1
|
Chutia B, Dutta PP, Saikia L, Chowdhury P, Borah M, Barhoi D, Kumar R, Borah SN, Borah D, Manhar AK, Mandal M, Gogoi B. Exploring the antidiabetic activity of potential probiotic bacteria isolated from traditional fermented beverage. World J Microbiol Biotechnol 2024; 41:10. [PMID: 39690349 DOI: 10.1007/s11274-024-04226-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 12/09/2024] [Indexed: 12/19/2024]
Abstract
Type 2 Diabetes continues to be one of the major public health issues worldwide without any sustainable cure. The modulation of gut microbiota is believed to be caused by probiotic bacteria and several probiotic strains have previously shown antidiabetic activity. The present study aims to isolate potential probiotic bacteria from traditionally used fermented rice beer of Assam, India and to investigate its anti-hyperglycemic effect. Of the 20 isolated bacterial isolates, 5 isolates showed potential probiotic activities, of which, 2 isolates viz. Bacillus sp. FRB_A(A) and Acetobacter sp. FRB_B(S) showed good in vitro anti-oxidant and anti α-glucosidase activities. Based on the in vitro results, isolate Bacillus sp. FRB_A(A) was further used to evaluate the antidiabetic activity in streptozotocin induced diabetic rat model. After 21 days, the blood glucose level in diabetic rats with probiotic administration significantly lowered from 458.00 ± 46.62 mg/dl to 108.20 ± 6.76 mg/dl (p < 0.001), whereas, in diabetic rats without probiotic remained high (576.20 ± 29.48 mg/dl). On analyzing the endogenous antioxidant profile in various tissues of the experimental rats, reduced lipid peroxidation, glutathione level and superoxide dismutase and glutathione peroxidase activity were observed in probiotic administered rats in comparison to the streptozotocin treated diabetic controls. In conclusion, the bacteria Bacillus sp. FRB_A(A) isolated from fermented rice beer possesses probiotic attributes and exhibits significant anti-hyperglycemic activities.
Collapse
Affiliation(s)
- Bishwapriya Chutia
- Department of Biotechnology, The Assam Royal Global University, Guwahati, Assam, 781035, India
| | - Partha P Dutta
- Faculty of Pharmaceutical Science, Assam down town University, Panikhaiti, Guwahati, Assam, 781026, India
| | - Lunasmrita Saikia
- Faculty of Pharmaceutical Science, Assam down town University, Panikhaiti, Guwahati, Assam, 781026, India
| | - Purvita Chowdhury
- Viral Research and Diagnostic Laboratory, All India Institute of Medical Sciences, Guwahati, Assam, 781101, India
| | - Munmi Borah
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Assam, 784028, India
| | - Dharmeswar Barhoi
- Department of Zoology, The Assam Royal Global University, Guwahati, Assam, 781035, India
| | - Rupesh Kumar
- Department of Biotechnology, The Assam Royal Global University, Guwahati, Assam, 781035, India
| | - Siddhartha N Borah
- Department of Biotechnology, The Assam Royal Global University, Guwahati, Assam, 781035, India
| | - Debajit Borah
- Department of Biotechnology, The Assam Royal Global University, Guwahati, Assam, 781035, India
| | - Ajay Kumar Manhar
- Indira Gandhi Govt. PG College, Vaishali Nagar, Bhilai-23, Chhattisgarh, 490023, India
| | - Manabendra Mandal
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Assam, 784028, India
| | - Bhaskarjyoti Gogoi
- Department of Biotechnology, The Assam Royal Global University, Guwahati, Assam, 781035, India.
| |
Collapse
|
2
|
Zhao J, Zhao J, Zang J, Peng C, Li Z, Zhang P. Isolation, identification, and evaluation of lactic acid bacteria with probiotic potential from traditional fermented sour meat. Front Microbiol 2024; 15:1421285. [PMID: 39726969 PMCID: PMC11669687 DOI: 10.3389/fmicb.2024.1421285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 11/15/2024] [Indexed: 12/28/2024] Open
Abstract
Sour meat is a popular traditional fermented product and is a rich source of novel strains with probiotic potential. In this study, we aimed to assess the probiotic potential of lactic acid bacteria (LAB) strains isolated from fermented sour meat. Firstly, the microbial diversity of sour meat from four different areas in China was analyzed. The results showed that LAB were predominant in all samples. Subsequently, LAB were isolated from sour meat and a series of in vitro probiotic tests were carried out. A total of 130 bacterial strains with dissolved calcium were obtained and 10 strains showed a range of 89-97% survival in an acidic environment and high tolerance to bile salts. The ranges of hydrophobicity and auto-aggregation of 10 strains were 4.85-80.75% and 1.58-84.2%, respectively. Besides, all 10 strains exhibited high antimicrobial activity and antioxidant activity, of which, DZ24 possessed the strongest free radical scavenging (45.1%) and anti-lipid oxidizing ability (90.3%). Furthermore, DZ24 was identified as Lactiplantibacillus plantarum by 16S rRNA gene sequencing. Moreover, the fermentation indexes showed that DZ24 could rapidly reduce the pH to 4.14 and showed high salt and nitrite resistance and antioxidant ability. All the above experimental results indicate that Lactiplantibacillus plantarum DZ24 promise a suitable probiotic candidate for future applications in the fermented functional meats.
Collapse
Affiliation(s)
- Jiayi Zhao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao, China
- Shandong Technology Innovation Center of Special Food, Qingdao, China
- Qingdao Special Food Research Institute, Qingdao, China
| | - Jinshan Zhao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao, China
- Shandong Technology Innovation Center of Special Food, Qingdao, China
- Qingdao Special Food Research Institute, Qingdao, China
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Jinhong Zang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao, China
- Shandong Technology Innovation Center of Special Food, Qingdao, China
- Qingdao Special Food Research Institute, Qingdao, China
- Qingdao JuDaYang Algae Industry Group Co., Ltd., Qingdao, China
| | - Chuantao Peng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao, China
- Shandong Technology Innovation Center of Special Food, Qingdao, China
- Qingdao Special Food Research Institute, Qingdao, China
| | - Zhaojie Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao, China
- Shandong Technology Innovation Center of Special Food, Qingdao, China
- Qingdao Special Food Research Institute, Qingdao, China
| | - Peng Zhang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao, China
- Shandong Technology Innovation Center of Special Food, Qingdao, China
- Qingdao Special Food Research Institute, Qingdao, China
| |
Collapse
|
3
|
Sumerta IN, Ruan X, Howell K. The forgotten wine: Understanding palm wine fermentation and composition. Int J Food Microbiol 2024; 429:111022. [PMID: 39689568 DOI: 10.1016/j.ijfoodmicro.2024.111022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/19/2024]
Abstract
Palm wine is an alcoholic beverage that has existed for centuries and has important economic and socio-culture values in many tropical and sub-tropical countries. Lesser known than other types of wines, palm wine is made by spontaneous fermentation of palm sap by naturally occurring microbial communities. The palm sap ecosystem has unique microbial composition and diversity, which determines the composition of the eventual wine and is likely affected by geographical distinctiveness. While these features are well understood in grape and rice wine, these features have not been understood in palm wine. Here, we gather information of microbial communities and metabolite profiles from published studies, covering a wide range of methodologies and regions to better understand the causal links between the principal microbial species and major metabolites of palm wine. We assessed palm wine quality across production regions and local practices to provide general characteristics of palm wine and identify specific regional information. These will provide better understandings to the function of microbial communities and metabolite diversity, the contribution of regional variations and to ensure product quality in this unique, yet overlooked, fermented beverage.
Collapse
Affiliation(s)
- I Nyoman Sumerta
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Victoria 3010, Australia; National Research and Innovation Agency (BRIN), Jakarta 10340, Indonesia
| | - Xinwei Ruan
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Victoria 3010, Australia
| | - Kate Howell
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
4
|
Modasiya I, Mori P, Maniya H, Chauhan M, Grover CR, Kumar V, Sarkar AK. In Vitro Screening of Bacterial Isolates From Dairy Products for Probiotic Properties and Other Health-Promoting Attributes. Food Sci Nutr 2024; 12:10756-10769. [PMID: 39723103 PMCID: PMC11666839 DOI: 10.1002/fsn3.4537] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 12/28/2024] Open
Abstract
The present research was aimed to isolate potential probiotic organisms from dairy products locally made in and around the Saurashtra region of Gujarat. A total of 224 colonies were screened for primary attributes. Based on the results, 70 isolates were carried further for secondary screening. Out of these, only 23 isolates were further tested for antioxidant activities. Only 6 potential probiotic strains were found to have all the probiotic attributes. These isolates demonstrated survivability up to 4 h at pH ≤ 3, bile concentration ≥ 1.5%, autoaggregation ability ≥ 81.08%, and cell surface hydrophobicity more than 70% while using toluene as the test hydrocarbon. The promising six isolates were subjected to 16S rRNA sequencing for species-level identification and found to be belonging to the genus Bacillus, Enterococcus, and Lactobacillus. The isolates demonstrated higher antioxidant potential as determined by ABTS, DPPH, and FRAP methods. For all three methods, L. rhamnosus was taken as a positive control that showed 85.61%, 39.56%, and 78.18% reduction of free radicals as determined by the ABTS, DPPH, and FRAP methods, respectively. Compared to this, Limosilactobacillus fermentum BAB 7912 demonstrated the highest reduction of ABTS radicals (83.45%), while Bacillus subtilis BAB 7918 reduced 29.95% DPPH free radicals and Bacillus spizizenii BAB 7915 reduced 80.93% ferric ions as determined by the FRAP method. Isolates were subjected to 16S rRNA sequencing for species-level identification and found to be belonging to genus Bacillus, Enterococcus, and Lactobacillus.
Collapse
Affiliation(s)
- Ishita Modasiya
- Postbiotics and Foodomics Lab, Department of Microbiology, School of ScienceRK UniversityRajkotGujaratIndia
| | - Priya Mori
- Postbiotics and Foodomics Lab, Department of Microbiology, School of ScienceRK UniversityRajkotGujaratIndia
| | - Hina Maniya
- Postbiotics and Foodomics Lab, Department of Microbiology, School of ScienceRK UniversityRajkotGujaratIndia
| | - Mehul Chauhan
- Postbiotics and Foodomics Lab, Department of Microbiology, School of ScienceRK UniversityRajkotGujaratIndia
| | - Chand Ram Grover
- Symbiotics, Functional Food and Bioremediation Lab, Dairy Microbiology DivisionICAR‐N.D.R.IKarnalHaryanaIndia
| | - Vijay Kumar
- Postbiotics and Foodomics Lab, Department of Microbiology, School of ScienceRK UniversityRajkotGujaratIndia
| | | |
Collapse
|
5
|
Gouthami B, Ramalakshmi A, Balakrishnan M, Karthikeyan S, Muniraj I, Packialakshmi JS. Functional and molecular characterization of millet associated probiotic bacteria. BMC Microbiol 2024; 24:485. [PMID: 39567900 PMCID: PMC11577924 DOI: 10.1186/s12866-024-03606-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/24/2024] [Indexed: 11/22/2024] Open
Abstract
The lactic acid bacteria are one of the sustainable ways of food production. As the native lactic acid bacteria (LAB) easily manipulate the substrate, helps in production of health essential probiotics with enhancing the bioavailability of the substrate. Here also, in present study, the native LAB isolates isolated from the millets and characterize them for the functional analysis for the human health association. In the present study, fermented millet-associated lactic acid bacteria were screened and characterized for their probiotic potential, safety evaluation and antimicrobial activity. A total of 33 isolates were purified as lactic acid bacteria based on colony shape and biochemical assays. However, only 13 isolates were found to be catalase-negative. Among the 13 isolates, 5 isolates exhibited optimum growth at 6.5% and 9.5% of salt concentrations, pH of 4.5 to 8.5 and 17 °C to 40 °C of the temperature. The probiotic properties of the five isolates exhibited that the survival rates in acid and bile salt concentration ranged from 56.2 to 73.7% and 55.3 to 70.3%, respectively. Similarly, the surface hydrophobicity of the isolates was 41-75%. Antibiotic assay revealed that all five isolates were resistant to Amoxicillin, Cloxacillin, and Penicillin-V. Interestingly, all the isolates except ME26 displayed susceptibility towards Penicillin (2 units) and Tetracycline (10 µg). Further, the four isolates (ME25, ME26, ME9, and ME2) had more antifungal activity against Aspergillus flavus. However, only three, except ME1 and ME2, showed maximum antibacterial activity and produced more antimicrobial compounds compared to reference strain L. plantarum Pb3. The potential probiotic isolates were identified as Weisella cibaria ME9, Weisella cibaria ME26, and Weisella confusa ME25.
