1
|
Decodts M, Cantallops-Vilà C, Hornez JC, Lacroix JM, Bouchart F. Phage-Loaded Biomimetic Apatite Powder With Antibiofilm Activity to Treat Bone-Associated Infections. J Biomed Mater Res A 2025; 113:e37808. [PMID: 39376206 DOI: 10.1002/jbm.a.37808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024]
Abstract
For decades, calcium phosphate (CaP)-based ceramics have been used for coating of bone and joint substitutes after arthroplasty due to their biocompatible properties. Infections following orthopedic replacement occur in 1%-5% of cases, causing serious complications. Biofilm formation either on the biomaterial's surface or on patient's tissues greatly enhances the resistance against antibiotic treatments and can induce a chronic infection, emphasizing the need for novel antimicrobial delivery systems. In this study, we established a protocol enabling bacteriophage loading during the synthesis of a CaP-based powder. The resulting biomaterial proved to be noncytotoxic against human osteoblastic cells and able to significantly inhibit 24-h matured S. aureus biofilm cultures or even completely eradicate it after 5 days of contact. Additional S. aureus biofilm assays with a freeze-dried material using two different excipients showed that sucrose had a protective role against Remus bacteriophage treatment of S. aureus biofilms, whereas lactose-freeze-dried powder maintained the antibiofilm activity.
Collapse
Affiliation(s)
- Maxime Decodts
- INSA Hauts-de-France, CERAMATHS-Laboratoire de Matériaux Céramiques et de Mathématiques, Univ. Polytechnique Hauts-de-France, Valenciennes, France
| | - Cristina Cantallops-Vilà
- INSA Hauts-de-France, CERAMATHS-Laboratoire de Matériaux Céramiques et de Mathématiques, Univ. Polytechnique Hauts-de-France, Valenciennes, France
| | - Jean-Christophe Hornez
- INSA Hauts-de-France, CERAMATHS-Laboratoire de Matériaux Céramiques et de Mathématiques, Univ. Polytechnique Hauts-de-France, Valenciennes, France
| | - Jean-Marie Lacroix
- UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Univ. Lille, CNRS, Lille, France
| | - Franck Bouchart
- INSA Hauts-de-France, CERAMATHS-Laboratoire de Matériaux Céramiques et de Mathématiques, Univ. Polytechnique Hauts-de-France, Valenciennes, France
- UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Univ. Lille, CNRS, Lille, France
| |
Collapse
|
2
|
Ashkenazi I, Longwell M, Byers B, Kreft R, Ramot R, Haider MA, Ramot Y, Schwarzkopf R. Nanoparticle ultrasonication: a promising approach for reducing bacterial biofilm in total joint infection-an in vivo rat model investigation. ARTHROPLASTY 2024; 6:57. [PMID: 39501415 PMCID: PMC11539774 DOI: 10.1186/s42836-024-00279-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/13/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND While the benefits of sonication for improving periprosthetic joint infection (PJI) are well-documented, its potential therapeutic effect against bacterial biofilm remains unstudied. This study aimed to investigate the safety and efficacy of a novel nanoparticle ultrasonication process on methicillin-resistant Staphylococcus aureus (MRSA) bacterial biofilm formation in a PJI rat model. METHODS This novel ultrasonication process was designed to remove attached bacterial biofilm from implant and peri-articular tissues, without damaging native tissues or compromising implant integrity. Twenty-five adult Sprague-Dawley rats underwent a surgical procedure and were colonized with intra-articular MRSA, followed by the insertion of a titanium screw. Three weeks after the index surgery, the animals received a second procedure during which the screws were explanted, and soft tissue was sampled. The intraoperative use of the nanoparticle sonication treatment was employed to assess the device's safety, while ex vivo treatment on the retrieved tissue and implants was used to evaluate its efficacy. RESULTS Clinical and histological assessments did not indicate any macro- or micro-damage to the host tissue. Sonication of the retrieved tissues demonstrated an average bacterial removal of 2 × 103 CFU/mL and 1 × 104 CFU/gram of tissue. Compared to the standard-of-care group (n = 10), implants treated with sonication (n = 15) had significantly lower remaining bacteria, as indicated by crystal violet absorbance measurements (P = 0.012). CONCLUSIONS This study suggests that nanoparticle sonication technology can successfully remove attached bacterial biofilms from explanted orthopedic hardware and the joint capsule, without negatively affecting native tissue. The study provides initial results supporting the potential of nanoparticle sonication as an adjuvant treatment option during a DAIR (debridement, antibiotics, and implant retention) procedure for PJI, paving the way for future clinical trials.
Collapse
Affiliation(s)
- Itay Ashkenazi
- Department of Orthopaedic Surgery, NYU Langone Health, New York, NY, 10003, USA
- Division of Orthopaedic Surgery, Tel-Aviv Sourasky Medical Center, 6329302, Tel-Aviv, Israel
| | - Mark Longwell
- Center for Excellence in Biofilm Research, Allegheny Health Network Research Institute, Pittsburgh, PA, 15224, USA
| | - Barbara Byers
- Center for Excellence in Biofilm Research, Allegheny Health Network Research Institute, Pittsburgh, PA, 15224, USA
| | - Rachael Kreft
- Center for Excellence in Biofilm Research, Allegheny Health Network Research Institute, Pittsburgh, PA, 15224, USA
| | - Roi Ramot
- Ramot Biomedical Eng. Ltd., Maas, 4992500, Israel
- Dimoveo Medical, Or Yehuda, 6037606, Israel
| | - Muhammad A Haider
- Department of Orthopaedic Surgery, NYU Langone Health, New York, NY, 10003, USA.
| | - Yair Ramot
- Ramot Biomedical Eng. Ltd., Maas, 4992500, Israel
- Dimoveo Medical, Or Yehuda, 6037606, Israel
| | - Ran Schwarzkopf
- Department of Orthopaedic Surgery, NYU Langone Health, New York, NY, 10003, USA
- Dimoveo Medical, Or Yehuda, 6037606, Israel
| |
Collapse
|
3
|
Negi A, Verma A, Garg M, Goswami K, Mishra V, Singh AK, Agrawal G, Murab S. Osteogenic citric acid linked chitosan coating of 3D-printed PLA scaffolds for preventing implant-associated infections. Int J Biol Macromol 2024; 282:136968. [PMID: 39490474 DOI: 10.1016/j.ijbiomac.2024.136968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/10/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
>25 % of the patients who receive orthopedic implants have been reported with implant-associated osteomyelitis, which can result in inflammation, osteolysis, and aseptic loosening of implants. Current treatment methods doesn't ensure defect healing and prevention from reinfection. Thermoplastic-based 3D-printed scaffolds offer a bioresorbable, biocompatible, and mechanical strong implant system. However, the hydrophobicity and bio-inertness of these polymers prevent their use in clinics. In this study, we developed dual functionalized scaffolds with osteogenic and antibacterial properties by immobilizing citric acid-linked chitosan on oxygen plasma etched 3D-printed PLA scaffolds through an EDC-NHS coupling reaction. Acellular mineralization of these scaffolds in DMEM demonstrated the deposition of crystalline hydroxyapatite. In addition, the antibacterial properties of these surface-modified scaffolds have been determined against E. coli and S. aureus, where the citric-linked chitosan biofunctionalized 3D-printed PLA scaffolds showed significantly higher antibacterial activity in comparison to oxygen-etched PLA and PLA scaffolds due to the synergistic effect of citric acid and chitosan functionalities. MG-63 cells exhibited increased proliferation and osteogenic activity on the modified scaffolds compared to the PLA and OP-PLA. These 3D-printed scaffolds, coated with citric-linked chitosan, can be a potential solution to orthopedic complications such as critical-sized bone defects and implant-associated osteomyelitis.
Collapse
Affiliation(s)
- Ankita Negi
- School of Biosciences & Bioengineering, IIT Mandi, HP, India
| | - Aakash Verma
- School of Biosciences & Bioengineering, IIT Mandi, HP, India
| | - Megha Garg
- School of Chemical Sciences, IIT Mandi, HP, India
| | | | - Vedante Mishra
- School of Biosciences & Bioengineering, IIT Mandi, HP, India
| | - Arun Kumar Singh
- Department of Electronics and Communications Engineering, Punjab Engineering College, Chandigarh, India
| | - Garima Agrawal
- School of Chemical Sciences, IIT Mandi, HP, India; Indian Knowledge System and Mental Health Applications Centre, IIT Mandi, HP, India; Advanced Materials Research Centre, IIT Mandi, HP, India; Technology Innovation Hub in Human-Computer Interaction (iHub), HP, India.
| | - Sumit Murab
- School of Biosciences & Bioengineering, IIT Mandi, HP, India; Indian Knowledge System and Mental Health Applications Centre, IIT Mandi, HP, India; BioX Centre, IIT Mandi, HP, India; Advanced Materials Research Centre, IIT Mandi, HP, India; Technology Innovation Hub in Human-Computer Interaction (iHub), HP, India.
| |
Collapse
|
4
|
Jin Y, Liu H, Chu L, Yang J, Li X, Zhou H, Jiang H, Shi L, Weeks J, Rainbolt J, Yang C, Xue T, Pan H, Deng Z, Xie C, Cui X, Ren Y. Initial therapeutic evidence of a borosilicate bioactive glass (BSG) and Fe 3O 4 magnetic nanoparticle scaffold on implant-associated Staphylococcal aureus bone infection. Bioact Mater 2024; 40:148-167. [PMID: 38962659 PMCID: PMC11220464 DOI: 10.1016/j.bioactmat.2024.05.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/14/2024] [Accepted: 05/27/2024] [Indexed: 07/05/2024] Open
Abstract
Implant-associated Staphylococcus aureus (S. aureus) osteomyelitis is a severe challenge in orthopedics. While antibiotic-loaded bone cement is a standardized therapeutic approach for S. aureus osteomyelitis, it falls short in eradicating Staphylococcus abscess communities (SACs) and bacteria within osteocyte-lacuna canalicular network (OLCN) and repairing bone defects. To address limitations, we developed a borosilicate bioactive glass (BSG) combined with ferroferric oxide (Fe3O4) magnetic scaffold to enhance antibacterial efficacy and bone repair capabilities. We conducted comprehensive assessments of the osteoinductive, immunomodulatory, antibacterial properties, and thermal response of this scaffold, with or without an alternating magnetic field (AMF). Utilizing a well-established implant-related S. aureus tibial infection rabbit model, we evaluated its antibacterial performance in vivo. RNA transcriptome sequencing demonstrated that BSG + 5%Fe3O4 enhanced the immune response to bacteria and promoted osteogenic differentiation and mineralization of MSCs. Notably, BSG + 5%Fe3O4 upregulated gene expression of NOD-like receptor and TNF pathway in MSCs, alongside increased the expression of osteogenic factors (RUNX2, ALP and OCN) in vitro. Flow cytometry on macrophage exhibited a polarization effect towards M2, accompanied by upregulation of anti-inflammatory genes (TGF-β1 and IL-1Ra) and downregulation of pro-inflammatory genes (IL-6 and IL-1β) among macrophages. In vivo CT imaging revealed the absence of osteolysis and periosteal response in rabbits treated with BSG + 5%Fe3O4 + AMF at 42 days. Histological analysis indicated complete controls of SACs and bacteria within OLCN by day 42, along with new bone formation, signifying effective control of S. aureus osteomyelitis. Further investigations will focus on the in vivo biosafety and biological mechanism of this scaffold within infectious microenvironment.
Collapse
Affiliation(s)
- Ying Jin
- Department of Orthopaedics, Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong Distinct, Chongqing, 400010, PR China
| | - Hang Liu
- Department of Orthopaedics, Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong Distinct, Chongqing, 400010, PR China
| | - Lei Chu
- Department of Orthopaedics, Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong Distinct, Chongqing, 400010, PR China
| | - Jin Yang
- Department of Orthopaedics, Zunyi Medical University, Zunyi, Guizhou, PR China
| | - Xiuyang Li
- Department of Orthopaedics, Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong Distinct, Chongqing, 400010, PR China
- Department of Orthopedics, The Seventh People's Hospital of Chongqing, The Central Hospital Affiliated to Chongqing University of Technology, Chongqing, 400054, PR China
| | - Hang Zhou
- Department of Orthopaedics, Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong Distinct, Chongqing, 400010, PR China
| | - Haitao Jiang
- Department of Orthopaedics, Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong Distinct, Chongqing, 400010, PR China
| | - Lei Shi
- Department of Orthopaedics, Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong Distinct, Chongqing, 400010, PR China
| | - Jason Weeks
- Center for Musculoskeletal Research, Department of Orthopaedics & Physical Performance Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Joshua Rainbolt
- Center for Musculoskeletal Research, Department of Orthopaedics & Physical Performance Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Changjiang Yang
- Shenzhen Key Laboratory of Marine Biomedical Materials, CAS-HK Joint Lab of Biomaterials, The Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Thomas Xue
- Center for Musculoskeletal Research, Department of Orthopaedics & Physical Performance Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Haobo Pan
- Shenzhen Key Laboratory of Marine Biomedical Materials, CAS-HK Joint Lab of Biomaterials, The Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Zhongliang Deng
- Department of Orthopaedics, Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong Distinct, Chongqing, 400010, PR China
| | - Chao Xie
- Center for Musculoskeletal Research, Department of Orthopaedics & Physical Performance Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Xu Cui
- Shenzhen Key Laboratory of Marine Biomedical Materials, CAS-HK Joint Lab of Biomaterials, The Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Youliang Ren
- Department of Orthopaedics, Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong Distinct, Chongqing, 400010, PR China
| |
Collapse
|
5
|
Yu M, Wei Z, Yang X, Xu Y, Zhu W, Weng X, Feng B. Safety and effectiveness of intraosseous regional prophylactic antibiotics in total knee arthroplasty: a systematic review and meta-analysis. Arch Orthop Trauma Surg 2024; 144:4233-4245. [PMID: 39297962 DOI: 10.1007/s00402-024-05513-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/21/2024] [Indexed: 09/21/2024]
Abstract
BACKGROUND Intraosseous regional administration (IORA) as a widely applicable and clinically valuable route of administration has gained significant attention in the context of total knee arthroplasty (TKA) for the prophylactic administration of antibiotics. However, there is still controversy regarding its effectiveness and safety. The latest meta-analysis reports that the use of IORA for antibiotics in TKA is as safe and effective as IV administration in preventing prosthetic joint infection (PJI), but they did not separate the statistics for primary TKA and revision TKA, which may be inappropriate. There is currently a lack of evidence specifically comparing the outcomes of prophylactic antibiotic administration via IORA or IV route in primary/revision TKA, respectively, and new research evidence has emerged. PURPOSES In this study, we conducted a systematic review and meta-analysis with the primary objective of comparing the local drug tissue concentration and the incidence of PJI between preoperative IORA and intravenous (IV) administration of prophylactic antibiotics in TKA. Additionally, the occurrence of complications between the two administration routes was also compared. PATIENTS AND METHODS This meta-analysis was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-analyses statement (PRISMA) guidelines. Retrospective cohort studies and prospective randomized controlled trials that utilized intraosseous local drug delivery for prophylactic antibiotics in knee arthroplasty were included. English literature from PubMed, Embase, and Cochrane Library databases was searched from the inception of each database until December 2023. Two researchers independently screened the literature, assessed the quality, and extracted data according to the inclusion criteria. The primary outcomes were local antibiotic tissue concentration and postoperative PJI incidence, while the secondary outcome was the occurrence of postoperative complications. Statistical analysis was performed using Review Manager 5.3 software. RESULTS This study included 7 prospective randomized controlled trials and 5 retrospective cohort studies. A total of 4091 patients participated in the 12 included studies, with 1,801 cases receiving IORA and 2,290 cases in the control group. In terms of local drug tissue concentration, intraosseous infusion (IO) 500 mg vancomycin significantly increased the drug concentration in the periarticular adipose tissue (SMD: 1.36; 95% CI: 0.87-1.84; P < 0.001; I2 = 0%) and bone tissue (SMD: 0.94; 95% CI: 0.49-1.40; P < 0.001; I2 = 0%) compared to IV 1 g vancomycin. Regarding the incidence of postoperative PJI after primary TKA, IO 500 mg vancomycin was more effective in reducing the occurrence of PJI compared to IV 1 g vancomycin (OR: 0.19; 95% CI: 0.06-0.59; P < 0.001; I2 = 36%). Finally, no significant differences were found between the two groups in terms of postoperative pulmonary embolism (PE) (OR: 1.72; 95% CI: 0.22-13.69; P = 0.59; I2 = 0%) and vancomycin-related complications (OR: 0.54; 95% CI: 0.25-1.19; P = 0.44; I2 = 0%). CONCLUSIONS Preoperative prophylactic antibiotic administration via IORA in TKA significantly increases local drug tissue concentration without significantly increasing systemic drug-related complications compared to traditional IV administration. In primary TKA, low-dose vancomycin via IORA is more effective in reducing the incidence of PJI compared to traditional IV regimens. However, its effectiveness remains controversial in high-risk populations for PJI, such as obese, diabetic, and renal insufficiency patients, as well as in revision TKA.
