by intervening with regard to the fermentation temperature showed that a safe fish sauce product could be obtained at the fermentation temperature of about 25°C. These results help us to understand the contribution of microbial community composition to fish sauce fermentation and provide a basis for improving the quality and safety of fermented fish sauce. IMPORTANCE Traditional fermentation of fish sauce is mainly carried out by complex microbial communities from raw anchovies and processing environments. However, it is still unclear how the environmental microbiota influences the quality and the safety of fish sauce products. Therefore, this study comprehensively explained the influence of microorganisms on the quality and safety of fish sauce during the fermentation process in terms of physicochemical characters, flavors, and BA. Additionally, the accumulation of BA in fish sauce fermentation was controlled by intervening in the fermentation temperature. This finding contributes to a deeper understanding of the role of environmental microbiota during fermentation and provides data support for improving the safety of fish sauce.
Collapse
|
18
|
Yu Y, Li L, Xu Y, Li H, Yu Y, Xu Z. Metagenomics Reveals the Microbial Community Responsible for Producing Biogenic Amines During Mustard [Brassica juncea (L.)] Fermentation. Front Microbiol 2022; 13:824644. [PMID: 35572710 PMCID: PMC9100585 DOI: 10.3389/fmicb.2022.824644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Biogenic amines (BAs) are considered potential hazards produced during fermented food processing, and the production of BAs is closely related to microbial metabolism. In this work, the changes of BA content were analyzed during mustard fermentation, and microbes and gene abundance responsible for producing BAs were revealed by metagenomic analyses. The results showed that cadaverine, putrescine, tyramine, and histamine were generated during mustard fermentation, which mainly accumulate in the first 6 days of fermentation. According to the metagenome sequencing, the predominant genus was Bacillus (64.78%), followed by Lactobacillus (11.67%), Weissella (8.88%), and Leuconostoc (1.71%) in the initial fermentation stage (second day), while Lactobacillus (76.03%) became the most dominant genus in the late stage. In addition, the gene abundance of BA production enzymes was the highest in the second day and decreased continuously as fermentation progressed. By tracking the source of the enzyme in the KEGG database, both Bacillus and Delftia closely correlated to the generation of putrescine. Besides, Bacillus also correlated to the generation of tyramine and spermidine, and Delftia also correlated to the generation of cadaverine and spermine. In the processes of fermentation, the pH of fermented mustard showed slower decrease compared with other similar fermented vegetables, which may allow Bacillus to grow at high levels before the pH <4. This study reveals the change of BA content and microbes involved in BA formation during mustard fermentation.
Collapse
Affiliation(s)
- Yangyang Yu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Lu Li
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Yujuan Xu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Hong Li
- Institute of Agro-Products Processing, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Yuanshan Yu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
- *Correspondence: Yuanshan Yu,
| | - Zhenlin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
- Zhenlin Xu,
| |
Collapse
|
19
|
Zou D, Zhao Z, Li L, Min Y, Zhang D, Ji A, Jiang C, Wei X, Wu X. A comprehensive review of spermidine: Safety, health effects, absorption and metabolism, food materials evaluation, physical and chemical processing, and bioprocessing. Compr Rev Food Sci Food Saf 2022; 21:2820-2842. [PMID: 35478379 DOI: 10.1111/1541-4337.12963] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 12/15/2022]
Abstract
Spermidine, a natural autophagy inducer, has a variety of health effects, such as antitumor, antiaging, anti-inflammation, cardiovascular protection, and neuromodulation. It has been a hot topic in the field of food processing, and current research findings suggest that spermidine-rich foods may be used in intervention and prevention of age-related diseases. In this article, recent findings on the safety, health effects, absorption and metabolism of spermidine were reviewed, and advances in food processing, including the raw materials evaluation, physical and chemical processing, and biological processing of spermidine, were highlighted. In particular, the core metabolic pathways, key gene targets, and efficient metabolic engineering strategies involved in the biosynthesis of spermidine and its precursors were discussed. Moreover, limitations and future perspectives of spermidine research were proposed. The purpose of this review is to provide new insights on spermidine from its safety to its food processing, which will advance the commercial production and applications of spermidine-rich foods and nutraceuticals.