Collapse
Affiliation(s)
- Bashipangu Gouthami
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India
| | - Alaguthevar Ramalakshmi
- Department of Food Process Engineering, AEC and RI, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India.
| | - Murugesan Balakrishnan
- Department of Food Process Engineering, AEC and RI, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India
| | - Subburamu Karthikeyan
- Post Harvest Technology Centre, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India
| | - Iniyakumar Muniraj
- Departemnt of Agricultural Microbiology, Amrita School of Agricultural Sciences, Arasampalayam, Coimbatore, Tamil Nadu, 642 109, India
| | | |
Collapse
|
6
|
Cheruvari A, Kammara R. Genomic Characterization and Probiotic Properties of Lactiplantibacillus pentosus Isolated from Fermented Rice. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10378-1. [PMID: 39433653 DOI: 10.1007/s12602-024-10378-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2024] [Indexed: 10/23/2024]
Abstract
The aim of the study was the preliminary genetic and phenotypic characterization of a potential probiotic strain of Lactiplantibacillus pentosus (strain krglsrbmofpi2) obtained from traditionally fermented rice. Genome sequencing revealed that the strain has a 3.7-Mb genome with a GC content of 46 and a total of 3192 protein-coding sequences. Using bioinformatic methods, we have successfully identified phage genes, plasmids, pathogenicity, antibiotic resistance and a variety of bacteriocins. Through comprehensive biochemical and biophysical analyses, we have gained valuable insights into its auto-aggregation, co-aggregation, antibiotic resistance, hydrophobicity, antioxidant activity and tolerance to simulated gastrointestinal conditions. The safety evaluation of the isolated L. pentosus was performed on the basis of its haemolytic activity. Our studies have shown that this strain has a strong antagonistic activity against the priority pathogens identified by the World Health Organization such as Vibrio cholerae, Clostridium perfringens, Salmonella enterica subsp. enterica ser. Typhi, Escherichia coli, Listeria monocytogenes and Staphylococcus aureus. It is essential to fully understand the genetic and functional properties of the L. pentosus strain before considering its use as a useful probiotic in the food industry.
Collapse
Affiliation(s)
- Athira Cheruvari
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rajagopal Kammara
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
7
|
Shruthi B, Adithi G, Deepa N, Divyashree S, Sreenivasa MY. Probiotic and Functional Attributes of Yeasts Isolated from Different Traditional Fermented Foods and Products. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10342-z. [PMID: 39180663 DOI: 10.1007/s12602-024-10342-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2024] [Indexed: 08/26/2024]
Abstract
Though numerous bacteria have been used as probiotics by industries, at present, Saccharomyces boulardii and Saccharomyces cerevesiae are the only yeast probiotics which are industrially exploited. In view of this, yeast probiotics were isolated from traditional fermented foods and products collected from different parts of Karnataka, India. In this work, we have studied the probiotic attributes of ten yeast isolates isolated from different traditionally fermented foods and products. About 73 yeast isolates were initially isolated by serially diluting the samples and plating on the Potato Dextrose Agar (PDA) plates. The spot assay was performed to screen the yeast isolates against test pathogens. Ten isolates were selected based on their significant antimicrobial activity. These isolates were subjected to biochemical characterization and then assessed for probiotic properties. The ability of probiotics to endure at pH 2.0 and tolerate bile conditions (0.3%) are crucial attributes for the survival in the gastrointestinal tract (GIT). The yeast isolates were also assessed for cell surface hydrophobicity and autoaggregation capabilities. All the ten isolates showed endurance in GIT tract and > 40% of adhesion. The study further examined cholesterol assimilation, antioxidant and antagonistic properties of the yeasts. Subsequently, the molecular characterization was performed by isolating the DNA of yeast isolates by phenol-chloroform method and identified molecularly through sequencing of D1/D2 regions. The isolates tested negative for gelatinase and DNase and were non-haemolytic indicating they are safe for consumption. Among ten isolates, Meyerozyma guillermondii (MYSY23), Meyerozyma caribbica (MYSY22) and Meyerozyma guillermondii (MYSY19) showed significant results for all probiotic and functional characteristics with greater than 65% survivability in GIT tract and > 50% of antagonistic activity against test pathogens and also proved non-cytotoxic and safe. These findings suggest that yeasts with significant probiotic attributes could be recommended for various probiotic application.
Collapse
Affiliation(s)
- B Shruthi
- Applied Mycology Lab, Department of Studies in Microbiology, University of Mysore, Mysuru, 570006, Karnataka, India
| | - G Adithi
- Applied Mycology Lab, Department of Studies in Microbiology, University of Mysore, Mysuru, 570006, Karnataka, India
| | - N Deepa
- Applied Mycology Lab, Department of Studies in Microbiology, University of Mysore, Mysuru, 570006, Karnataka, India
| | - S Divyashree
- Applied Mycology Lab, Department of Studies in Microbiology, University of Mysore, Mysuru, 570006, Karnataka, India
| | - M Y Sreenivasa
- Applied Mycology Lab, Department of Studies in Microbiology, University of Mysore, Mysuru, 570006, Karnataka, India.
| |
Collapse
|
8
|
Yang B, Wang W, Jian C, Lv B, He H, Wang M, Li S, Guo Y. Screening of the Lipid-Lowering Probiotic Lactiplantibacillus Plantarum SDJ09 and its Anti-Obesity Mechanism. Appl Biochem Biotechnol 2024:10.1007/s12010-024-05034-x. [PMID: 39093349 DOI: 10.1007/s12010-024-05034-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
In this study, 39 strains of lactic acid bacteria were screened from several fermented foods. Based on the evaluation of functional and prebiotic properties, Lactiplantibacillus plantarum SDJ09 was selected as a promising candidate. It gave a 48.16% cholesterol reduction and 33.73% pancreatic lipase inhibition in cells; exhibited high resistance to acid, bile salts, and gastrointestinal fluid; and had strong antibacterial activity and high adhesion capabilities. More importantly, the lipid-lowering effect of L. plantarum SDJ09 was also investigated using 3T3-L1 mature adipocytes and HepG2 nonalcoholic fatty liver disease models. L. plantarum SDJ09 effectively decreased triglyceride accumulation by more than 50% in both cell models, in which the expression of PPARγ, C/EBPα, aP2, and LPL in 3T3-L1 cells was significantly downregulated by L. plantarum SDJ09. L. plantarum SDJ09 also improved lipid metabolism by downregulating the expression of HMGCR, SREBP-1c, ACC, and FAS and upregulating the expression of CYP7A1 in HepG2 nonalcoholic steatohepatitis cells. Therefore, L. plantarum SDJ09 has the potential to effectively decrease obesity and non-alcoholic fatty liver disease (NAFLD) by inhibiting lipid accumulation, providing a prospective probiotic agent for anti-obesity.
Collapse
Affiliation(s)
- Baoxin Yang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Wenxuan Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Cuiwen Jian
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Beibei Lv
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Hailin He
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Miao Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Shubo Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
- Key Laboratory of Deep Processing and Safety Control for Specialty Agricultural Products in Guangxi Universities, Education Department of Guangxi Zhuang Autonomous Region, Guangxi, China
| | - Yuan Guo
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, 530004, China.
| |
Collapse
|
9
|
Dharsini SP, Suganya K, Sumathi S. Identification of potential probiotics from fermented sour traditional rice varieties and in vitro simulation studies. Nat Prod Res 2024; 38:2723-2730. [PMID: 37403623 DOI: 10.1080/14786419.2023.2230608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/07/2023] [Accepted: 06/23/2023] [Indexed: 07/06/2023]
Abstract
Fermented products contain probiotic organisms that have beneficial and therapeutic effects on the gastrointestinal tract. The main objective of the study is to isolate probiotic bacteria from fermented sour traditional rice water and to evaluate their probiotic activity. The microbes were isolated from the fermented rice water and the characterization of the organisms was determined using MALDI-TOF MS. The morphological analysis, biochemical test, and carbohydrate fermentation test were done for further characterization. The colonization and therapeutic properties of organisms were evaluated by performing in vitro simulation studies. The results indicated that the isolated gram-positive organisms Pediococcus pentosaecus and Lactococcus lactis from traditional fermented sour rice water possessed desirable in vitro probiotic properties. Consuming fermented sour rice water enriches intestinal flora with beneficial bacteria and enzymes. Fermented rice water improves gut microbiome health, immune system function, and is also used to treat chronic conditions.
Collapse
Affiliation(s)
- S P Dharsini
- Department of Biochemistry, Biotechnology, and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| | - Kanagaraj Suganya
- Department of Biochemistry, Biotechnology, and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| | - Sundaravadivelu Sumathi
- Department of Biochemistry, Biotechnology, and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| |
Collapse
|
10
|
Thant EP, Surachat K, Chusri S, Romyasamit C, Pomwised R, Wonglapsuwan M, Yaikhan T, Suwannasin S, Singkhamanan K. Exploring Weissella confusa W1 and W2 Strains Isolated from Khao-Mahk as Probiotic Candidates: From Phenotypic Traits to Genomic Insights. Antibiotics (Basel) 2024; 13:604. [PMID: 39061286 PMCID: PMC11273482 DOI: 10.3390/antibiotics13070604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Growing interest in probiotics has spurred research into their health benefits for hosts. This study aimed to evaluate the probiotic properties, especially antibacterial activities and the safety of two Weissella confusa strains, W1 and W2, isolated from Khao-Mahk by describing their phenotypes and genotypes through phenotypic assays and whole genome sequencing. In vitro experiments demonstrated that both strains exhibited robust survival under gastric and intestinal conditions, such as in the presence of low pH, bile salt, pepsin, and pancreatin, indicating their favorable gut colonization traits. Additionally, both strains showed auto-aggregation and strong adherence to Caco2 cells, with adhesion rates of 86.86 ± 1.94% for W1 and 94.74 ± 2.29% for W2. These high adherence rates may be attributed to the significant exopolysaccharide (EPS) production observed in both strains. Moreover, they exerted remarkable antimicrobial activities against Stenotrophomonas maltophilia, Salmonella enterica serotype Typhi, Vibrio cholerae, and Acinetobacter baumannii, along with an absence of hemolytic activities and antibiotic resistance, underscoring their safety for probiotic application. Genomic analysis corroborated these findings, revealing genes related to probiotic traits, including EPS clusters, stress responses, adaptive immunity, and antimicrobial activity. Importantly, no transferable antibiotic-resistance genes or virulence genes were detected. This comprehensive characterization supports the candidacy of W1 and W2 as probiotics, offering substantial potential for promoting health and combating bacterial infections.
Collapse
Affiliation(s)
- Ei Phway Thant
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand (K.S.); (T.Y.); (S.S.)
| | - Komwit Surachat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand (K.S.); (T.Y.); (S.S.)
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Sarunyou Chusri
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand;
| | - Chonticha Romyasamit
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhonsithammarat 80161, Thailand;
| | - Rattanaruji Pomwised
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand; (R.P.); (M.W.)
| | - Monwadee Wonglapsuwan
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand; (R.P.); (M.W.)
| | - Thunchanok Yaikhan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand (K.S.); (T.Y.); (S.S.)
| | - Sirikan Suwannasin
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand (K.S.); (T.Y.); (S.S.)
| | - Kamonnut Singkhamanan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand (K.S.); (T.Y.); (S.S.)
| |
Collapse
|
11
|
Verma J, Devi S, Narang A, Kaur S, Manhas RK. Probiotic potential of Streptomyces levis strain HFM-2 isolated from human gut and its antibiofilm properties against pathogenic bacteria. BMC Microbiol 2024; 24:208. [PMID: 38862894 PMCID: PMC11165917 DOI: 10.1186/s12866-024-03353-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) is a serious worldwide public health concern that needs immediate action. Probiotics could be a promising alternative for fighting antibiotic resistance, displaying beneficial effects to the host by combating diseases, improving growth, and stimulating the host immune responses against infection. This study was conducted to evaluate the probiotic, antibacterial, and antibiofilm potential of Streptomyces levis strain HFM-2 isolated from the healthy human gut. RESULTS In vitro antibacterial activity in the cell-free supernatant of S. levis strain HFM-2 was evaluated against different pathogens viz. K. pneumoniae sub sp. pneumoniae, S. aureus, B. subtilis, VRE, S. typhi, S. epidermidis, MRSA, V. cholerae, M. smegmatis, E. coli, P. aeruginosa and E. aerogenes. Further, the ethyl acetate extract from S. levis strain HFM-2 showed strong biofilm inhibition against S. typhi, K. pneumoniae sub sp. pneumoniae, P. aeruginosa and E. coli. Fluorescence microscopy was used to detect biofilm inhibition properties. MIC and MBC values of EtOAc extract were determined at 500 and 1000 µg/mL, respectively. Further, strain HFM-2 showed high tolerance in gastric juice, pancreatin, bile, and at low pH. It exhibited efficient adhesion properties, displaying auto-aggregation (97.0%), hydrophobicity (95.71%, 88.96%, and 81.15% for ethyl acetate, chloroform and xylene, respectively), and showed 89.75%, 86.53%, 83.06% and 76.13% co-aggregation with S. typhi, MRSA, S. pyogenes and E. coli, respectively after 60 min of incubation. The S. levis strain HFM-2 was susceptible to different antibiotics such as tetracycline, streptomycin, kanamycin, ciprofloxacin, erythromycin, linezolid, meropenem, amikacin, gentamycin, clindamycin, moxifloxacin and vancomycin, but resistant to ampicillin and penicillin G. CONCLUSION The study shows that S. levis strain HFM-2 has significant probiotic properties such as good viability in bile, gastric juice, pancreatin environment, and at low pH; proficient adhesion properties, and antibiotic susceptibility. Further, the EtOAc extract of Streptomyces levis strain HFM-2 has a potent antibiofilm and antibacterial activity against antibacterial-resistant clinical pathogens.