Collapse
Affiliation(s)
- Muyang Yu
- Department of Orthopedics Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Zhanqi Wei
- Department of Orthopedics Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xingdong Yang
- Department of Orthopedics Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yiming Xu
- Department of Orthopedics Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Wei Zhu
- Department of Orthopedics Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xisheng Weng
- Department of Orthopedics Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China.
| | - Bin Feng
- Department of Orthopedics Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
6
|
Schaffler BC, Longwell M, Byers B, Kreft R, Ramot R, Ramot Y, Schwarzkopf R. Nanoparticle ultrasonication outperforms conventional irrigation solutions in eradicating Staphylococcus aureus biofilm from titanium surfaces: an in vitro study. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY & TRAUMATOLOGY : ORTHOPEDIE TRAUMATOLOGIE 2024; 34:2729-2734. [PMID: 38761198 DOI: 10.1007/s00590-024-03982-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/29/2024] [Indexed: 05/20/2024]
Abstract
PURPOSE Bacterial biofilms create a challenge in the treatment of prosthetic joint infection (PJI), and failure to eradicate biofilms is often implicated in the high rates of recurrence. In this study, we aimed to compare the effectiveness of a novel nanoparticle ultrasonication technology on Staphylococcus aureus biofilm eradication compared to commonly used orthopedic irrigation solutions. METHODS Twenty-four sterile, titanium alloy discs were inoculated with a standardized concentration of methicillin-resistant S. aureus and cultured for seven days to allow for biofilm formation. Discs were then treated with either ultrasonicated nanoparticle therapy or irrigation with chlorhexidine gluconate, povidone-iodine or normal saline. The remaining bacteria on each surface was subsequently plated for colony-forming units of S. aureus. Bacterial eradication was reported as a decrease in CFUs relative to the control group. Mann-Whitney U tests were used to compare between groups. RESULTS Treatment with ultrasonicated nanoparticles resulted in a significant mean decrease in CFUs of 99.3% compared to controls (p < 0.0001). Irrigation with povidone-iodine also resulted in a significant 77.5% reduction in CFUs compared to controls (p < 0.0001). Comparisons between ultrasonicated nanoparticles and povidone-iodine demonstrated a significantly higher reduction in bacterial CFUs in the nanoparticle group (p < 0.0001). CONCLUSION Ultrasonicated nanoparticle were superior to commonly used bactericidal irrigation solutions in the eradication of S. aureus from a titanium surface. Future clinical studies are warranted to evaluate this ultrsonication technology in the treatment of PJI.
Collapse
Affiliation(s)
- Benjamin C Schaffler
- Department of Orthopedic Surgery, NYU Langone Orthopedic Hospital, 301 East 17Th Street, New York, NY, 10003, USA
| | - Mark Longwell
- Center for Excellence in Biofilm Research, Allegheny Health Network Research Institute, Pittsburgh, PA, USA
| | - Barbara Byers
- Center for Excellence in Biofilm Research, Allegheny Health Network Research Institute, Pittsburgh, PA, USA
| | - Rachel Kreft
- Center for Excellence in Biofilm Research, Allegheny Health Network Research Institute, Pittsburgh, PA, USA
| | - Roi Ramot
- Center for Excellence in Biofilm Research, Allegheny Health Network Research Institute, Pittsburgh, PA, USA
| | - Yair Ramot
- Center for Excellence in Biofilm Research, Allegheny Health Network Research Institute, Pittsburgh, PA, USA
| | - Ran Schwarzkopf
- Department of Orthopedic Surgery, NYU Langone Orthopedic Hospital, 301 East 17Th Street, New York, NY, 10003, USA.
| |
Collapse
|
7
|
Khachatryan A, Phillips FM, Lanman TH, Andersson GB, Jacobs JJ, Kurtz SM. Proposal for a classification system of radiographic bone changes after cervical disc replacement. J Orthop Surg Res 2024; 19:218. [PMID: 38566203 PMCID: PMC10988897 DOI: 10.1186/s13018-024-04679-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND The goal of this study is to propose a classification system with a common nomenclature for radiographic observations of periprosthetic bone changes following cTDR. METHODS Aided by serial plain radiographs from recent cTDR cases (34 patients; 44 devices), a panel of experts assembled for the purpose of creating a classification system to aid in reproducibly and accurately identifying bony changes and assessing cTDR radiographic appearance. Subdividing the superior and inferior vertebral bodies into 3 equal sections, observed bone loss such as endplate rounding, cystic erosion adjacent to the endplate, and cystic erosion not adjacent to the endplate, is recorded. Determining if bone loss is progressive, based on serial radiographs, and estimating severity of bone loss (measured by the percentage of end plate involved) is recorded. Additional relevant bony changes and device observations include radiolucent lines, heterotopic ossification, vertebral body olisthesis, loss of core implant height, and presence of device migration, and subsidence. RESULTS Serial radiographs from 19 patients (25 devices) implanted with a variety of cTDR designs were assessed by 6 investigators including clinicians and scientists experienced in cTDR or appendicular skeleton joint replacement. The overall agreement of assessments ranged from 49.9% (95% bootstrap confidence interval 45.1-73.1%) to 94.7% (95% CI 86.9-100.0%). There was reasonable agreement on the presence or absence of bone loss or radiolucencies (range: 58.4% (95% CI 51.5-82.7%) to 94.7% (95% CI 86.9-100.0%), as well as in the progression of radiolucent lines (82.9% (95% CI 74.4-96.5%)). CONCLUSIONS The novel classification system proposed demonstrated good concordance among experienced investigators in this field and represents a useful advancement for improving reporting in cTDR studies.
Collapse
Affiliation(s)
| | | | | | | | | | - Steven M Kurtz
- Implant Research Core, School of Biomedical Science, Engineering, and Health Systems, Drexel University, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Hinz N, Butscheidt S, Jandl NM, Rohde H, Keller J, Beil FT, Hubert J, Rolvien T. Increased local bone turnover in patients with chronic periprosthetic joint infection. Bone Joint Res 2023; 12:644-653. [PMID: 37813394 PMCID: PMC10562080 DOI: 10.1302/2046-3758.1210.bjr-2023-0071.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/11/2023] Open
Abstract
Aims The management of periprosthetic joint infection (PJI) remains a major challenge in orthopaedic surgery. In this study, we aimed to characterize the local bone microstructure and metabolism in a clinical cohort of patients with chronic PJI. Methods Periprosthetic femoral trabecular bone specimens were obtained from patients suffering from chronic PJI of the hip and knee (n = 20). Microbiological analysis was performed on preoperative joint aspirates and tissue specimens obtained during revision surgery. Microstructural and cellular bone parameters were analyzed in bone specimens by histomorphometry on undecalcified sections complemented by tartrate-resistant acid phosphatase immunohistochemistry. Data were compared with control specimens obtained during primary arthroplasty (n = 20) and aseptic revision (n = 20). Results PJI specimens exhibited a higher bone volume, thickened trabeculae, and increased osteoid parameters compared to both control groups, suggesting an accelerated bone turnover with sclerotic microstructure. On the cellular level, osteoblast and osteoclast parameters were markedly increased in the PJI cohort. Furthermore, a positive association between serum (CRP) but not synovial (white blood cell (WBC) count) inflammatory markers and osteoclast indices could be detected. Comparison between different pathogens revealed increased osteoclastic bone resorption parameters without a concomitant increase in osteoblasts in bone specimens from patients with Staphylococcus aureus infection, compared to those with detection of Staphylococcus epidermidis and Cutibacterium spp. Conclusion This study provides insights into the local bone metabolism in chronic PJI, demonstrating osteosclerosis with high bone turnover. The fact that Staphylococcus aureus was associated with distinctly increased osteoclast indices strongly suggests early surgical treatment to prevent periprosthetic bone alterations.
Collapse
Affiliation(s)
- Nico Hinz
- Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Trauma, Surgery and Sports Traumatology, BG Trauma Hospital Hamburg, Hamburg, Germany
| | - Sebastian Butscheidt
- Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nico M. Jandl
- Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Holger Rohde
- Instiute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Keller
- Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank T. Beil
- Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Hubert
- Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Rolvien
- Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
9
|
Kramer TS, Soriano A, Tedeschi S, Chen AF, Tattevin P, Senneville E, Gomez-Junyent J, Birlutiu V, Petersdorf S, de Brito VD, Gonzalez IS, Belden KA, Wouthuyzen-Bakker M. Should We Use Rifampicin in Periprosthetic Joint Infections Caused by Staphylococci When the Implant Has Been Exchanged? A Multicenter Observational Cohort Study. Open Forum Infect Dis 2023; 10:ofad491. [PMID: 37901121 PMCID: PMC10604993 DOI: 10.1093/ofid/ofad491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/10/2023] [Indexed: 10/31/2023] Open
Abstract
Background Previous studies demonstrated the efficacy of a rifampicin-based regimen in the treatment of acute staphylococcal periprosthetic joint infections (PJIs) treated with surgical debridement. However, evidence is lacking to support the use of rifampicin in cases where the implant is exchanged during revision. Methods We included all consecutive cases of staphylococcal PJIs treated from January 2013 to December 2018 with revision surgery in this international, retrospective, multicenter observational cohort study. PJI was defined according to the European Bone and Joint Infection Society diagnostic criteria. A relapse or reinfection during follow-up, the need for antibiotic suppressive therapy, the need for implant removal, and PJI-related death were defined as clinical failure. Cases without reimplantation or with follow-up <12 months were excluded. Results A total of 375 cases were included in the final analysis, including 124 1-stage exchanges (33.1%) and 251 2-stage exchanges (66.9%). Of those, 101 cases failed (26.9%). There was no statistically significant difference in failure of patients receiving rifampicin (22.5%, 42/187) and those not receiving rifampicin (31.4%, 59/188; P = .051). A subanalysis of chronic PJIs treated by 2-stage exchange arthroplasty demonstrated a lower failure rate in cases treated with rifampicin (15%) compared with the no-rifampicin group (35.5%; P = .005). In this subgroup, the use of rifampicin and an antibiotic holiday of >2 weeks were independent predictors of clinical success (odds ratio [OR], 0.36; 95% CI, 0.15-0.88; and OR, 0.19; 95% CI, 0.04-0.90; respectively). Conclusions Combination treatment with rifampicin increases treatment success in patients with chronic staphylococcal PJI treated with 2-stage exchange arthroplasty.
Collapse
Affiliation(s)
- Tobias Siegfried Kramer
- Institute for Hygiene and Environmental Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
- Clinic for Orthopedic Surgery and Traumatology, Evangelisches Waldkrankenhaus Berlin, Berlin, Deutschland
- LADR der Laborverbund Dr. Kramer & Kollegen, Geesthacht, Germany
| | - Alex Soriano
- Department of Infectious Diseases, University of Barcelona, IDIBAPS, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Sarah Tedeschi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Infectious Diseases Unit, IRCCS Azienda Ospedaliero-Universistaria di Bologna, Bologna, Italy
| | - Antonia F Chen
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Pierre Tattevin
- Infectious Diseases and Intensive Care Unit, Pontchaillou University Hospital, Rennes, France
| | - Eric Senneville
- French National Referent Centre for Complex Bone and Joint Infections, CRIOAC Lille-Tourcoing, Lille, France
| | - Joan Gomez-Junyent
- Department of Infectious Diseases, Hospital del Mar, Infectious Pathology and Antimicrobial Research Group (IPAR), Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, Barcelona, Spain
| | - Victoria Birlutiu
- County Clinical Emergency Hospital of Sibiu, Faculty of Medicine, Lucian Blaga University of Sibiu, Romania
| | - Sabine Petersdorf
- Institute for Medical Laboratory Diagnostics, Helios University Clinic Wuppertal, Wuppertal, Germany
| | - Vicens Diaz de Brito
- Department of Infectious Diseases, Parc Sanitari Sant Joan de Deu, Sant Boi (Barcelona), Spain
| | - Ignacio Sancho Gonzalez
- Servicio de Cirugía Ortopédica y Traumatología, Hospital Universitario de Navarra, Pamplona, España
| | - Katherine A Belden
- Division of Infectious Diseases, Sidney Kimmel Medical College at Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA
| | - Marjan Wouthuyzen-Bakker
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
10
|
Jiang F, Chen Y, Yu J, Zhang F, Liu Q, He L, Musha H, Du J, Wang B, Han P, Chen X, Tang J, Li M, Shen H. Repurposed Fenoprofen Targeting SaeR Attenuates Staphylococcus aureus Virulence in Implant-Associated Infections. ACS CENTRAL SCIENCE 2023; 9:1354-1373. [PMID: 37521790 PMCID: PMC10375895 DOI: 10.1021/acscentsci.3c00499] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Indexed: 08/01/2023]
Abstract
Implant-associated infections (IAIs) caused by S. aureus can result in serious challenges after orthopedic surgery. Due to biofilm formation and antibiotic resistance, this refractory infection is highly prevalent, and finding drugs to attenuate bacterial virulence is becoming a rational alternative strategy. In S. aureus, the SaeRS two-component system (TCS) plays a key role in the production of over 20 virulence factors and the pathogenesis of the bacterium. Here, by conducting a structure-based virtual screening against SaeR, we identified that fenoprofen, a USA Food and Drug Administration (FDA)-approved nonsteroid anti-inflammatory drug (NSAID), had excellent inhibitory potency against the response regulator SaeR protein. We showed that fenoprofen attenuated the virulence of S. aureus without drug resistance. In addition, it was helpful in relieving osteolysis and restoring the walking ability of mice in vitro and in implant-associated infection models. More importantly, fenoprofen treatment suppressed biofilm formation and changed the biofilm structure, which caused S. aureus to form loose and porous biofilms that were more vulnerable to infiltration and elimination by leukocytes. Our results reveal that fenoprofen is a potent antivirulence agent with potential value in clinical applications and that SaeR is a drug target against S. aureus implant-associated infections.
Collapse
Affiliation(s)
- Feng Jiang
- Department
of Orthopedics, Shanghai Sixth People’s
Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200235, China
| | - Yingjia Chen
- Drug
Discovery and Design Center, State Key Laboratory of Drug Research,
Shanghai Institute of Materia Medica, Chinese
Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- Department
of Pharmacy, University of Chinese Academy
of Sciences, No.19A Yuan
Road, Beijing 100049, China
| | - Jinlong Yu
- Department
of Orthopedics, Shanghai Sixth People’s
Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200235, China
| | - Feiyang Zhang
- Department
of Orthopedics, Shanghai Sixth People’s
Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200235, China
| | - Qian Liu
- Department
of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Lei He
- Department
of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Hamushan Musha
- Department
of Orthopedics, Shanghai Sixth People’s
Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200235, China
| | - Jiafei Du
- Department
of Orthopedics, Shanghai Sixth People’s
Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200235, China
| | - Boyong Wang
- Department
of Orthopedics, Shanghai Sixth People’s
Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200235, China
| | - Pei Han
- Department
of Orthopedics, Shanghai Sixth People’s
Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200235, China
| | - Xiaohua Chen
- Department
of Infectious Diseases, Shanghai Sixth People’s
Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200235, China
| | - Jin Tang
- Department
of Clinical Laboratory, Shanghai Sixth People’s
Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200235, China
| | - Min Li
- Department
of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
- Faculty of
Medical Laboratory Science, Shanghai Jiaotong
University School of Medicine, Shanghai 200025, China
| | - Hao Shen
- Department
of Orthopedics, Shanghai Sixth People’s
Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200235, China
| |
Collapse
|
11
|
Seebach E, Kraus FV, Elschner T, Kubatzky KF. Staphylococci planktonic and biofilm environments differentially affect osteoclast formation. Inflamm Res 2023:10.1007/s00011-023-01745-9. [PMID: 37329360 DOI: 10.1007/s00011-023-01745-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/21/2023] [Accepted: 05/15/2023] [Indexed: 06/19/2023] Open
Abstract
INTRODUCTION The pathophysiology of chronic implant-related bone infections is characterized by an increase in osteoclast numbers and enhanced bone resorption. Biofilms are a major reason for chronicity of such infections as the biofilm matrix protects bacteria against antibiotics and impairs the function of immune cells. Macrophages are osteoclast precursor cells and therefore linked to inflammation and bone destruction. OBJECTIVE AND METHOD Investigations on the impact of biofilms on the ability of macrophages to form osteoclasts are yet missing and we, therefore, analyzed the effect of Staphylococcus aureus (SA) and Staphylococcus epidermidis (SE) planktonic and biofilm environments on osteoclastogenesis using RAW 264.7 cells and conditioned media (CM). RESULTS Priming with the osteoclastogenic cytokine RANKL before CM addition enabled the cells to differentiate into osteoclasts. This effect was highest in SE planktonic or SA biofilm CM. Simultaneous stimulation with CM and RANKL, however, suppressed osteoclast formation and resulted in formation of inflammation-associated multinucleated giant cells (MGCs) which was most pronounced in SE planktonic CM. CONCLUSION Our data indicate that the biofilm environment and its high lactate levels are not actively promoting osteoclastogenesis. Hence, the inflammatory immune response against planktonic bacterial factors through Toll-like receptors seems to be the central cause for the pathological osteoclast formation. Therefore, immune stimulation or approaches that aim at biofilm disruption need to consider that this might result in enhanced inflammation-mediated bone destruction.
Collapse
Affiliation(s)
- Elisabeth Seebach
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.
| | - Franziska V Kraus
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
- Department of Internal Medicine 5 - Hematology Oncology Rheumatology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Tabea Elschner
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
- Institute for Cardiovascular Sciences and Institute of Neurovascular Cell Biology (INVZ), University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Katharina F Kubatzky
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.
| |
Collapse
|
12
|
Lee H, Shin DY, Na Y, Han G, Kim J, Kim N, Bang SJ, Kang HS, Oh S, Yoon CB, Park J, Kim HE, Jung HD, Kang MH. Antibacterial PLA/Mg composite with enhanced mechanical and biological performance for biodegradable orthopedic implants. BIOMATERIALS ADVANCES 2023; 152:213523. [PMID: 37336010 DOI: 10.1016/j.bioadv.2023.213523] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/29/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
Biodegradability, bone-healing rate, and prevention of bacterial infection are critical factors for orthopedic implants. Polylactic acid (PLA) is a good candidate biodegradable material; however, it has insufficient mechanical strength and bioactivity for orthopedic implants. Magnesium (Mg), has good bioactivity, biodegradability, and sufficient mechanical properties, similar to that of bone. Moreover, Mg has an inherent antibacterial property via a photothermal effect, which generates localized heat, thus preventing bacterial infection. Therefore, Mg is a good candidate material for PLA composites, to improve their mechanical and biological performance and add an antibacterial property. Herein, we fabricated an antibacterial PLA/Mg composite for enhanced mechanical and biological performance with an antibacterial property for application as biodegradable orthopedic implants. The composite was fabricated with 15 and 30 vol% of Mg homogeneously dispersed in PLA without the generation of a defect using a high-shear mixer. The composites exhibited an enhanced compressive strength of 107.3 and 93.2 MPa, and stiffness of 2.3 and 2.5 GPa, respectively, compared with those of pure PLA which were 68.8 MPa and 1.6 GPa, respectively. Moreover, the PLA/Mg composite at 15 vol% Mg exhibited significant improvement of biological performance in terms of enhanced initial cell attachment and cell proliferation, whereas the composite at 30 vol% Mg showed deteriorated cell proliferation and differentiation because of the rapid degradation of the Mg particles. In turn, the PLA/Mg composites exerted an antibacterial effect based on the inherent antibacterial property of Mg as well as the photothermal effect induced by near-infrared (NIR) treatment, which can minimize infection after implantation surgery. Therefore, antibacterial PLA/Mg composites with enhanced mechanical and biological performance may be a candidate material with great potential for biodegradable orthopedic implants.