Collapse
Affiliation(s)
- Dian Zou
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ziyue Zhao
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lu Li
- Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yu Min
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Daiyuan Zhang
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Anying Ji
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Cong Jiang
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xuetuan Wei
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xian Wu
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, Ohio, USA
| |
Collapse
|
20
|
Huang Y, Yu H, Lu S, Zou L, Tang Z, Zeng T, Tang J. Effect and mechanism of ferulic acid inclusion complexes on tyramine production by Enterobacter hormaechei MW386398 in smoked horsemeat sausages. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101520] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Putrescine Production by Latilactobacillus curvatus KP 3-4 Isolated from Fermented Foods. Microorganisms 2022; 10:microorganisms10040697. [PMID: 35456748 PMCID: PMC9026525 DOI: 10.3390/microorganisms10040697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 02/05/2023] Open
Abstract
Polyamines are aliphatic hydrocarbons with terminal amino groups and are essential for biological activities. It has been reported that polyamines have health-promoting effects in animals, such as the extension of lifespan by polyamine intake. The identification of a high polyamine-producing bacterium from foods could lead to the development of a novel probiotic candidate. We aimed to identify high polyamine-producing bacteria from food, and isolated and collected bacteria from vegetables and fermented foods produced in Japan. We successfully acquired Latilactobacillus curvatus KP 3-4 isolated from Kabura-zushi as a putrescine producing lactic acid bacteria. Comparing the polyamine synthesis capability of L. curvatus KP 3-4 with that of typical probiotic lactic acid bacteria and L. curvatus strains available from the Japan Collection of Microorganisms, it was found that only L. curvatus KP 3-4 was capable of exporting high levels of putrescine into the culture supernatant. The enhancement of putrescine production by the addition of ornithine, and whole-genome analysis of L. curvatus KP 3-4, suggest that putrescine is synthesized via ornithine decarboxylase. The administration of L. curvatus KP 3-4 to germ-free mice increased the concentration of putrescine in the feces.
Collapse
|
22
|
Berthoud H, Wechsler D, Irmler S. Production of Putrescine and Cadaverine by Paucilactobacillus wasatchensis. Front Microbiol 2022; 13:842403. [PMID: 35308356 PMCID: PMC8928434 DOI: 10.3389/fmicb.2022.842403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/14/2022] [Indexed: 11/28/2022] Open
Abstract
Lactic acid bacteria (LAB) play a key role in many food fermentations. However, some LAB species can also cause food spoilage, e.g., through the formation of biogenic amines. Paucilactobacillus wasatchensis is a LAB that causes late gas production in Cheddar cheese, the molecular causes of which are not fully understood. This study reports on the ability of P. wasatchensis WDC04 to produce cadaverine and putrescine in broth supplemented with lysine and ornithine, as well as in a model cheese. The raclette-type semi-hard cheese produced with P. wasatchensis as an adjunct culture contained 1,085 mg kg−1 of cadaverine and 304 mg kg−1 of putrescine after 120 days of ripening. We identified two ornithine decarboxylase genes (odc) and a putrescine-ornithine antiporter gene (potE) in the genome sequence of P. wasatchensis. We could show that the two odc genes, which are located on two contigs, are contiguous and form the genetic cluster odc2-odc1-potE. Alignment searches showed that similar gene clusters exist in the genomes of Levilactobacillus paucivorans DSMZ22467, Lentilactobacillus kribbianus YH-lac9, Levilactobacillus hunanensis 151-2B, and Levilactobacillus lindianensis 220-4. More amino acid sequence comparisons showed that Odc1 and Odc2 shared 72 and 69% identity with a lysine and ornithine decarboxylase from Ligilactobacillus saerimneri 30a, respectively. To clarify the catalytic activities of both enzymes, the odc-coding genes were cloned and heterologously expressed as His-tagged fusion protein. The purified Odc1 protein decarboxylated lysine into cadaverine, while the recombinant Odc2 protein preferentially produced putrescine from ornithine but also exhibited low lysine decarboxylating activity. Both enzymes were active at pH of 5.5, a value often found in cheese. To our knowledge, this is only the second lysine decarboxylase in LAB whose function has been verified. The tandem arrangement of the genes in a single cluster suggests a gene duplication, evolving the ability to metabolize more amino. Divergent substrate preferences highlight the necessity of verifying the functions of genes, in addition to automatic annotation based on sequence similarity. Acquiring new biochemical data allows better predictive models and, in this case, more accurate biogenic amine production potential for LAB strains and microbiomes.