Collapse
Affiliation(s)
- Jaya Verma
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Sapna Devi
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Anmol Narang
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Sukhraj Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| | | |
Collapse
|
12
|
Barreto Pinilla CM, Brandelli A, Ataíde Isaia H, Guzman F, Sundfeld da Gama MA, Spadoti LM, Torres Silva E Alves A. Probiotic Potential and Application of Indigenous Non-Starter Lactic Acid Bacteria in Ripened Short-Aged Cheese. Curr Microbiol 2024; 81:202. [PMID: 38829392 DOI: 10.1007/s00284-024-03729-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/04/2024] [Indexed: 06/05/2024]
Abstract
There are massive sources of lactic acid bacteria (LAB) in traditional dairy products. Some of these indigenous strains could be novel probiotics with applications in human health and supply the growing needs of the probiotic industry. In this work, were analyzed the probiotic and technological properties of three Lactobacilli strains isolated from traditional Brazilian cheeses. In vitro tests showed that the three strains are safe and have probiotic features. They presented antimicrobial activity against pathogenic bacteria, auto-aggregation values around 60%, high biofilm formation properties, and a survivor of more than 65% to simulated acid conditions and more than 100% to bile salts. The three strains were used as adjunct cultures separately in a pilot-scale production of Prato cheese. After 45 days of ripening, the lactobacilli counts in the cheeses were close to 8 Log CFU/g, and was observed a reduction in the lactococci counts (around -3 Log CFU/g) in a strain-dependent manner. Cheese primary and secondary proteolysis were unaffected by the probiotic candidates during the ripening, and the strains showed no lipolytic effect, as no changes in the fatty acid profile of cheeses were observed. Thus, our findings suggest that the three strains evaluated have probiotic properties and have potential as adjunct non-starter lactic acid bacteria (NSLAB) to improve the quality and functionality of short-aged cheeses.
Collapse
Affiliation(s)
| | - Adriano Brandelli
- Laboratory of Applied Microbiology and Biochemistry, Institute of Food Science and Technology (ICTA), Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil
| | - Henrique Ataíde Isaia
- Laboratory of Applied Microbiology and Biochemistry, Institute of Food Science and Technology (ICTA), Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil
| | - Frank Guzman
- Grupo de Investigación en Epidemiología y Diseminación de la Resistencia a Antimicrobianos - "One Health", Universidad Científica del Sur, Lima, Perú
| | | | - Leila Maria Spadoti
- Dairy Technology Center (TECNOLAT) of the Food Technology Institute (ITAL), Campinas, São Paulo, Brazil
| | | |
Collapse
|
13
|
Lei Y, Yan Y, Zhong J, Zhao Y, Xu Y, Zhang T, Xiong H, Chen Y, Wang X, Zhang K. Enterococcus durans 98D alters gut microbial composition and function to improve DSS-induced colitis in mice. Heliyon 2024; 10:e28486. [PMID: 38560132 PMCID: PMC10981110 DOI: 10.1016/j.heliyon.2024.e28486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
Enterococcus durans, is a potential functional strain with the capacity to regulate intestinal health and ameliorate colonic inflammation. However, the strain requires further investigation regarding its safety profile and potential mechanisms of colitis improvement. In this study, the safety of E. durans 98D (Ed) as a potential probiotic was studied using in vitro methods. Additionally, a dextran sulfate sodium (DSS)-induced murine colitis model was employed to investigate its impact on the intestinal microbiota and colitis. In vitro antimicrobial assays revealed Ed sensitivity to common antibiotics and its inhibitory effect on the growth of Escherichia coli O157, Streptococcus pneumoniae CCUG 37328, and Staphylococcus aureus ATCC 25923. To elucidate the functional properties of Ed, 24 weight-matched 6-week-old female C57BL/6J mice were randomly divided into three groups (n = 8): NC group, Con group (DSS), and Ed group (DSS + Ed). Ed administration demonstrated a protective effect on colitis mice, as evidenced by improvements in body weight, colonic length, reduced disease activity index, histological scores, diminished splenomegaly, and decreased goblet cell loss. Furthermore, Ed downregulated the expression of the pro-inflammatory cytokine genes (IL-6, IL-1β, and TNF-α) and upregulated the expression of the anti-inflammatory cytokine gene IL-10. The 16S rRNA gene sequencing revealed significant alterations in microbial α-diversity, with principal coordinate analysis indicating distinct differences in microbial composition among the three groups. At the phylum level, the relative abundance of Actinomycetota significantly increased in the Ed-treated group. At the genus level, Ed treatment markedly elevated the relative abundance of Paraprevotella, Rikenellaceae_RC9, and Odoribacter in DSS-induced colitis mice. In conclusion, Ed exhibits potential as a safe and effective therapeutic agent for DSS-induced colitis by reshaping the colonic microbiota.
Collapse
Affiliation(s)
| | | | - Junyu Zhong
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yitong Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yangbin Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Ting Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Hui Xiong
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yulin Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiaolong Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Ke Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
14
|
Lee J, Jo J, Seo H, Han SW, Kim DH. The Probiotic Properties and Safety of Limosilactobacillus mucosae NK41 and Bifidobacterium longum NK46. Microorganisms 2024; 12:776. [PMID: 38674720 PMCID: PMC11052174 DOI: 10.3390/microorganisms12040776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/01/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Probiotics should possess specific properties to exert beneficial effects, and their safety must be ensured for human consumption. The purpose of this study was to evaluate the probiotic properties and safety of Limosilactobacillus mucosae NK41 and Bifidobacterium longum NK46 isolated from human feces in vitro. Both strains exhibited high resistance to simulated gastrointestinal fluid. Furthermore, probiotic-related cell surface characteristics including auto-aggregation and cell surface hydrophobicity were assessed by measuring the absorbance at a wavelength of 600 nm, which demonstrated good auto-aggregation ability and affinity for xylene, indicating their effective adhesion to Caco-2 cells. In addition, hemolytic, gelatinase, and β-glucuronidase activities were found to be negative in both strains. The susceptibility to nine commonly used antibiotics was assessed using the broth macrodilution method, which demonstrated that both strains were susceptible to all tested antibiotics. Furthermore, L. mucosae NK41 and B. longum NK46 produced significantly higher levels of L-lactate (71.8 ± 0.7% and 97.8 ± 0.4%) than D-lactate (28.2 ± 0.7% and 2.2 ± 0.4%, respectively). Using PCR amplification to investigate genes associated with virulence factors, we found that neither strain harbored any virulence genes. These findings suggest that L. mucosae NK41 and B. longum NK46 have the potential to be used as probiotics and are considered safe for human consumption.
Collapse
Affiliation(s)
- Jaekoo Lee
- PB Business Department, NVP Healthcare Inc., Suwon 16209, Republic of Korea; (J.L.); (J.J.); (H.S.); (S.-W.H.)
- Department of Food Regulatory Science, Korea University, Sejong 30019, Republic of Korea
| | - Jaehyun Jo
- PB Business Department, NVP Healthcare Inc., Suwon 16209, Republic of Korea; (J.L.); (J.J.); (H.S.); (S.-W.H.)
| | - Hanseul Seo
- PB Business Department, NVP Healthcare Inc., Suwon 16209, Republic of Korea; (J.L.); (J.J.); (H.S.); (S.-W.H.)
| | - Seung-Won Han
- PB Business Department, NVP Healthcare Inc., Suwon 16209, Republic of Korea; (J.L.); (J.J.); (H.S.); (S.-W.H.)
| | - Dong-Hyun Kim
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
15
|
Seth M, Mondal P, Ghosh D, Biswas R, Chatterjee S, Mukhopadhyay SK. Metabolomic and genomic insights into TMA degradation by a novel halotolerant strain - Paracoccus sp. PS1. Arch Microbiol 2024; 206:201. [PMID: 38564030 DOI: 10.1007/s00203-024-03931-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
Trimethylamine N-oxide (TMAO) is a gut metabolite that acts as a biomarker for chronic diseases, and is generated by the oxidation of trimethylamine (TMA) produced by gut microflora. Since, microbial degradation of TMA is predicted to be used to restrict the production of TMAO, we aimed to isolate bacterial strains that could effectively degrade TMA before being oxidized to TMAO. As marine fish is considered to have a rich content of TMAO, we have isolated TMA degrading isolates from fish skin. Out of the fourteen isolates, depending on their rapid TMA utilization capability in mineral salt medium supplemented with TMA as a sole carbon and nitrogen source, isolate PS1 was selected as our desired isolate. Its TMA degrading capacity was further confirmed through spectrophotometric, Electrospray Ionization Time-of-Flight Mass Spectrometry (ESI TOF-MS) and High performance liquid chromatography (HPLC) analysis and in silico analysis of whole genome (WG) gave further insights of protein into its TMA degradation pathways. PS1 was taxonomically identified as Paracoccus sp. based on its 16S rRNA and whole genome sequence analysis. As PS1 possesses the enzymes required for degradation of TMA, clinical use of this isolate has the potential to reduce TMAO generation in the human gut.
Collapse
Affiliation(s)
- Madhupa Seth
- Department of Microbiology, The University of Burdwan, Burdwan, Purba Bardhaman, 713104, West Bengal, India
| | - Priyajit Mondal
- Department of Microbiology, The University of Burdwan, Burdwan, Purba Bardhaman, 713104, West Bengal, India
| | - Dhritishree Ghosh
- Department of Microbiology, The University of Burdwan, Burdwan, Purba Bardhaman, 713104, West Bengal, India
| | - Raju Biswas
- Microbiology Laboratory, Department of Botany, Institute of Science, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India
| | - Sumit Chatterjee
- Department of Biological Sciences, Bose Institute, EN 80, Sector V, Bidhan Nagar, Kolkata, 700091, West Bengal, India
| | - Subhra Kanti Mukhopadhyay
- Department of Microbiology, The University of Burdwan, Burdwan, Purba Bardhaman, 713104, West Bengal, India.
| |
Collapse
|
16
|
Liu X, Zhao H, Wong A. Accounting for the health risk of probiotics. Heliyon 2024; 10:e27908. [PMID: 38510031 PMCID: PMC10950733 DOI: 10.1016/j.heliyon.2024.e27908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
Probiotics have long been associated with a myriad of health benefits, so much so that their adverse effects whether mild or severe, are often neglected or overshadowed by the enormous volume of articles describing their beneficial effects in the current literature. Recent evidence has demonstrated several health risks of probiotics that warrant serious reconsideration of their applications and further investigations. This review aims to highlight studies that report on how probiotics might cause opportunistic systemic and local infections, detrimental immunological effects, metabolic disturbance, allergic reactions, and facilitating the spread of antimicrobial resistance. To offer a recent account of the literature, articles within the last five years were prioritized. The narration of these evidence was based on the nature of the studies in the following order of preference: clinical studies or human samples, in vivo or animal models, in situ, in vitro and/or in silico. We hope that this review will inform consumers, food scientists, and medical practitioners, on the health risks, while also encouraging research that will focus on and clarify the adverse effects of probiotics.
Collapse
Affiliation(s)
- Xiangyi Liu
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province, 325060, China
- Department of Biology, Dorothy and George Hennings College of Science, Mathematics and Technology, Kean, University, 1000 Morris Ave, Union, NJ, 07083, USA
| | - Haiyi Zhao
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province, 325060, China
- Department of Biology, Dorothy and George Hennings College of Science, Mathematics and Technology, Kean, University, 1000 Morris Ave, Union, NJ, 07083, USA
| | - Aloysius Wong
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province, 325060, China
- Department of Biology, Dorothy and George Hennings College of Science, Mathematics and Technology, Kean, University, 1000 Morris Ave, Union, NJ, 07083, USA
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Ouhai, Wenzhou, Zhejiang Province, 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Ouhai, Wenzhou, Zhejiang Province, 325060, China
| |
Collapse
|
17
|
Dikbaş N, Orman YC, Alım Ş, Uçar S, Tülek A. Evaluating Enterococcus faecium9 N-2 as a probiotic candidate from traditional village white cheese. Food Sci Nutr 2024; 12:1847-1856. [PMID: 38455208 PMCID: PMC10916548 DOI: 10.1002/fsn3.3878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 03/09/2024] Open
Abstract
In this study, various functional and probiotic attributes of the Enterococcus faecium 9 N-2 strain isolated from village-style white cheese were characterized, while also assessing its safety. To achieve this, we conducted an in vitro analysis of several key probiotic properties exhibited by the 9 N-2 strain. Notably, this strain demonstrated robust resilience to low pH, high bile salt concentrations, lysozyme, pepsin, pancreatin, and phenol. Furthermore, this strain displayed exceptional auto-aggregation capabilities and moderate co-aggregation tendencies when interacting with Escherichia coli. The cell-free supernatant derived from strain 9 N-2 exhibited significant antimicrobial activity against the tested pathogens. The strain exhibited resistance to gentamicin, meropenem, and bacitracin, while remaining susceptible to vancomycin and various other antibiotics. Furthermore, it was found that E. faecium 9 N-2 possessed the capacity to produce the phytase enzyme. When all the results of this study are evaluated, it is thought that 9 N-2 strain has superior probiotic properties, and therefore it can be used as probiotic in food, medicine, and animal feed in the future. In addition, further in vivo tests should be performed to fully understand its effects and mechanisms of action and to confirm its safety and probiotic effects. Further research and clinical trials are also needed to identify new strains with potential probiotic properties.