Collapse
Affiliation(s)
- Hyun Lee
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Da-Young Shin
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Yuhyun Na
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Ginam Han
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Joodeok Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Nahyun Kim
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Seo-Jun Bang
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Hyeong Seok Kang
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - SeKwon Oh
- Research Institute of Advanced Manufacturing & Materials Technology, Korea Institute of Industrial Technology, Incheon 21999, Republic of Korea
| | - Chang-Bun Yoon
- Department of Advanced Materials Engineering, Tech University of Korea, Siheung-si 15073, Republic of Korea
| | - Jungwon Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea; Center for Nanoparticle Research, Institute of Basic Science (IBS), Seoul 08826, Republic of Korea; Institute of Engineering Research, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea; Advanced Institutes of Convergence Technology, Seoul National University, Suwon-si 16229, Republic of Korea
| | - Hyoun-Ee Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun-Do Jung
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Min-Ho Kang
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea.
| |
Collapse
|
13
|
Shao M, Bigham A, Yousefiasl S, Yiu CKY, Girish YR, Ghomi M, Sharifi E, Sezen S, Nazarzadeh Zare E, Zarrabi A, Rabiee N, Paiva-Santos AC, Del Turco S, Guo B, Wang X, Mattoli V, Wu A. Recapitulating Antioxidant and Antibacterial Compounds into a Package for Tissue Regeneration: Dual Function Materials with Synergistic Effect. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207057. [PMID: 36775954 DOI: 10.1002/smll.202207057] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/18/2023] [Indexed: 05/11/2023]
Abstract
Oxidative damage and infection can prevent or delay tissue repair. Moreover, infection reinforces reactive oxygen species (ROS) formation, which makes the wound's condition even worse. Therefore, the need for antioxidant and antibacterial agents is felt for tissue regeneration. There are emerging up-and-coming biomaterials that recapitulate both properties into a package, offering an effective solution to turn the wound back into a healing state. In this article, the principles of antioxidant and antibacterial activity are summarized. The review starts with biological aspects, getting the readers to familiarize themselves with tissue barriers against infection. This is followed by the chemistry and mechanism of action of antioxidant and antibacterial materials (dual function). Eventually, the outlook and challenges are underlined to provide where the dual-function biomaterials are and where they are going in the future. It is expected that the present article inspires the designing of dual-function biomaterials to more advanced levels by providing the fundamentals and comparative points of view and paving the clinical way for these materials.
Collapse
Affiliation(s)
- Minmin Shao
- Department of Otorhinolaryngology, The Second Affiliated Hospital of Shanghai University, Wenzhou Central Hospital, Wenzhou, 325000, P. R. China
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), 80125, Naples, Italy
| | - Satar Yousefiasl
- School of Dentistry, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran
| | - Cynthia K Y Yiu
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, 999077, P. R. China
| | - Yarabahally R Girish
- Centre for Research and Innovations, School of Natural Sciences, BGSIT, Adichunchanagiri University, B.G. Nagara, Mandya District, Mandya, Karnataka, 571448, India
| | - Matineh Ghomi
- School of Chemistry, Damghan University, Damghan, 36716-45667, Iran
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran
| | - Serap Sezen
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul, 34956, Turkey
| | | | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul, 34396, Turkey
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Western Australia, 6150, Australia
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Serena Del Turco
- National Research Council, Institute of Clinical Physiology, 56124, Pisa, Italy
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, 56025, Pontedera, Pisa, Italy
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xiangdong Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, 200032, P. R. China
| | - Virgilio Mattoli
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, 56025, Pontedera, Pisa, Italy
| | - Aimin Wu
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, P. R. China
| |
Collapse
|
14
|
Lamret F, Lemaire A, Lagoutte M, Varin-Simon J, Abraham L, Colin M, Braux J, Velard F, Gangloff SC, Reffuveille F. Approaching prosthesis infection environment: Development of an innovative in vitro Staphylococcus aureus biofilm model. Biofilm 2023; 5:100120. [PMID: 37125394 PMCID: PMC10130472 DOI: 10.1016/j.bioflm.2023.100120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/28/2023] [Accepted: 04/02/2023] [Indexed: 04/05/2023] Open
Abstract
The major role and implication of bacterial biofilms in the case of bone and prosthesis infections have been highlighted and often linked to implant colonization. Management strategies of these difficult-to-treat infections consist in surgeries and antibiotic treatment, but the rate of relapse remains high, especially if Staphylococcus aureus, a high-virulent pathogen, is involved. Therapeutic approaches are not adapted to the specific features of biofilm in bone context whereas infectious environment is known to importantly influence biofilm structure. In the present study, we aim to characterize S. aureus SH1000 (methicillin-sensitive strain, MSSA) and USA300 (methicillin-resistant strain, MRSA) biofilm on different surfaces mimicking the periprosthetic environment. As expected, protein adsorption on titanium enhanced the number of adherent bacteria for both strains. On bone explant, USA300 adhered more than SH1000. The simultaneous presence of two different surfaces was also found to change the bacterial behaviour. Thus, proteins adsorption on titanium and bone samples (from bank or directly recovered after an arthroplasty) were found to be key parameters that influence S. aureus biofilm formation: adhesion, matrix production and biofilm-related gene regulation. These results highlighted the need for new biofilm models, more relevant with the infectious environment by using adapted culture medium and presence of surfaces that are representative of in situ conditions to better evaluate therapeutic strategies against biofilm.
Collapse
|
15
|
Piñera-Avellaneda D, Buxadera-Palomero J, Ginebra MP, Calero JA, Manero JM, Rupérez E. Surface competition between osteoblasts and bacteria on silver-doped bioactive titanium implant. BIOMATERIALS ADVANCES 2023; 146:213311. [PMID: 36709627 DOI: 10.1016/j.bioadv.2023.213311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023]
Abstract
The rapid integration in the bone tissue and the prevention of bacterial infection are key for the success of the implant. In this regard, a silver (Ag)-doped thermochemical treatment that generate an Ag-doped calcium titanate layer on titanium (Ti) implants was previously developed by our group to improve the bone-bonding ability and provide antibacterial activity. In the present study, the biological and antibacterial potential of this coating has been further studied. In order to prove that the Ag-doped layer has an antibacterial effect with no detrimental effect on the bone cells, the behavior of osteoblast-like cells in terms of cell adhesion, morphology, proliferation and differentiation was evaluated, and the biofilm inhibition capacity was assessed. Moreover, the competition by the surface between cell and bacteria was carried out in two different co-culture methods. Finally, the treatment was applied to porous Ti implants to study in vivo osteointegration. The results show that the incorporation of Ag inhibits the biofilm formation and has no effect on the performance of osteoblast-like cells. Therefore, it can be concluded that the Ag-doped surface is capable of preventing bone bacterial infection and providing suitable osseointegration.
Collapse
Affiliation(s)
- David Piñera-Avellaneda
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Technical University of Catalonia (UPC), Barcelona East School of Engineering (EEBE), 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, EEBE, 08019 Barcelona, Spain; Institut de Recerca Sant Joan de Déu, 08034 Barcelona, Spain.
| | - Judit Buxadera-Palomero
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Technical University of Catalonia (UPC), Barcelona East School of Engineering (EEBE), 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, EEBE, 08019 Barcelona, Spain; Institut de Recerca Sant Joan de Déu, 08034 Barcelona, Spain
| | - María-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Technical University of Catalonia (UPC), Barcelona East School of Engineering (EEBE), 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, EEBE, 08019 Barcelona, Spain; Institut de Recerca Sant Joan de Déu, 08034 Barcelona, Spain; Institute for Bioengineering of Catalonia (IBEC), 08028 Barcelona, Spain
| | - José A Calero
- AMES GROUP, 08980 Sant Feliu de Llobregat, Barcelona, Spain
| | - José María Manero
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Technical University of Catalonia (UPC), Barcelona East School of Engineering (EEBE), 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, EEBE, 08019 Barcelona, Spain; Institut de Recerca Sant Joan de Déu, 08034 Barcelona, Spain
| | - Elisa Rupérez
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Technical University of Catalonia (UPC), Barcelona East School of Engineering (EEBE), 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, EEBE, 08019 Barcelona, Spain; Institut de Recerca Sant Joan de Déu, 08034 Barcelona, Spain
| |
Collapse
|
16
|
Li H, Wang D, Zhang W, Xu G, Xu C, Liu W, Li J. Potential side effects of antibacterial coatings in orthopaedic implants: A systematic review of clinical studies. Front Bioeng Biotechnol 2023; 11:1111386. [PMID: 36845182 PMCID: PMC9947536 DOI: 10.3389/fbioe.2023.1111386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
Objective: The systematic review aimed to determine the potential side effects of antibacterial coatings in orthopaedic implants. Methods: Publications were searched in the databases of Embase, PubMed, Web of Science and Cochrane Library using predetermined keywords up to 31 October 2022. Clinical studies reporting side effects of the surface or coating materials were included. Results: A total of 23 studies (20 cohort studies and three case reports) reporting the concerns about the side effects of antibacterial coatings were identified. Three types of coating materials, silver, iodine and gentamicin were included. All of studies raised the concerns regarding safety of antibacterial coatings, and the occurrence of adverse events was observed in seven studies. The main side effect of silver coatings was the development of argyria. For iodine coatings, only one anaphylactic case was reported as an adverse event. No systemic or other general side effects were reported for gentamicin. Conclusion: Clinical studies on the side effects of antibacterial coatings were limited. Based on the available outcomes, the most reported side effects of antibacterial coatings in clinical use were argyria with silver coatings. However, researchers should always pay attention to the potential side effects of antibacterial materials, such as systematic or local toxicity and allergy.
Collapse
Affiliation(s)
- Hua Li
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Daofeng Wang
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Wupeng Zhang
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China,School of Medicine, Nankai University, Tianjin, China
| | - Gaoxiang Xu
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Cheng Xu
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China,*Correspondence: Cheng Xu, ; Wanheng Liu, ; Jiantao Li,
| | - Wanheng Liu
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China,*Correspondence: Cheng Xu, ; Wanheng Liu, ; Jiantao Li,
| | - Jiantao Li
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China,*Correspondence: Cheng Xu, ; Wanheng Liu, ; Jiantao Li,
| |
Collapse
|
17
|
Calabrese G, De Luca G, Franco D, Morganti D, Rizzo MG, Bonavita A, Neri G, Fazio E, Neri F, Fazio B, Crea F, Leonardi AA, Faro MJL, Guglielmino S, Conoci S. Structural and antibacterial studies of novel ZnO and Zn xMn (1-x)O nanostructured titanium scaffolds for biomedical applications. BIOMATERIALS ADVANCES 2023; 145:213193. [PMID: 36587469 DOI: 10.1016/j.bioadv.2022.213193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022]
Abstract
In the biomedical field, the demand for the development of broad-spectrum biomaterials able to inhibit bacterial growth is constantly increasing. Chronic infections represent the most serious and devastating complication related to the use of biomaterials. This is particularly relevant in the orthopaedic field, where infections can lead to implant loosening, arthrodesis, amputations and sometimes death. Antibiotics are the conventional approach for implanted-associated infections, but they have the limitation of increasing antibiotic resistance, a critical worldwide healthcare issue. In this context, the development of anti-infective biomaterials and infection-resistant surfaces can be considered the more effective strategy to prevent the implant colonisation and biofilm formation by bacteria, so reducing the occurrence of implant-associated infections. In the last years, inorganic nanostructures have become extremely appealing for chemical modifications or coatings of Ti surfaces, since they do not generate antibiotic resistance issues and are featured by superior stability, durability, and full compatibility with the sterilization process. In this work, we present a simple, rapid, and cheap chemical nanofunctionalization of titanium (Ti) scaffolds with colloidal ZnO and Mn-doped ZnO nanoparticles (NPs), prepared by a sol-gel method, exhibiting antibacterial activity. ZnO NPs and ZnxMn(1-x)O NPs formation with a size around 10-20nm and band gap values of 3.42 eV and 3.38 eV, respectively, have been displayed by characterization studies. UV-Vis, fluorescence, and Raman investigation suggested that Mn ions acting as dopants in the ZnO lattice. Ti scaffolds have been functionalized through dip coating, obtaining ZnO@Ti and ZnxMn(1-x)O@Ti biomaterials characterized by a continuous nanostructured film. ZnO@Ti and ZnxMn(1-x)O@Ti displayed an enhanced antibacterial activity against both Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Pseudomonas aeruginosa (P. aeruginosa) bacterial strains, compared to NPs in solution with better performance of ZnxMn(1-x)O@Ti respect to ZnO@Ti. Notably, it has been observed that ZnxMn(1-x)O@Ti scaffolds reach a complete eradication for S. aureus and 90 % of reduction for P. aeruginosa. This can be attributed to Zn2+ and Mn2+ metal ions release (as observed by ICP MS experiments) that is also maintained over time (72 h). To the best of our knowledge, this is the first study reported in the literature describing ZnO and Mn-doped ZnO NPs nanofunctionalized Ti scaffolds with improved antibacterial performance, paving the way for the realization of new hybrid implantable devices through a low-cost process, compatible with the biotechnological industrial chain method.
Collapse
Affiliation(s)
- Giovanna Calabrese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Giovanna De Luca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Domenico Franco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | | | - Maria Giovanna Rizzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Anna Bonavita
- Department of Engineering, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Giovanni Neri
- Department of Engineering, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Enza Fazio
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, Viale F. Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Fortunato Neri
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, Viale F. Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Barbara Fazio
- LAB Sense Beyond Nano - URT Department of Sciences Physics and Technologies of Matter (DSFTM) CNR, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Francesco Crea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Antonio Alessio Leonardi
- Department of Physic and Astronomy, University of Catania (Italy), Via Santa Sofia 64, Catania, Italy
| | - Maria Josè Lo Faro
- Department of Physic and Astronomy, University of Catania (Italy), Via Santa Sofia 64, Catania, Italy
| | - Salvatore Guglielmino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Sabrina Conoci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy; LAB Sense Beyond Nano - URT Department of Sciences Physics and Technologies of Matter (DSFTM) CNR, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy; Istituto per la Microelettronica e Microsistemi, Consiglio Nazionale delle Ricerche (CNR-IMM), Catania, Italy; Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| |
Collapse
|
18
|
Huang S, Zhong Y, Fu Y, Zheng X, Feng Z, Mo A. Graphene and its derivatives: "one stone, three birds" strategy for orthopedic implant-associated infections. Biomater Sci 2023; 11:380-399. [PMID: 36453143 DOI: 10.1039/d2bm01507b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Orthopedic implants provide an avascular surface for microbial attachment and biofilm formation, impeding the entry of immune cells and the diffusion of antibiotics. The above is an important cause of dental and orthopedic implant-associated infection (IAI). For the prevention and treatment of IAI, the drawbacks of antibiotic resistance and surgical treatment are increasingly apparent. Due to their outstanding biological properties such as biocompatibility, immunomodulatory effects, and antibacterial properties, graphene-based nanomaterials (GBNs) have been applied to bone tissue engineering to deal with IAI, and in particular have great potential application in drug/gene carriers, multi-functional platforms, and coating forms. Here we review the latest research progress and achievements in GBNs for the prevention and treatment of IAI, mainly including their biomedical applications for antibacterial and immunomodulation effects, and for inducing osteogenesis. Furthermore, the biosafety of graphene family materials in bone tissue regeneration and the feasibility of clinical application are critically analyzed and discussed.
Collapse
Affiliation(s)
- Si Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China. .,Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yongjin Zhong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China. .,Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yu Fu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China. .,Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiaofei Zheng
- Stomatology Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zeru Feng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China. .,Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Anchun Mo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China. .,Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
19
|
Partial Two-Stage Exchange for Infected Total Hip Arthroplasty: A Treatment to Take into Account. J Pers Med 2023; 13:jpm13010137. [PMID: 36675798 PMCID: PMC9866598 DOI: 10.3390/jpm13010137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/29/2022] [Accepted: 01/08/2023] [Indexed: 01/12/2023] Open
Abstract
INTRODUCTION Two-stage revision is the gold standard for chronic periprosthetic joint infection (PJI). The removal of well-fixed implants, especially the femoral component, can be extremely difficult and additional osteotomies may be needed, which is time-consuming and results in bone stock loss. When the femoral stem is osseointegrated, there is no clear indication for the use of partial two-stage revision. The primary objective was to assess infection eradication after surgery. METHODS Retrospective study of specific case series. A total of eight patients with a chronic uncemented PJI, in the setting of complex revision surgeries, were treated with partial two-stage revision, which included selective retention of the well-fixed femoral component and complete acetabular removal. Stem retention was carried out regardless of the bacteria or associated comorbidities. RESULTS All patients were re-revision cases with at least two previous surgeries (range, 2-4). Complex revisions were performed in five cases (non-articulated spacer) and simple revisions in three cases (articulated spacer). The minimum follow-up time was 24 months (range, 24-132 months). The infection eradication rate at final follow-up was 100%. CONCLUSION Partial two-stage reconstruction is a promising technique for the treatment of chronic PJI in patients with a well-fixed stem and complex re-revision acetabular procedures. Further prospective studies and prolonged follow-ups are required to confirm our results.