Collapse
|
23
|
Schirone M, Esposito L, D’Onofrio F, Visciano P, Martuscelli M, Mastrocola D, Paparella A. Biogenic Amines in Meat and Meat Products: A Review of the Science and Future Perspectives. Foods 2022; 11:foods11060788. [PMID: 35327210 PMCID: PMC8947279 DOI: 10.3390/foods11060788] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 01/12/2023] Open
Abstract
Biogenic amines (BAs) can be found in a wide range of meat and meat products, where they are important as an index for product stability and quality, but also for their impact on public health. This review analyzes the scientific evidence gathered so far on the presence and role of biogenic amines in meat and meat products, also considering the effect of technological conditions on BAs accumulation or decrease. The data provided can be useful for developing solutions to control BAs formation during the shelf-life, for example by novel starters for dry cured products, as well as by packaging technologies and materials for fresh meats. Further research, whose trends are reviewed in this paper, will fill the knowledge gaps, and allow us to protect such perishable products along the distribution chain and in the home environment.
Collapse
Affiliation(s)
| | | | | | - Pierina Visciano
- Correspondence: (P.V.); (M.M.); Tel.: +39-0861-266911 (P.V. & M.M.)
| | | | | | | |
Collapse
|
24
|
Ma X, Zhang Y, Li X, Bi J, Zhang G, Hao H, Hou H. Impacts of salt-tolerant Staphylococcus nepalensis 5-5 on bacterial composition and biogenic amines accumulation in fish sauce fermentation. Int J Food Microbiol 2022; 361:109464. [PMID: 34749187 DOI: 10.1016/j.ijfoodmicro.2021.109464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/19/2021] [Accepted: 11/01/2021] [Indexed: 12/28/2022]
Abstract
High levels of biogenic amines (BAs) in fermented food can present a health risk to consumers. Microorganisms that can reduce BAs are widely used in fermented foods. However, the mechanism by which microorganisms reduce BAs in foods has not been explored. In this study, we investigated how Staphylococcus nepalensis 5-5 (S. nepalensis 5-5), which was a BA-degrading strain isolated from fish sauce, could reduce BA accumulation in the fish sauce. High-throughput sequencing and HPLC methods were sequentially used to determine the microbial community structure and BA content in fish sauce with/without S. nepalensis 5-5. The results showed that S. nepalensis 5-5 might be a safe strain that could improve the flavor of fish sauce while still exhibiting good BA degradation ability under a high salt environment. The content of BAs in fish sauce inoculated with S. nepalensis 5-5 was significantly decreased compared with the control fish sauce, achieving maximal reductions of 15.74, 14.18 and 16.65% in putrescine, cadaverine and histamine accumulation, respectively. According to high-throughput sequencing data, S. nepalensis 5-5 reduced the abundance of the genera positively associated with BAs, while increasing the number of bacterial genera negatively correlated with BAs in the sample and changed the correlation between some genera and BAs via species interaction. In addition, analysis of amino acid metabolism showed that S. nepalensis 5-5 might use histidine to produce metabolites other than histamine, thereby reducing the production of BAs. These findings not only explained the mechanisms by which the BA level in fish sauce could be reduced but also provided a potential means to control BA production in the fish sauce during the fermentation stage.