Collapse
Affiliation(s)
- Neslihan Dikbaş
- Department of Agricultural Biotechnology, Agricultural FacultyAtaturk UniversityErzurumTurkey
| | - Yusuf Can Orman
- Department of Agricultural Biotechnology, Agricultural FacultyAtaturk UniversityErzurumTurkey
| | - Şeyma Alım
- Department of Agricultural Biotechnology, Agricultural FacultyAtaturk UniversityErzurumTurkey
| | - Sevda Uçar
- Department of Herbal Production and Technologies, Faculty of Agricultural Sciences and TechnologySivas Science and Technology UniversitySivasTurkey
| | - Ahmet Tülek
- Department of Bioengineering and SciencesIğdır UniversityIğdırTurkey
| |
Collapse
|
18
|
Argentini C, Lugli GA, Tarracchini C, Fontana F, Mancabelli L, Viappiani A, Anzalone R, Angelini L, Alessandri G, Bianchi MG, Taurino G, Bussolati O, Milani C, van Sinderen D, Turroni F, Ventura M. Ecology- and genome-based identification of the Bifidobacterium adolescentis prototype of the healthy human gut microbiota. Appl Environ Microbiol 2024; 90:e0201423. [PMID: 38294252 PMCID: PMC10880601 DOI: 10.1128/aem.02014-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 02/01/2024] Open
Abstract
Bifidobacteria are among the first microbial colonizers of the human gut, being frequently associated with human health-promoting activities. In the current study, an in silico methodology based on an ecological and phylogenomic-driven approach allowed the selection of a Bifidobacterium adolescentis prototype strain, i.e., B. adolescentis PRL2023, which best represents the overall genetic content and functional features of the B. adolescentis taxon. Such features were confirmed by in vitro experiments aimed at evaluating the ability of this strain to survive in the gastrointestinal tract of the host and its ability to interact with human intestinal cells and other microbial gut commensals. In this context, co-cultivation of B. adolescentis PRL2023 and several gut commensals revealed various microbe-microbe interactions and indicated co-metabolism of particular plant-derived glycans, such as xylan.IMPORTANCEThe use of appropriate bacterial strains in experimental research becomes imperative in order to investigate bacterial behavior while mimicking the natural environment. In the current study, through in silico and in vitro methodologies, we were able to identify the most representative strain of the Bifidobacterium adolescentis species. The ability of this strain, B. adolescentis PRL2023, to cope with the environmental challenges imposed by the gastrointestinal tract, together with its ability to switch its carbohydrate metabolism to compete with other gut microorganisms, makes it an ideal choice as a B. adolescentis prototype and a member of the healthy microbiota of adults. This strain possesses a genetic blueprint appropriate for its exploitation as a candidate for next-generation probiotics.
Collapse
Affiliation(s)
- Chiara Argentini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- GenProbio srl, Parma, Italy
| | - Leonardo Mancabelli
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | | | | | - Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Massimiliano G. Bianchi
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Medicine and Surgery, Laboratory of General Pathology, University of Parma, Parma, Italy
| | - Giuseppe Taurino
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Medicine and Surgery, Laboratory of General Pathology, University of Parma, Parma, Italy
| | - Ovidio Bussolati
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Medicine and Surgery, Laboratory of General Pathology, University of Parma, Parma, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
19
|
Vasundaradevi R, Sarvajith M, Somashekaraiah R, Gunduraj A, Sreenivasa MY. Antagonistic properties of Lactiplantibacillus plantarum MYSVB1 against Alternaria alternata: a putative probiotic strain isolated from the banyan tree fruit. Front Microbiol 2024; 15:1322758. [PMID: 38404595 PMCID: PMC10885809 DOI: 10.3389/fmicb.2024.1322758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/15/2024] [Indexed: 02/27/2024] Open
Abstract
Alternaria alternata, a notorious phytopathogenic fungus, has been documented to infect several plant species, leading to the loss of agricultural commodities and resulting in significant economic losses. Lactic acid bacteria (LAB) hold immense promise as biocontrol candidates. However, the potential of LABs derived from fruits remains largely unexplored. In this study, several LABs were isolated from tropical fruit and assessed for their probiotic and antifungal properties. A total of fifty-five LABs were successfully isolated from seven distinct fruits. Among these, seven isolates showed inhibition to growth of A. alternata. Two strains, isolated from fruits: Ficus benghalensis, and Tinospora cordifolia exhibited promising antifungal properties against A. alternata. Molecular identification confirmed their identities as Lactiplantibacillus plantarum MYSVB1 and MYSVA7, respectively. Both strains showed adaptability to a wide temperature range (10-45°C), and salt concentrations (up to 7%), with optimal growth around 37 °C and high survival rates under simulated gastrointestinal conditions. Among these two strains, Lpb. plantarum MYSVB1 demonstrated significant inhibition (p < 0.01) of the growth of A. alternata. The inhibitory effects of cell-free supernatant (CFS) were strong, with 5% crude CFS sufficient to reduce fungal growth by >70% and complete inhibition by 10% CFS. Moreover, the CFS was inhibitory for both mycelial growth and conidial germination. CFS retained its activity even after long cold storage. The chromatographic analysis identified organic acids in CFS, with succinic acid as the predominant constituent, with lactic acid, and malic acid in descending order. LAB strains isolated from tropical fruits showed promising probiotic and antifungal properties, making them potential candidates for various applications in food and agriculture.
Collapse
Affiliation(s)
| | | | | | | | - M. Y. Sreenivasa
- Applied Mycology Laboratory, Department of Studies in Microbiology, University of Mysore, Mysuru, India
| |
Collapse
|
20
|
Angal A, Shidture S, Syed J, Tiwari DP, Dubey AK, Bhaduri A, Pujari R. In vitro adhesion and anti-inflammatory properties of Limosilactobacillus fermentum FS-10 isolated from infant fecal sample. Int Microbiol 2024; 27:227-238. [PMID: 37269431 DOI: 10.1007/s10123-023-00383-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/05/2023]
Abstract
In this study, seven strains of Limosilactobacillus fermentum were isolated from an infant fecal sample and characterized using in vitro studies. Lactobacillus rhamnosus GG was used as a comparison because it is a well-documented commercial probiotic. The isolates were tested for attributes such as acid and phenol tolerance, bile salt hydrolase (BSH) activity, and antibiotic sensitivity. One isolate, L. fermentum FS-10, displayed enhanced cell surface hydrophobicity (> 85%) and mucin adhesion. Mucin-binding helps colonization in the gut. The immunomodulatory property of L. fermentum FS-10 was evaluated by determining the modulation of pro- and anti-inflammatory factors such as tumor necrosis factor-alpha (TNF-α), interleukin (IL)-10, and nitric oxide (NO) in human acute monocytic leukemia (THP-1) cells under inflammatory conditions induced by lipopolysaccharide (LPS). L. fermentum FS-10 potently downregulated the expression of TNF-α and nitric oxide and upregulated IL-10 levels, indicating an anti-inflammatory response. Safety assessment of the strain revealed the absence of genes for virulence factors, toxin production, and antibiotic resistance, potentiating application as a probiotic strain.
Collapse
Affiliation(s)
- Ashvini Angal
- Tata Chemicals Limited, Survey No 315, Hissa No 1-14, Paud Rd, Darawali, Pune, Maharashtra, 412111, India
| | - Shubham Shidture
- Tata Chemicals Limited, Survey No 315, Hissa No 1-14, Paud Rd, Darawali, Pune, Maharashtra, 412111, India
| | - Jaserah Syed
- Tata Chemicals Limited, Survey No 315, Hissa No 1-14, Paud Rd, Darawali, Pune, Maharashtra, 412111, India
| | - Deepika Pandey Tiwari
- Tata Chemicals Limited, Survey No 315, Hissa No 1-14, Paud Rd, Darawali, Pune, Maharashtra, 412111, India
| | - Ashok Kumar Dubey
- Tata Chemicals Limited, Survey No 315, Hissa No 1-14, Paud Rd, Darawali, Pune, Maharashtra, 412111, India
| | - Anirban Bhaduri
- Tata Chemicals Limited, Survey No 315, Hissa No 1-14, Paud Rd, Darawali, Pune, Maharashtra, 412111, India
| | - Radha Pujari
- Tata Chemicals Limited, Survey No 315, Hissa No 1-14, Paud Rd, Darawali, Pune, Maharashtra, 412111, India.
| |
Collapse
|
21
|
Huligere SS, Kumari V B C, Desai SM, Wong LS, Firdose N, Ramu R. Investigating the antidiabetic efficacy of dairy-derived Lacticaseibacillus paracasei probiotic strains: modulating α-amylase and α-glucosidase enzyme functions. Front Microbiol 2023; 14:1288487. [PMID: 38111646 PMCID: PMC10725979 DOI: 10.3389/fmicb.2023.1288487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/02/2023] [Indexed: 12/20/2023] Open
Abstract
The current study aims to evaluate and characterize the probiotic andantidiabetic properties of lactic acid bacteria (LAB) obtained from milk and other dairy-based products. The strains were tested physiologically, biochemically, and molecularly. Based on biochemical tests and 16S rRNA gene amplification and sequencing, all three isolates RAMULAB18, RAMULAB19, and RAMULAB53 were identified as Lacticaseibacillus paracasei with homology similarity of more than 98%. The inhibitory potential of each isolate against carbohydrate hydrolysis enzymes (α-amylase and α-glucosidase) was assessed using three different preparations of RAMULAB (RL) isolates: the supernatant (RL-CS), intact cells (RL-IC), and cell-free extraction (RL-CE). Additionally, the isolate was evaluated for its antioxidant activity against free radicals (DPPH and ABTS). The strain's RL-CS, RL-CE, and RL-IC inhibited α-amylase (17.25 to 55.42%), α-glucosidase (15.08-59.55%), DPPH (56.42-87.45%), and ABTS (46.35-78.45%) enzymes differently. With the highest survival rate (>98%) toward tolerance to gastrointestinal conditions, hydrophobicity (>42.18%), aggregation (>74.21%), as well as attachment to an individual's colorectal cancer cell line (HT-29) (>64.98%), human buccal and chicken crop epithelial cells, all three isolates exhibited extensive results. All three isolates exhibited high resistance toward antibiotics (methicillin, kanamycin, cefixime, and vancomycin), and other assays such as antibacterial, DNase, hemolytic, and gelatinase were performed for safety assessment. Results suggest that the LAB described are valuable candidates for their significant health benefits and that they can also be utilized as a beginning or bio-preservative tradition in the food, agriculture, and pharmaceutical sectors. The LAB isolates are excellent in vitro probiotic applicants and yet additional in vivo testing is required.
Collapse
Affiliation(s)
- Sujay S. Huligere
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | - Chandana Kumari V B
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | - Sudhanva M. Desai
- Department of Chemical Engineering, Dayanand Sagar College of Engineering, Bengaluru, Karnataka, India
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, Malaysia
| | - Nagma Firdose
- Department of Pharmacology, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| |
Collapse
|
22
|
Kaewarsar E, Chaiyasut C, Lailerd N, Makhamrueang N, Peerajan S, Sirilun S. Effects of Synbiotic Lacticaseibacillus paracasei, Bifidobacterium breve, and Prebiotics on the Growth Stimulation of Beneficial Gut Microbiota. Foods 2023; 12:3847. [PMID: 37893739 PMCID: PMC10606279 DOI: 10.3390/foods12203847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
The gut microbiota is a complex community of microorganisms that plays a vital role in maintaining overall health, and is comprised of Lactobacillus and Bifidobacterium. The probiotic efficacy and safety of Lacticaseibacillus paracasei and Bifidobacterium breve for consumption were confirmed by in vitro experiments. The survival rate of the probiotics showed a significant decline in in vitro gut tract simulation; however, the survival rate was more than 50%. Also, the probiotics could adhere to Caco-2 cell lines by more than 90%, inhibit the pathogenic growths, deconjugate glycocholic acid and taurodeoxycholic acid through activity of bile salt hydrolase (BSH) proteins, and lower cholesterol levels by over 46%. Regarding safety assessment, L. paracasei and B. breve showed susceptibility to some antibiotics but resistance to vancomycin and were examined as γ-hemolytic strains. Anti-inflammatory properties of B. breve with Caco-2 epithelial cell lines showed the significantly highest value (p < 0.05) for interleukin-10. Furthermore, probiotics and prebiotics (inulin, fructooligosaccharides, and galactooligosaccharides) comprise synbiotics, which have potential effects on the increased abundance of beneficial microbiota, but do not affect the growth of harmful bacteria in feces samples. Moreover, the highest concentration of short chain fatty acid was of acetic acid, followed by propionic and butyric acid.
Collapse
Affiliation(s)
- Ekkachai Kaewarsar
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (E.K.); (C.C.); (N.M.)
| | - Chaiyavat Chaiyasut
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (E.K.); (C.C.); (N.M.)
- Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Narissara Lailerd
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Netnapa Makhamrueang
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (E.K.); (C.C.); (N.M.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Sasithorn Sirilun
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (E.K.); (C.C.); (N.M.)
- Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
23
|
Khan MN, Bashir S, Imran M. Probiotic characterization of Bacillus species strains isolated from an artisanal fermented milk product Dahi. Folia Microbiol (Praha) 2023; 68:757-769. [PMID: 37055653 DOI: 10.1007/s12223-023-01048-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/22/2023] [Indexed: 04/15/2023]
Abstract
Dahi, an artisanal fermented milk product, widely consumed in Pakistan, is microbiologically diverse, and many bacterial communities await investigation. The current study is first to present probiotic assessment of Bacillus species strains isolated from dahi. Based on 49 identified strains assessed, only 6 strains, i.e., Bacillus licheniformis QAUBL19, QAUBL1901, and QAUBL1902; Bacillus mycoides QAUBM19 and QAUBM1901; and Bacillus subtilis QAUBSS1 were having prominent persistence in the simulated gastrointestinal fluids, being non-hemolytic, with no DNase activity. Probiotic characteristics, cholesterol-assimilating, and carbohydrate-fermenting capabilities were assessed for all the strains. These six strains each showed variant cholesterol assimilating abilities. B. licheniformis QAUBL19 retaining most desired probiotic traits presented both notable cholesterol assimilating and bile salt hydrolase activities. It can be used as a probiotic of choice with hypocholesterolemia ability. B. subtilis QAUBSS1 showed wide carbohydrate fermentation ability and strongest antibacterial potential. It is likely to be considered a probiotic for living beings and starter culture for fermentation of food/feed.