Collapse
|
20
|
Li Y, Wuermanbieke S, Zhang X, Mu W, Ma H, Qi F, Sun X, Amat A, Cao L. Effects of intra-articular D-amino acids combined with systemic vancomycin on an experimental Staphylococcus aureus-induced periprosthetic joint infection. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2022; 55:716-727. [PMID: 35346597 DOI: 10.1016/j.jmii.2022.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/25/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The D-isoforms of amino acids (D-AAs) exhibit anti-biofilm potential against a diverse range of bacterial species in vitro, while its role in vivo remains unclear. The aim of this study was to investigate the effects of a combination of D-AAs and vancomycin on a PJI rat model. METHODS Eight-week-old male SD rats were randomized to the control group, sham group, vancomycin group, D-AAs-vancomycin group. After treatment for 6 weeks, we analysed the levels of inflammatory factors in serum, behavioural change, imaging manifestations. The anti-biofilm ability of D-AAs was detected by crystal violet staining and scanning electron microscope observation, and its ability to assist antibiotics in killing bacteria was assessed by culture of bacteria. Additionally, micro-CT and histological analysis were used to evaluate the impact of D-AAs combined with vancomycin on the bone remodelling around the prosthesis. RESULTS The group treated with a D-AAs-vancomycin combination sustained normal weight gain and exhibited reduced the serum levels of α2M, IL-1β, IL-6, IL-10, TNF-α and PGE2. Moreover, treated with D-AAs in combination with vancomycin improved the weight-bearing activity performance, increased the sizes and widths of distal femurs, and improved Rissing scale scoring. In particular, treatment using D-AAs enhanced the ability of vancomycin to eradicate Staphylococcus aureus, as demonstrated by the dispersion of existing biofilms and the inhibition of biofilm formation that occurred in a concentration-dependent manner. This treatment combination also resulted in a reduction in bacterial burden with in the soft tissues, bones, and implants. Furthermore, D-AAs-vancomycin combination treatment attenuated abnormal bone remodelling around the implant, as evidenced by an observed increase in BMD, BV/TV, and Tb.Th and the presence of reduced Trap+ osteoclasts and elevated osterix+ osteo-progenitors. CONCLUSIONS Combining D-AAs with vancomycin provides an effective therapeutic strategy for the treatment of PJI by promoting biofilm dispersion to enhance antimicrobial activity.
Collapse
Affiliation(s)
- Yicheng Li
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | | | - Xiaogang Zhang
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Wenbo Mu
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hairong Ma
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China; Xinjiang Uygur Autonomous Region Clinical Research Center for Orthopedic Diseases, Urumqi, China
| | - Fei Qi
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xiaoyue Sun
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Abdusami Amat
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Li Cao
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.
| |
Collapse
|
21
|
Benjumea A, Díaz-Navarro M, Hafian R, Cercenado E, Sánchez-Somolinos M, Vaquero J, Chana F, Muñoz P, Guembe M. Tranexamic Acid in Combination With Vancomycin or Gentamicin Has a Synergistic Effect Against Staphylococci. Front Microbiol 2022; 13:935646. [PMID: 35847081 PMCID: PMC9280180 DOI: 10.3389/fmicb.2022.935646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
Background Tranexamic acid (TXA) is an antifibrinolytic agent applied in orthopedic surgery and has been proven to reduce post-surgery infection rates. We previously showed that TXA also had an additional direct antimicrobial effect against planktonic bacteria. Therefore, we aimed to evaluate whether it has a synergistic effect if in combination with antibiotics. Materials and Methods Three ATCC and seven clinical strains of staphylococci were tested against serial dilutions of vancomycin and gentamicin alone and in combination with TXA at 10 and 50 mg/ml. The standardized microtiter plate method was used. Minimal inhibitory concentrations (MICs) were calculated by standard visualization of well turbidity (the lowest concentration at which complete absence of well bacterial growth was observed by the researcher) and using the automated method (the lowest concentration at which ≥80% reduction in well bacterial growth was measured using a spectrophotometer). Results Tranexamic acid-10 mg/ml reduced the MIC of vancomycin and gentamicin with both the standard method (V: 1-fold dilution, G: 4-fold dilutions) and the automated turbidity method (vancomycin: 8-fold dilutions, gentamicin: 8-fold dilutions). TXA-50 mg/ml reduced the MIC of gentamicin with both the standard turbidity method (6-fold dilutions) and the automated turbidity method (1-fold dilutions). In contrast, for vancomycin, the MIC remained the same using the standard method, and only a 1-fold dilution was reduced using the automated method. Conclusion Ours was a proof-of-concept study in which we suggest that TXA may have a synergistic effect when combined with both vancomycin and gentamicin, especially at 10 mg/ml, which is the concentration generally used in clinical practice.
Collapse
Affiliation(s)
- Antonio Benjumea
- Department of Orthopaedic Surgery and Traumatology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Marta Díaz-Navarro
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Rama Hafian
- School of Biology, Universidad Complutense de Madrid, Madrid, Spain
| | - Emilia Cercenado
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), Madrid, Spain
| | - Mar Sánchez-Somolinos
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Javier Vaquero
- Department of Orthopaedic Surgery and Traumatology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Francisco Chana
- Department of Orthopaedic Surgery and Traumatology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Patricia Muñoz
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), Madrid, Spain
- School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - María Guembe
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| |
Collapse
|
22
|
Jothipandiyan S, Suresh D, Sekaran S, Sudharsan M, Subramanian R, Paramasivam N. Transition metal complex laminated bioactive implant alleviates Methicillin Resistant Staphylococcus aureus virulence. BIOMATERIALS ADVANCES 2022; 137:212813. [PMID: 35929252 DOI: 10.1016/j.bioadv.2022.212813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/30/2022] [Accepted: 04/15/2022] [Indexed: 06/15/2023]
Abstract
Orthopedic implant infections cause a serious threat after implantation. The major source of implant infection is biofilms which are highly tolerant to antibiotics due to the presence of rigid biofilm matrix. Hence to overcome biofilm mediated implant infections, we developed a novel antibiofilm agent, palladium (II) thiazolinyl picolinamide complex (Pd(II)-E). From our study, it was found that Pd(II)-E have profound biofilm inhibition activity and also reduced various virulence factors of Methicillin resistant Staphylococcus aureus (MRSA) including slime synthesis, Phenol soluble modulin (PSM) mediated spreading, Exopolysaccharides production and staphyloxanthin synthesis. Further, Pd(II)-E was coated over the titanium plates which was confirmed using EDX (Energy Dispersive X-Ray) analysis. The Pd(II)-E coated plates were able to prevent the biofilm formation on them which was evident under a Scanning electron microscope (SEM) and several virulent genes were found to be downregulated in the biofilms on the coated titanium plates which confirmed by qPCR. From our findings, it was found that Pd(II)-E coated titanium implants would be an effective alternate approach for preventing biofilm mediated implant infections.
Collapse
Affiliation(s)
- Sowndarya Jothipandiyan
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613 401, Tamil Nadu, India
| | - Devarajan Suresh
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - Saravanan Sekaran
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute for Medical and Technical Sciences, Chennai 600077, Tamil Nadu, India
| | - Murugesan Sudharsan
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - Raghunandhakumar Subramanian
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute for Medical and Technical Sciences, Chennai 600077, Tamil Nadu, India
| | - Nithyanand Paramasivam
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613 401, Tamil Nadu, India.
| |
Collapse
|
23
|
Prophylactic Antibiofilm Activity of Antibiotic-Loaded Bone Cements against Gram-Negative Bacteria. Antibiotics (Basel) 2022; 11:antibiotics11020137. [PMID: 35203740 PMCID: PMC8868455 DOI: 10.3390/antibiotics11020137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 02/01/2023] Open
Abstract
Gram-negative bacilli can be responsible for prosthetic joint infection (PJI) even if staphylococci are the main involved pathogens. Gram-negative PJIs (GN-PJI) are considered difficult-to-treat infections due to the increase in antimicrobial resistance and biofilm formation. To minimize the risk of infection in cases of arthroplasties with cemented prosthesis, bone cement can be loaded with antibiotics, especially gentamicin. In this study, we aimed to compare the prophylactic antibiofilm activity of ready-to-use antibiotic-loaded bone cements (ALBC), already commercialized or new prototypes. We compared ALBCs containing gentamicin alone, gentamicin plus vancomycin, gentamicin plus clindamycin, gentamicin plus Fosfomycin, and fosfomycin alone, to plain cement (no antibiotic); these comparisons were conducted to investigate the biofilm formation of three strains of Escherichia coli, three strains of Pseudomonas aeruginosa and two strains of Klebsiella pneumoniae, with or without specific resistance to gentamicin or fosfomycin. We reported that ALBC containing gentamicin and clindamycin (COPAL G+C) seems to be the most interesting ALBC of our tested panel for the prevention of biofilm formation by gentamicin-susceptible strains, even if clindamycin is not effective against Gram-negative bacteria. However, gentamicin-resistant strains are still a problem, and further studies are needed to identify an antibiotic to associate with gentamicin for an efficient dual ALBC against Gram-negative bacteria.
Collapse
|
24
|
Shi T, Ruan Z, Wang X, Lian X, Chen Y. Erythrocyte Membrane-Enveloped Molybdenum Disulfide Nanodots for Biofilm Elimination on Implants via Toxin Neutralization and Immune Modulation. J Mater Chem B 2022; 10:1805-1820. [PMID: 35199816 DOI: 10.1039/d1tb02615a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Implant-related infections (IRIs) caused by bacterial biofilms remain a prevalent but tricky clinical issue, which are characterized by drug resistance, toxin impairment and immunity suppression. Recently, antimicrobial therapies based on...
Collapse
Affiliation(s)
- Tingwang Shi
- Department of Orthopedic Surgery, and Shanghai Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P. R. China.
| | - Zesong Ruan
- Department of Orthopedic Surgery, and Shanghai Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P. R. China.
| | - Xin Wang
- Department of Orthopedic Surgery, and Shanghai Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P. R. China.
| | - Xiaofeng Lian
- Department of Orthopedic Surgery, and Shanghai Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P. R. China.
| | - Yunfeng Chen
- Department of Orthopedic Surgery, and Shanghai Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P. R. China.
| |
Collapse
|
25
|
Mavrogenis A, Malesiou E, Tanis O, Mitsiokapa E, Tsatsaragkou E, Anastassopoulou J, Theophanides T, Dimotikali D, Koui M. The influence of sepsis on the molecular structure of bones: A Fourier Transform Infrared spectroscopy study. J Long Term Eff Med Implants 2022; 32:57-63. [DOI: 10.1615/jlongtermeffmedimplants.2022041977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
26
|
Rosman CWK, van Dijl JM, Sjollema J. Interactions between the foreign body reaction and Staphylococcus aureus biomaterial-associated infection. Winning strategies in the derby on biomaterial implant surfaces. Crit Rev Microbiol 2021; 48:624-640. [PMID: 34879216 DOI: 10.1080/1040841x.2021.2011132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biomaterial-associated infections (BAIs) are an increasing problem where antibiotic therapies are often ineffective. The design of novel strategies to prevent or combat infection requires a better understanding of how an implanted foreign body prevents the immune system from eradicating surface-colonizing pathogens. The objective of this review is to chart factors resulting in sub-optimal clearance of Staphylococcus aureus bacteria involved in BAIs. To this end, we first describe three categories of bacterial mechanisms to counter the host immune system around foreign bodies: direct interaction with host cells, modulation of intercellular communication, and evasion of the immune system. These mechanisms take place in a time frame that differentiates sterile foreign body reactions, BAIs, and soft tissue infections. In addition, we identify experimental interventions in S. aureus BAI that may impact infectious mechanisms. Most experimental treatments modulate the host response to infection or alter the course of BAI through implant surface modulation. In conclusion, the first week after implantation and infection is crucial for the establishment of an S. aureus biofilm that resists the local immune reaction and antibiotic treatment. Although established and chronic S. aureus BAI is still treatable and manageable, the focus of interventions should lie on this first period.
Collapse
Affiliation(s)
- Colin W K Rosman
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jelmer Sjollema
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
27
|
Ferry T, Kolenda C, Briot T, Souche A, Lustig S, Josse J, Batailler C, Pirot F, Medina M, Leboucher G, Laurent F. Past and Future of Phage Therapy and Phage-Derived Proteins in Patients with Bone and Joint Infection. Viruses 2021; 13:v13122414. [PMID: 34960683 PMCID: PMC8708067 DOI: 10.3390/v13122414] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/29/2021] [Accepted: 11/19/2021] [Indexed: 12/15/2022] Open
Abstract
Phage-derived therapies comprise phage therapy and the use of phage-derived proteins as anti-bacterial therapy. Bacteriophages are natural viruses that target specific bacteria. They were proposed to be used to treat bacterial infections in the 1920s, before the discovery and widespread over-commercialized use of antibiotics. Phage therapy was totally abandoned in Western countries, whereas it is still used in Poland, Georgia and Russia. We review here the history of phage therapy by focusing on bone and joint infection, and on the development of phage therapy in France in this indication. We discuss the rationale of its use in bacterial infection and show the feasibility of phage therapy in the 2020s, based on several patients with complex bone and joint infection who recently received phages as compassionate therapy. Although the status of phage therapy remains to be clarified by health care authorities, obtaining pharmaceutical-grade therapeutic phages (i.e., following good manufacturing practice guidelines or being “GMP-like”) targeting bacterial species of concern is essential. Moreover, multidisciplinary clinical expertise has to determine what could be the relevant indications to perform clinical trials. Finally “phage therapy 2.0” has to integrate the following steps: (i) follow the status of phage therapy, that is not settled and defined; (ii) develop in each country a close relationship with the national health care authority; (iii) develop industrial–academic partnerships; (iv) create academic reference centers; (v) identify relevant clinical indications; (vi) use GMP/GMP-like phages with guaranteed quality bioproduction; (vii) start as salvage therapy; (vii) combine with antibiotics and adequate surgery; and (viii) perform clinical trials, to finally (ix) demonstrate in which clinical settings phage therapy provides benefit. Phage-derived proteins such as peptidoglycan hydrolases, polysaccharide depolymerases or lysins are enzymes that also have anti-biofilm activity. In contrast to phages, their development has to follow the classical process of medicinal products. Phage therapy and phage-derived products also have a huge potential to treat biofilm-associated bacterial diseases, and this is of crucial importance in the worldwide spread of antimicrobial resistance.
Collapse
Affiliation(s)
- Tristan Ferry
- Hospices Civils de Lyon, 69004 Lyon, France; (C.K.); (T.B.); (A.S.); (S.L.); (J.J.); (C.B.); (F.P.); (M.M.); (G.L.); (F.L.)
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
- Centre de Références des IOA Complexes de Lyon, CRIOAc Lyon, 69004 Lyon, France
- StaPath Team, Centre International de Recherche en Infectiologie, CIRI, Inserm U1111, CNRS UMR5308, ENS de Lyon, UCBL1, 69008 Lyon, France
- Correspondence:
| | - Camille Kolenda
- Hospices Civils de Lyon, 69004 Lyon, France; (C.K.); (T.B.); (A.S.); (S.L.); (J.J.); (C.B.); (F.P.); (M.M.); (G.L.); (F.L.)
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
- Centre de Références des IOA Complexes de Lyon, CRIOAc Lyon, 69004 Lyon, France
- StaPath Team, Centre International de Recherche en Infectiologie, CIRI, Inserm U1111, CNRS UMR5308, ENS de Lyon, UCBL1, 69008 Lyon, France
| | - Thomas Briot
- Hospices Civils de Lyon, 69004 Lyon, France; (C.K.); (T.B.); (A.S.); (S.L.); (J.J.); (C.B.); (F.P.); (M.M.); (G.L.); (F.L.)
| | - Aubin Souche
- Hospices Civils de Lyon, 69004 Lyon, France; (C.K.); (T.B.); (A.S.); (S.L.); (J.J.); (C.B.); (F.P.); (M.M.); (G.L.); (F.L.)
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
- Centre de Références des IOA Complexes de Lyon, CRIOAc Lyon, 69004 Lyon, France
- StaPath Team, Centre International de Recherche en Infectiologie, CIRI, Inserm U1111, CNRS UMR5308, ENS de Lyon, UCBL1, 69008 Lyon, France
| | - Sébastien Lustig
- Hospices Civils de Lyon, 69004 Lyon, France; (C.K.); (T.B.); (A.S.); (S.L.); (J.J.); (C.B.); (F.P.); (M.M.); (G.L.); (F.L.)
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
- Centre de Références des IOA Complexes de Lyon, CRIOAc Lyon, 69004 Lyon, France
| | - Jérôme Josse
- Hospices Civils de Lyon, 69004 Lyon, France; (C.K.); (T.B.); (A.S.); (S.L.); (J.J.); (C.B.); (F.P.); (M.M.); (G.L.); (F.L.)
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
- Centre de Références des IOA Complexes de Lyon, CRIOAc Lyon, 69004 Lyon, France
- StaPath Team, Centre International de Recherche en Infectiologie, CIRI, Inserm U1111, CNRS UMR5308, ENS de Lyon, UCBL1, 69008 Lyon, France
| | - Cécile Batailler
- Hospices Civils de Lyon, 69004 Lyon, France; (C.K.); (T.B.); (A.S.); (S.L.); (J.J.); (C.B.); (F.P.); (M.M.); (G.L.); (F.L.)
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
- Centre de Références des IOA Complexes de Lyon, CRIOAc Lyon, 69004 Lyon, France
| | - Fabrice Pirot
- Hospices Civils de Lyon, 69004 Lyon, France; (C.K.); (T.B.); (A.S.); (S.L.); (J.J.); (C.B.); (F.P.); (M.M.); (G.L.); (F.L.)