Collapse
Affiliation(s)
- Xinxiu Ma
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian Polytechnic University, Dalian 116034, China
| | - Yanan Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian Polytechnic University, Dalian 116034, China
| | - Xinyu Li
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian Polytechnic University, Dalian 116034, China
| | - Jingran Bi
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian Polytechnic University, Dalian 116034, China
| | - Gongliang Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian Polytechnic University, Dalian 116034, China
| | - Hongshun Hao
- Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian Polytechnic University, Dalian 116034, China
| | - Hongman Hou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
25
|
Li S, Du X, Feng L, Mu G, Tuo Y. The microbial community, biogenic amines content of soybean paste, and the degradation of biogenic amines by Lactobacillus plantarum HM24. Food Sci Nutr 2021; 9:6458-6470. [PMID: 34925777 PMCID: PMC8645731 DOI: 10.1002/fsn3.2528] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 11/11/2022] Open
Abstract
Soybean paste was a traditional fermented product in Northeast China, mainly fermented by molds, yeast, Bacillus, and lactic acid bacteria. This study investigated the dynamic changes of the microbial community and biogenic amine content during the fermentation of the traditional soybean paste. The microbial diversity of soybean paste in different regions was analyzed by MiSeq sequencing technology. The results showed that Penicillium and Tetragenococcus were the dominant microorganisms responsible for the fermentation of soybean paste. Biogenic amine was found in the traditional soybean paste at different fermentation stages, putrescine, and tyramine were the mainly biogenic amines and their content increased with the extension of fermentation time. Serratia in the soybean paste was positively correlated with the formation of spermine, cadaverine (p < .01), and β-phenethylamine (p < .05), Leuconostoc was negatively correlated with tyramine formation (p < .05), and Enterococcus was positively correlated with the formation of histamine, tryptamine and cadaverine (p < .01). Lactobacillus fermentum HM22, Lactobacillus plantarum HM24, and Enterococcus faecalis YF10042 with strong biogenic amine degrading capacity were inoculated into the koji. After 20 days of fermentation, the degradation rates of tryptamine, β-phenylethylamine, putrescine, cadaverine, histamine, and tyramine in soybean paste inoculated with L. plantarum HM24 were 35.31%, 43.14%, 30.18%, 33.44%, 32.74%, and 39.91%, respectively, indicating that the use of L. plantarum HM24 as a starter culture in soybean paste fermentation might be a good strategy for biogenic amines reduction.
Collapse
Affiliation(s)
- Siyi Li
- School of Food Science and TechnologyDalian Polytechnic UniversityDalianChina
| | - Xue Du
- School of Food Science and TechnologyDalian Polytechnic UniversityDalianChina
| | - Lu Feng
- School of Food Science and TechnologyDalian Polytechnic UniversityDalianChina
| | - Guangqing Mu
- School of Food Science and TechnologyDalian Polytechnic UniversityDalianChina
- Dalian Probiotics Function Research Key LaboratoryDalian Polytechnic UniversityDalianChina
| | - Yanfeng Tuo
- School of Food Science and TechnologyDalian Polytechnic UniversityDalianChina
- Dalian Probiotics Function Research Key LaboratoryDalian Polytechnic UniversityDalianChina
| |
Collapse
|
26
|
Ma X, Bi J, Li X, Zhang G, Hao H, Hou H. Contribution of Microorganisms to Biogenic Amine Accumulation during Fish Sauce Fermentation and Screening of Novel Starters. Foods 2021; 10:foods10112572. [PMID: 34828853 PMCID: PMC8621993 DOI: 10.3390/foods10112572] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, high-throughput sequencing and culture-dependent and HPLC methods were used to investigate the contribution and regulation of biogenic amines (BAs) by dominant microorganisms during fish sauce fermentation. The results showed that the microbial composition constantly changed with the fermentation of fish sauce. Tetragenococcus (40.65%), Lentibacillus (9.23%), Vagococcus (2.20%), Psychrobacter (1.80%), Pseudomonas (0.98%), Halomonas (0.94%) and Staphylococcus (0.16%) were the dominant microflora in fish sauce. The content of BAs gradually increased as the fermentation progressed. After 12 months of fermentation, the histamine content (55.59 mg/kg) exceeded the toxic dose recommended by the Food and Drug Administration (FDA). Correlation analysis showed that dominant microorganisms have a great contribution to the accumulation of BAs. By analyzing the BA production capacity of dominant isolates, the accumulation of BAs in fish sauce might be promoted by Tetragenococcus and Halomonas. Moreover, four strains with high BA reduction ability were screened out of 44 low BA-producing dominant strains, and their influence on BA accumulation in fermented foods was determined. Results demonstrated that Staphylococcus nepalensis 5-5 and Staphylococcus xylosus JCM 2418 might be the potential starters for BA control. The present study provided a new idea for the control of BAs in fermented foods.