Collapse
Affiliation(s)
- Muhammad Nadeem Khan
- Department of Microbiology, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Saeeda Bashir
- Department of Microbiology, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Imran
- Department of Microbiology, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
24
|
Ganapathiwar S, Pappula R, Banothu AK, Bhukya B. Causatum of Probiotic Yeast Saccharomyces cerevisiae SBO1 Supplementation on Growth and Aflatoxin Amelioration in Broilers. Indian J Microbiol 2023; 63:253-262. [PMID: 37781010 PMCID: PMC10533762 DOI: 10.1007/s12088-023-01078-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/07/2023] [Indexed: 10/03/2023] Open
Abstract
Probiotics are beneficial live microorganisms that benefit the host's health when administered in the required number. They play a vital role in preventing infectious diseases caused by pathogens. The current study aimed to discover a competent probiotic microbe that can detoxify aflatoxin and promote poultry health. The yeast isolate SBO1 tolerates the temperature of 42 °C, low pH, and high bile conditions, has good auto aggregation, hydrophobicity, and exhibits improved adherence to chick intestinal epithelial cells. In addition, it has an aflatoxin detoxifying ability of 56% after 24 h. In-vivo studies in broilers resulted in a higher body weight (2138 g) and greater feed conversion efficiency in the T2 group when fed with yeast SBO1-supplemented diet. Gizzard, spleen, and bursa Fabricius were all found to weigh the same, however, a significant difference (p < 0.05) was observed in the carcass, breast yield, and fat. Therefore it was determined that adding 0.2% yeast to the broiler diet increased performance by lessening the toxin's adverse effects. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-023-01078-5.
Collapse
Affiliation(s)
- Swaruparani Ganapathiwar
- Centre for Microbial and Fermentation Technology, Department of Microbiology, University College of Science, Osmania University, Hyderabad, Telangana State 500007 India
| | - Radhika Pappula
- Department of Poultry Science, College of Veterinary Science, P. V. Narsimha Rao Telangana Veterinary University, Rajendranagar, Hyderabad, Telangana State 500030 India
| | - Anil Kumar Banothu
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science, P. V. Narsimha Rao Telangana Veterinary University, Rajendranagar, Hyderabad, Telangana State 500030 India
| | - Bhima Bhukya
- Centre for Microbial and Fermentation Technology, Department of Microbiology, University College of Science, Osmania University, Hyderabad, Telangana State 500007 India
| |
Collapse
|
25
|
Icer MA, Özbay S, Ağagündüz D, Kelle B, Bartkiene E, Rocha JMF, Ozogul F. The Impacts of Acidophilic Lactic Acid Bacteria on Food and Human Health: A Review of the Current Knowledge. Foods 2023; 12:2965. [PMID: 37569234 PMCID: PMC10418883 DOI: 10.3390/foods12152965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
The need to improve the safety/quality of food and the health of the hosts has resulted in increasing worldwide interest in acidophilic lactic acid bacteria (LAB) for the food, livestock as well as health industries. In addition to the use of acidophilic LAB with probiotic potential for food fermentation and preservation, their application in the natural disposal of acidic wastes polluting the environment is also being investigated. Considering this new benefit that has been assigned to probiotic microorganisms in recent years, the acceleration in efforts to identify new, efficient, promising probiotic acidophilic LAB is not surprising. One of these effots is to determine both the beneficial and harmful compounds synthesized by acidophilic LAB. Moreover, microorganisms are of concern due to their possible hemolytic, DNase, gelatinase and mucinolytic activities, and the presence of virulence/antibiotic genes. Hence, it is argued that acidophilic LAB should be evaluated for these parameters before their use in the health/food/livestock industry. However, this issue has not yet been fully discussed in the literature. Thus, this review pays attention to the less-known aspects of acidophilic LAB and the compounds they release, clarifying critical unanswered questions, and discussing their health benefits and safety.
Collapse
Affiliation(s)
- Mehmet Arif Icer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Amasya University, Amasya 05100, Turkey;
| | - Sena Özbay
- Department of Food Technology, Kaman Vocational School, Kırşehir Ahi Evran University, Kırşehir 40360, Turkey;
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Emek, Ankara 06490, Turkey
| | - Bayram Kelle
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Cukurova University, Adana 01330, Turkey;
| | - Elena Bartkiene
- Department of Food Safety and Quality, Lithuanian University of Health Sciences Tilzes 18, LT-47181 Kaunas, Lithuania;
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes Street 18, LT-47181 Kaunas, Lithuania
| | - João Miguel F. Rocha
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Cukurova University, Balcalı, Adana 01330, Turkey;
- Biotechnology Research and Application Center, Cukurova University, Adana 01330, Turkey
| |
Collapse
|
26
|
Dhanya Raj CT, Suryavanshi MV, Kandaswamy S, Ramasamy KP, James RA. Whole genome sequence analysis and in-vitro probiotic characterization of Bacillus velezensis FCW2 MCC4686 from spontaneously fermented coconut water. Genomics 2023; 115:110637. [PMID: 37150228 DOI: 10.1016/j.ygeno.2023.110637] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/23/2023] [Accepted: 05/03/2023] [Indexed: 05/09/2023]
Abstract
In this study, the probiotic potential of B. velezensis FCW2, isolated from naturally fermented coconut water, was investigated by in vitro and genomic characterization. Our findings highlight key features of the bacterium which includes, antibacterial activity, high adhesive potential, aggregation capacity, production of nutrient secondary metabolites. In vivo safety assessment revealed no adverse effects on zebrafish. WGS data of B. velezensis FCW2 revealed a complete circular genome of 4,147,426 nucleotides and a GC content of 45.87%. We have identified 4059 coding sequence (CDS) genes that encode proteins involved in stress resistance, adhesion and micronutrient production. The genes responsible for producing secondary metabolites, exopolysaccharides, and other beneficial nutrients were identified. The KEGG and COG databases revealed that genes mainly involved amino acid metabolism, carbohydrate utilization, vitamin and cofactor metabolism, and biological adhesion. These findings suggest that B. velezensis FCW2 could be a putative probiotic in the development of fermented foods.
Collapse
Affiliation(s)
- C T Dhanya Raj
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620024, Tamilnadu, India
| | - Mangesh V Suryavanshi
- Cardiovascular and Metabolic Sciences Department, Lerner Research Institute, Cleveland Clinic, OH 44195, USA
| | - Surabhi Kandaswamy
- Manchester Centre for Genomic Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, 6th Floor, St Mary's Hospital, Oxford Road, Manchester M13 9WL, UK; School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, UK..
| | | | - Rathinam Arthur James
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620024, Tamilnadu, India.
| |
Collapse
|
27
|
Zinno P, Perozzi G, Devirgiliis C. Foodborne Microbial Communities as Potential Reservoirs of Antimicrobial Resistance Genes for Pathogens: A Critical Review of the Recent Literature. Microorganisms 2023; 11:1696. [PMID: 37512869 PMCID: PMC10383130 DOI: 10.3390/microorganisms11071696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/16/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Antimicrobial resistance (AMR) is a global and increasing threat to human health. Several genetic determinants of AMR are found in environmental reservoirs, including bacteria naturally associated with widely consumed fermented foods. Through the food chain, these bacteria can reach the gut, where horizontal gene transfer (HGT) can occur within the complex and populated microbial environment. Numerous studies on this topic have been published over the past decades, but a conclusive picture of the potential impact of the non-pathogenic foodborne microbial reservoir on the spread of AMR to human pathogens has not yet emerged. This review critically evaluates a comprehensive list of recent experimental studies reporting the isolation of AMR bacteria associated with fermented foods, focusing on those reporting HGT events, which represent the main driver of AMR spread within and between different bacterial communities. Overall, our analysis points to the methodological heterogeneity as a major weakness impairing determination or a causal relation between the presence of AMR determinants within the foodborne microbial reservoir and their transmission to human pathogens. The aim is therefore to highlight the main gaps and needs to better standardize future studies addressing the potential role of non-pathogenic bacteria in the spread of AMR.
Collapse
Affiliation(s)
- Paola Zinno
- Institute for the Animal Production System in the Mediterranean Environment (ISPAAM), National Research Council, Piazzale Enrico Fermi 1, 80055 Portici, Italy
| | - Giuditta Perozzi
- Research Centre for Food and Nutrition, CREA (Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria), Via Ardeatina 546, 00178 Rome, Italy
| | - Chiara Devirgiliis
- Research Centre for Food and Nutrition, CREA (Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria), Via Ardeatina 546, 00178 Rome, Italy
| |
Collapse
|
28
|
Sreepathi N, Kumari VBC, Huligere SS, Al-Odayni AB, Lasehinde V, Jayanthi MK, Ramu R. Screening for potential novel probiotic Levilactobacillus brevis RAMULAB52 with antihyperglycemic property from fermented Carica papaya L. Front Microbiol 2023; 14:1168102. [PMID: 37408641 PMCID: PMC10318367 DOI: 10.3389/fmicb.2023.1168102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/25/2023] [Indexed: 07/07/2023] Open
Abstract
Probiotics are live microorganisms with various health benefits when consumed in appropriate amounts. Fermented foods are a rich source of these beneficial organisms. This study aimed to investigate the probiotic potential of lactic acid bacteria (LAB) isolated from fermented papaya (Carica papaya L.) through in vitro methods. The LAB strains were thoroughly characterized, considering their morphological, physiological, fermentative, biochemical, and molecular properties. The LAB strain's adherence and resistance to gastrointestinal conditions, as well as its antibacterial and antioxidant capabilities, were examined. Moreover, the strains were tested for susceptibility against specific antibiotics, and safety evaluations encompassed the hemolytic assay and DNase activity. The supernatant of the LAB isolate underwent organic acid profiling (LCMS). The primary objective of this study was to assess the inhibitory activity of α-amylase and α-glucosidase enzymes, both in vitro and in silico. Gram-positive strains that were catalase-negative and carbohydrate fermenting were selected for further analysis. The LAB isolate exhibited resistance to acid bile (0.3% and 1%), phenol (0.1% and 0.4%), and simulated gastrointestinal juice (pH 3-8). It demonstrated potent antibacterial and antioxidant abilities and resistance to kanamycin, vancomycin, and methicillin. The LAB strain showed autoaggregation (83%) and adhesion to chicken crop epithelial cells, buccal epithelial cells, and HT-29 cells. Safety assessments indicated no evidence of hemolysis or DNA degradation, confirming the safety of the LAB isolates. The isolate's identity was confirmed using the 16S rRNA sequence. The LAB strain Levilactobacillus brevis RAMULAB52, derived from fermented papaya, exhibited promising probiotic properties. Moreover, the isolate demonstrated significant inhibition of α-amylase (86.97%) and α-glucosidase (75.87%) enzymes. In silico studies uncovered that hydroxycitric acid, one of the organic acids derived from the isolate, interacted with crucial amino acid residues of the target enzymes. Specifically, hydroxycitric acid formed hydrogen bonds with key amino acid residues, such as GLU233 and ASP197 in α-amylase, and ASN241, ARG312, GLU304, SER308, HIS279, PRO309, and PHE311 in α-glucosidase. In conclusion, Levilactobacillus brevis RAMULAB52, isolated from fermented papaya, possesses promising probiotic properties and exhibits potential as an effective remedy for diabetes. Its resistance to gastrointestinal conditions, antibacterial and antioxidant abilities, adhesion to different cell types, and significant inhibition of target enzymes make it a valuable candidate for further research and potential application in the field of probiotics and diabetes management.
Collapse
Affiliation(s)
- Navya Sreepathi
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
- Department of Pharmacology, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - V. B. Chandana Kumari
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Sujay S. Huligere
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Abdel-Basit Al-Odayni
- Department of Restorative Dental Science, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Victor Lasehinde
- Department of Biology, Washington University, St. Louis, MO, United States
| | - M. K. Jayanthi
- Department of Pharmacology, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| |
Collapse
|
29
|
Vanitha PR, Somashekaraiah R, Divyashree S, Pan I, Sreenivasa MY. Antifungal activity of probiotic strain Lactiplantibacillus plantarum MYSN7 against Trichophyton tonsurans. Front Microbiol 2023; 14:1192449. [PMID: 37389341 PMCID: PMC10303898 DOI: 10.3389/fmicb.2023.1192449] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/09/2023] [Indexed: 07/01/2023] Open
Abstract
The primary objective of this study was to assess the probiotic attributes and antifungal activity of lactic acid bacteria (LAB) against the fungus, Trichophyton tonsurans. Among the 20 isolates screened for their antifungal attributes, isolate MYSN7 showed strong antifungal activity and was selected for further analysis. The isolate MYSN7 exhibited potential probiotic characteristics, having 75 and 70% survival percentages in pH3 and pH2, respectively, 68.73% tolerance to bile, a moderate cell surface hydrophobicity of 48.87%, and an auto-aggregation percentage of 80.62%. The cell-free supernatant (CFS) of MYSN7 also showed effective antibacterial activity against common pathogens. Furthermore, the isolate MYSN7 was identified as Lactiplantibacillus plantarum by 16S rRNA sequencing. Both L. plantarum MYSN7 and its CFS exhibited significant anti-Trichophyton activity in which the biomass of the fungal pathogen was negligible after 14 days of incubation with the active cells of probiotic culture (106 CFU/ml) and at 6% concentration of the CFS. In addition, the CFS inhibited the germination of conidia even after 72 h of incubation. The minimum inhibitory concentration of the lyophilized crude extract of the CFS was observed to be 8 mg/ml. Preliminary characterization of the CFS showed that the active component would be organic acids in nature responsible for antifungal activity. Organic acid profiling of the CFS using LC-MS revealed that it was a mixture of 11 different acids, and among these, succinic acid (9,793.60 μg/ml) and lactic acid (2,077.86 μg/ml) were predominant. Additionally, a scanning electron microscopic study revealed that CFS disrupted fungal hyphal structure significantly, which showed scanty branching and bulged terminus. The study indicates the potential of L. plantarum MYSN7 and its CFS to control the growth of T. tonsurans. Furthermore, in vivo studies need to be conducted to explore its possible applications on skin infections.