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
- Laboratoire de Recherche et Développement de Pharmacie Galénique Industrielle, Faculté de Pharmacie, EA 4169 “Fonctions Physiologiques et Pathologiques de la Barrière Cutanée”, Université Claude-Bernard Lyon 1, 8, Avenue Rockefeller, CEDEX 08, 69373 Lyon, France
| | - Mathieu Medina
- Hospices Civils de Lyon, 69004 Lyon, France; (C.K.); (T.B.); (A.S.); (S.L.); (J.J.); (C.B.); (F.P.); (M.M.); (G.L.); (F.L.)
| | - Gilles Leboucher
- Hospices Civils de Lyon, 69004 Lyon, France; (C.K.); (T.B.); (A.S.); (S.L.); (J.J.); (C.B.); (F.P.); (M.M.); (G.L.); (F.L.)
| | - Frédéric Laurent
- Hospices Civils de Lyon, 69004 Lyon, France; (C.K.); (T.B.); (A.S.); (S.L.); (J.J.); (C.B.); (F.P.); (M.M.); (G.L.); (F.L.)
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
- Centre de Références des IOA Complexes de Lyon, CRIOAc Lyon, 69004 Lyon, France
- StaPath Team, Centre International de Recherche en Infectiologie, CIRI, Inserm U1111, CNRS UMR5308, ENS de Lyon, UCBL1, 69008 Lyon, France
| | | | | |
Collapse
|
28
|
Guo J, Cao G, Wang X, Tang W, Diwu W, Yan M, Yang M, Bi L, Han Y. Coating CoCrMo Alloy with Graphene Oxide and ε-Poly-L-Lysine Enhances Its Antibacterial and Antibiofilm Properties. Int J Nanomedicine 2021; 16:7249-7268. [PMID: 34737563 PMCID: PMC8560011 DOI: 10.2147/ijn.s321800] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/04/2021] [Indexed: 01/02/2023] Open
Abstract
INTRODUCTION With increases in implant infections, the search for antibacterial and biofilm coatings has become a new interest for orthopaedists and dentists. In recent years, graphene oxide (GO) has been extensively studied for its superior antibacterial properties. However, most of these studies have focused on solutions and there are few antibacterial studies on metal surfaces, especially the surfaces of cobalt-chromium-molybdenum (CoCrMo) alloys. ε-Poly-L-lysine (ε-PLL), as a novel food preservative, has a spectrum of antimicrobial activity; however, its antimicrobial activity after coating an implant surface is not clear. METHODS In this study, for the first time, a two-step electrodeposition method was used to coat GO and ε-PLL on the surface of a CoCrMo alloy. Its antibacterial and antibiofilm properties against S. aureus and E. coli were then studied. RESULTS The results show that the formation of bacteria and biofilms on the coating surface was significantly inhibited, GO and ε-PLL composite coatings had the best antibacterial and antibiofilm effects, followed by ε-PLL and GO coatings. In terms of classification, the coatings are anti-adhesive and contact-killing/inhibitory surfaces. In addition to oxidative stress, physical damage to GO and electrostatic osmosis of ε-PLL are the main antibacterial and antibiofilm mechanisms. DISCUSSION This is the first study that GO and ε-PLL coatings were successfully prepared on the surface of CoCrMo alloy by electrodeposition. It provides a promising new approach to the problem of implant infection in orthopedics and stomatology.
Collapse
Affiliation(s)
- Jianbin Guo
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, Xi’an, People’s Republic of China
- Department of Joint Surgery, Hong-Hui Hospital, Xi’an Jiaotong University College of Medicine, Xi’an, People’s Republic of China
| | - Guihua Cao
- Department of Geriatrics, The First Affiliated Hospital of Air Force Military Medical University, Xi’an, People’s Republic of China
| | - Xing Wang
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, Xi’an, People’s Republic of China
| | - Wenhao Tang
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, Xi’an, People’s Republic of China
| | - Weilong Diwu
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, Xi’an, People’s Republic of China
| | - Ming Yan
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, Xi’an, People’s Republic of China
| | - Min Yang
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, Xi’an, People’s Republic of China
| | - Long Bi
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, Xi’an, People’s Republic of China
| | - Yisheng Han
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, Xi’an, People’s Republic of China
| |
Collapse
|
29
|
Pinho LAG, Gratieri T, Gelfuso GM, Marreto RN, Cunha-Filho M. Three-dimensional printed personalized drug devices with anatomical fit: a review. J Pharm Pharmacol 2021; 74:1391-1405. [PMID: 34665263 DOI: 10.1093/jpp/rgab146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/24/2021] [Indexed: 11/12/2022]
Abstract
OBJECTIVES Three-dimensional printing (3DP) has opened the era of drug personalization, promising to revolutionize the pharmaceutical field with improvements in efficacy, safety and compliance of the treatments. As a result of these investigations, a vast therapeutic field has opened for 3DP-loaded drug devices with an anatomical fit. Along these lines, innovative dosage forms, unimaginable until recently, can be obtained. This review explores 3DP-engineered drug devices described in recent research articles, as well as in patented inventions, and even devices already produced by 3DP with drug-loading potential. KEY FINDINGS 3D drug-loaded stents, implants and prostheses are reviewed, along with devices produced to fit hard-to-attach body parts such as nasal masks, vaginal rings or mouthguards. The most promising 3DP techniques for such devices and the complementary technologies surrounding these inventions are also discussed, particularly the scanners useful for mapping body parts. Health regulatory concerns regarding the new use of such technology are also analysed. SUMMARY The scenario discussed in this review shows that for wearable 3DP drug devices to become a tangible reality to users, it will be necessary to overcome the existing regulatory barriers, create new interfaces with electronic systems and improve the mapping mechanisms of body surfaces.
Collapse
Affiliation(s)
- Ludmila A G Pinho
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasília, DF, Brazil
| | - Tais Gratieri
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasília, DF, Brazil
| | - Guilherme M Gelfuso
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasília, DF, Brazil
| | - Ricardo Neves Marreto
- Laboratory of Nanosystems and Drug Delivery Devices (NanoSYS), School of Pharmacy, Federal University of Goiás, Goiânia, GO, Brazil
| | - Marcilio Cunha-Filho
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasília, DF, Brazil
| |
Collapse
|
30
|
Comparison of Two Cutibacterium acnes Biofilm Models. Microorganisms 2021; 9:microorganisms9102035. [PMID: 34683356 PMCID: PMC8540958 DOI: 10.3390/microorganisms9102035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/13/2021] [Accepted: 09/23/2021] [Indexed: 11/30/2022] Open
Abstract
The study of biofilms in vitro is complex and often limited by technical problems due to simplified models. Here, we compared C. acnes biofilm formation, from species involved in bone and prosthesis infection, in a static model with a dynamic model. Using similar parameters, the percentage of live bacteria within the biofilm was higher in dynamic than in static approach. In both models, bacterial internalization in osteoblast-like cells, playing the role of stress factor, affected this proportion but in opposite ways: increase of live bacteria proportion in the static model (×2.04 ± 0.53) and of dead bacteria proportion (×3.5 ± 1.03) in the dynamic model. This work highlights the huge importance in the selection of a relevant biofilm model in accordance with the environmental or clinical context to effectively improve the understanding of biofilms and the development of better antibiofilm strategies.
Collapse
|
31
|
Wang M, Yang Y, Chi G, Yuan K, Zhou F, Dong L, Liu H, Zhou Q, Gong W, Yang S, Tang T. A 3D printed Ga containing scaffold with both anti-infection and bone homeostasis-regulating properties for the treatment of infected bone defects. J Mater Chem B 2021; 9:4735-4745. [PMID: 34095948 DOI: 10.1039/d1tb00387a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Large bone defects face a high risk of infection, which can also lead to bone homeostasis disorders. This seriously hinders the bone healing process; therefore, the help of a dual-functional scaffold that has both anti-infection and bone-homeostasis-regulating capacities is needed in the treatment of infected bone defects. In this study, a 3D printed dual-functional scaffold composed of poly-ε-caprolactone (PCL), mesoporous bioactive glasses (MBG), and gallium (Ga) was produced. In vitro experiments demonstrated the excellent antibacterial ability of the PCL/MBG/Ga scaffold against methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli (E. coli). The scaffold also significantly inhibited osteoclastic activity and promoted osteogenic differentiation. Furthermore, a rabbit model with an infected bone defect in the radius was used to evaluate the in vivo bone healing capability of PCL/MBG/Ga. The results demonstrate that the PCL/MBG/Ga scaffold can significantly accelerate bone healing and prevent bone resorption, suggesting its potential for application in repairing infected bone defects.
Collapse
Affiliation(s)
- Minqi Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Yiqi Yang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Guanghao Chi
- Department of Orthopedics, Han Zhong Central Hospital, Shanxi 723000, China
| | - Kai Yuan
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Feng Zhou
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Liang Dong
- Shanghai Graphic Design Information Co. Ltd, Shanghai 200011, China
| | - Haibei Liu
- Shanghai Graphic Design Information Co. Ltd, Shanghai 200011, China
| | - Qinghui Zhou
- Shanghai Graphic Design Information Co. Ltd, Shanghai 200011, China
| | - Weihua Gong
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Shengbing Yang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
32
|
Gemmel F, Van den Broeck B, Vanelstraete S, Van Innis B, Huysse W. Hybrid imaging of complicating osteomyelitis in the peripheral skeleton. Nucl Med Commun 2021; 42:941-950. [PMID: 33852533 DOI: 10.1097/mnm.0000000000001421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Diagnosing complicating osteomyelitis (COM) is clinically challenging. Laboratory tests are of limited utility, and other than isolation of the offending organism, diagnostic imaging tests are of paramount importance. Nuclear Medicine techniques play an important role in noninvasive evaluation of osteomyelitis, using both single-photon emission tomography (SPECT) and positron emission tomography (PET) radiopharmaceuticals. It is well-known that those conventional imaging modalities are not performing well in the distinction between soft-tissue and deep bone infection due to the lack of anatomical information. These difficulties have been overcome, to a great extent, with the introduction of in-line SPECT-CT and PET-CT systems which have revolutionized the field of diagnostic medical imaging. Hybrid imaging is especially useful in sites of suspected COM with underlying structural bone alterations. The first clinical studies with these integrated hybrid machines in the field of COM, including metallic implants imaging, are highly promising. In summary, WBC/AGA SPECT-CT and FDG-PET-CT seem to be the most accurate hybrid imaging modality for COM of the peripheral bone. However, there are still false positives, especially in aseptic tibial nonunions and/or metallic implants, as well as in the immediate postoperative setting. Furthermore, there is a lack of well-designed large multicentre prospective studies. Hopefully, in the future, the complementary use of morphological and functional hybrid imaging modalities may overcome some of the challenges faced in the assessment of COM.
Collapse
Affiliation(s)
- Filip Gemmel
- Department of Nuclear Medicine, General Hospital Oudenaarde and University Hospital Ghent
- Department of Nuclear Medicine, University Hospital Ghent
| | | | | | - Benoit Van Innis
- Department of Orthopaedic Surgery and Traumatology, General Hospital Oudenaarde
| | - Wouter Huysse
- Department of Radiology and Molecular Imaging, University Hospital Ghent, Ghent, Belgium
| |
Collapse
|
33
|
Van Belkum A, Gros MF, Ferry T, Lustig S, Laurent F, Durand G, Jay C, Rochas O, Ginocchio CC. Novel strategies to diagnose prosthetic or native bone and joint infections. Expert Rev Anti Infect Ther 2021; 20:391-405. [PMID: 34384319 DOI: 10.1080/14787210.2021.1967745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Bone and Joint Infections (BJI) are medically important, costly and occur in native and prosthetic joints. Arthroplasties will increase significantly in absolute numbers over time as well as the incidence of Prosthetic Joint Infections (PJI). Diagnosis of BJI and PJI is sub-optimal. The available diagnostic tests have variable effectiveness, are often below standard in sensitivity and/or specificity, and carry significant contamination risks during the collection of clinical samples. Improvement of diagnostics is urgently needed. AREAS COVERED We provide a narrative review on current and future diagnostic microbiology technologies. Pathogen identification, antibiotic resistance detection, and assessment of the epidemiology of infections via bacterial typing are considered useful for improved patient management. We confirm the continuing importance of culture methods and successful introduction of molecular, mass spectrometry-mediated and next-generation genome sequencing technologies. The diagnostic algorithms for BJI must be better defined, especially in the context of diversity of both disease phenotypes and clinical specimens rendered available. EXPERT OPINION Whether interventions in BJI or PJI are surgical or chemo-therapeutic (antibiotics and bacteriophages included), prior sensitive and specific pathogen detection remains a therapy-substantiating necessity. Innovative tests for earlier and more sensitive and specific detection of bacterial pathogens in BJI are urgently needed.
Collapse
Affiliation(s)
- Alex Van Belkum
- bioMérieux, Open Innovation and Partnerships, 3 Route De Port Michaud, La Balme Les Grottes, France
| | | | - Tristan Ferry
- Service Des Maladies Infectieuses Et Tropicales, Hospices Civils De Lyon, Hôpital De La Croix-Rousse, Lyon, France.,Maladies Infectieuses, Université Claude Bernard Lyon 1, Villeurbanne, France.,Centre Interrégional De Référence Pour La Prise En Charge Des Infections Ostéo-articulaires Complexes (Crioac Lyon), Hôpital De La Croix-Rousse, Lyon, France.,Ciri - Centre International De Recherche En Infectiologie, Inserm, U1111, Université́ Claude Bernard Lyon 1CNRS, UMR5308, Ecole Normale Supérieure De Lyon, Univ Lyon, Lyon, France
| | - Sebastien Lustig
- Maladies Infectieuses, Université Claude Bernard Lyon 1, Villeurbanne, France.,Service De Chirurgie Orthopédique, Hôpital De La Croix-Rousse, Lyon, France
| | - Frédéric Laurent
- Service Des Maladies Infectieuses Et Tropicales, Hospices Civils De Lyon, Hôpital De La Croix-Rousse, Lyon, France.,Ciri - Centre International De Recherche En Infectiologie, Inserm, U1111, Université́ Claude Bernard Lyon 1CNRS, UMR5308, Ecole Normale Supérieure De Lyon, Univ Lyon, Lyon, France
| | | | - Corinne Jay
- bioMérieux, BioFire Development Emea, Grenoble, France
| | - Olivier Rochas
- Corporate Business Development, bioMérieux, Marcy-l'Étoile, France
| | | |
Collapse
|
34
|
Flurin L, Greenwood-Quaintance KE, Esper RN, Sanchez-Sotelo J, Patel R. Sonication improves microbiologic diagnosis of periprosthetic elbow infection. J Shoulder Elbow Surg 2021; 30:1741-1749. [PMID: 33609642 PMCID: PMC8319056 DOI: 10.1016/j.jse.2021.01.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 02/01/2023]
Abstract
BACKGROUND Periprosthetic joint infection (PJI) is a relatively frequent and oftentimes devastating complication after total elbow arthroplasty (TEA). Its microbiologic diagnosis is usually based on periprosthetic tissue culture (hereafter referred to as tissue culture), but the sensitivity of tissue culture is variable. Although implant sonication culture has been shown to be superior to tissue culture for the diagnosis of hip and knee PJI, only a single small study (of fewer than 10 infected implants) has assessed sonication for PJI diagnosis after elbow arthroplasty. METHODS We retrospectively analyzed 112 sonicate fluid cultures from patients who underwent revision of a TEA at a single institution between 2007 and 2019, comparing results to those of tissue cultures. We excluded patients who had fewer than 2 tissues submitted for culture. Using the Infectious Diseases Society of America guidelines to define PJI, there were 49 infected and 63 non-infected cases. Median ages in the PJI and non-infected groups were 66 and 61 years, respectively. In the non-infected group, 65% were female vs. 63% in the PJI group. We reviewed clinical characteristics and calculated the sensitivity and specificity of tissue compared with sonicate fluid culture. In addition, we compared the sensitivity of tissue culture to the combination of tissue and sonicate fluid culture. RESULTS The most common pathogens were coagulase-negative Staphylococcus sp (49%), followed by Staphylococcus aureus (12%). Sensitivity of tissue culture was 63%, and sensitivity of sonicate fluid culture was 76% (P = .109). Specificity of tissue culture was 94% and specificity of sonicate fluid culture was 100%. Sensitivity of sonicate fluid culture in combination with tissue culture was 84% (P = .002 compared to tissue culture alone). CONCLUSION In this study, we found that the combination of sonicate fluid and tissue culture had a greater sensitivity than tissue culture alone for microbiologic diagnosis of PJI after TEA.
Collapse
Affiliation(s)
- Laure Flurin
- Divisions of Clinical Microbiology and Infectious Diseases, Mayo Clinic, Rochester, MN, USA
| | | | - Ronda N Esper
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Robin Patel
- Divisions of Clinical Microbiology and Infectious Diseases, Mayo Clinic, Rochester, MN, USA; Infectious Diseases, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
35
|
Mulazzi M, Campodoni E, Bassi G, Montesi M, Panseri S, Bonvicini F, Gentilomi GA, Tampieri A, Sandri M. Medicated Hydroxyapatite/Collagen Hybrid Scaffolds for Bone Regeneration and Local Antimicrobial Therapy to Prevent Bone Infections. Pharmaceutics 2021; 13:pharmaceutics13071090. [PMID: 34371782 PMCID: PMC8309148 DOI: 10.3390/pharmaceutics13071090] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/29/2021] [Accepted: 07/12/2021] [Indexed: 12/15/2022] Open
Abstract
Microbial infections occurring during bone surgical treatment, the cause of osteomyelitis and implant failures, are still an open challenge in orthopedics. Conventional therapies are often ineffective and associated with serious side effects due to the amount of drugs administered by systemic routes. In this study, a medicated osteoinductive and bioresorbable bone graft was designed and investigated for its ability to control antibiotic drug release in situ. This represents an ideal solution for the eradication or prevention of infection, while simultaneously repairing bone defects. Vancomycin hydrochloride and gentamicin sulfate, here considered for testing, were loaded into a previously developed and largely investigated hybrid bone-mimetic scaffold made of collagen fibers biomineralized with magnesium doped-hydroxyapatite (MgHA/Coll), which in the last ten years has widely demonstrated its effective potential in bone tissue regeneration. Here, we have explored whether it can be used as a controlled local delivery system for antibiotic drugs. An easy loading method was selected in order to be reproducible, quickly, in the operating room. The maintenance of the antibacterial efficiency of the released drugs and the biosafety of medicated scaffolds were assessed with microbiological and in vitro tests, which demonstrated that the MgHA/Coll scaffolds were safe and effective as a local delivery system for an extended duration therapy—promising results for the prevention of bone defect-related infections in orthopedic surgeries.