Collapse
Affiliation(s)
- Xinxiu Ma
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian 116034, China; (X.M.); (J.B.); (X.L.); (G.Z.); (H.H.)
- Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1, Qinggongyuan, Ganjingzi District, Dalian 116034, China
| | - Jingran Bi
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian 116034, China; (X.M.); (J.B.); (X.L.); (G.Z.); (H.H.)
- Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1, Qinggongyuan, Ganjingzi District, Dalian 116034, China
| | - Xinyu Li
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian 116034, China; (X.M.); (J.B.); (X.L.); (G.Z.); (H.H.)
- Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1, Qinggongyuan, Ganjingzi District, Dalian 116034, China
| | - Gongliang Zhang
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian 116034, China; (X.M.); (J.B.); (X.L.); (G.Z.); (H.H.)
- Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1, Qinggongyuan, Ganjingzi District, Dalian 116034, China
| | - Hongshun Hao
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian 116034, China; (X.M.); (J.B.); (X.L.); (G.Z.); (H.H.)
- Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1, Qinggongyuan, Ganjingzi District, Dalian 116034, China
| | - Hongman Hou
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian 116034, China; (X.M.); (J.B.); (X.L.); (G.Z.); (H.H.)
- Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1, Qinggongyuan, Ganjingzi District, Dalian 116034, China
- Correspondence: ; Tel.: +86-411-8632-2020
| |
Collapse
|
27
|
Evaluation of the Relationship among Biogenic Amines, Nitrite and Microbial Diversity in Fermented Mustard. Molecules 2021; 26:molecules26206173. [PMID: 34684752 PMCID: PMC8541185 DOI: 10.3390/molecules26206173] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 11/17/2022] Open
Abstract
Biogenic amines (BAs) and nitrites are both considered harmful compounds for customer health, and are closely correlated with the microorganisms in fermented mustard (FM). In this study, BAs and nitrite contents in fifteen FM samples from different brands were analyzed. The concentrations of cadaverine in one sample and of histamine in one sample were above the toxic level. Moreover, five FM samples contained a high level of nitrite, exceeding the maximum residue limit (20 mg/kg) suggested by the National Food Safety Standard. Then, this study investigated bacterial and fungal communities by high-throughput sequencing analysis. Firmicutes and Basidiomycota were identified as the major bacteria and fungi phylum, respectively. The correlations among microorganisms, BAs and nitrite were analyzed. Typtamine showed a positive correlation with Lactobacillus and Pseudomonas. Cadaverine and nitrite is positively correlated with Leuconostoc. Furthermore, thirteen strains were selected from the samples to evaluate the accumulation and degradation properties of their BAs and nitrite. The results indicated that the Lactobacillus isolates, including L. plantarum GZ-2 and L. brevis SC-2, can significantly reduce BAs and nitrite in FM model experiments. This study not only assessed the contents of BAs and nitrite in FM samples, but also provided potential starter cultures for BAs and nitrite control in the FM products industry.