Collapse
Affiliation(s)
- P. R. Vanitha
- Department of Studies in Microbiology, University of Mysore, Mysuru, India
- Maharani's Science College for Women, Mysuru, India
| | | | - S. Divyashree
- Department of Studies in Microbiology, University of Mysore, Mysuru, India
| | - Indranil Pan
- Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - M. Y. Sreenivasa
- Department of Studies in Microbiology, University of Mysore, Mysuru, India
| |
Collapse
|
30
|
Martiz RM, Kumari V. B. C, Huligere SS, Khan MS, Alafaleq NO, Ahmad S, Akhter F, Sreepathi N, P. A, Ramu R. Inhibition of carbohydrate hydrolyzing enzymes by a potential probiotic Levilactobacillus brevis RAMULAB49 isolated from fermented Ananas comosus. Front Microbiol 2023; 14:1190105. [PMID: 37389344 PMCID: PMC10303921 DOI: 10.3389/fmicb.2023.1190105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/15/2023] [Indexed: 07/01/2023] Open
Abstract
The research aimed to explore the potential probiotic characteristics of Levilactobacillus brevis RAMULAB49, a strain of lactic acid bacteria (LAB) isolated from fermented pineapple, specifically focusing on its antidiabetic effects. The importance of probiotics in maintaining a balanced gut microbiota and supporting human physiology and metabolism motivated this research. All collected isolates underwent microscopic and biochemical screenings, and those exhibiting Gram-positive characteristics, negative catalase activity, phenol tolerance, gastrointestinal conditions, and adhesion capabilities were selected. Antibiotic susceptibility was assessed, along with safety evaluations encompassing hemolytic and DNase enzyme activity tests. The isolate's antioxidant activity and its ability to inhibit carbohydrate hydrolyzing enzymes were examined. Additionally, organic acid profiling (LC-MS) and in silico studies were conducted on the tested extracts. Levilactobacillus brevis RAMULAB49 demonstrated desired characteristics such as Gram-positive, negative catalase activity, phenol tolerance, gastrointestinal conditions, hydrophobicity (65.71%), and autoaggregation (77.76%). Coaggregation activity against Micrococcus luteus, Pseudomonas aeruginosa, and Salmonella enterica serovar Typhimurium was observed. Molecular characterization revealed significant antioxidant activity in Levilactobacillus brevis RAMULAB49, with ABTS and DPPH inhibition rates of 74.85% and 60.51%, respectively, at a bacterial cell concentration of 109 CFU/mL. The cell-free supernatant exhibited substantial inhibition of α-amylase (56.19%) and α-glucosidase (55.69%) in vitro. In silico studies supported these findings, highlighting the inhibitory effects of specific organic acids such as citric acid, hydroxycitric acid, and malic acid, which displayed higher Pa values compared to other compounds. These outcomes underscore the promising antidiabetic potential of Levilactobacillus brevis RAMULAB49, isolated from fermented pineapple. Its probiotic properties, including antimicrobial activity, autoaggregation, and gastrointestinal conditions, contribute to its potential therapeutic application. The inhibitory effects on α-amylase and α-glucosidase activities further support its anti-diabetic properties. In silico analysis identified specific organic acids that may contribute to the observed antidiabetic effects. Levilactobacillus brevis RAMULAB49, as a probiotic isolate derived from fermented pineapple, holds promise as an agent for managing diabetes. Further investigations should focus on evaluating its efficacy and safety in vivo to consider its potential therapeutic application in diabetes management.
Collapse
Affiliation(s)
- Reshma Mary Martiz
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
- Department of Microbiology, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Chandana Kumari V. B.
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Sujay S. Huligere
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Nouf Omar Alafaleq
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Saheem Ahmad
- Department of Biosciences, Integral University, Lucknow, India
| | - Firoz Akhter
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, United States
| | - Navya Sreepathi
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Ashwini P.
- Department of Microbiology, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| |
Collapse
|
31
|
Divyashree S, Shruthi B, Vanitha P, Sreenivasa M. Probiotics and their postbiotics for the control of opportunistic fungal pathogens: A review. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2023; 38:e00800. [PMID: 37215743 PMCID: PMC10196798 DOI: 10.1016/j.btre.2023.e00800] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/11/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023]
Abstract
During past twenty years the opportunistic fungal infections have been emerging, causing morbidity and mortality. The fungi belonging to Aspergillus, Mucor, Rhizopus, Candida, Fusarium, Penicillium, Dermatophytes and others cause severe opportunistic fungal infections. Among these Aspergillus and Candida spp cause majority of the diseases. The continuum of fungal infections will prolong to progress in the surroundings of the growing inhabitants of immunocompromised individuals. Presently many chemical-based drugs were used as prophylactic and therapeutic agents. Prolonged usage of antibiotics may lead to some severe effect on the human health. Also, one of the major threats is that the fungal pathogens are becoming the drug resistant. There are many physical, chemical, and mechanical methods to prevent the contamination or to control the disease. Owing to the limitations that are observed in such methods, biological methods are gaining more interest because of the use of natural products which have comparatively less side effects and environment friendly. In recent years, research on the possible use of natural products such as probiotics for clinical use is gaining importance. Probiotics, one of the well studied biological products, are safe upon consumption and are explored to treat various fungal infections. The antifungal potency of major groups of probiotic cultures such as Lactobacillus spp, Leuconostoc spp, Saccharomyces etc. and their metabolic byproducts which act as postbiotics like organic acids, short chain fatty acids, bacteriocin like metabolites, Hydrogen peroxide, cyclic dipeptides etc. to inhibit these opportunistic fungal pathogens have been discussed here.
Collapse
|
32
|
El Far MS, Zakaria AS, Kassem MA, Wedn A, Guimei M, Edward EA. Promising biotherapeutic prospects of different probiotics and their derived postbiotic metabolites: in-vitro and histopathological investigation. BMC Microbiol 2023; 23:122. [PMID: 37138240 PMCID: PMC10155454 DOI: 10.1186/s12866-023-02866-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/19/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Probiotics and their derived postbiotics, as cell-free supernatants (CFS), are gaining a solid reputation owing to their prodigious health-promoting effects. Probiotics play a valuable role in the alleviation of various diseases among which are infectious diseases and inflammatory disorders. In this study, three probiotic strains, Lactiplantibacillus plantarum, Lacticaseibacillus rhamnosus, and Pediococcus acidilactici, were isolated from marketed dietary supplements. The antimicrobial activity of the isolated probiotic strains as well as their CFS was investigated. The neutralized CFS of the isolated probiotics were tested for their antibiofilm potential. The anti-inflammatory activity of the isolated Lactobacillus spp., together with their CFS, was studied in the carrageenan-induced rat paw edema model in male Wistar rats. To the best of our knowledge, such a model was not previously experimented to evaluate the anti-inflammatory activity of the CFS of probiotics. The histopathological investigation was implemented to assess the anti-inflammatory prospect of the isolated L. plantarum and L. rhamnosus strains as well as their CFS. RESULTS The whole viable probiotics and their CFS showed variable growth inhibition of the tested indicator strains using the agar overlay method and the microtiter plate assay, respectively. When tested for virulence factors, the probiotic strains were non-hemolytic lacking both deoxyribonuclease and gelatinase enzymes. However, five antibiotic resistance genes, blaZ, ermB, aac(6')- aph(2"), aph(3'')-III, and vanX, were detected in all isolates. The neutralized CFS of the isolated probiotics exhibited an antibiofilm effect as assessed by the crystal violet assay. This effect was manifested by hindering the biofilm formation of the tested Staphylococcus aureus and Pseudomonas aeruginosa clinical isolates in addition to P. aeruginosa PAO1 strain. Generally, the cell cultures of the two tested probiotics moderately suppressed the acute inflammation induced by carrageenan compared to indomethacin. Additionally, the studied CFS relatively reduced the inflammatory changes compared to the inflammation control group but less than that observed in the case of the probiotic cultures treated groups. CONCLUSIONS The tested probiotics, along with their CFS, showed promising antimicrobial and anti-inflammatory activities. Thus, their safety and their potential use as biotherapeutics for bacterial infections and inflammatory conditions are worthy of further investigation.
Collapse
Affiliation(s)
- Mona S El Far
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Azza S Zakaria
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mervat A Kassem
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Abdalla Wedn
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Maha Guimei
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Eva A Edward
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
33
|
Mitsuwan W, Saengsawang P, Jeenkeawpieam J, Nissapatorn V, Pereira MDL, Kitpipit W, Thomrongsuwannakij T, Poothong S, Vimon S. Development of a microencapsulated probiotic containing Pediococcus acidilactici WU222001 against avian pathogenic Escherichia coli. Vet World 2023; 16:1131-1140. [PMID: 37576777 PMCID: PMC10420709 DOI: 10.14202/vetworld.2023.1131-1140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/19/2023] [Indexed: 08/15/2023] Open
Abstract
Background and Aim Probiotics are beneficial microorganisms for humans and animals. In this study, we developed a microencapsulated probiotic with antibacterial activity against avian pathogenic Escherichia coli (APEC). Materials and Methods Alignment of the 16S rRNA sequences of the isolate WU222001 with those deposited in GenBank revealed that the isolate was Pediococcus acidilactici with 99.6% homology. This bacterium was characterized as a probiotic based on its tolerance toward in vitro gastrointestinal tract (GIT) conditions, hydrophobicity, and auto-aggregation. The antibacterial activity of the probiotic's culture supernatant against APEC was investigated using a broth microdilution assay. Pediococcus acidilactici was microencapsulated using sodium alginate and agar with diameters ranging from 47 to 61 μm. Then, physicochemical characteristics and stability of the microcapsules were determined. Results The isolate was characterized as a probiotic based on its resistance to low pH, bile salts, and pancreatin, with relative values of 79.2%, 70.95%, and 90.64%, respectively. Furthermore, the bacterium exhibited 79.56% auto-aggregation and 55.25% hydrophobicity at 24 h. The probiotic's culture supernatant exhibited strong antibacterial activity against clinical APEC isolates with minimum inhibitory concentration and minimum bactericidal concentration of 12.5% and 25% v/v, respectively. Microencapsulation-enhanced bacterial viability in GIT compared to free cells. Moreover, 89.65% of the encapsulated cells were released into the simulated intestinal fluid within 4 h. The viable count in microcapsules was 63.19% after 3 months of storage at 4°C. Conclusion The results indicated that the culture supernatant of P. acidilactici inhibited the growth of APEC. In addition, microencapsulation extends the viability of P. acidilactici under harsh conditions, indicating its potential application in the feed production.
Collapse
Affiliation(s)
- Watcharapong Mitsuwan
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- One Health Research Center, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- Center of Excellence in Innovation of Essential Oil and Bioactive Compounds, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Phirabhat Saengsawang
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- One Health Research Center, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Juthatip Jeenkeawpieam
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- One Health Research Center, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, Southeast Asia Water Team, World Union for Herbal Drug Discovery, and Research Excellence Center for Innovation and Health Products, Walailak University, Nakhon Si Thammarat, Thailand
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials and Department of Medical Sciences, University of Aveiro, 3010-193 Aveiro, Portugal
| | - Warangkana Kitpipit
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- One Health Research Center, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- Food Technology and Innovation Center of Excellence, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Thotsapol Thomrongsuwannakij
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- One Health Research Center, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Saranporn Poothong
- Department of Animal Husbandry, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sasi Vimon
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- One Health Research Center, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| |
Collapse
|
34
|
Dash J, Sethi M, Deb S, Parida D, Kar S, Mahapatra S, Minz AP, Pradhan B, Prasad P, Senapati S. Biochemical, functional and genomic characterization of a new probiotic Ligilactobacillus salivarius F14 from the gut of tribes of Odisha. World J Microbiol Biotechnol 2023; 39:171. [PMID: 37101059 DOI: 10.1007/s11274-023-03626-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/18/2023] [Indexed: 04/28/2023]
Abstract
Characterization of new potential probiotics is desirable in the field of research on probiotics for their extensive use in health and disease. Tribes could be an unusual source of probiotics due to their unique food habits and least dependence on medications and consumption of antibiotics. The aim of the present study is to isolate lactic acid bacteria from tribal fecal samples of Odisha, India, and characterize their genetic and probiotic attributes. In this context one of the catalase-negative and Gram-positive isolates, identified using 16S rRNA sequencing as Ligilactobacillus salivarius, was characterized in vitro for its acid and bile tolerance, cell adhesion and antimicrobial properties. The whole genome sequence was obtained and analyzed for strain level identification, presence of genomic determinants for probiotic-specific features, and safety. Genes responsible for its antimicrobial and immunomodulatory functions were detected. The secreted metabolites were analyzed using high resolution mass spectroscopy; the results indicated that the antimicrobial potential could be due to the presence of pyroglutamic acid, propionic acid, lactic acid, 2-hydroxyisocaproic acid, homoserine, and glutathione, and the immuno-modulating activity, contributed by the presence of short chain fatty acids such as acetate, propionate, and butyrate. So, to conclude we have successfully characterized a Ligilactobacillus salivarius species with potential antimicrobial and immunomodulatory ability. The health-promoting effects of this probiotic strain and/or its derivatives will be investigated in future.