Collapse
Affiliation(s)
- Manuela Mulazzi
- Institute of Science and Technology for Ceramics, National Research Council of Italy, ISTEC-CNR, 48018 Faenza, Italy; (M.M.); (G.B.); (M.M.); (S.P.); (A.T.)
| | - Elisabetta Campodoni
- Institute of Science and Technology for Ceramics, National Research Council of Italy, ISTEC-CNR, 48018 Faenza, Italy; (M.M.); (G.B.); (M.M.); (S.P.); (A.T.)
- Correspondence: (E.C.); (M.S.); Tel.: +39-0546-699761 (E.C. & M.S.)
| | - Giada Bassi
- Institute of Science and Technology for Ceramics, National Research Council of Italy, ISTEC-CNR, 48018 Faenza, Italy; (M.M.); (G.B.); (M.M.); (S.P.); (A.T.)
| | - Monica Montesi
- Institute of Science and Technology for Ceramics, National Research Council of Italy, ISTEC-CNR, 48018 Faenza, Italy; (M.M.); (G.B.); (M.M.); (S.P.); (A.T.)
| | - Silvia Panseri
- Institute of Science and Technology for Ceramics, National Research Council of Italy, ISTEC-CNR, 48018 Faenza, Italy; (M.M.); (G.B.); (M.M.); (S.P.); (A.T.)
| | - Francesca Bonvicini
- Department of Pharmacy and Biotechnology, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (F.B.); (G.A.G.)
| | - Giovanna Angela Gentilomi
- Department of Pharmacy and Biotechnology, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (F.B.); (G.A.G.)
- Operative Unit of Microbiology, IRCCS St. Orsola Hospital, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Anna Tampieri
- Institute of Science and Technology for Ceramics, National Research Council of Italy, ISTEC-CNR, 48018 Faenza, Italy; (M.M.); (G.B.); (M.M.); (S.P.); (A.T.)
| | - Monica Sandri
- Institute of Science and Technology for Ceramics, National Research Council of Italy, ISTEC-CNR, 48018 Faenza, Italy; (M.M.); (G.B.); (M.M.); (S.P.); (A.T.)
- Correspondence: (E.C.); (M.S.); Tel.: +39-0546-699761 (E.C. & M.S.)
| |
Collapse
|
36
|
Parente R, Possetti V, Schiavone ML, Campodoni E, Menale C, Loppini M, Doni A, Bottazzi B, Mantovani A, Sandri M, Tampieri A, Sobacchi C, Inforzato A. 3D Cocultures of Osteoblasts and Staphylococcus aureus on Biomimetic Bone Scaffolds as a Tool to Investigate the Host-Pathogen Interface in Osteomyelitis. Pathogens 2021; 10:pathogens10070837. [PMID: 34357987 PMCID: PMC8308613 DOI: 10.3390/pathogens10070837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/19/2022] Open
Abstract
Osteomyelitis (OM) is an infectious disease of the bone primarily caused by the opportunistic pathogen Staphylococcus aureus (SA). This Gram-positive bacterium has evolved a number of strategies to evade the immune response and subvert bone homeostasis, yet the underlying mechanisms remain poorly understood. OM has been modeled in vitro to challenge pathogenetic hypotheses in controlled conditions, thus providing guidance and support to animal experimentation. In this regard, traditional 2D models of OM inherently lack the spatial complexity of bone architecture. Three-dimensional models of the disease overcome this limitation; however, they poorly reproduce composition and texture of the natural bone. Here, we developed a new 3D model of OM based on cocultures of SA and murine osteoblastic MC3T3-E1 cells on magnesium-doped hydroxyapatite/collagen I (MgHA/Col) scaffolds that closely recapitulate the bone extracellular matrix. In this model, matrix-dependent effects were observed in proliferation, gene transcription, protein expression, and cell–matrix interactions both of the osteoblastic cell line and of bacterium. Additionally, these had distinct metabolic and gene expression profiles, compared to conventional 2D settings, when grown on MgHA/Col scaffolds in separate monocultures. Our study points to MgHA/Col scaffolds as biocompatible and bioactive matrices and provides a novel and close-to-physiology tool to address the pathogenetic mechanisms of OM at the host–pathogen interface.
Collapse
Affiliation(s)
- Raffaella Parente
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (R.P.); (V.P.); (M.L.S.); (M.L.); (A.D.); (B.B.); (A.M.)
| | - Valentina Possetti
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (R.P.); (V.P.); (M.L.S.); (M.L.); (A.D.); (B.B.); (A.M.)
| | - Maria Lucia Schiavone
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (R.P.); (V.P.); (M.L.S.); (M.L.); (A.D.); (B.B.); (A.M.)
- National Research Council-Institute for Genetic and Biomedical Research (CNR-IRGB), Milan Unit, 20089 Rozzano, Italy;
| | - Elisabetta Campodoni
- National Research Council-Institute of Science and Technology for Ceramics (CNR-ISTEC), 48018 Faenza, Italy; (E.C.); (M.S.); (A.T.)
| | - Ciro Menale
- National Research Council-Institute for Genetic and Biomedical Research (CNR-IRGB), Milan Unit, 20089 Rozzano, Italy;
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy
| | - Mattia Loppini
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (R.P.); (V.P.); (M.L.S.); (M.L.); (A.D.); (B.B.); (A.M.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| | - Andrea Doni
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (R.P.); (V.P.); (M.L.S.); (M.L.); (A.D.); (B.B.); (A.M.)
| | - Barbara Bottazzi
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (R.P.); (V.P.); (M.L.S.); (M.L.); (A.D.); (B.B.); (A.M.)
| | - Alberto Mantovani
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (R.P.); (V.P.); (M.L.S.); (M.L.); (A.D.); (B.B.); (A.M.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
- The William Harvey Research Institute, Queen Mary University of London, London E1 4NS, UK
| | - Monica Sandri
- National Research Council-Institute of Science and Technology for Ceramics (CNR-ISTEC), 48018 Faenza, Italy; (E.C.); (M.S.); (A.T.)
| | - Anna Tampieri
- National Research Council-Institute of Science and Technology for Ceramics (CNR-ISTEC), 48018 Faenza, Italy; (E.C.); (M.S.); (A.T.)
- National Research Council-Institute of Nanostructured Material (CNR-ISMN), 40129 Bologna, Italy
| | - Cristina Sobacchi
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (R.P.); (V.P.); (M.L.S.); (M.L.); (A.D.); (B.B.); (A.M.)
- National Research Council-Institute for Genetic and Biomedical Research (CNR-IRGB), Milan Unit, 20089 Rozzano, Italy;
- Correspondence: (C.S.); (A.I.); Tel.: +39-028-224-5153 (C.S.); +39-028-224-5132 (A.I.)
| | - Antonio Inforzato
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (R.P.); (V.P.); (M.L.S.); (M.L.); (A.D.); (B.B.); (A.M.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
- Correspondence: (C.S.); (A.I.); Tel.: +39-028-224-5153 (C.S.); +39-028-224-5132 (A.I.)
| |
Collapse
|
37
|
Wang J, Wang L. Novel therapeutic interventions towards improved management of septic arthritis. BMC Musculoskelet Disord 2021; 22:530. [PMID: 34107951 PMCID: PMC8191206 DOI: 10.1186/s12891-021-04383-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/18/2021] [Indexed: 01/19/2023] Open
Abstract
Septic arthritis (SA) represents a medical emergency that needs immediate diagnosis and urgent treatment. Despite aggressive treatment and rapid diagnosis of the causative agent, the mortality and lifelong disability, associated with septic arthritis remain high as close to 11%. Moreover, with the rise in drug resistance, the rates of failure of conventional antibiotic therapy have also increased. Among the etiological agents frequently isolated from cases of septic arthritis, Staphylococcus aureus emerges as a dominating pathogen, and to worsen, the rise in methicillin-resistant S. aureus (MRSA) isolates in bone and joint infections is worrisome. MRSA associated cases of septic arthritis exhibit higher mortality, longer hospital stay, and higher treatment failure with poorer clinical outcomes as compared to cases caused by the sensitive strain i.e methicillin-sensitive S. aureus (MSSA). In addition to this, equal or even greater damage is imposed by the exacerbated immune response mounted by the patient’s body in a futile attempt to eradicate the bacteria. The antibiotic therapy may not be sufficient enough to control the progression of damage to the joint involved thus, adding to higher mortality and disability rates despite the prompt and timely start of treatment. This situation implies that efforts and focus towards studying/understanding new strategies for improved management of sepsis arthritis is prudent and worth exploring. The review article aims to give a complete insight into the new therapeutic approaches studied by workers lately in this field. To the best of our knowledge studies highlighting the novel therapeutic strategies against septic arthritis are limited in the literature, although articles on pathogenic mechanism and choice of antibiotics for therapy, current treatment algorithms followed have been discussed by workers in the past. The present study presents and discusses the new alternative approaches, their mechanism of action, proof of concept, and work done so far towards their clinical success. This will surely help to enlighten the researchers with comprehensive knowledge of the new interventions that can be used as an adjunct therapy along with conventional treatment protocol for improved success rates.
Collapse
Affiliation(s)
- Jian Wang
- Department of Nursing, The Third Hospital of Jinan, Shandong Province, Jinan, 250132, China.
| | - Liucai Wang
- Hand and Foot Surgery, Shandong Provincial Hospital, Jinan, 250000, China
| |
Collapse
|
38
|
Ferry T, Batailler C, Souche A, Cassino C, Chidiac C, Perpoint T, le Corvaisier C, Josse J, Gaillard R, Roger J, Kolenda C, Lustig S, Laurent F. Arthroscopic "Debridement and Implant Retention" With Local Administration of Exebacase (Lysin CF-301) Followed by Suppressive Tedizolid as Salvage Therapy in Elderly Patients for Relapsing Multidrug-Resistant S. epidermidis Prosthetic Knee Infection. Front Med (Lausanne) 2021; 8:550853. [PMID: 34055817 PMCID: PMC8163228 DOI: 10.3389/fmed.2021.550853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 03/31/2021] [Indexed: 11/13/2022] Open
Abstract
Exebacase, a recombinantly produced lysin has recently (i) reported proof-of-concept data from a phase II study in S. aureus bacteremia and (ii) demonstrated antibiofilm activity in vitro against S. epidermidis. In patients with relapsing multidrug-resistant (MDR) S. epidermidis prosthetic knee infection (PKI), the only surgical option is prosthesis exchange. In elderly patients who have undergone several revisions, prosthesis explantation could be associated with definitive loss of function and mortality. In our BJI reference regional center, arthroscopic debridement and implant retention with local administration of exebacase (LysinDAIR) followed by suppressive tedizolid as salvage therapy is proposed for elderly patients with recurrent MDR S. epidermidis PKI with no therapeutic option or therapeutic dead end (for whom revision or transfemoral amputation is not feasible and no other oral option is available). Each use was decided in agreement with the French health authority and in accordance with the local ethics committee. A written consent was obtained for each patient. Exebacase (75 mg/mL; 30 mL) was administered directly into the joint during arthroscopy. Four patients (79-89 years old) were treated with the LysinDAIR procedure. All had several previous prosthetic knee revisions without prosthesis loosening. Three had relapsing PKI despite suppressive antibiotics following open DAIR. Two had clinical signs of septic arthritis; the two others had sinus tract. After the LysinDAIR procedure, no adverse events occurred during arthroscopy; all patients received daptomycin 8 mg/kg and linezolid 600 mg bid (4-6 weeks) as primary therapy, followed by tedizolid 200 mg/day as suppressive therapy. At 6 months, recurrence of the sinus tract occurred in the two patients with sinus tract at baseline. After >1 year follow up, the clinical outcome was favorable in the last two patients with total disappearance of clinical signs of septic arthritis even if microbiological persistence was detected in one of them. Exebacase has the potential to be used in patients with staphylococci PKI during arthroscopic DAIR as salvage therapy to improve the efficacy of suppressive antibiotics and to prevent major loss of function.
Collapse
Affiliation(s)
- Tristan Ferry
- Service des Maladies Infectieuses et Tropicales, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France.,Université Claude Bernard Lyon 1, Lyon, France.,Centre Interrégional de Référence Pour la Prise en Charge des Infections Ostéo-Articulaires Complexes (CRIOAc Lyon), Hospices Civils de Lyon, Lyon, France.,CIRI - Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - Cécile Batailler
- Université Claude Bernard Lyon 1, Lyon, France.,Centre Interrégional de Référence Pour la Prise en Charge des Infections Ostéo-Articulaires Complexes (CRIOAc Lyon), Hospices Civils de Lyon, Lyon, France.,Service de Chirurgie Orthopédique, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Aubin Souche
- Université Claude Bernard Lyon 1, Lyon, France.,Centre Interrégional de Référence Pour la Prise en Charge des Infections Ostéo-Articulaires Complexes (CRIOAc Lyon), Hospices Civils de Lyon, Lyon, France.,CIRI - Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France.,Institut des Agents Infectieux, Laboratoire de Bactériologie, Centre National de Référence des Staphylocoques, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Cara Cassino
- ContraFect Corporation, Yonkers, NY, United States
| | - Christian Chidiac
- Service des Maladies Infectieuses et Tropicales, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France.,Université Claude Bernard Lyon 1, Lyon, France.,Centre Interrégional de Référence Pour la Prise en Charge des Infections Ostéo-Articulaires Complexes (CRIOAc Lyon), Hospices Civils de Lyon, Lyon, France
| | - Thomas Perpoint
- Service des Maladies Infectieuses et Tropicales, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France.,Centre Interrégional de Référence Pour la Prise en Charge des Infections Ostéo-Articulaires Complexes (CRIOAc Lyon), Hospices Civils de Lyon, Lyon, France
| | | | - Jérôme Josse
- Université Claude Bernard Lyon 1, Lyon, France.,Centre Interrégional de Référence Pour la Prise en Charge des Infections Ostéo-Articulaires Complexes (CRIOAc Lyon), Hospices Civils de Lyon, Lyon, France.,CIRI - Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France.,Institut des Agents Infectieux, Laboratoire de Bactériologie, Centre National de Référence des Staphylocoques, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Romain Gaillard
- Service de Chirurgie Orthopédique, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Julien Roger
- Service de Chirurgie Orthopédique, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Camille Kolenda
- Université Claude Bernard Lyon 1, Lyon, France.,Centre Interrégional de Référence Pour la Prise en Charge des Infections Ostéo-Articulaires Complexes (CRIOAc Lyon), Hospices Civils de Lyon, Lyon, France.,CIRI - Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France.,Institut des Agents Infectieux, Laboratoire de Bactériologie, Centre National de Référence des Staphylocoques, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Sébastien Lustig
- Université Claude Bernard Lyon 1, Lyon, France.,Centre Interrégional de Référence Pour la Prise en Charge des Infections Ostéo-Articulaires Complexes (CRIOAc Lyon), Hospices Civils de Lyon, Lyon, France.,Service de Chirurgie Orthopédique, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Frédéric Laurent
- Université Claude Bernard Lyon 1, Lyon, France.,Centre Interrégional de Référence Pour la Prise en Charge des Infections Ostéo-Articulaires Complexes (CRIOAc Lyon), Hospices Civils de Lyon, Lyon, France.,CIRI - Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France.,Institut des Agents Infectieux, Laboratoire de Bactériologie, Centre National de Référence des Staphylocoques, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | | |
Collapse
|
39
|
Boix-Lemonche G, Guillem-Marti J, Lekka M, D'Este F, Guida F, Manero JM, Skerlavaj B. Membrane perturbation, altered morphology and killing of Staphylococcus epidermidis upon contact with a cytocompatible peptide-based antibacterial surface. Colloids Surf B Biointerfaces 2021; 203:111745. [PMID: 33853003 DOI: 10.1016/j.colsurfb.2021.111745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/08/2021] [Accepted: 04/01/2021] [Indexed: 11/16/2022]
Abstract
One possibility to prevent prosthetic infections is to produce biomaterials resistant to bacterial colonization by anchoring membrane active antimicrobial peptides (AMPs) onto the implant surface. In this perspective, a deeper understanding of the mode of action of the immobilized peptides should improve the development of AMP-inspired infection-resistant biomaterials. The aim of the present study was to characterize the bactericidal mechanism against Staphylococcus epidermidis of the AMP BMAP27(1-18), immobilized on titanium disks and on a model resin support, by applying viability counts, Field Emission Scanning Electron Microscopy (FE-SEM), and a fluorescence microplate assay with a membrane potential-sensitive dye. The cytocompatibility to osteoblast-like MG-63 cells was investigated in monoculture and in co-culture with bacteria. The impact of peptide orientation was explored by using N- and C- anchored analogues. On titanium, the ∼50 % drop in bacteria viability and dramatically affected morphology indicate a contact-killing action exerted by the N- and C-immobilized peptides to the same extent. As further shown by the fluorescence assay with the resin-anchored peptides, the bactericidal effect was mediated by rapid membrane perturbation, similar to free peptides. However, at peptide MBC resin equivalents the C-oriented analogue proved more effective with more than 99 % killing and maximum fluorescence increase, compared to half-maximum fluorescence with more than 90 % killing produced by the N-orientation. Confocal microscopy analyses revealed 4-5 times better MG-63 cell adhesion on peptide-functionalized titanium both in monoculture and in co-culture with bacteria, regardless of peptide orientation, thus stimulating further studies on the effects of the immobilized BMAP27(1-18) on osteoblast cells.