Collapse
|
28
|
Meng L, Zhu X, Tuo Y, Zhang H, Li Y, Xu C, Mu G, Jiang S. Reducing antigenicity of β-lactoglobulin, probiotic properties and safety evaluation of Lactobacillus plantarum AHQ-14 and Lactobacillus bulgaricus BD0390. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101137] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
29
|
Wang Z, Wang Z, Ji L, Zhang J, Zhao Z, Zhang R, Bai T, Hou B, Zhang Y, Liu D, Wang W, Chen L. A Review: Microbial Diversity and Function of Fermented Meat Products in China. Front Microbiol 2021; 12:645435. [PMID: 34163441 PMCID: PMC8215344 DOI: 10.3389/fmicb.2021.645435] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/30/2021] [Indexed: 11/13/2022] Open
Abstract
Fermented meat products have a long history in China. These products exhibit a characteristic unique flavor, compact meat quality, clear color, long shelf life and wide variety and are easy to transport. During the processing and storage of fermented meat products, microorganisms are present and exhibit diverse characteristics. Microorganisms can accelerate the degradation of proteins and fats to produce flavor compounds, inhibit the growth and reproduction of heterozygous bacteria, and reduce the content of chemical pollutants. This paper reviews the microbial diversity of Chinese ham, sausage, preserved meat, pressed salted duck, preserved fish and air-dried meat and provides analyses of the microbial compositions of various products. Due to the differences in raw materials, technology, auxiliary materials, and fermentation technology, the microbial species found in various fermented meat products in China are different. However, most fermented meat products in China are subjected to pickling and fermentation, so their microbial compositions also have similarities. Microorganisms in fermented meat products mainly include staphylococci, lactobacilli, micrococci, yeasts, and molds. The study of microbial diversity is of great significance for the formation of quality flavor and the safety control of fermented meat products, and it provides some theoretical reference for the study of fermented meat products in China.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Wei Wang
- Key Laboratory for Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| | - Lin Chen
- Key Laboratory for Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| |
Collapse
|
30
|
Arulkumar A, Paramithiotis S, Paramasivam S. Biogenic amines in fresh fish and fishery products and emerging control. AQUACULTURE AND FISHERIES 2021. [DOI: 10.1016/j.aaf.2021.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
31
|
Sang X, Ma X, Zhang Y, Hao H, Bi J, Zhang G, Hou H. Assessment of the Distribution and Safety of Tetragenococcus muriaticus for Potential Application in the Preparation of Chinese Grasshopper Sub Shrimp Paste. Front Microbiol 2021; 12:628838. [PMID: 33584630 PMCID: PMC7876237 DOI: 10.3389/fmicb.2021.628838] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/07/2021] [Indexed: 11/13/2022] Open
Abstract
The bacterial profiles of 63 grasshopper sub shrimp paste samples collected from seven typical regions around the Bohai Sea were investigated by high-throughput sequencing. Tetragenococcus muriaticus was found to be the prevailing species present in all the samples, and the presence of T. muriaticus also weakly correlated with the histamine content in the samples. Six T. muriaticus strains with low biogenic amine (BA)-producing ability and deficient in histamine production were identified and subjected to safety assessment. All six strains displayed weak resistance to fifteen known antibiotics as based on the Enterococcus breakpoint values. None of the strains exhibited hemolytic activity or biofilm formation. All strains exhibited were able to grow on MRS agar containing 21% NaCl and expressed amine oxidase and strain-specific proteases and lipases. Most of the strains exhibited acid production at 18% NaCl. Moreover, three of the strains (designated as SG, TS, and QH) with histamine degradation ability were inoculated into separate shrimp paste samples to determine their effect on BA accumulation. The results indicated that the addition of T. muriaticus to shrimp pastes not only led to a significant reduction of BA content in the pastes but also improved the flavor of the pastes. Consequently, these strains may be used as potential candidates for controlling the content of histamine in fermented foods.
Collapse
Affiliation(s)
- Xue Sang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian, China
| | - Xinxiu Ma
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian, China
| | - Yanan Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian, China
| | - Hongshun Hao
- Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian, China
| | - Jingran Bi
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian, China
| | - Gongliang Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian, China
| | - Hongman Hou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian, China
| |
Collapse
|
32
|
Evaluation of biogenic amines and microbial composition in the Chinese traditional fermented food grasshopper sub shrimp paste. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109979] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
33
|
Li Y, Yu Z, Zhu Y, Cao Z. Selection of nitrite-degrading and biogenic amine-degrading strains and its involved genes. FOOD QUALITY AND SAFETY 2020. [DOI: 10.1093/fqsafe/fyaa027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Objectives
Accumulation of nitrite and biogenic amines (BAs) in fermented meat products is a matter of public health concern. The study aimed to screen nitrite-degrading and BA-degrading strains from sour porridges and sausages and bacon products in China.