Collapse
Affiliation(s)
- Jayalaxmi Dash
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
| | - Manisha Sethi
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Sushanta Deb
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
- Department of Microbiology, AIIMS, New Delhi, India
| | - Deepti Parida
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Salona Kar
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Soumendu Mahapatra
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
| | - Aliva P Minz
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Biswaranjan Pradhan
- S. K. Dash Center of Excellence of Biosciences and Engineering & Technology (SKBET), Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha, India
| | - Punit Prasad
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
| | | |
Collapse
|
35
|
Kumari V B C, Huligere SS, Alotaibi G, Al Mouslem AK, Bahauddin AA, Shivanandappa TB, Ramu R. Antidiabetic Activity of Potential Probiotics Limosilactobacillus spp., Levilactobacillus spp., and Lacticaseibacillus spp. Isolated from Fermented Sugarcane Juice: A Comprehensive In Vitro and In Silico Study. Nutrients 2023; 15:nu15081882. [PMID: 37111101 PMCID: PMC10144524 DOI: 10.3390/nu15081882] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Probiotics are regarded as a potential source of functional foods for improving the microbiota in human gut. When consumed, these bacteria can control the metabolism of biomolecules, which has numerous positive effects on health. Our objective was to identify a probiotic putative Lactobacillus spp. from fermented sugarcane juice that can prevent α-glucosidase and α-amylase from hydrolyzing carbohydrates. Isolates from fermented sugarcane juice were subjected to biochemical, molecular characterization (16S rRNA) and assessed for probiotic traits. Cell-free supernatant (CS) and extract (CE) and also intact cells (IC) were examined for the inhibitory effect on α-glucosidase and α-amylase. CS of the strain showed the highest inhibition and was subjected to a liquid chromatography-mass spectrometry (LCMS) analysis to determine the organic acid profile. The in silico approach was employed to assess organic acid stability and comprehend enzyme inhibitors' impact. Nine isolates were retained for further investigation based on the preliminary biochemical evaluation. Limosilactobacillus spp., Levilactobacillus spp., and Lacticaseibacillus spp. were identified based on similarity > 95% in homology search (NCBI database). The strains had a higher survival rate (>98%) than gastric and intestinal fluids, also a high capacity for adhesion (hydrophobicity > 56%; aggregation > 80%; HT-29 cells > 54%; buccal epithelial cells > 54%). The hemolytic assay indicated that the isolates could be considered safe. The isolates' derivatives inhibited enzymes to varying degrees, with α-glucosidase inhibition ranging from 21 to 85% and α-amylase inhibition from 18 to 75%, respectively. The CS of RAMULAB54 was profiled for organic acid that showed the abundance of hydroxycitric acid, citric acid, and lactic acid indicating their role in the observed inhibitory effects. The in silico approach has led us to understand that hydroxycitric acid has the ability to inhibit both the enzymes (α-glucosidase and α-amylase) effectively. Inhibiting these enzymes helps moderate postprandial hyperglycemia and regulates blood glucose levels. Due to their promising antidiabetic potential, these isolates can be used to enhance intestinal health.
Collapse
Affiliation(s)
- Chandana Kumari V B
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India
| | - Sujay S Huligere
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India
| | - Ghallab Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Al-Dawadmi Campus, Shaqra 11961, Saudi Arabia
| | - Abdulaziz K Al Mouslem
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Ammar Abdulraheem Bahauddin
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Madinah 42535, Saudi Arabia
| | | | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India
| |
Collapse
|
36
|
Leska A, Nowak A, Rosicka-Kaczmarek J, Ryngajłło M, Czarnecka-Chrebelska KH. Characterization and Protective Properties of Lactic Acid Bacteria Intended to Be Used in Probiotic Preparation for Honeybees (Apis mellifera L.)—An In Vitro Study. Animals (Basel) 2023; 13:ani13061059. [PMID: 36978601 PMCID: PMC10044574 DOI: 10.3390/ani13061059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023] Open
Abstract
Lactic acid bacteria (LAB) are widely used probiotics and offer promising prospects for increasing the viability of honeybees. Thus, the probiotic potential of 10 LAB strains was determined, which in our previous studies showed the most potent protective abilities. In the current study, we investigated various properties of probiotic candidates. The tested LAB strains varied in susceptibility to tested antibiotics. Isolates showed high viability in sugar syrups and gastrointestinal conditions. None of the LAB strains exhibited β-hemolytic activity, mutual antagonism, mucin degradation, hydrogen peroxide production capacity, or bile salt hydrolase (BSH) activity. Additionally, the cytotoxicity of LAB cell-free supernatants (CFS) was assessed, as well as the effect of CFS from P. pentosaceus 14/1 on the cytotoxicity of coumaphos and chlorpyrifos in the Caco-2 cell line. The viability of Caco-2 cells reached up to 89.81% in the presence of the highest concentration of CFS. Furthermore, LAB metabolites decreased the cytotoxicity of insecticides (up to 19.32%) thus demonstrating cytoprotective activity. All tested LAB strains produced lactic, acetic, and malonic acids. This research allowed the selection of the most effective LAB strains, in terms of probiosis, for future in vivo studies aimed at developing an ecologically protective biopreparation for honeybees.
Collapse
Affiliation(s)
- Aleksandra Leska
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
- Correspondence: (A.L.); (A.N.)
| | - Adriana Nowak
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
- Correspondence: (A.L.); (A.N.)
| | - Justyna Rosicka-Kaczmarek
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland
| | - Małgorzata Ryngajłło
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-573 Lodz, Poland
| | - Karolina Henryka Czarnecka-Chrebelska
- Department of Biomedicine and Genetics, Chair of Biology and Medical Microbiology, Medical University of Lodz, 5 Mazowiecka Str. (A-6 Building), 92-215 Lodz, Poland
| |
Collapse
|
37
|
Dhanya Raj CT, Kandaswamy S, Suryavanshi MV, Ramasamy KP, Rajasabapathy R, Arthur James R. Genomic and metabolic properties of Staphylococcus gallinarum FCW1 MCC4687 isolated from naturally fermented coconut water towards GRAS assessment. Gene 2023; 867:147356. [PMID: 36907276 DOI: 10.1016/j.gene.2023.147356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
Staphylococcus gallinarum FCW1 was isolated from naturally fermented coconut-water and identified by biochemical and molecular methods. Probiotic characterization and safety assessment were conducted through a series of in vitro tests. A high survival rate was observed when the strain was tested for resistance to bile, lysozyme, simulated gastric and intestinal fluid, phenol, and different temperature and salt concentrations. The strain showed antagonism against some pathogens, was susceptible to all antibiotics tested except penicillin, and showed no hemolytic and DNase activity. Hydrophobicity, autoaggregation, biofilm formation, and antioxidation tests indicated that the strain possessed a high adhesive and antioxidant ability. Enzymatic activity was used to evaluate the metabolic capacities of the strain. In-vivo experiment on zebrafish was performed to check its safety status. The whole-genome sequencing indicated that the genome contained 2,880,305 bp with a GC content of 33.23%. The genome annotation confirmed the presence of probiotic-associated genes and genes for oxalate degradation, sulfate reduction, acetate metabolism, and ammonium transport in the FCW1 strain, adding to the theory that this strain may be helpful in treating kidney stones. This study revealed that the strain FCW1 might be an excellent potential probiotic in developing fermented coconut beverages and treating and preventing kidney stone disease.
Collapse
Affiliation(s)
- C T Dhanya Raj
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Surabhi Kandaswamy
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, Lancashire PR1 2HE, United Kingdom; Manchester Centre for Genomic Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, 6(th) Floor, St Mary's Hospital, Oxford Road, Manchester M13 9WL, United Kingdom
| | - Mangesh V Suryavanshi
- Cardiovascular and Metabolic Sciences Department, Lerner Research Institute, Cleveland Clinic, OH 44195, United States.
| | | | - Raju Rajasabapathy
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Rathinam Arthur James
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India.
| |
Collapse
|
38
|
Production and evaluation of a functional fruit beverage consisting of mango juice and probiotic bacteria. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01862-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
39
|
Effect of different drying methods on the functional properties of probiotics encapsulated using prebiotic substances. Appl Microbiol Biotechnol 2023; 107:1575-1588. [PMID: 36729228 DOI: 10.1007/s00253-023-12398-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 02/03/2023]
Abstract
Probiotics and prebiotics together work synergistically as synbiotics and confer various health benefits. Many studies on synbiotic foods only focus on the survival of probiotics but fail to evaluate their functional properties. The impact on functional properties should be explored to better understand its therapeutic efficacy. In this work, probiotics (Lactiplantibacillus plantarum NCIM 2083) were encapsulated with prebiotics (fructooligosaccharide + whey protein + maltodextrin) using spray-drying (SD), freeze-drying (FD), spray-freeze-drying (SFD), and refractance window-drying (RWD) techniques. Aggregation, intestinal adhesion, antagonistic activity, and bile salt hydrolase (BSH) activity of probiotics were studied before and after the encapsulation process. The SFD probiotics showed better aggregation ability (79% at 24-h incubation), on par with free cells (FC) (81% at 24-h incubation). The co-aggregation ability of encapsulated probiotics has drastic variations with each pathogenic strain. The adhesion ability of probiotics in chicken intestinal mucus was assessed by the crystal violet method, indicating no significant variations between FC and SFD probiotics. Also, encapsulated probiotics exhibit antagonistic activity (zone of inhibition in mm) against gut pathogens E. coli (11.33 to 17.34), S. faecalis (8.83 to 15.32), L. monocytogenes (13.67 to 18), S. boydii (12.17 to 15.5), and S. typhi (2.17 to 6.86). Overall, these studies confirm the significance and impact of various drying techniques on the functionality of encapsulated probiotics in synbiotic powders. KEY POINTS: • Understanding the relevance of processing effects on the functionality of probiotics. • Spray-freeze-dried probiotics showed superior functional properties. • The encapsulation process had no significant impact on bile salt hydrolase activity.
Collapse
|
40
|
Bhatia R, Singh S, Maurya R, Bhadada SK, Bishnoi M, Chopra K, Joshi SR, Kondepudi KK. In vitro characterization of lactic acid bacterial strains isolated from fermented foods with anti-inflammatory and dipeptidyl peptidase-IV inhibition potential. Braz J Microbiol 2023; 54:293-309. [PMID: 36401067 PMCID: PMC9944167 DOI: 10.1007/s42770-022-00872-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/06/2022] [Indexed: 11/19/2022] Open
Abstract
Probiotics are known to stimulate, modulate, and regulate host immune response by regulating specific sets of genes and improve glucose homeostasis through regulating dipeptidyl peptidase (DPP-IV) activity, but the mechanism behind their protective role is not clearly understood. Therefore, the present study was designed to isolate indigenous lactic acid bacterial (LAB) strains from different fermented food samples, vegetables, and human infant feces exhibiting anti-inflammatory, antioxidant, and DPP-IV inhibitory activity. A total of thirty-six Gram-positive, catalase-negative, and rod-shaped bacteria were isolated and screened for their anti-inflammatory activity using lipopolysaccharide (LPS)-induced inflammation on the murine (RAW264.7) macrophages. Among all, sixteen strains exhibited more than 90% reduction in nitric oxide (NO) production by the LPS-treated RAW264.7 cells. Prioritized strains were characterized for their probiotic attributes as per the DBT-ICMR guidelines and showed desirable probiotic attributes in a species and strain-dependent manner. Accordingly, Lacticaseibacillus rhamnosus LAB3, Levilactobacillus brevis LAB20, Lactiplantibacillus plantarum LAB31, Pediococcus acidilactici LAB8, and Lactiplantibacillus plantarum LAB39 were prioritized. Furthermore, these strains when co-supplemented with LPS and treated on RAW264.7 cells inhibited the mitogen-activated protein kinases (MAPKs), i.e., p38 MAPK, ERK1/2, and SAPK/JNK, cyclooxygenase-2 (COX-2), relative to the LPS-alone-treated macrophages. LAB31 and LAB39 also showed 64 and 95% of DPP-IV inhibitory activity relative to the Lacticaseibacillus rhamnosus GG ATCC 53103, which was used as a reference strain in all the studies. Five prioritized strains ameliorated the LPS-induced inflammation by downregulating the JNK/MAPK pathway and could be employed as an alternative bio-therapeutic strategy in mitigating gut-associated inflammatory conditions. The potential mechanism of action of prioritized LAB strains in preventing the LPS-induced inflammation in RAW 264.7 macrophage cells.
Collapse
Affiliation(s)
- Ruchika Bhatia
- Healthy Gut Research Group, Centre for Excellence in Functional Foods, Food and Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, 140306, Punjab, India
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Shashank Singh
- Healthy Gut Research Group, Centre for Excellence in Functional Foods, Food and Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, 140306, Punjab, India
| | - Ruchika Maurya
- Healthy Gut Research Group, Centre for Excellence in Functional Foods, Food and Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, 140306, Punjab, India
- Regional Centre of Biotechnology, Faridabad, 121001, India
| | - Sanjay Kumar Bhadada
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Mahendra Bishnoi
- Healthy Gut Research Group, Centre for Excellence in Functional Foods, Food and Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, 140306, Punjab, India
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India
- Regional Centre of Biotechnology, Faridabad, 121001, India
| | - Kanwaljit Chopra
- Department of Pharmacology, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Santa Ram Joshi
- Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Meghalaya, 793022, Shillong, India
| | - Kanthi Kiran Kondepudi
- Healthy Gut Research Group, Centre for Excellence in Functional Foods, Food and Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, 140306, Punjab, India.