Collapse
Affiliation(s)
- Gerard Boix-Lemonche
- Department of Medicine (DAME), University of Udine, piazzale Kolbe, 4, 33100, Udine, Italy.
| | - Jordi Guillem-Marti
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 14, 08930 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering-UPC, Av. Eduard Maristany 14, 08930, Barcelona, Spain.
| | - Maria Lekka
- University of Udine, Polytechnic Department of Engineering and Architecture, Via delle Scienze 206, 33100, Udine, Italy; CIDETEC, Basque Research and Technology Alliance (BRTA), Po. Miramón 196, 20014 Donostia-San Sebastián, Spain.
| | - Francesca D'Este
- Department of Medicine (DAME), University of Udine, piazzale Kolbe, 4, 33100, Udine, Italy.
| | - Filomena Guida
- University of Trieste, Department of Life Sciences, Via Giorgieri 5, 34127, Trieste, Italy.
| | - José María Manero
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 14, 08930 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering-UPC, Av. Eduard Maristany 14, 08930, Barcelona, Spain.
| | - Barbara Skerlavaj
- Department of Medicine (DAME), University of Udine, piazzale Kolbe, 4, 33100, Udine, Italy.
| |
Collapse
|
40
|
El-Mahdy TS, Mongaret C, Varin-Simon J, Lamret F, Vernet-Garnier V, Rammal H, Mauprivez C, Kerdjoudj H, Gangloff SC, Reffuveille F. Interaction of implant infection-related commensal bacteria with mesenchymal stem cells: a comparison between Cutibacterium acnes and Staphylococcus aureus. FEMS Microbiol Lett 2021; 368:6134754. [PMID: 33580963 DOI: 10.1093/femsle/fnab014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/11/2021] [Indexed: 12/12/2022] Open
Abstract
Staphylococcus aureus and Cutibacterium acnes are involved in several tissue infections and can encounter mesenchymal stem cells (MSCs) during their role in tissue regenerative process. C. acnes and S. aureus internalization by three types of MSCs derived from bone marrow, dental pulp and Wharton's jelly; and bacterial biofilm production were compared. Internalization rates ranged between 1.7-6.3% and 0.8-2.7% for C. acnes and S. aureus, respectively. While C. acnes strains exhibited limited cytotoxic effect on MSCs, S. aureus were more virulent with marked effect starting after only 3 h of interaction. Both bacteria were able to produce biofilms with respectively aggregated and monolayered structures for C. acnes and S. aureus. The increase in C. acnes capacity to develop biofilm following MSCs' internalization was not linked to the significant increase in number of live bacteria, except for bone marrow-MSCs/C. acnes CIP 53.117 with 79% live bacteria compared to the 36% before internalization. On the other hand, internalization of S. aureus had no impact on its ability to form biofilms composed mainly of living bacteria. The present study underlined the complexity of MSCs-bacteria cross-interaction and brought insights into understanding the MSCs behavior in response to bacterial infection in tissue regeneration context.
Collapse
Affiliation(s)
- Taghrid S El-Mahdy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University, Cairo, Egypt.,Université de Reims Champagne-Ardenne, EA 4691, Biomatériaux et inflammation en site osseux (BIOS), Reims, France.,Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt
| | - Céline Mongaret
- Université de Reims Champagne-Ardenne, EA 4691, Biomatériaux et inflammation en site osseux (BIOS), Reims, France.,Université de Reims Champagne-Ardenne, UFR de Pharmacie, 51100 Reims, France.,CHU Reims, Service Pharmacie, France
| | - Jennifer Varin-Simon
- Université de Reims Champagne-Ardenne, EA 4691, Biomatériaux et inflammation en site osseux (BIOS), Reims, France
| | - Fabien Lamret
- Université de Reims Champagne-Ardenne, EA 4691, Biomatériaux et inflammation en site osseux (BIOS), Reims, France
| | | | - Hassan Rammal
- Université de Reims Champagne-Ardenne, EA 4691, Biomatériaux et inflammation en site osseux (BIOS), Reims, France.,Université de Reims Champagne-Ardenne, UFR d'Odontologie, 51100 Reims, France
| | - Cedric Mauprivez
- Université de Reims Champagne-Ardenne, EA 4691, Biomatériaux et inflammation en site osseux (BIOS), Reims, France.,Université de Reims Champagne-Ardenne, UFR d'Odontologie, 51100 Reims, France
| | - Halima Kerdjoudj
- Université de Reims Champagne-Ardenne, EA 4691, Biomatériaux et inflammation en site osseux (BIOS), Reims, France.,Université de Reims Champagne-Ardenne, UFR d'Odontologie, 51100 Reims, France
| | - Sophie C Gangloff
- Université de Reims Champagne-Ardenne, EA 4691, Biomatériaux et inflammation en site osseux (BIOS), Reims, France.,Université de Reims Champagne-Ardenne, UFR de Pharmacie, 51100 Reims, France
| | - Fany Reffuveille
- Université de Reims Champagne-Ardenne, EA 4691, Biomatériaux et inflammation en site osseux (BIOS), Reims, France.,Université de Reims Champagne-Ardenne, UFR de Pharmacie, 51100 Reims, France
| |
Collapse
|
41
|
Antibacterial and antibiofilm properties of graphene and its derivatives. Colloids Surf B Biointerfaces 2021; 200:111588. [PMID: 33529928 DOI: 10.1016/j.colsurfb.2021.111588] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/17/2021] [Accepted: 01/20/2021] [Indexed: 12/22/2022]
Abstract
Infections resulting from bacteria and biofilms have become a huge problem threatening human health. In recent years, the antibacterial and antibiofilm effects of graphene and its derivatives have been extensively studied. However, there continues to be some controversy over whether graphene and its derivatives can resist infection and biofilms. Moreover, the antibacterial mechanism and cytotoxicity of graphene and its derivatives are unclear. In the present review, antibacterial and antibiofilm abilities of graphene and its derivatives in solution, on the surface are reviewed, and their toxicity and possible mechanisms are also reviewed. Furthermore, we propose possible future development directions for graphene and its derivatives in antibacterial and antibiofilm applications.
Collapse
|
42
|
Cara A, Ballet M, Hemery C, Ferry T, Laurent F, Josse J. Antibiotics in Bone Cements Used for Prosthesis Fixation: An Efficient Way to Prevent Staphylococcus aureus and Staphylococcus epidermidis Prosthetic Joint Infection. Front Med (Lausanne) 2021; 7:576231. [PMID: 33553196 PMCID: PMC7856860 DOI: 10.3389/fmed.2020.576231] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/30/2020] [Indexed: 12/18/2022] Open
Abstract
Prosthetic joint infections (PJIs) are one of the most frequent reasons for arthroplasty revision. These infections are mostly associated with the formation of biofilm, notably by staphylococci, such as Staphylococcus aureus and Staphylococcus epidermidis. To minimize the rates of PJIs following primary or revision total joint arthroplasty, antibiotic-loaded bone cements (ALBCs) can be used for prosthesis fixation. However, its use is still debated. Indeed, various studies reported opposite results. In this context, we aimed to compare the prophylactic anti-biofilm activity of ALBCs loaded with two antibiotics with ALBC loaded with only one antibiotic. We compared commercial ready-to-use cements containing gentamicin alone, gentamicin plus vancomycin, and gentamicin plus clindamycin to plain cement (no antibiotic), investigating staphylococcal biofilm formation for 10 strains of S. aureus and S. epidermidis with specific resistance to gentamicin, vancomycin, or clindamycin. Firstly, we performed disk diffusion assays with the elution solutions. We reported that only the cement containing gentamicin and clindamycin was able to inhibit bacterial growth at Day 9, whereas cements with gentamicin only or gentamicin and vancomycin lost their antibacterial activity at Day 3. Then, we observed that all the tested ALBCs can inhibit biofilm formation by methicillin-susceptible staphylococci without other antibiotic resistance ability. Similar results were observed when we tested vancomycin-resistant or clindamycin-resistant staphylococci, with some strain-dependent significant increase of efficacy for the two antibiotic ALBCs when compared with gentamicin-loaded cement. However, adding vancomycin or clindamycin to gentamicin allows a better inhibition of biofilm formation when gentamicin-resistant strains were used. Our in vitro results suggest that using commercially available bone cements loaded with gentamicin plus vancomycin or clindamycin for prosthesis fixation can help in preventing staphylococcal PJIs following primary arthroplasties, non-septic revisions or septic revisions, especially to prevent PJIs caused by gentamicin-resistant staphylococci.
Collapse
Affiliation(s)
- Andréa Cara
- Centre International de Recherche en Infectiologie, CIRI, Inserm U1111, CNRS UMR5308, ENS de Lyon, UCBL1, Lyon, France
| | - Mathilde Ballet
- Centre International de Recherche en Infectiologie, CIRI, Inserm U1111, CNRS UMR5308, ENS de Lyon, UCBL1, Lyon, France.,Laboratoire de Bactériologie, Institut des Agents Infectieux, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Claire Hemery
- Centre International de Recherche en Infectiologie, CIRI, Inserm U1111, CNRS UMR5308, ENS de Lyon, UCBL1, Lyon, France
| | - Tristan Ferry
- Centre International de Recherche en Infectiologie, CIRI, Inserm U1111, CNRS UMR5308, ENS de Lyon, UCBL1, Lyon, France.,Université Claude Bernard Lyon 1, Lyon, France.,Service de Maladies Infectieuses, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France.,Centre Interrégional de Référence des Infections Ostéo-Articulaires complexes (CRIOAc Lyon), Hospices Civils de Lyon, Lyon, France
| | - Frédéric Laurent
- Centre International de Recherche en Infectiologie, CIRI, Inserm U1111, CNRS UMR5308, ENS de Lyon, UCBL1, Lyon, France.,Laboratoire de Bactériologie, Institut des Agents Infectieux, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France.,Université Claude Bernard Lyon 1, Lyon, France.,Centre Interrégional de Référence des Infections Ostéo-Articulaires complexes (CRIOAc Lyon), Hospices Civils de Lyon, Lyon, France
| | - Jérôme Josse
- Centre International de Recherche en Infectiologie, CIRI, Inserm U1111, CNRS UMR5308, ENS de Lyon, UCBL1, Lyon, France.,Université Claude Bernard Lyon 1, Lyon, France.,Centre Interrégional de Référence des Infections Ostéo-Articulaires complexes (CRIOAc Lyon), Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
43
|
Li P, Gao Z, Tan Z, Xiao J, Wei L, Chen Y. New developments in anti-biofilm intervention towards effective management of orthopedic device related infections (ODRI's). BIOFOULING 2021; 37:1-35. [PMID: 33618584 DOI: 10.1080/08927014.2020.1869725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/15/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
Orthopedic device related infections (ODRI's) represent a difficult to treat situation owing to their biofilm based nature. Biofilm infections once established are difficult to eradicate even with an aggressive treatment regimen due to their recalcitrance towards antibiotics and immune attack. The involvement of antibiotic resistant pathogens as the etiological agent further worsens the overall clinical picture, pressing on the need to look into alternative treatment strategies. The present review highlightes the microbiological challenges associated with treatment of ODRI's due to biofilm formation on the implant surface. Further, it details the newer anti-infective modalities that work either by preventing biofilm formation and/or through effective disruption of the mature biofilms formed on the medical implant. The study, therefore aims to provide a comprehensive insight into the newer anti-biofilm interventions (non-antibiotic approaches) and a better understanding of their mechanism of action essential for improved management of orthopedic implant infections.
Collapse
Affiliation(s)
- Ping Li
- Department of Orthopedics, Ya'an People's Hospital, Yaan City, China
| | - Zhenwu Gao
- Department of Orthopedics, Shanxi Bethune Hospital, Taiyuan City, China
| | - Zhenwei Tan
- Department of Orthopedics, Western Theater Air Force Hospital of PLA, Chengdu, China
| | - Jun Xiao
- Department of Orthopedics, Ya'an People's Hospital, Yaan City, China
| | - Li Wei
- Nursing Department, Three Gorges Hospital Affiliated to Chongqing University, Chongqing, China
| | - Yirui Chen
- Department of Orthopedics, Three Gorges Hospital Affiliated to Chongqing University, Chongqing, China
| |
Collapse
|
44
|
Sauvat L, Abdul Hamid AI, Blavignac C, Josse J, Lesens O, Gueirard P. Biofilm-coated microbeads and the mouse ear skin: An innovative model for analysing anti-biofilm immune response in vivo. PLoS One 2020; 15:e0243500. [PMID: 33275636 PMCID: PMC7717515 DOI: 10.1371/journal.pone.0243500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
Owing to its ability to form biofilms, Staphylococcus aureus is responsible for an increasing number of infections on implantable medical devices. The aim of this study was to develop a mouse model using microbeads coated with S. aureus biofilm to simulate such infections and to analyse the dynamics of anti-biofilm inflammatory responses by intravital imaging. Scanning electron microscopy and flow cytometry were used in vitro to study the ability of an mCherry fluorescent strain of S. aureus to coat silica microbeads. Biofilm-coated microbeads were then inoculated intradermally into the ear tissue of LysM-EGFP transgenic mice (EGFP fluorescent immune cells). General and specific real-time inflammatory responses were studied in ear tissue by confocal microscopy at early (4-6h) and late time points (after 24h) after injection. The displacement properties of immune cells were analysed. The responses were compared with those obtained in control mice injected with only microbeads. In vitro, our protocol was capable of generating reproducible inocula of biofilm-coated microbeads verified by labelling matrix components, observing biofilm ultrastructure and confirmed in vivo and in situ with a matrix specific fluorescent probe. In vivo, a major inflammatory response was observed in the mouse ear pinna at both time points. Real-time observations of cell recruitment at injection sites showed that immune cells had difficulty in accessing biofilm bacteria and highlighted areas of direct interaction. The average speed of cells was lower in infected mice compared to control mice and in tissue areas where direct contact between immune cells and bacteria was observed, the average cell velocity and linearity were decreased in comparison to cells in areas where no bacteria were visible. This model provides an innovative way to analyse specific immune responses against biofilm infections on medical devices. It paves the way for live evaluation of the effectiveness of immunomodulatory therapies combined with antibiotics.
Collapse
Affiliation(s)
- Léo Sauvat
- Laboratoire Microorganismes: Génome et Environnement, Université Clermont Auvergne, UMR CNRS 6023, Clermont-Ferrand, France.,Infectious and Tropical Diseases Department, CRIOA, CRMVT, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Aizat Iman Abdul Hamid
- Laboratoire Microorganismes: Génome et Environnement, Université Clermont Auvergne, UMR CNRS 6023, Clermont-Ferrand, France
| | - Christelle Blavignac
- Centre Imagerie Cellulaire Santé, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Jérôme Josse
- CIRI-Centre International de Recherche en Infectiologie, Inserm, U1111, CNRS, UMR5308, École Normale Supérieure de Lyon, Université Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Olivier Lesens
- Laboratoire Microorganismes: Génome et Environnement, Université Clermont Auvergne, UMR CNRS 6023, Clermont-Ferrand, France.,Infectious and Tropical Diseases Department, CRIOA, CRMVT, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Pascale Gueirard
- Laboratoire Microorganismes: Génome et Environnement, Université Clermont Auvergne, UMR CNRS 6023, Clermont-Ferrand, France
| |
Collapse
|
45
|
Wang M, Li H, Yang Y, Yuan K, Zhou F, Liu H, Zhou Q, Yang S, Tang T. A 3D-bioprinted scaffold with doxycycline-controlled BMP2-expressing cells for inducing bone regeneration and inhibiting bacterial infection. Bioact Mater 2020; 6:1318-1329. [PMID: 33210025 PMCID: PMC7658329 DOI: 10.1016/j.bioactmat.2020.10.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/22/2020] [Accepted: 10/25/2020] [Indexed: 12/24/2022] Open
Abstract
Large bone defects face a high risk of pathogen exposure due to open wounds, which leads to high infection rates and delayed bone union. To promote successful repair of infectious bone defects, fabrication of a scaffold with dual functions of osteo-induction and bacterial inhibition is required. This study describes creation of an engineered progenitor cell line (C3H10T1/2) capable of doxycycline (DOX)-mediated release of bone morphogenetic protein-2 (BMP2). Three-dimensional bioprinting technology enabled creation of scaffolds, comprising polycaprolactone/mesoporous bioactive glass/DOX and bioink, containing these engineered cells. In vivo and in vitro experiments confirmed that the scaffold could actively secrete BMP2 to significantly promote osteoblast differentiation and induce ectopic bone formation. Additionally, the scaffold exhibited broad-spectrum antibacterial capacity, thereby ensuring the survival of embedded engineered cells when facing high risk of infection. These findings demonstrated the efficacy of this bioprinted scaffold to release BMP2 in a controlled manner and prevent the occurrence of infection; thus, showing its potential for repairing infectious bone defects. Genetic engineering and 3D bioprinting. Dual-functional. Suitable for infectious bone defect repair.