Materials and Methods
After screening out 12 strains, the degradation of nitrite, the degradation of BAs, the activities of nitrite-reducing enzymes, and the detection of genes involved in the BAs were assessed by spectrophotometry method with hydrochloric acid naphthalene ethylenediamine, high-performance liquid chromatography, GENMED kit, and polymerase chain reaction, respectively.
Results
Pediococcus pentosaceus labelled M SZ1 2 and M GC 2, Lactobacillus plantarum labelled M SZ2 2, and Staphylococcus xylosus labelled Y CC 3 were selected. The activity of nitrite-reducing enzyme in M SZ2 2 was 2.663 units/mg. The degradation rate of total BAs of M SZ2 2 was 93.24%. The degradation rates of nitrite and BAs of M SZ1 2 were 86.49% and 37.87%, respectively. The activity of nitrite-reducing enzyme in M SZ1 2 was up to 1.962 units/mg. M GC 2 showed higher degradation rates of nitrite (89.19%) and Y CC 3 showed higher degradation rates of BAs (36.16%). The genes encoding the multicopper oxidases (suf I/D2EK17) were detected in the four strains, which also did not contain BAs (histidine decarboxylase (hdc), tyrosine decarboxylase (tdc), ornithine decarboxylase (odc), lysine decarboxylase (ldc)) formation encoding genes.
Conclusion
These four strains (M SZ1 2, M GC 2, M SZ2 2, and Y CC 3) are promising candidates to use as starter cultures for nitrite and BAs in fermented sausages.
Collapse
Affiliation(s)
- Yuxin Li
- College of Food Science and Engineering, Shanxi Agricultural University, Shanxi, China
| | - Zhihui Yu
- College of Food Science and Engineering, Shanxi Agricultural University, Shanxi, China
| | - Yingchun Zhu
- College of Food Science and Engineering, Shanxi Agricultural University, Shanxi, China
| | - Zhixiang Cao
- College of Food Science and Technology, Hebei Agricultural University, Hebei, China
| |
Collapse
|
34
|
Sang X, Li K, Zhu Y, Ma X, Hao H, Bi J, Zhang G, Hou H. The Impact of Microbial Diversity on Biogenic Amines Formation in Grasshopper Sub Shrimp Paste During the Fermentation. Front Microbiol 2020; 11:782. [PMID: 32390997 PMCID: PMC7193991 DOI: 10.3389/fmicb.2020.00782] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/01/2020] [Indexed: 01/02/2023] Open
Abstract
Biogenic amines (BAs) and microbial diversity are important factors affecting food quality and safety in fermented foods. In this study, the bacterial and fungal diversity in grasshopper sub shrimp paste taken at different fermentation times were comprehensively analyzed, while the pH, colony counts, salinity, total volatile base nitrogen (TVB-N) and BA contents were quantitatively determined. In addition, the correlations among the samples with respect to microbial communities and the different parameters investigated especially BAs were also established. By combining the results of spearman correlation heatmap with the contents of BAs produced by the 102 halotolerant bacteria isolated from the grasshopper sub shrimp paste, six major genera of bacteria (Jeotgalibaca, Jeotgalicoccus, Lysinibacillus, Sporosarcina, Staphylococcus, and Psychrobacter) were found to be positively correlated with BA production level, suggesting that these bacteria might have a strong tendency to produce BAs. Other bacteria such as Lentibacillus, Pseudomonas, and Salinicoccus were considered as poor BA producers. The grasshopper sub shrimp paste was characterized by a relatively high abundance of Tetragenococcus, which was the dominant genus during the fermentation process, and it also produced a relatively high level of BAs but the spearman correlation heatmap revealed a negative correlation between T. muriaticus and BA level. Analysis of the species relevance network in grasshopper sub shrimp explained that the actual production of BAs by a certain strain was closely related to other species present in the complex fermentation system.