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India.
- Regional Centre of Biotechnology, Faridabad, 121001, India.
| |
Collapse
|
41
|
Tang Z, Qian Y, Li Y, Wang R, Liu Z. Exploring the effect of Lactiplantibacillus plantarum Lac 9-3 with high adhesion on refrigerated shrimp: Adhesion modeling and biopreservation evaluation. Food Res Int 2023; 164:112462. [PMID: 36738013 DOI: 10.1016/j.foodres.2023.112462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Lactic acid bacteria (LAB) have recently become ideal candidates for developing food biopreservatives. Adhesion is critical for LAB to perform biocontrol functions in food processing and preservation. In this study, we innovatively proposed an effective adhesion evaluation model related to the surface properties of LAB to excavate a LAB strain with high adhesion on the surface of shrimp. Then, the biocontrol potential regarding the quality of refrigerated shrimp was explored, especially for protein quality. The screening of highly adherent LAB was performed using 54 LAB strains tolerant to the low temperature (4 °C) and present antimicrobial activity. Based on surface hydrophobicity, autoaggregation, and biofilm formation, a new method for predicting LAB adhesion was established by stepwise multiple linear regression. The most relevant relationship between adhesion and biofilm formation was derived from the model. Lactiplantibacillus plantarum Lac 9-3 stood out for the strongest adhesion on the shrimp surface and the highest antimicrobial activity. The preservation results showed that Lac 9-3 significantly (p < 0.05) retarded the accumulation of total volatile basic nitrogen (TVB-N) and the growth of spoilage bacteria. The damage to the texture properties of shrimp was inhibited. Meanwhile, the degradation of myofibrillar protein was alleviated, including a significant delay (p < 0.05) in sulfhydryl (SH) group reduction, surface hydrophobicity increases, and protein conformation changes. This research optimized the evaluation of the bacteria adhesion potential, providing a new idea for developing biocontrol strategies to extend the commercial life of aquatic products.
Collapse
Affiliation(s)
- Zhixin Tang
- College of Food Science and Engineering, Ocean University of China, 266003 Qingdao, Shandong Province, China
| | - Yilin Qian
- College of Food Science and Engineering, Ocean University of China, 266003 Qingdao, Shandong Province, China
| | - Yuan Li
- College of Food Science and Engineering, Ocean University of China, 266003 Qingdao, Shandong Province, China
| | - Rongrong Wang
- College of Food Science and Engineering, Ocean University of China, 266003 Qingdao, Shandong Province, China
| | - Zunying Liu
- College of Food Science and Engineering, Ocean University of China, 266003 Qingdao, Shandong Province, China.
| |
Collapse
|
42
|
Baliyan N, Maurya AK, Kumar A, Agnihotri VK, Kumar R. Probiotics from the bovine raw milk of Lahaul valley showed cis-9, trans-11 conjugated linoleic acid isomer and antioxidant activity with food formulation ability. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
43
|
Adhesion and Anti-Adhesion Abilities of Potentially Probiotic Lactic Acid Bacteria and Biofilm Eradication of Honeybee ( Apis mellifera L.) Pathogens. Molecules 2022; 27:molecules27248945. [PMID: 36558073 PMCID: PMC9786635 DOI: 10.3390/molecules27248945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Lactic acid bacteria (LAB) naturally inhabits the organisms of honeybees and can exhibit adhesive properties that protect these insects against various pathogenic microorganisms. Thus, cell surface (auto-aggregation, co-aggregation, hydrophobicity) and adhesive properties of LAB to two abiotic (polystyrene and glass) and four biotic (collagen, gelatin, mucus, and intestinal Caco-2 cells) surfaces were investigated. Additionally, anti-adhesion activity and the eradication of honeybee pathogen biofilms by LAB metabolites (culture supernatants) were determined. The highest hydrophobicity was demonstrated by Pediococcus pentosaceus 19/1 (63.16%) and auto-aggregation by Lactiplantibacillus plantarum 18/1 (71.91%). All LAB showed a broad spectrum of adhesion to the tested surfaces. The strongest adhesion was noted for glass. The ability to co-aggregate with pathogens was tested for the three most potently adherent LAB strains. All showed various levels of co-aggregation depending on the pathogen. The eradication of mature pathogen biofilms by LAB metabolites appeared to be weaker than their anti-adhesive properties against pathogens. The most potent anti-adhesion activity was observed for L. plantarum 18/1 (98.80%) against Paenibacillus apiarius DSM 5582, while the strongest biofilm eradication was demonstrated by the same LAB strain against Melissococcus plutonius DSM 29964 (19.87%). The adhesive and anti-adhesive activity demonstrated by LAB can contribute to increasing the viability of honeybee colonies and improving the conditions in apiaries.
Collapse
|
44
|
Kerdsup P, Hattayapichat P, Silva JL, Tantratian S. Survival of potential probiotic isolated from fermented tea leaf and encapsulated in multilayer beads stored in makiang (Cleistocalyx nervosum var. paniala) juice. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Leska A, Nowak A, Szulc J, Motyl I, Czarnecka-Chrebelska KH. Antagonistic Activity of Potentially Probiotic Lactic Acid Bacteria against Honeybee ( Apis mellifera L.) Pathogens. Pathogens 2022; 11:1367. [PMID: 36422618 PMCID: PMC9693384 DOI: 10.3390/pathogens11111367] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 10/15/2024] Open
Abstract
Lactic acid bacteria (LAB) are an essential part of the microbiota of the digestive tract of honeybees (Apis mellifera L.). Antagonistic activity of 103 LAB strains (isolates from different environments) against 21 honeybee pathogens/opportunistic pathogens (with agar slab method) was screened. The growth of Paenibacillus genus was inhibited to the most extent. The highest antagonistic activity was demonstrated by Lacticaseibacillus casei 12AN, while the lowest by Apilactobacillus kunkeei DSM 12361, a species naturally inhabiting the honeybee gut. LAB isolated from the honeybee environment demonstrated stronger antagonism against pathogens than collection strains. The antagonistic activity of cell-free supernatants (CFSs) from 24 LAB strains against 7 honeybee pathogens was additionally assessed at physiological pH with the microtitration method. The same was determined for selected CFSs at neutralized pH. CFSs with physiological pH showed significantly stronger antibacterial activity than CFSs with neutralized pH. The results confirmed that the mechanism of antimicrobial activity of LAB is acidification of the environment. The obtained results may, in the future, contribute to a better understanding of the antagonistic properties of LAB and the construction of a probiotic preparation to increase the viability of honeybee colonies.
Collapse
Affiliation(s)
- Aleksandra Leska
- Department of Environmental Biotechnology, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
| | - Adriana Nowak
- Department of Environmental Biotechnology, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
| | - Justyna Szulc
- Department of Environmental Biotechnology, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
| | - Ilona Motyl
- Department of Environmental Biotechnology, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
| | | |
Collapse
|
46
|
Karbowiak M, Gałek M, Szydłowska A, Zielińska D. The Influence of the Degree of Thermal Inactivation of Probiotic Lactic Acid Bacteria and Their Postbiotics on Aggregation and Adhesion Inhibition of Selected Pathogens. Pathogens 2022; 11:1260. [PMID: 36365011 PMCID: PMC9692860 DOI: 10.3390/pathogens11111260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 07/25/2023] Open
Abstract
The study aimed to evaluate the effect of thermal inactivation of potentially probiotic lactic acid bacteria (LAB) strains isolated from food on their ability to compete with pathogenic microorganisms. Five strains of LAB, previously isolated from food and characterized, one commercial reference strain of Lactiplantibacillus plantarum 299v, and two indicator strains of Staphylococcus aureus 25923 and Listeriamonocytogenes 15313 were used in the study. The experiment consisted in applying a stress factor (high temperature: 80 °C, at a different time: 5, 15, and 30 min) to the tested LAB cells to investigate the in vitro properties such as hydrophobicity abilities (against p-xylene and n-hexadecane), auto-aggregation, co-aggregation with pathogens, and inhibition of pathogens adhesion to the porcine gastric mucin. The bacterial strains showed various hydrophobicity to p-xylene (36-73%) and n-hexadecane (11-25%). The affinity for solvents expanded with increasing thermal inactivation time. All LAB isolates were able to auto-aggregate (ranging from 17 to 49%). Bacterial strains subjected to 5 and 15 min of thermal inactivation had the highest auto-aggregation ability in comparison to viable and heat-killed cells for 30 min. The LAB strains co-aggregated with pathogens to different degrees; among them, the highest scores of co-aggregation were observed for L. monocytogenes, reaching 27% (with 15 min of heat-killed LAB cells). All LAB strains reduced the adherence of pathogenic bacteria in the competition test, moreover, heat-killed cells (especially 15 min inactivated) were more efficient than viable cells. The properties of selected LAB strains as moderately heat-stressed forms analyzed in the study increased the prevention of colonization and elimination of pathogenic bacteria in the in vitro model of gastrointestinal tract. The thermal inactivation process may therefore preserve and modifies some characteristics of bacterial cells.
Collapse
|
47
|
In Vitro Assessment of Probiotic and Technological Properties of Lactic Acid Bacteria Isolated from Indigenously Fermented Cereal-Based Food Products. FERMENTATION 2022. [DOI: 10.3390/fermentation8100529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The present study concerns the isolation and characterization of potential probiotic bacteria isolated from indigenously fermented cereal-based products commonly produced by tribal people of the Aravali hills region of India and the documentation of their unexplored probiotic attributes. The isolated strains were evaluated for probiotic attributes, such as bile salt and acid tolerance, lysozyme and phenol tolerance, antagonistic and antifungal activity, cell autoaggregation, cell-surface hydrophobicity, simulated gastric and pancreatic digestion, antioxidative potential, bile salt hydrolase activity, and H2O2 production. The safety of isolates was assessed by antibiotic sensitivity, hemolytic activity, DNase activity, and biogenic amine production assays, while technological properties, such as fermenting ability, amylolytic activity, and EPS production, were also evaluated. A total of 70 LAB isolates were screened initially, and 6 strains showed good potential as probiotic candidates in in vitro assessments. The efficient strains were identified using phenotyping and biochemical characterization, which results were further confirmed and recognized at the strain level using phylogenetic analysis and 16S rDNA sequencing. The current study has shown that Lactiplantibacillus plantarum KMUDR7 isolated from “Makka ki Raab” has excellent probiotic attributes and could be a potential probiotic for product preparation. However, other strains, Lactobacillus delbrueckii subsp. bulgaricus KMUDR1 and Lacticaseibacillus rhamnosus KMUDR9, showed good properties, while KMUDR14, -17, and -20 also have comparable probiotic attributes.
Collapse
|
48
|
Lin JX, Xiong T, Peng Z, Xie M, Peng F. Novel lactic acid bacteria with anti-hyperuricemia ability: Screening and in vitro probiotic characteristics. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Antioxidant and Antibacterial Effects of Potential Probiotics Isolated from Korean Fermented Foods. Int J Mol Sci 2022; 23:ijms231710062. [PMID: 36077456 PMCID: PMC9455991 DOI: 10.3390/ijms231710062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/25/2022] Open
Abstract
A total of sixteen bacterial strains were isolated and identified from the fourteen types of Korean fermented foods that were evaluated for their in vitro probiotic potentials. The results showed the highest survivability for Bacillus sp. compared to Lactobacillus sp. in simulated gastric pH, and it was found to be maximum for B. inaquosorum KNUAS016 (8.25 ± 0.08 log10 CFU/mL) and minimum for L. sakei KNUAS019 (0.8 ± 0.02 log10 CFU/mL) at 3 h of incubation. Furthermore, B. inaquosorum KNUAS016 and L. brevis KNUAS017 also had the highest survival rates of 6.86 ± 0.02 and 5.37 ± 0.01 log10 CFU/mL, respectively, in a simulated intestinal fluid condition at 4 h of incubation. The percentage of autoaggregation at 6 h for L. sakei KNUAS019 (66.55 ± 0.33%), B. tequilensis KNUAS015 (64.56 ± 0.14%), and B. inaquosorum KNUAS016 (61.63 ± 0.19%) was >60%, whereas it was lower for L. brevis KNUAS017 (29.98 ± 0.09%). Additionally, B. subtilis KNUAS003 showed higher coaggregation at 63.84 ± 0.19% while B. proteolyticus KNUAS001 found at 30.02 ± 0.33%. Among them, Lactobacillus sp. showed the best non-hemolytic activity. The highest DPPH and ABTS radical scavenging activity was observed in L. sakei KNUAS019 (58.25% and 71.88%). The cell-free supernatant of Lactobacillus sp. considerably inhibited pathogenic growth, while the cell-free supernatant of Bacillus sp. was moderately inhibited when incubated for 24 h. However, the overall results found that B. subtilis KNUAS003, B. proteolyticus KNUAS012, L. brevis KNUAS017, L. graminis KNUAS018, and L. sakei KNUAS019 were recognized as potential probiotics through different functional and toxicity assessments.
Collapse
|
50
|
Hu Y, Tian Y, Zhu J, Wen R, Chen Q, Kong B. Technological characterization and flavor-producing potential of lactic acid bacteria isolated from traditional dry fermented sausages in northeast China. Food Microbiol 2022; 106:104059. [DOI: 10.1016/j.fm.2022.104059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/19/2022]
|