Collapse
Affiliation(s)
- Minqi Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, China
| | - Hanjun Li
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, China
| | - Yiqi Yang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, China
| | - Kai Yuan
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, China
| | - Feng Zhou
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, China
| | - Haibei Liu
- Shanghai Graphic Design Information Co. Ltd, Shanghai, 200011, China
| | - Qinghui Zhou
- Shanghai Graphic Design Information Co. Ltd, Shanghai, 200011, China
| | - Shengbing Yang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, China
| |
Collapse
|
46
|
Lamret F, Colin M, Mongaret C, Gangloff SC, Reffuveille F. Antibiotic Tolerance of Staphylococcus aureus Biofilm in Periprosthetic Joint Infections and Antibiofilm Strategies. Antibiotics (Basel) 2020; 9:E547. [PMID: 32867208 PMCID: PMC7558573 DOI: 10.3390/antibiotics9090547] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/18/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022] Open
Abstract
The need for bone and joint prostheses is currently growing due to population aging, leading to an increase in prosthetic joint infection cases. Biofilms represent an adaptive and quite common bacterial response to several stress factors which confer an important protection to bacteria. Biofilm formation starts with bacterial adhesion on a surface, such as an orthopedic prosthesis, further reinforced by matrix synthesis. The biofilm formation and structure depend on the immediate environment of the bacteria. In the case of infection, the periprosthetic joint environment represents a particular interface between bacteria, host cells, and the implant, favoring biofilm initiation and maturation. Treating such an infection represents a huge challenge because of the biofilm-specific high tolerance to antibiotics and its ability to evade the immune system. It is crucial to understand these mechanisms in order to find new and adapted strategies to prevent and eradicate implant-associated infections. Therefore, adapted models mimicking the infectious site are of utmost importance to recreate a relevant environment in order to test potential antibiofilm molecules. In periprosthetic joint infections, Staphylococcus aureus is mainly involved because of its high adaptation to the human physiology. The current review deals with the mechanisms involved in the antibiotic resistance and tolerance of Staphylococcus aureus in the particular periprosthetic joint infection context, and exposes different strategies to manage these infections.
Collapse
Affiliation(s)
- Fabien Lamret
- EA 4691 Biomatériaux et Inflammation en Site Osseux (BIOS), Université de Reims Champagne-Ardenne, SFR Cap Santé (FED 4231), 51097 Reims, France; (F.L.); (M.C.); (C.M.); (S.C.G.)
| | - Marius Colin
- EA 4691 Biomatériaux et Inflammation en Site Osseux (BIOS), Université de Reims Champagne-Ardenne, SFR Cap Santé (FED 4231), 51097 Reims, France; (F.L.); (M.C.); (C.M.); (S.C.G.)
| | - Céline Mongaret
- EA 4691 Biomatériaux et Inflammation en Site Osseux (BIOS), Université de Reims Champagne-Ardenne, SFR Cap Santé (FED 4231), 51097 Reims, France; (F.L.); (M.C.); (C.M.); (S.C.G.)
- Service Pharmacie, CHU Reims, 51097 Reims, France
| | - Sophie C. Gangloff
- EA 4691 Biomatériaux et Inflammation en Site Osseux (BIOS), Université de Reims Champagne-Ardenne, SFR Cap Santé (FED 4231), 51097 Reims, France; (F.L.); (M.C.); (C.M.); (S.C.G.)
| | - Fany Reffuveille
- EA 4691 Biomatériaux et Inflammation en Site Osseux (BIOS), Université de Reims Champagne-Ardenne, SFR Cap Santé (FED 4231), 51097 Reims, France; (F.L.); (M.C.); (C.M.); (S.C.G.)
| |
Collapse
|
47
|
Wang Y, Ashbaugh AG, Dikeman DA, Zhang J, Ackerman NE, Kim SE, Falgons C, Ortines RV, Liu H, Joyce DP, Alphonse MP, Dillen CA, Thompson JM, Archer NK, Miller LS. Interleukin-1β and tumor necrosis factor are essential in controlling an experimental orthopedic implant-associated infection. J Orthop Res 2020; 38:1800-1809. [PMID: 31975434 PMCID: PMC7354231 DOI: 10.1002/jor.24608] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/15/2020] [Accepted: 01/22/2020] [Indexed: 02/04/2023]
Abstract
Orthopedic implant-associated infection (OIAI) is a major complication that leads to implant failure. In preclinical models of Staphylococcus aureus OIAI, osteomyelitis and septic arthritis, interleukin-1α (IL-1α), IL-1β, and tumor necrosis factor (TNF) are induced, but whether they have interactive or distinctive roles in host defense are unclear. Herein, a S. aureus OIAI model was performed in mice deficient in IL-1α, IL-1β, or TNF. Mice deficient in IL-1β or TNF (to a lesser extent) but not IL-1α had increased bacterial burden at the site of the OIAI throughout the 28-day experiment. IL-1β and TNF had a combined and critical role in host defense as mice deficient in both IL-1R and TNF (IL-1R/TNF-deficient mice) had a 40% mortality rate, which was associated with markedly increased bacterial burden at the site of the OIAI infection. Finally, IL-1α- and IL-1β-deficient mice had impaired neutrophil recruitment whereas IL-1β-, TNF-, and IL-1R/TNF-deficient mice all had impaired recruitment of both neutrophils and monocytes. Therefore, IL-1β and TNF contributed to host defense against S. aureus OIAI and neutrophil recruitment was primarily mediated by IL-1β and monocyte recruitment was mediated by both IL-1β and TNF.
Collapse
Affiliation(s)
- Yu Wang
- Department of Dermatology, Johns Hopkins University School
of Medicine, Baltimore, MD, 21231, USA
| | - Alyssa G. Ashbaugh
- Department of Dermatology, Johns Hopkins University School
of Medicine, Baltimore, MD, 21231, USA
| | - Dustin A. Dikeman
- Department of Dermatology, Johns Hopkins University School
of Medicine, Baltimore, MD, 21231, USA
| | - Jeffrey Zhang
- Department of Dermatology, Johns Hopkins University School
of Medicine, Baltimore, MD, 21231, USA
| | - Nicole E. Ackerman
- Department of Dermatology, Johns Hopkins University School
of Medicine, Baltimore, MD, 21231, USA
| | - Sophie E. Kim
- Department of Dermatology, Johns Hopkins University School
of Medicine, Baltimore, MD, 21231, USA
| | - Christian Falgons
- Department of Dermatology, Johns Hopkins University School
of Medicine, Baltimore, MD, 21231, USA
| | - Roger V. Ortines
- Department of Dermatology, Johns Hopkins University School
of Medicine, Baltimore, MD, 21231, USA
| | - Haiyun Liu
- Department of Dermatology, Johns Hopkins University School
of Medicine, Baltimore, MD, 21231, USA
| | - Daniel P. Joyce
- Department of Dermatology, Johns Hopkins University School
of Medicine, Baltimore, MD, 21231, USA
| | - Martin Prince Alphonse
- Department of Dermatology, Johns Hopkins University School
of Medicine, Baltimore, MD, 21231, USA
| | - Carly A. Dillen
- Department of Dermatology, Johns Hopkins University School
of Medicine, Baltimore, MD, 21231, USA
| | - John M. Thompson
- Department of Orthopaedic Surgery, Johns Hopkins University
School of Medicine, Baltimore, MD, 21287, USA
| | - Nathan K. Archer
- Department of Dermatology, Johns Hopkins University School
of Medicine, Baltimore, MD, 21231, USA
| | - Lloyd S. Miller
- Department of Dermatology, Johns Hopkins University School
of Medicine, Baltimore, MD, 21231, USA,Department of Orthopaedic Surgery, Johns Hopkins University
School of Medicine, Baltimore, MD, 21287, USA,Department of Medicine, Division of Infectious Diseases,
Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA,Department of Materials Science and Engineering, Johns
Hopkins University, Baltimore, MD, 21218, USA.,Janssen Research and Development, Spring House, PA, 19477,
USA.,Address correspondence to Lloyd S. Miller,
, Johns Hopkins Department of
Dermatology, Cancer Research Building II, Suite 205, 1550 Orleans Street,
Baltimore, MD 21231, Phone: (410) 955-8662, Fax: (410) 955-8645
| |
Collapse
|
48
|
Ferry T, Batailler C, Brosset S, Kolenda C, Goutelle S, Sappey-Marinier E, Josse J, Laurent F, Lustig S. Medical innovations to maintain the function in patients with chronic PJI for whom explantation is not desirable: a pathophysiology-, multidisciplinary-, and experience-based approach. SICOT J 2020; 6:26. [PMID: 32633714 PMCID: PMC7339926 DOI: 10.1051/sicotj/2020021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 05/27/2020] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION PJI is the most dramatic complication after joint arthroplasty. In patients with chronic infection, prosthesis exchange is in theory the rule. However, this surgical approach is sometimes not desirable especially in elderly patients with multiple comorbidities, as it could be associated with a dramatic loss of function, reduction of the bone stock, fracture, or peroperative death. We propose here to report different approaches that can help to maintain the function in such patients based on a pathophysiology-, multidisciplinary-, and an experience-based approach. METHODS We describe the different points that are needed to treat such patients: (i) the multidisciplinary care management; (ii) understanding the mechanism of bacterial persistence; (iii) optimization of the conservative surgical approach; (iv) use of suppressive antimicrobial therapy (SAT); (v) implementation of innovative agents that could be used locally to target the biofilm. RESULTS In France, a nation-wide network called CRIOAc has been created and funded by the French Health ministry to manage complex bone and joint infection. Based on the understanding of the complex pathophysiology of PJI, it seems to be feasible to propose conservative surgical treatment such as "debridement antibiotics and implant retention" (with or without soft-tissue coverage) followed by SAT to control the disease progression. Finally, there is a rational for the use of particular agents that have the ability to target the bacteria embedded in biofilm such as bacteriophages and phage lysins. DISCUSSION This multistep approach is probably a key determinant to propose innovative management in patients with complex PJI, to improve the outcome. CONCLUSION Conservative treatment has a high potential in patients with chronic PJI for whom explantation is not desirable. The next step will be to evaluate such practices in nation-wide clinical trials.
Collapse
Affiliation(s)
- Tristan Ferry
- Service des Maladies Infectieuses et Tropicales, Hospices Civils de Lyon, Hôpital de la Croix-Rousse, 93 Grande Rue de la Croix-Rousse, 69004 Lyon, France - Université Claude Bernard Lyon 1, 69100 Villeurbanne, France - Centre Interrégional de Référence Pour la Prise en Charge des Infections Ostéo-Articulaires Complexes (CRIOAc Lyon), Hôpital de la Croix-Rousse, 93 Grande Rue de la Croix-Rousse, 69004 Lyon, France - CIRI - Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ. Lyon, 69007 Lyon, France
| | - Cécile Batailler
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France - Centre Interrégional de Référence Pour la Prise en Charge des Infections Ostéo-Articulaires Complexes (CRIOAc Lyon), Hôpital de la Croix-Rousse, 93 Grande Rue de la Croix-Rousse, 69004 Lyon, France - Service de Chirurgie Orthopédique, Hôpital de la Croix-Rousse, 93 Grande Rue de la Croix-Rousse, 69004 Lyon, France
| | - Sophie Brosset
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France - Centre Interrégional de Référence Pour la Prise en Charge des Infections Ostéo-Articulaires Complexes (CRIOAc Lyon), Hôpital de la Croix-Rousse, 93 Grande Rue de la Croix-Rousse, 69004 Lyon, France - Service de Chirurgie Plastique et Reconstructrice, Hôpital de la Croix-Rousse, 93 Grande Rue de la Croix-Rousse, 69004 Lyon, France
| | - Camille Kolenda
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France - Centre Interrégional de Référence Pour la Prise en Charge des Infections Ostéo-Articulaires Complexes (CRIOAc Lyon), Hôpital de la Croix-Rousse, 93 Grande Rue de la Croix-Rousse, 69004 Lyon, France - CIRI - Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ. Lyon, 69007 Lyon, France - Institut des Agents Infectieux, Laboratoire de Bactériologie, Centre National de Référence des Staphylocoques, Hôpital de la Croix-Rousse, 93 Grande Rue de la Croix-Rousse, 69004 Lyon, France
| | - Sylvain Goutelle
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France - Centre Interrégional de Référence Pour la Prise en Charge des Infections Ostéo-Articulaires Complexes (CRIOAc Lyon), Hôpital de la Croix-Rousse, 93 Grande Rue de la Croix-Rousse, 69004 Lyon, France - Service de Pharmacie, Hospices Civils de Lyon, Groupement Hospitalier Nord, Hôpital Pierre Garraud, 136 Rue du Commandant Charcot, 69005 Lyon, France - UMR CNRS 5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, France
| | - Elliot Sappey-Marinier
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France - Centre Interrégional de Référence Pour la Prise en Charge des Infections Ostéo-Articulaires Complexes (CRIOAc Lyon), Hôpital de la Croix-Rousse, 93 Grande Rue de la Croix-Rousse, 69004 Lyon, France - Service de Chirurgie Orthopédique, Hôpital de la Croix-Rousse, 93 Grande Rue de la Croix-Rousse, 69004 Lyon, France
| | - Jérôme Josse
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France - Centre Interrégional de Référence Pour la Prise en Charge des Infections Ostéo-Articulaires Complexes (CRIOAc Lyon), Hôpital de la Croix-Rousse, 93 Grande Rue de la Croix-Rousse, 69004 Lyon, France - CIRI - Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ. Lyon, 69007 Lyon, France - Institut des Agents Infectieux, Laboratoire de Bactériologie, Centre National de Référence des Staphylocoques, Hôpital de la Croix-Rousse, 93 Grande Rue de la Croix-Rousse, 69004 Lyon, France
| | - Frédéric Laurent
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France - Centre Interrégional de Référence Pour la Prise en Charge des Infections Ostéo-Articulaires Complexes (CRIOAc Lyon), Hôpital de la Croix-Rousse, 93 Grande Rue de la Croix-Rousse, 69004 Lyon, France - CIRI - Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ. Lyon, 69007 Lyon, France - Institut des Agents Infectieux, Laboratoire de Bactériologie, Centre National de Référence des Staphylocoques, Hôpital de la Croix-Rousse, 93 Grande Rue de la Croix-Rousse, 69004 Lyon, France
| | - Sébastien Lustig
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France - Centre Interrégional de Référence Pour la Prise en Charge des Infections Ostéo-Articulaires Complexes (CRIOAc Lyon), Hôpital de la Croix-Rousse, 93 Grande Rue de la Croix-Rousse, 69004 Lyon, France - Service de Chirurgie Orthopédique, Hôpital de la Croix-Rousse, 93 Grande Rue de la Croix-Rousse, 69004 Lyon, France
| | | |
Collapse
|
49
|
Goodman SB, Gallo J. Periprosthetic Osteolysis: Mechanisms, Prevention and Treatment. J Clin Med 2019; 8:E2091. [PMID: 31805704 PMCID: PMC6947309 DOI: 10.3390/jcm8122091] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 02/06/2023] Open
Abstract
Clinical studies, as well as in vitro and in vivo experiments have demonstrated that byproducts from joint replacements induce an inflammatory reaction that can result in periprosthetic osteolysis (PPOL) and aseptic loosening (AL). Particle-stimulated macrophages and other cells release cytokines, chemokines, and other pro-inflammatory substances that perpetuate chronic inflammation, induce osteoclastic bone resorption and suppress bone formation. Differentiation, maturation, activation, and survival of osteoclasts at the bone-implant interface are under the control of the receptor activator of nuclear factor kappa-Β ligand (RANKL)-dependent pathways, and the transcription factors like nuclear factor κB (NF-κB) and activator protein-1 (AP-1). Mechanical factors such as prosthetic micromotion and oscillations in fluid pressures also contribute to PPOL. The treatment for progressive PPOL is only surgical. In order to mitigate ongoing loss of host bone, a number of non-operative approaches have been proposed. However, except for the use of bisphosphonates in selected cases, none are evidence based. To date, the most successful and effective approach to preventing PPOL is usage of wear-resistant bearing couples in combination with advanced implant designs, reducing the load of metallic and polymer particles. These innovations have significantly decreased the revision rate due to AL and PPOL in the last decade.
Collapse
Affiliation(s)
- Stuart B. Goodman
- Department of Orthopaedic Surgery, Stanford University, 450 Broadway St. M/C 6342, Redwood City, CA 94063, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Jiri Gallo
- Department of Orthopaedics, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, I. P. Pavlova 6, 779 00 Olomouc, Czech Republic;
| |
Collapse
|
50
|
Hajdamowicz NH, Hull RC, Foster SJ, Condliffe AM. The Impact of Hypoxia on the Host-Pathogen Interaction between Neutrophils and Staphylococcus aureus. Int J Mol Sci 2019; 20:ijms20225561. [PMID: 31703398 PMCID: PMC6888323 DOI: 10.3390/ijms20225561] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/26/2019] [Accepted: 10/31/2019] [Indexed: 12/20/2022] Open
Abstract
Neutrophils are key to host defence, and impaired neutrophil function predisposes to infection with an array of pathogens, with Staphylococcus aureus a common and sometimes life-threatening problem in this setting. Both infiltrating immune cells and replicating bacteria consume oxygen, contributing to the profound tissue hypoxia that characterises sites of infection. Hypoxia in turn has a dramatic effect on both neutrophil bactericidal function and the properties of S. aureus, including the production of virulence factors. Hypoxia thereby shapes the host-pathogen interaction and the progression of infection, for example promoting intracellular bacterial persistence, enabling local tissue destruction with the formation of an encaging abscess capsule, and facilitating the establishment and propagation of bacterial biofilms which block the access of host immune cells. Elucidating the molecular mechanisms underlying host-pathogen interactions in the setting of hypoxia will enable better understanding of persistent and recalcitrant infections due to S. aureus and may uncover novel therapeutic targets and strategies.
Collapse
Affiliation(s)
- Natalia H Hajdamowicz
- Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield, Beech Hill Road, Sheffield S10 2TN, UK; (N.H.H.); (R.C.H.)
- Florey Institute, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK;
| | - Rebecca C Hull
- Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield, Beech Hill Road, Sheffield S10 2TN, UK; (N.H.H.); (R.C.H.)
- Florey Institute, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK;
| | - Simon J Foster
- Florey Institute, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK;
| | - Alison M Condliffe
- Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield, Beech Hill Road, Sheffield S10 2TN, UK; (N.H.H.); (R.C.H.)
- Florey Institute, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK;
- Correspondence:
| |
Collapse
|