Collapse
Affiliation(s)
- Xue Sang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian Polytechnic University, Dalian, China
| | - Kexin Li
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian Polytechnic University, Dalian, China
| | - Yaolei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian Polytechnic University, Dalian, China
| | - Xinxiu Ma
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian Polytechnic University, Dalian, China
| | - Hongshun Hao
- Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian Polytechnic University, Dalian, China
| | - Jingran Bi
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian Polytechnic University, Dalian, China
| | - Gongliang Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian Polytechnic University, Dalian, China
| | - Hongman Hou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
35
|
Cai D, Zhang B, Zhu J, Xu H, Liu P, Wang Z, Li J, Yang Z, Ma X, Chen S. Enhanced Bacitracin Production by Systematically Engineering S-Adenosylmethionine Supply Modules in Bacillus licheniformis. Front Bioeng Biotechnol 2020; 8:305. [PMID: 32318565 PMCID: PMC7155746 DOI: 10.3389/fbioe.2020.00305] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/20/2020] [Indexed: 12/11/2022] Open
Abstract
Bacitracin is a broad-spectrum veterinary antibiotic that widely used in the fields of veterinary drug and feed additive. S-Adenosylmethionine (SAM) is a critical factor involved in many biochemical reactions, especially antibiotic production. However, whether SAM affects bacitracin synthesis is still unknown. Here, we want to analyze the relationship between SAM supply and bacitracin synthesis, and then metabolic engineering of SAM synthetic pathway for bacitracin production in Bacillus licheniformis. Firstly, our results implied that SAM exogenous addition benefited bacitracin production, which yield was increased by 12.13% under the condition of 40 mg/L SAM addition. Then, SAM synthetases and Methionine (Met) synthetases from B. licheniformis, Corynebacterium glutamicum, and Saccharomyces cerevisiae were screened and overexpressed to improve SAM accumulation, and the combination of SAM synthetase from S. cerevisiae and Met synthetase from B. licheniformis showed the best performance, and 70.12% increase of intracellular SAM concentration (31.54 mg/L) and 13.08% increase of bacitraicn yield (839.54 U/mL) were achieved in resultant strain DW2-KE. Furthermore, Met transporters MetN and MetP were, respectively, identified as Met exporter and importer, and bacitracin yield was further increased by 5.94% to 889.42 U/mL via deleting metN and overexpressing metP in DW2-KE, attaining strain DW2-KENP. Finally, SAM nucleosidase gene mtnN and SAM decarboxylase gene speD were deleted to block SAM degradation pathways, and bacitracin yield of resultant strain DW2-KENPND reached 957.53 U/mL, increased by 28.97% compared to DW2. Collectively, this study demonstrated that SAM supply served as the critical role in bacitracin synthesis, and a promising strain B. licheniformis DW2-KENPND was attained for industrial production of bacitracin.
Collapse
Affiliation(s)
- Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Bowen Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Jiang Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Haixia Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Pei Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Zhi Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan, China
| | - Junhui Li
- Lifecome Biochemistry Co., Ltd., Nanping, China
| | - Zhifan Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Xin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
36
|
Comparison of selected parameters related to food safety of fallow deer and beef uncured fermented sausages with freeze-dried acid whey addition. Meat Sci 2020; 161:108015. [DOI: 10.1016/j.meatsci.2019.108015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 11/19/2022]
|
37
|
Wu F, Cai D, Li L, Li Y, Yang H, Li J, Ma X, Chen S. Modular metabolic engineering of lysine supply for enhanced production of bacitracin in Bacillus licheniformis. Appl Microbiol Biotechnol 2019; 103:8799-8812. [DOI: 10.1007/s00253-019-10110-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/12/2019] [Accepted: 08/28/2019] [Indexed: 02/06/2023]
|